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Functional Concurrent Regression Mixture
Models Using Spiked Ewens-Pitman Attraction

Priors

Mingrui Liang∗, Matthew D. Koslovsky†, Emily T. Hébert‡,
Michael S. Businelle§, and Marina Vannucci¶

Abstract. Functional concurrent, or varying-coefficient, regression models are a
form of functional data analysis methods in which functional covariates and out-
comes are collected concurrently. Two active areas of research for this class of
models are identifying influential functional covariates and clustering their rela-
tions across observations. In various applications, researchers have applied and
developed methods to address these objectives separately. However, no approach
currently performs both tasks simultaneously. In this paper, we propose a fully
Bayesian functional concurrent regression mixture model that simultaneously per-
forms functional variable selection and clustering for subject-specific trajectories.
Our approach introduces a novel spiked Ewens-Pitman attraction prior that iden-
tifies and clusters subjects’ trajectories marginally for each functional covariate
while using similarities in subjects’ auxiliary covariate patterns to inform cluster-
ing allocation. Using simulated data, we evaluate the clustering, variable selection,
and parameter estimation performance of our approach and compare its perfor-
mance with alternative spiked processes. We then apply our method to functional
data collected in a novel, smartphone-based smoking cessation intervention study
to investigate individual-level dynamic relations between smoking behaviors and
potential risk factors.

Keywords: clustering, Ewens-Pitman Attraction distribution, functional data
analysis, spiked nonparametric priors, variable selection.

1 Introduction
Functional data analysis (FDA) methods have become increasingly popular in recent
years for modeling data in which covariates, outcomes, or both have functional forms
(i.e., scalar-on-function, function-on-scalar, or function-on-function regression, respec-
tively) (Morris, 2015; Reiss et al., 2017). For example, James et al. (2009) built a
scalar-on-function regression model to predict annual rainfall, a scalar response, based
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2 Spiked-EPA Mixture Model

on daily temperature measurements, a functional covariate. Goldsmith et al. (2015) ap-
plied function-on-scalar regression methods to predict activity level trajectories given a
subject’s body mass index (BMI) and age. Zhang et al. (2011) employed function-on-
function regression models to investigate relations between forest nitrogen cycling and
deforestation using spatial imagery. The special case of function-on-function regression
models in which the functional response and functional predictors are collected at the
same time is often referred to as a functional concurrent, or varying-coefficient, regres-
sion model (Zhang et al., 2011; Maity, 2017). This framework is commonly used to
investigate how the relation between an observed covariate and the outcome varies as a
function of another covariate, typically time (Tan et al., 2012; Kim et al., 2018; Leroux
et al., 2018).

One of the main research objectives in FDA studies is to cluster groups of observa-
tions that share similar functional trends into homogeneous subsets (Tarpey and Kinat-
eder, 2003; Ferreira and Hitchcock, 2009). For example, functional clustering methods
have been applied in various fields, including genomics (Ma et al., 2008), neuroimaging
(Zhang et al., 2014), environmental health (White and Gelfand, 2021), and population
demographics (Hu et al., 2020). In the frequentist setting, functional clustering tech-
niques typically belong to one of three categories (Jacques and Preda, 2014). The first
is referred to as filtering methods, in which smooth functions are first estimated with
finite approximations using regression techniques and the corresponding coefficients are
clustered thereafter. For example, Abraham et al. (2003) applied the k-means algorithm
to cluster estimated B-spline coefficients. Alternatively, distance-based methods adapt
common geometric clustering algorithms, such as k-means, to cluster based on dis-
tances or dissimilarities between curves. The third approach is referred to as adaptive,
or model-based, and comprises methods in which coefficients from finite approximations
of the smooth functions are assumed to follow a cluster-specific probability distribution.

In Bayesian settings, model-based clustering methods are widely used to perform
functional clustering. One of the advantages of the Bayesian approach is the ability to re-
lax assumptions regarding the number of clusters in the data using nonparametric prior
specifications. Species sampling priors, such as the Dirichlet process (Ferguson, 1973)
and its generalization, the Pitman-Yor process (Pitman and Yor, 1997), are commonly
used to govern clustering allocation due to their computational simplicity (Ray and
Mallick, 2006; Wiesenfarth et al., 2014; Suarez and Ghosal, 2016; White and Gelfand,
2021; Das et al., 2021). The Dirichlet and Pitman-Yor processes are exchangeable pro-
cesses, meaning that clustering allocation only depends on the cardinality of the realized
partition. Alternatively, nonexchangeable nonparametric prior specifications allow re-
searchers to inform clustering allocation using auxiliary information (Blei and Frazier,
2011; Dahl et al., 2017; Quintana et al., 2020). For example, Jin et al. (2022) used
a distance-dependent Chinese restaurant process to cluster heterogeneous populations
while considering individuals’ treatment histories. While model-based functional cluster-
ing methods are equipped to easily incorporate additional population- and/or subject-
level (functional) covariates, clustering is typically only based on one functional term.
Notably, there are a variety of Bayesian nonparametric mixture models that cluster
over the entire linear predictor (Dunson et al., 2008b; Kim et al., 2009; Barcella et al.,
2016; Ding and Karabatsos, 2021), or together with other parameters in a joint model
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(Bigelow and Dunson, 2009), but to our knowledge there are no methods designed to
cluster over multiple smooth functions.

In addition to clustering, functional variable selection plays an important role in
FDA to induce sparsity and improve interpretability of the model (Ghosal et al., 2020).
To perform functional variable selection, group-based selection procedures are typically
applied to the parameters corresponding to the finite approximation of each smooth
function. In frequentist settings, researchers employ penalized optimization routines to
shrink corresponding regression coefficients to zero (e.g., group-least absolute shrinkage
and selection operator (group-LASSO) (Yuan and Lin, 2006), smoothly clipped absolute
deviations (Wang et al., 2008), or minimax concave penalty (Ma et al., 2011)) (Gertheiss
et al., 2013; Islam et al., 2018; Ghosal et al., 2020). In the Bayesian framework, re-
searchers have imposed sparsity-inducing priors such as the spike-and-slab (Scheipl
et al., 2012; Goldsmith and Schwartz, 2017) or shrinkage priors such as the functional
horseshoe (Shin et al., 2020) to perform functional variable selection in regression set-
tings.

Over the last two decades, researchers have innovatively employed sparsity-inducing
and clustering priors in various ways to deliver novel insights from complex data struc-
tures. For example, Tadesse et al. (2005) used variable selection techniques to differen-
tiate between covariates that are cluster-specific or shared by all clusters in a nonpara-
metric mixture model setting. Relatedly, Ding and Karabatsos (2021) applied horseshoe
priors to shrink non-influential, cluster-specific covariates within Dirichlet process mix-
ture models. More recently, researchers have designed and implemented spiked process
priors that simultaneously perform variable selection and clustering of active terms
(Dunson et al., 2008a; Kim et al., 2009; Savitsky and Vannucci, 2010; Canale et al.,
2017; Cassese et al., 2019; Koslovsky et al., 2020). These priors can be constructed in
two different ways, as described in Cassese et al. (2019). In one, a nonparametric distri-
bution is assigned to the slab component of the traditional spike-and-slab prior, leading
to an “outer” formulation. Alternatively, in the “inner” formulation, a spike-and-slab or
non-diffuse distribution is assumed as the base measure of a nonparametric prior. The
latter is considered less-informative and more robust to prior misspecification (Canale
et al., 2017). The versatility of this class of priors has enabled researchers to design
novel methods, ranging from identifying risk factors that share similar effects (Savitsky
and Vannucci, 2010; Koslovsky et al., 2020) to dynamic variable selection techniques
(Cassese et al., 2019). Surprisingly, spiked process priors have rarely been implemented
in functional regression settings to simultaneously identify and cluster active smooth
functions.

In this paper, we develop a Bayesian functional concurrent regression mixture model
that uses novel spiked Ewens-Pitman attraction (spiked-EPA) distribution priors which
exploit pairwise similarities in subjects’ auxiliary covariate information to inform func-
tional selection and clustering allocation. As such, we provide a comprehensive model-
based functional clustering method that clusters multiple covariates’ time-varying ef-
fects across subjects. By clustering subjects marginally for each smooth function, our
approach flexibly allows different clustering patterns for each functional covariate’s re-
lation with the functional outcome. We demonstrate the selection, clustering, and es-
timation performance of our proposed method and compare to alternative methods on
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simulated data. We then apply the proposed approach to intensive longitudinal mobile
health (mHealth) data collected in a smartphone-based smoking cessation intervention
study (Smart-T2, (Hébert et al., 2020)). Current FDA methods designed to identify
and reaffirm relations between risk factors and behavioral outcomes in mHealth data
suffer from several limitations, as they typically only identify population-level effects
and ignore potential subpopulation trends. Our approach differs in that it is able to
identify participant-level risk profile trajectories and cluster the trajectories marginally
to help discover subgroups of participants using baseline characteristics.

The rest of the paper is organized as follows. In section 2, we introduce our Bayesian
functional concurrent regression model and the spiked-EPA prior. In section 3, we com-
pare the selection, clustering, and estimation performance of our proposed model with
alternative mixture models on simulated data and perform a sensitivity analysis. In sec-
tion 4, we apply our model to the Smart-T2 data. In section 5, we provide concluding
remarks.

2 Functional Concurrent Regression Mixture Models
Motivated by momentary smoking behavior data collected in the Smart-T2 study, we
develop a binary functional concurrent regression mixture model using a spiked-EPA
prior which enables simultaneous identification and clustering of active subject-specific
functional trends. We first present the functional concurrent regression model and finite
approximation for the smooth functions. Then, we introduce our prior specification and
discuss posterior inference.

Let Yi(·) ∈ {0, 1} represent the binary functional outcome (e.g., momentary smoking
status) for participant i = 1, . . . , N , and Xip(·), p = 1, . . . , P , represent the P corre-
sponding functional covariates collected on each participant. We assume the outcome
and covariates are concurrently observed at subject-specific measurement times, tij ,
where j = 1, . . . , ni. Note that the observation times and the number of observations
may vary between participants. To model the binary outcome, we assume a logistic
regression modeling framework

logit(P (Yi(tij) = 1|Xi(tij))) =
P∑

p=1
Bip(tij)Xip(tij), (2.1)

where Xi(·) represents the ni ×P -dimensional matrix of observed functional covariates
and Bip(·) are subject- and covariate-specific smooth functions. Thus, Bip(tij) is inter-
preted as the expected change in the log odds of smoking for the ith participant for a
unit increase in Xip at time tij , holding all else constant. In general the proposed model
can readily capture population-level trends (i.e., Bip(·) = Bp(·) for all i = 1, . . . , N)
and other covariate forms. Similar population-level time-varying effect models are often
applied to investigate the dynamic relations between smoking behaviors and risk factors
around a scheduled quit attempt (Tan et al., 2012; Koslovsky et al., 2018; Shiyko et al.,
2012).
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2.1 Finite Approximation of the Smooth Functions

A common approach for approximating smooth functions is with Bayesian penalized
splines (Lang and Brezger, 2004). We assume the smooth functions are modeled as

Bip(tij) = T ᵀ
ijpζip, (2.2)

where T ijp is a rp-dimensional spline basis function for Bip(tij) and ζip is a rp-dimen-
sional vector of corresponding spline coefficients. The spline coefficients are typically
assumed to follow a second-order random walk prior (i.e., ζip|s2 ∼ N(0, s2P )), where
s2 controls the amount of smoothness and P is the appropriate penalty matrix (Lang
and Brezger, 2004). In Scheipl et al. (2012), the authors show how priors of this type
can be reparameterized with iid prior formulations that provide deeper insights into the
underlying structure of the functional relations and enable variable selection. As pointed
out by Ni et al. (2019), the reparameterization additionally enables penalization for the
entire smooth function, as opposed to only the non-linear components. In addition to
improving inference, we preferred this semiparametric approach over a fully nonpara-
metric alternative (e.g., the Gaussian process (Petrone et al., 2009; Scarpa and Dunson,
2009)) due to its computational efficiency and interpretability. Following (Scheipl et al.,
2012), we deconstruct Equation (2.2) as a summation of a main effect, linear interaction
term, and non-linear interaction term. Specifically, we set

Bip(tij) = β̃ipT ′ ᵀ
ijpξip + β̄iptij + β̇ip, (2.3)

where the constant term β̇ip captures the main effect of Xp(·), β̄ip is the linear interac-
tion term for Xp(·) and time, and β̃ipξip is a parameter-expanded vector of coefficients
corresponding to the non-linear (penalized) interaction term. For interpretation, the
rp-dimensional vector ξip maintains the shape of the non-linear portion of the smooth
function and β̃ip controls the term’s strength of association while preserving identifibil-
ity. The benefit of this approach is that it enables us to perform variable selection on
the non-linear interaction term coefficients as a group via the prior specification of β̃ip,
which we illustrate in Section 2.2. Further details of the reparameterization technique
are provided in the Supplementary Material (Liang et al., 2023).

2.2 Spiked-Nonparametric Priors

In exploratory researcher settings, researchers often employ sparsity-inducing and clus-
tering priors in various ways to perform dimension reduction, identify potential subpopu-
lations, borrow strength across observations, and generate new hypotheses. Spiked-non-
parametric priors are designed to perform both tasks simultaneously in a unifying frame-
work (Dunson et al., 2008a; Kim et al., 2009; Savitsky and Vannucci, 2010; Canale et al.,
2017; Cassese et al., 2019; Koslovsky et al., 2020). In practice, researchers commonly
employ spiked-Dirichlet (DP) or Pitman-Yor (PY) processes to simultaneously identify
and cluster active terms in the model. For example, our team successfully developed
a variable selection method for time-varying effect models using spiked-DP priors that
identifies active population-level regression coefficients and clusters their magnitudes to
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help determine which risk factor to target at a given moment (Koslovsky et al., 2020).
Spiked process priors of this type are exchangeable, meaning that clustering allocation
only depends on the size or cardinality of the current clustering. Alternatively, nonex-
changeable priors, such as the distance dependence Chinese restaurant process (ddCRP,
Blei and Frazier (2011)) and the EPA (Dahl et al., 2017), use auxiliary covariate infor-
mation to inform clustering allocation.

In this work, we propose using a novel spiked-EPA distribution to simultaneously
perform variable selection on individual-level smooth functions while using baseline
covariate information to inform clustering allocation using an “inner” formulation. To
help introduce the model’s construction, we illustrate the class of species sampling
models in which a sequence of random variables (e.g., θ1, θ2, . . . ) is characterized by
predictive probability functions of the following form

θi|θ1, · · · , θi−1 ∼ w′(i)G0(θi) +
qi−1∑
k=1

wk(i)δθ∗
k
(θi),

where δx(·) represents a point mass at x, w′(i) and wk(i) represent weights that sum
to one, G0 is a probability measure, and qi−1 is the number of unique clusters (indexed
by k) created during the realizations of θ1, . . . , θi−1. For the familiar DP prior with
concentration parameter α, the weights are defined as w′(i) = α

α+i−1 and wk(i) = nk

α+i−1 ,
where nk is the number elements assigned to the kth cluster. When the parameters
follow a PY (a two-parameter generalization of the DP) process prior with concentration
parameter α and discount parameter δ, we obtain a similar representation with w′(i) =
α+δqi−1
α+i−1 and wk(i) = nk−δ

α+i−1 .

To construct the proposed spiked-EPA distribution, we first let θip = (β′
ip, ξ

′
ip) =

(β̃ip, β̄ip, β̇ip, ξ
′
ip)′. Using a similar species sampling representation as above, we assume

θσi,p|θσ1,p, · · · ,θσi−1,p ∼ w′
p(σi)G0(θσi,p) +

qi−1,p∑
k=1

wkp(σi)δθ∗
kp

(θσi,p),

where wkp(·) and w′
p(·) are the weight of assigning a subject to a realized cluster k

and the weight of sampling a new cluster from the base distribution G0(·) for the pth

smooth function, respectively. Due to the nonexchangeability of the EPA distribution,
the clustering allocation order of the individuals may affect the realized clustering. We
use σ to represent the allocation order. Further, qi−1,p represents the number of clusters
created during the allocation of σ1, · · · , σi−1 for smooth function p and θ∗

kp represents
the unique realizations of θip. A cluster is then characterized as Skp = {i : θip = θ∗

kp}.
The disjoint clusters Skp form a partition, πp, of all subjects for covariate p. The weights
wkp(·) and w′

p(·) are defined following the EPA distribution as

wkp(σi) = i− 1 − δpqi−1,p

αp + i− 1 ×

∑
{j: σj∈Sk, j<i}

λp(σi, σj)

i−1∑
j′=1

λp(σi, σj′)
,

and w′
p(σi) = αp + δpqi−1,p

αp + i− 1 ,

(2.4)
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where δp ∈ [0, 1) is the discount parameter, αp > −δp is the concentration parameter,
and λp(·, ·) is the similarity function, parameterized by the similarity parameter ηp,
representing the attraction between two subjects. Note that the difference between the
DP, PY, and EPA priors in the species sampling model formulation is captured via the
weights, in addition to the ordering dependence. As opposed to the PY and DP priors,
the EPA distribution accounts for the attraction λp(·, ·) of σi to all existing members
in a given cluster. This alteration allows the clustering procedure to be influenced and
modeled by additional covariates of interest through the formulation of the similarity
function λp(·, ·). In the context of our application, this allows baseline participant in-
formation to inform clusters of time-varying effects for potential risk factors of smoking
(e.g., urge to smoke) across participants.

A critical component of the implementation of our proposed method is the spec-
ification of the priors in the EPA which govern the clustering allocation. Following
the recommendations of Dahl et al. (2017), we assume αp ∼ Gamma(aα, bα), δp ∼
γδpBeta(aδ, bδ) + (1 − γδp)δ0(δp), where δ0(·) is a Dirac delta, or point mass, at zero,
and γδp follows a Beta-Binomial(aγδ

, bγδ
). We assume the similarity function takes the

form of an exponential decay function, λp(σi, σj) = exp(−ηpdij), where dij indicates
the Euclidean distance between a set of measures (e.g., baseline covariates, time) for
individuals i and j. The similarity parameters ηp are assumed to be positive and follow
a Gamma(aη, bη) distribution. Hence a smaller Euclidean distance dij leads to a larger
similarity. Lastly, we assume each possible permutation of σ has the same possibility
(i.e., every allocation order has the same uniform prior). By allowing the EPA hyperpa-
rameters to vary across smooth functions, we are able to infer the amount of clustering
for each smooth function as well as the effect of the similarity function on clustering.

To complete the prior formulation, we specify the base distribution G0(·), which
ultimately controls the variable selection in the model. Here, our objective is to construct
a prior that identifies active smooth functions at the subject level and further induces
sparsity on the individual components that make up the smooth functions defined in
2.3. Specifically, for the base distribution of the species sampling prior, we assume βip

follow a multivariate spike-and-slab distribution to identify active smooth functions at
the individual level. We let

p(βip|γip) = γipS(βip) + (1 − γip)δ0(βip),

where S(βip) is referred to as the slab distribution and γip ∈ {0, 1} is a global in-
clusion indicator. When γip = 1, the pth smooth function is active in the model for
individual i, and 0 otherwise (i.e., β̃ip = β̄ip = β̇ip = 0). We assume γip follows a Beta-
Binomial(aγ , bγ), where the hyperparameters control the overall sparsity of the model,
with prior mean aγ

aγ+bγ
. We further induce shrinkage on the active group of regression

coefficients using horseshoe priors for S(βip) (Carvalho et al., 2010). We assume S(βip)
follows a multivariate normal distribution with mean 03×1 and variance

Vip = τ2
p

⎛
⎝λ̃2

ip 0 0
0 λ̄2

ip 0
0 0 λ̇2

ip

⎞
⎠ .
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Here, τ2
p represents a global variance shared among each regression coefficient in βip,

and λ̃2
ip, λ̄

2
ip, and λ̇2

ip are local variances. We assume λ̃2
ip|νλ̃2

ip
∼ IG(1/2, 1/νλ̃2

ip
) and

νλ̃2
ip

∼ IG(1/2, 1), where νλ̃2
ip

is an auxiliary parameter introduced for efficient sam-
pling following Makalic and Schmidt (2015) and IG represents an Inverse-Gamma dis-
tribution. To complete the model specification, we assume similar prior formulations for
λ̄2
ip, λ̇

2
ip and τ2

p and their corresponding auxiliary parameters νλ̄2
ip

, νλ̇2
ip

, and ντp , respec-
tively. Lastly, each element of ξip, ξipr, r = 1, . . . , rp, is assumed to follow N(μipr, 1),
where μipr = ±1 with equal probability, namely μipr ∼ 0.5× δ1(μipr) + 0.5× δ−1(μipr).

A unique aspect of our approach is the combination of spike-and-slab and horseshoe
priors, two competing Bayesian methods for inducing sparsity in regression settings,
to regularize active smooth functions. Alternatively, we could have assumed the base
distribution follows a multivariate horseshoe prior. However, this approach would not
explicitly perform variable selection on the smooth functions as it would allow non-
zero βip terms, even if the time-varying effect was truly inactive. Similarly, we could
have embedded spike-and-slab priors for the individual βip terms instead of the horse-
shoe priors. While this would have also achieved our goal of regularizing active smooth
functions, this formulation required a more complicated Markov chain Monte Carlo
(MCMC) algorithm that may result in poorer mixing.

2.3 Posterior Inference
For posterior inference, we implement a Metropolis-Hastings within Gibbs sampling
scheme (see Algorithm 1. See the Supplementary Materials for further details). Briefly,
we use the Pólya-Gamma data augmentation technique of Polson et al. (2013) to effi-
ciently update θ∗ by introducing a latent variable ωij ∼ PG(1, 0) for each observation
Yi(tij). As such, the full joint distribution is written as

f(Y |X,θ∗,π,ω)p(θ∗|γ,μ,λ,ν, τ )p(γ)p(μ)p(λ|ν)p(τ |ν)p(ν)
× p(π|α, δ,η,σ)p(α)p(δ|γδ)p(γδ)p(σ)p(η)p(ω).

Note that we use bold characters to represent variables in vector form. Similar in spirit
to algorithm 8 in Neal (2000), we apply an auxiliary variable procedure to update
the partitions πp, which explicitly places a positive probability of assignment to the
trivial cluster (i.e., θ∗

kp = 0) (Savitsky and Vannucci, 2010). The parameters in the
EPA distribution (i.e., αp, ηp, δp, and σp) are updated using Metropolis-Hastings steps.
When the discount parameter δp = 0, a Gibbs update for αp can be performed, as
described in Escobar and West (1995). The mean of ξ, μ, is updated using a Gibbs
update. At each MCMC iteration, the β̃ip and ξip terms are rescaled such that the
mean of |ξip| is equal to one. Lastly, we use the approach of Makalic and Schmidt
(2015) to sample the horseshoe parameters.

After burn-in and thinning, the remaining samples obtained from the MCMC al-
gorithm are used for inference. To determine a functional covariate’s overall inclusion
in the model for each subject, its marginal posterior probability of inclusion (MPPI) is
estimated by calculating the average of its respective inclusion indicator’s MCMC sam-
ples (George and McCulloch, 1997). Commonly, covariates are included in the model
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Algorithm 1 MCMC sampler.
1: Input data Y , X and T
2: Initiate θ, π, ω, γ, μ, ν, λ, τ , α, δ, γδ, η, σ
3: for iteration m = 1, . . . ,M do
4: for iteration p = 1, . . . , P do
5: Jointly update θp and γp with a Between step (Savitsky et al., 2011).
6: Jointly update θp,γp, and πp with Neal (2000) algorithm 8.
7: Perform a Within Step for θp with a Pólya-Gamma update (Polson et al.,

2013).
8: end for
9: Rescale β̃ and ξ such that the mean of |ξ| is equal to one

10: Update μ with a Gibbs step.
11: Update ν and τ with a Gibbs step (Makalic and Schmidt, 2015).
12: if discount parameters δ set to 0 then
13: Update α with a Gibbs step (Escobar and West, 1995).
14: else
15: Update α and δ with Metropolis-Hastings steps.
16: end if
17: Update η with Metropolis-Hastings steps.
18: Update σ with Metropolis-Hastings steps.
19: end for

if their MPPI exceeds 0.50, often referred to as the median model approach (Barbieri
et al., 2004).

One of the challenges of using nonparametric Bayesian priors to induce clustering
is that the resulting posterior samples do not provide direct inference on cluster al-
location. As a result, researchers typically rely on post-hoc algorithms for posterior
inference. To determine subjects’ cluster assignments for each smooth function, we use
the sequentially-allocated latent structure optimization (SALSO) method to minimize
the lower bound of the variation of information loss (Meilă, 2003; Dahl et al., 2021). Dahl
et al. (2021) demonstrate the superior clustering performance of the SALSO method
compared to alternative approaches. This algorithm requires an N×N -dimensional ma-
trix representing the pairwise probabilities that subjects i and j are in the same cluster
of a partition, estimated using the posterior samples. This approach, and other existing
post-hoc partition summary methods, are not designed to handle spiked processes. In
these settings, the pairwise probabilities for marginally active terms (i.e., MPPIs near
0.50) will be dominated by the trivial cluster. Instead, we propose defining the pairwise
similarity matrix for each covariate p, hp, using only the samples in which coefficient
terms for both subjects are active. Specifically, each element hijp is defined as

hijp =
( M∑

m=m1+1
1(ŝ(m)

ip = ŝ
(m)
jp )γ̂(m)

ip γ̂
(m)
jp

)
/

M∑
m=m1+1

γ̂
(m)
ip γ̂

(m)
jp ,

where the first m1 samples are treated as burn-in, ŝ(m) and γ̂(m) are the posterior
samples for the cluster and inclusion indicators at iteration m.
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Individual i Bi1 Bi2 Bi3
1–20 f2(tij) f3(tij) f1(tij)
21–40 f5(tij) f4(tij) f1(tij)
41–60 f5(tij) f3(tij) f6(tij)

Table 1: Simulated varying-coefficients: Subject-specific smooth functions defined in the
true model for the first three active terms.

3 Simulation Study
In this section, we evaluate the clustering, variable selection, and estimation performance
of our proposed method on simulated data. Notably, there are no existing methods that
simultaneously perform functional clustering and selection at the individual level. Thus,
to showcase the advantage of incorporating similarity information to inform clustering
allocation, we compare the spiked-EPA prior with two exchangeable alternatives for the
proposed method, the spiked-Dirichlet process (spiked-DP) prior (Savitsky and Van-
nucci, 2010) and the spiked-Pitman-Yor process (spiked-PY) (Canale et al., 2017). For
all models, we assume an “inner” spiked-process formulation for consistency.

3.1 Data Generation

We simulated N = 60 subjects with ni = 20 observations each. Observation times,
tij , were sampled from a Uniform(0,1) distribution, without loss of generality. For each
observation, we generated a set of 15 covariates X(tij), which included an intercept
term and 14 continuous covariates. Note that while the dimension of the covariate
space is relatively small, the number of potential models to chose from is quite large
(i.e., 2PN ) as the effect of each functional covariate is determined at the individual
level. The continuous covariates were generated from Normal(0,Σ), where Σst = w|s−t|

and w = 0.3. Seven of the covariates were jittered by Normal(0, 1) at each observation
time to mimic time-varying characteristics observed in practice. The first three smooth
functions were defined such that the clustering patterns were different for each functional
covariate (see Table 1 for details). For example, Bi1(·) for individuals i ∈ {1 . . . 20} was
set similarly (i.e., Bi1(·) = f2(·)), while Bi1(·) = f5(·) for i ∈ {21 . . . 60}.

The true smooth functions were defined as

• f1(tij) = πtijcos(5πtij) − 1.2tij

• f2(tij) = πsin(3πtij) + 1.4tij − 1.6

• f3(tij) = πcos(2πtij) + 1.6

• f4(tij) = −πcos(2πtij) + 1.6tij

• f5(tij) = πsin(5tij) − cos(πtij)

• f6(tij) = 0.



M. Liang, M. D. Koslovsky, E. T. Hébert, M. S. Businelle, and M. Vannucci 11

Smooth functions B4(·) − B15(·) were inactive in the true model for all individuals. An
N×4 pairwise similarity matrix Z was constructed from two binary and two continuous
covariates following the block-pattern described in Table 1. Both binary covariates were
generated from Bernoulli distributions with mean 0.9, 0.1, and 0.5, and continuous
covariates were generated from normal distributions with mean −3, 0, and 3 and variance
1, for individuals 1–20, 21–40, and 41–60, respectively. The pairwise distance matrix was
then constructed using the Euclidean distance between individuals’ covariate patterns
(i.e., dij = ||zi − zj ||2). As such, the pairwise distance dij between individuals i and j
was smaller if they were within the same block (e.g., i, j ∈ {1, . . . , 20}) versus if they
were in different blocks (e.g., i ∈ {1, . . . , 20} and j ∈ {21, . . . , 40}). The former leads to
a larger similarity metric and stronger attraction. Note that marginally, the similarity
matrix does not match the true clustering pattern.

3.2 Model Specification and Inference
We applied the spiked-EPA, spiked-DP, and spiked-PY functional concurrent regression
mixture models to 30 replicate data sets. In each simulation, the MCMC algorithm was
run for 2,000 iterations, using the first 500 iterations as burn-in. Convergence of the
models was determined using Geweke’s diagnostics (Geweke et al., 1991), traceplots
of the total number of active terms for all smooth functions, and traceplots of the
coefficient estimates. Traceplots and corresponding Geweke’s diagnostics can be found
in the Supplementary Material.

For the spiked-EPA model, we set the discount parameters δp = 0, which enabled
Gibbs updates for the concentration parameters αp. For the remaining hyperparameters,
we set aα = 5, bα = 1, and aη = bη = 1 to impose a mean of 5 and 1 for the concentration
and similarity parameters, respectively. We also set aγ = bγ = 1, imposing a non-
informative prior probability of inclusion for each subject-specific smooth function. We
assumed an exponential similarity function to inform clustering allocation in the spiked-
EPA model, as described in Section 2.2. The hyperparameters for α and γ were set
to the same values for the spiked-DP and spiked-PY. For the spiked-PY model, we
additionally set the hyperparameters for the discount parameter as aδ = bδ = 2 such
that the distribution is symmetric and centered at 0.5.

To determine cluster allocation for each subject-specific smooth function, we applied
the SALSO method to the active posterior samples, as described in Section 2.3. We then
evaluated clustering performance based on the variation of information (VI) (Meilă,
2007) and the adjusted Rand index (ARI) (Hubert and Arabie, 1985), which both
measure closeness between the true and estimated clustering allocations. VI is always
non-negative and values closer to 0 indicate better clustering performance. ARI takes on
values between 0 and 1, with 0 indicating that two allocations do not agree on any pair
of items and 1 indicating that the allocations are the same. Inclusion in the model was
determined using the median model approach (Barbieri et al., 2004). Variable selection
performance was evaluated via true positive rate (TPR), false positive rate (FPR), and
Matthew’s correlation coefficient (MCC). These metrics are defined as

TPR = TP

FN + TP
,
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FPR = FP

FP + TN
,

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

,

where TN , TP , FN , and FP represent the true negatives, true positives, false negatives,
and false positives, respectively. Lastly, we evaluated the methods’ ability to recover
the true smooth functions by measuring the mean squared error (MSEB) between the
estimates and the truth for the first three smooth functions at each observation time
averaged across subjects. That is,

MSEB = 1
3
∑N

i=1 ni

3∑
p=1

N∑
i=1

ni∑
j=1

(
B̂ip(tij) − Bip(tij)

)2

,

where B̂ip(·) is the estimated smooth function. A functional covariate’s inclusion in the
model was determined based on their corresponding MPPIs.

3.3 Results
In this section, we discuss results of the clustering, variable selection, and estimation
performance of the three models. The results of the active smooth functions (i.e., p =
1, . . . , 3) are summarized in Table 2. We observed that the spiked-EPA model achieved
the best functional clustering performance (V I ≤ 0.05 and ARI ≥ 0.98) and functional
variable selection performance (TPR ≥ 0.98) for the first two smooth functions. Note
that the first two smooth functions were active for all subjects, and therefore we do not
report FPR or MCC. In comparison, the spiked-DP and spiked-PY model achieved
similar functional selection performance, with poorer functional clustering performance
(V I ≤ 0.45 and ARI ≥ 0.80). All three models had difficulty estimating the third
smooth function due to the complexity of f1(·). However, the spiked-EPA model still
demonstrated much better performance in terms of selection and clustering compared to
the exchangeable alternatives. In contrast, the spiked-DP and spiked-PY models were
not able to determine active and inactive smooth functions, resulting in lower TPR,
higher FPR, and lower clustering performance. All three methods obtained FPR < 0.08
for the inactive functional terms.

These results demonstrate how accommodating similarities in subjects’ auxiliary in-
formation can help improve clustering and ultimately selection performance, even when
the auxiliary information does not fully capture the true clustering patterns. As a result
of the improved clustering and variable selection performance, the spiked-EPA model
obtained more accurate estimates for the smooth functions in terms of the MSEB. To
explore how the clustering and selection performance led to differences in estimation
accuracy between the three models, Figure 1 presents the smooth functions estimated
for subject i = 9 on a randomly selected data set. For the spiked-EPA model, we ob-
serve that the true smooth functions remain within the 95% credible intervals (CIs)
of the estimated trajectories. In comparison, both of the alternative models misclassi-
fied the functional trajectories for the first functional covariate, which had a negative
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Smooth Function spiked-EPA spiked-DP spiked-PY
Runtime 10.54 (1.02) 9.63 (2.90) 8.64 (0.84)
MSEB 0.31 (0.49) 0.73 (1.62) 0.80 (1.70)

p = 1 TPR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
(Intercept) FPR – – –

MCC – – –
VI 0.00 (0.00) 0.20 (0.20) 0.23 (0.30)

ARI 1.00 (0.00) 0.92 (0.09) 0.91 (0.13)
p = 2 TPR 0.98 (0.03) 0.99 (0.02) 0.99 (0.02)

(Fully active) FPR – – –
MCC – – –
VI 0.05 (0.10) 0.42 (0.34) 0.44 (0.35)

ARI 0.98 (0.04) 0.81 (0.21) 0.80 (0.21)
p = 3 TPR 0.78 (0.21) 0.69 (0.25) 0.67 (0.27)

(Partially active) FPR 0.26 (0.22) 0.51 (0.22) 0.56 (0.26)
MCC 0.54 (0.25) 0.20 (0.15) 0.12 (0.19)
VI 0.45 (0.41) 1.04 (0.12) 1.07 (0.18)

ARI 0.74 (0.33) 0.10 (0.11) 0.11 (0.11)
Table 2: Simulation Results: Mean (standard deviation (SD)) of the variation of infor-
mation (VI), adjusted Rand Index (ARI), true positive rate (TPR), false positive rate
(FPR), Matthew’s correlation coefficient (MCC), and mean squared error for estimated
and true smooth functions assessed at each observation time (MSEB) for spiked-EPA,
spiked-DP, and spiked-PY models. Results are averaged over 30 replicate data sets.
Runtime is in hours.

impact on estimation performance. Additionally, for the third functional covariate the
spiked-DP method misclassified all subjects as inactive, while the spiked-PY method
classified almost all subjects as active. As a result, the spiked-PY method’s estimated
smooth function for X3 departed from the truth, while that of the spiked-DP method’s
estimated smooth function was biased towards zero. Regardless of the approach, the
misclassification of the subjects’ clustering allocation resulted in poorer estimation of
the subject-specific trends downstream. Due to the larger parameter space and nonex-
changeability of the spiked-EPA model, the runtime took roughly 25% longer than the
spiked-PY model.

3.4 Sensitivity Analysis

To assess the proposed model’s sensitivity to hyperparameter specification, we set each
of the hyperparameters to default values and then evaluated the effect of manipulat-
ing one term at a time on the selection and clustering performance. For the default
parameterization, we used the settings described in the simulation study. Additionally,
we explored alternative similarity functions in the EPA distribution, including a lo-
gistic similarity function, λp(i, j) = exp(−dij+ηp)

1+exp(−dij+ηp) , and a window similarity function,
λp(i, j) = 1(dij < ηp) + 0.011(dij ≥ ηp). For the logistic similarity function, any Eu-
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Figure 1: Simulation Results: Estimated smooth functions for B1 to B3 for subject 9 in
the simulation study using spiked-DP, spiked-PY, and spiked-EPA models. Solid lines
and colored ribbons represent the estimated smooth functions and their corresponding
95% CI. Black dashed lines represent the true log odds ratios as a function of time.

clidean distances between two subjects less (greater) than ηp would lead to a similarity
measure greater (less) than 0.5 with a maximum (minimum) at 1 (0). For the window
function, we fixed ηp to the mean of the Euclidean distances between each pairwise
combination of subjects. As such, the similarity measure takes on values of 1 or 0.01
based on whether the distance between two subjects, dij , is less than or greater than ηp.
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Smooth Function aα = 1 aα = 10 aγ = 4 bγ = 9 bγ = 99
p = 1 VI 0.00 (0.00) 0.01 (0.06) 0.01 (0.04) 0.01 (0.04) 0.01 (0.06)

ARI 1.00 (0.00) 1.00 (0.02) 1.00 (0.01) 1.00 (0.01) 1.00 (0.02)
p = 2 VI 0.06 (0.19) 0.07 (0.20) 0.09 (0.18) 0.04 (0.08) 0.04 (0.18)

ARI 0.97 (0.10) 0.97 (0.10) 0.95 (0.11) 0.99 (0.03) 0.98 (0.04)
TPR 1.00 (0.01) 0.96 (0.07) 0.98 (0.06) 0.98 (0.02) 0.96 (0.08)

p = 3 VI 0.20 (0.20) 0.55 (0.45) 0.44 (0.43) 0.42 (0.40) 0.39 (0.40)
ARI 0.92 (0.09) 0.66 (0.38) 0.73 (0.35) 0.74 (0.35) 0.76 (0.34)
TPR 0.85 (0.19) 0.64 (0.26) 0.78 (0.20) 0.75 (0.29) 0.76 (0.29)
FPR 0.17 (0.18) 0.25 (0.16) 0.33 (0.26) 0.31 (0.25) 0.28 (0.18)
MCC 0.70 (0.20) 0.39 (0.27) 0.45 (0.31) 0.45 (0.34) 0.50 (0.26)

Smooth Function bη = 5 aη = 5 logistic window
p = 1 VI 0.01 (0.04) 0.02 (0.07) 0.01 (0.04) 0.10 (0.18)

ARI 1.00 (0.01) 0.99 (0.02) 1.00 (0.01) 0.96 (0.08)
p = 2 VI 0.07 (0.11) 0.14 (0.29) 0.08 (0.13) 0.31 (0.33)

ARI 0.98 (0.04) 0.94 (0.15) 0.97 (0.05) 0.88 (0.13)
TPR 0.98 (0.03) 0.96 (0.08) 0.98 (0.02) 0.97 (0.07)

p = 3 VI 0.65 (0.41) 0.60 (0.40) 0.37 (0.40) 0.71 (0.33)
ARI 0.56 (0.38) 0.64 (0.36) 0.80 (0.30) 0.57 (0.31)
TPR 0.70 (0.27) 0.68 (0.28) 0.83 (0.12) 0.71 (0.26)
FPR 0.32 (0.21) 0.11 (0.12) 0.25 (0.19) 0.36 (0.23)
MCC 0.40 (0.23) 0.56 (0.28) 0.59 (0.17) 0.38 (0.24)

Table 3: Sensitivity Results: Evaluation of the proposed method’s sensitivity to hyper-
parameter specification on simulated data. Results are averaged over 30 replicated data
sets with standard deviations in parentheses. VI: variation of information; ARI: ad-
justed Rand Index; TPR: true positive rate; FPR: false positive rate; MCC: Matthew’s
correlation coefficient.

For each of the model specifications, we present results on the same 30 replicated data
sets generated in the simulation study. The MCMC chains were run for 2,000 iterations,
treating the first 500 as burn-in.

The results of the sensitivity analysis are shown in Table 3. We observed that the
proposed model’s sensitivity to hyperparameter specification varied for inactive and ac-
tive functional covariates, as well as the local structure of the active smooth functions.
For inactive terms, the results were not sensitive to hyperparameter specification. For
the first two active smooth functions, the proposed method obtained similar selection
and clustering performance, regardless of the value specified for the concentration pa-
rameter. However for the third smooth function, we observed that as aα increased, the
selection and clustering performance declined. The proposed model was relatively ro-
bust to the prior probability of inclusion. However, stronger attraction in the similarity
function resulted in a decrease in selection and clustering performance for all three ac-
tive smooth function. As expected, the performance of the spiked-EPA approached the
performance of the spiked-DP and spiked-PY models as bη increased. Lastly, compared
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to the exponential and logistic similarity functions, we observed a marginal reduction
in selection and clustering performance when using the window similarity function. We
attribute this to the window function capturing limited attraction information. Overall,
the proposed method was more sensitive to the hyperparameters for the EPA portion
of the model than the spike-and-slab portion.

4 Application
Mobile health (mHealth) methods have revolutionized the design and delivery of behav-
ioral health interventions targeting smoking cessation and may help reduce smoking-
related health disparities. A popular mHealth technique in behavioral health research
is the use of ecological momentary assessment (EMA) methods to capture informa-
tion about psychological, emotional, and environmental factors that may relate to a
behavioral outcome in near real-time. An emerging strategy for delivering automated
personalized support via mobile technology at critical moments throughout an assess-
ment period is the just-in-time adaptive intervention (JITAI) (Spruijt-Metz and Nilsen,
2014). JITAIs are adaptive interventions that use dynamically changing information
collected on an individual to determine when and how to deliver treatment in real-time.
Historically, studies have used health behavior theory (Shiffman et al., 2002; Timms
et al., 2014) or population-level trends of smoking antecedents (Piasecki et al., 2013) to
determine JITAI decision rules. However, current health behavior theories are poten-
tially inadequate for guiding the dynamic and granular nature of JITAIs as they may
overlook important individual- and subpopulation-level smoking lapse trends that may
be useful for targeting high-risk moments.

In this analysis, we demonstrate how our proposed method can be used to gain
insights into individual-level patterns of the dynamic relations between risk factors and
smoking behaviors in the critical moments after a quit attempt using data collected in
the Smart-T2 study, which was designed to investigate the utility of a novel, smartphone-
based smoking cessation JITAI (Hébert et al., 2020). The Smart-T intervention uses
a lapse risk estimator to identify moments of heightened risk for lapse, and tailors
treatment messages in real-time based upon the level of imminent smoking lapse risk
and currently present lapse triggers (Businelle et al., 2016). In this study, participants
were followed over a five-week period from one week prior to a scheduled quit attempt
to four weeks after. Throughout the assessment period, participants completed daily
diaries and received four random EMAs from a study provided smartphone that asked
each participant questions about their recent smoking behaviors and various factors
that may contribute to an increased risk of smoking.

In this analysis, we investigated the time-varying relations between potential risk
factors and smoking behaviors after the scheduled quit attempt for a subset of 46 par-
ticipants who were randomized to the Smart-T treatment or usual care. Participants
with less than 5 observations post-quit were removed prior to analysis. The median
number of EMAs per participant was 126 (99–132 interquartile range (IQR)). Reported
momentary smoking, the outcome of interest, was defined as whether or not a participant
reported smoking in the 4 hours prior to the current EMA, capturing momentary smok-
ing behaviors during waking hours. At each EMA, a participant was asked questions on
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Figure 2: Heatmap for the attraction (i.e., λ(i, j) = exp(−0.5dij)) between subjects
when using baseline HSI to construct the similarity matrix.

their current smoking status and potential risk factors. Thus to maintain temporality,
we assessed the relations between momentary smoking and measurements collected in
the previous EMA. As such, for a particular risk factor, the regression coefficients can
be interpreted as the log odds of momentary smoking by the next assessment at given
time. Similar temporal assumptions are commonly made in smoking behavior research
(Shiffman et al., 1996; Minami et al., 2014; Bolman et al., 2018; Koslovsky et al., 2018,
2020; Liang et al., 2021).

The functional covariates we investigated in this analysis were treatment assign-
ment (binary; usual care or Smart-T intervention), drinking alcohol within the past
hour (binary; no or yes), interacting with other smokers (binary; no or yes), urge to
smoke (continuous), cigarette availability (continuous), positive affect (i.e., happiness
and calmness) (continuous), negative affect (i.e., irritability, frustration/anger, sadness,
worry, misery) (continuous), feeling restless (continuous), feeling bored (continuous),
feeling anxious (continuous), motivation to avoid smoking (continuous), age (continu-
ous), and sex (binary; male or female). Terms in italics were treated as the reference
group when defining indicator variables. We controlled for a population-level effect of
sex in the model (i.e., no selection or clustering). We used baseline heaviness of smoking
index (HSI, continuous) to define the similarity metrics between subjects that informs
the clustering allocation of the EPA, as presented in Figure 2. The pairwise distance
matrix was then constructed using the Euclidean distance as defined in section 3. Lastly,
all continuous covariates were standardized, and t = 0 represents the beginning of the
scheduled quit attempt for each individual.

For the proposed method, we set the EPA hyperparameters to aα = 1, bα = 5, aη =
bη = 1, and assumed a non-informative prior probability of inclusion for each subject-
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specific functional covariate, characterized by aγ = bγ = 1. We compared the results of
our method with the approach of Koslovsky et al. (2020) (Pólya-Gamma Bayesian vari-
able selection (PGBVS)), which performs variable selection for time-varying effect mod-
els. Note that although PGBVS and the proposed model both use spiked-nonparametric
priors for variable selection, PGBVS clusters similar regression coefficients for differ-
ent covariates, whereas the proposed method marginally clusters individual-level time-
varying effects. Further, although PGBVS identifies and estimates subject-specific main
effects and linear interaction terms, it is not designed to perform variable selection for
random effects for the non-linear interaction terms in the model. Lastly, PGBVS relies
on a spiked Dirichlet process prior which does not incorporate similarity information
when determining cluster assignment.

For posterior inference, we initiated the MCMC algorithms with the null model
(i.e., β = 0). For both the spiked-EPA and the PGBVS model, we ran the MCMC
algorithm for 10,000 iterations, using the first 5,000 as burn-in. Trace plots of the
regression coefficients and the total number of active terms in the model indicated model
convergence and appropriate mixing of the posterior samples. Inference on clustering
allocation was evaluated using the SALSO method for active terms, as described in
Section 2.3. For both models, selection was determined using the median model approach
(Barbieri et al., 2004).

4.1 Results

Both PGBVS and the proposed method obtained similar findings to previous studies
that investigated the temporal relation between risk factors and smoking behaviors
around a quit attempt. These findings include associations between urge to smoke,
negative affect, cigarette availability, and momentary smoking after the quit attempt
(Vasilenko et al., 2014; Koslovsky et al., 2018). Compared to PGBVS, which performs
selection for functional covariates at the population level, the proposed method is able
to identify and cluster functional covariates at the individual level. Using our proposed
method, we observed varying-levels of subjects with active smooth functions for each
functional covariate. We found that the effect of age, Smart-T treatment, cigarette
availability, anxiousness, and motivation to quit smoking were active for over 65% of the
subjects in this study. For these potential risk factors, active participants were clustered
together, except for age, where two subjects were clustered separately. We also identified
three clusters for the time-varying intercept term. Roughly 35% of the participants
had active smooth functions for urge to smoke, and the effect of negative affect was
only associated with momentary smoking for 6 participants. No associations between
momentary smoking by the next assessment and interacting with other smokers, positive
affect, restlessness, being bored, and drinking alcohol were identified for any participants
by the proposed model. By implementing a spiked-EPA distribution to simultaneously
perform functional variable selection and clustering, our approach leverages information
from the similarity matrix to inform clustering. For example, those with active urge
to smoke effects had higher baseline HSI compared to those with inactive effects. In
practice, this information may help develop and evaluate personalized smoking cessation
intervention strategies based on baseline subject- or group-specific characteristics.
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Figure 3 presents the average time-varying odds ratios (ORs) and corresponding 95%
CIs for all active subjects within each cluster estimated by the proposed method. Both
PGBVS (Figure 4) and the proposed method identified similar potential risk factors
for momentary smoking by the next assessment. However, the estimated trends often
varied between models. Notably, since our approach allows for marginal subject-specific
time-varying effect selection, it may identify a potential risk factor for a subset of the
participants, whereas population-level models may overlook the relation. For example,
the proposed method identified two active clusters for age (one with a positive relation
with smoking by the next assessment and one with a negative relation) in addition to the
trivial cluster. However, PGBVS did not identify age at the population level. A unique
aspect of the proposed method is that it clusters functional covariates marginally (i.e.,
the cluster allocations may be different for each functional covariate across subjects).
We observed significant differences in how participants were clustered to active and
inactive groups across covariates. For covariates with at least one active participant,
the maximum pairwise ARI was less than 0.15. These results further demonstrate the
need for designing personalized intervention strategies that are adaptive to individual’s
unique risk profiles over time.

4.2 Sensitivity Analysis

We performed a sensitivity analysis for the concentration and attraction strength hy-
perparameter specifications on the application results. We set the model specification in
the application analysis as the default setting and evaluated the effect of changing the
hyperparameters on the results. Since the true clustering and individual-level smooth
functions are never known in practice, we compared the clustering allocations across
hyperparameter specifications to the results obtained above. Overall, the results were
relatively robust to hyperparameter specification, with the exception of urge to smoke
and anxiousness. We observed a positive (negative) relation between the prior mean of
the concentration (attraction strength) parameter and the number of clusters observed
in the model, as expected.

5 Discussion
In this work, we have proposed a fully Bayesian approach for simultaneous functional
variable selection and clustering for functional concurrent regression mixture models
using novel spiked-EPA priors. Unlike previously developed Bayesian model-based func-
tional clustering methods, our approach clusters subjects across multiple smooth func-
tions. Instead of clustering across the entire linear predictor, as is done in typical mix-
ture model formulations, we investigate clusters of semiparametric smooth functions
marginally for each functional covariate. Additionally, we embed functional variable se-
lection and penalized priors to induce sparsity globally for each functional covariate at
the subject-level and shrink non-influential spline coefficients for each smooth function.
Our approach leverages auxiliary covariate information to improve clustering and selec-
tion performance. As such, our proposed method establishes a generalized approach for
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Figure 3: Application Results: Time-varying odds ratios (ORs) of momentary smoking
by the next assessment for functional covariates selected with the spiked-EPA model.
Thin blue/gray curve indicates the subject-level mean trajectories and 95% CIs. Thick
blue/black curves represent cluster-specific mean trajectories and CIs. Black dashed line
indicate an OR = 1.
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Figure 4: Application Results: Population-level time-varying odds ratios (ORs) of mo-
mentary smoking by the next assessment for functional covariates selected in both mod-
els, estimated with PGBVS. Shaded area indicates 95% CIs. Black curves represent mean
trajectories. Black dotted line indicates OR = 1.

simultaneously clustering multiple functional covariates and performing variable selec-
tion using spiked process priors.

Motivated by momentary smoking behavior data collected in the application study,
the proposed method is designed for binary outcomes. However, it can be easily extended
to accommodate continuous outcomes via the connection between the Pólya-Gamma
data augmentation technique of Polson et al. (2013) and a Gaussian likelihood function.
Similar to other mixture models, the proposed method may encounter identifiability
issues as the likelihood function is invariant to the cluster labels. This complicates



22 Spiked-EPA Mixture Model

inference for subject-specific functional trends as the cluster labels change across MCMC
samples. To address this issue, we take the common post-hoc strategy of obtaining a
point estimate for cluster allocation (e.g., via the SALSO method using the variation
of information loss (Wade et al., 2018; Dahl et al., 2021)) and then estimating cluster
specific functional trajectories (see Supplementary Material for more details). A known
limitation of Dirichlet process mixture models is that they tend to overestimate the
number of clusters in the data (Miller and Harrison, 2013). Compared to the PY and
DP prior, the EPA distribution allows for more flexibility as clustering allocation is a
function of the concentration, discount, and similarity parameter as well as the observed
distance matrix. While this may help control the number of clusters identified in the
model, it may also have the opposite effect. For example in the proposed simulation,
there were two true clusters in the data, but there were three groups based on the
similarity matrix. As a result the spiked-EPA model often suggested more clusters than
the spiked-DP and spiked-PY, but still maintained improved clustering performance.
To help protect against excess clusters, we recommend the variation of information loss
to provide posterior clustering estimates as it has shown to be more conservative with
respect to the number of estimated cluster compared to alternative loss functions (Dahl
et al., 2021).

It is important to note that our method is designed for exploratory research settings
in which researchers are interested in generating hypotheses for subject-level dynamic
risk profiles and potential subpopulations. While spike-and-slab priors may be used to
identify potential risk factors in practice, this does not guarantee that the corresponding
regression coefficients’ 95% credible intervals do not contain zero. In fact, this is often
the case for the results captured by the proposed method and PGBVS in the applica-
tion. As such, we emphasize the importance of performing confirmatory analyses before
generalizing the results of this study (or any exploratory analysis). Further, we strongly
recommend performing thorough sensitivity analyses to understand the impact of prior
specification on inference.

In an accompanying R package available at https://github.com/mliang4/EPAbvs,
we provide code to simulate data similar to our simulation study and implement our pro-
posed method. In our implementation, we have used Gibbs-type updates to fully sample
partitions. This provides an explicit probability distribution for a given partition which
enables inference on upstream parameters in the EPA distribution. In situations where
inference on upstream parameters is not of interest, Airoldi et al. (2014) and Cassese
et al. (2019) suggest using a graph-based sampler with data-pairing labels instead of
cluster assignments, as in Blei and Frazier (2011). This sampler allows for large moves
in the state-space and relatively fast mixing. Finally, while we are the first to address
the limitations of existing post-hoc partition summary methods for spiked processes in
practice, we acknowledge that our naive solution lacks theoretical justification and may
reduce the effective sample size of the sampled chains. Future work could investigate
more robust post-hoc partition summary methods for spiked process priors.

https://github.com/mliang4/EPAbvs
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Supplementary Material
Supplementary Material for “Functional Concurrent Regression Mixture Models Using
Spiked Ewens-Pitman Attraction Priors” (DOI: 10.1214/23-BA1380SUPP; .pdf). The
Supplementary Material contains details related the proposed MCMC algorithm, simu-
lation and application results, parameter estimation, and reparameterization scheme.
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