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with Application to EEG Data
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Abstract.

In many scientific disciplines, finding hidden influential factors

behind observational data is essential but challenging. The majority of exist-
ing approaches, such as the independent component analysis (ICA), rely on
linear transformation, that is, true signals are linear combinations of hidden
components. Motivated from analyzing nonlinear temporal signals in neuro-
science, genetics, and finance, this paper proposes the “maximum indepen-
dent component analysis” (MaxICA), based on max-linear combinations of
components. In contrast to existing methods, MaxICA benefits from focusing
on significant major components while filtering out ignorable components.
A major tool for parameter learning of MaxICA is an augmented genetic al-
gorithm, consisting of three schemes for the elite weighted sum selection,
randomly combined crossover, and dynamic mutation. Extensive empirical
evaluations demonstrate the effectiveness of MaxICA in either extracting
max-linearly combined essential sources in many applications or supplying a
better approximation for nonlinearly combined source signals, such as EEG

recordings analyzed in this paper.
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1. INTRODUCTION

In many scientific fields, such as neuroscience, genet-
ics, and finance, observational data in the form of non-
linear temporal signals are commonly recorded and re-
quire advanced analysis approaches. A commonly en-
countered but highly under-determined problem is known
as “blind source separation,” which aims to separate a set
of source signals from a set of mixed signals, with very
little information about either the source signals or the
mixing mechanism. Exploring hidden sources or compo-
nents from the collected data is essential for analyzing and
forecasting, and thus of great interest, but also poses sig-
nificant challenges.

For instance, in neuroscience and statistics, much effort
has been put into modeling the recorded time series of
brain activity signals and learning brain activity patterns
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associated with certain cognitive tasks and brain disor-
ders. Yet, many problems and issues still remain unsolved.
This paper explores a newly proposed multivariate time
series model with applications to learn hidden patterns
and dynamics of brain activities in analyzing datasets in
Section 5 on visualization and epilepsy.

The advancement of independent component analysis
(ICA) [4, 15, 19, 20, 28] has made it possible to discover
statistically independent and non-Gaussian components,
based on their linear representations. There exists a rich
literature on ICA applied to blind source separation for
complex data sets in many research areas. For a detailed
review, refer to the most recent work in analytical chem-
istry [22], gene expression time series [23], brain image
analysis [2, 18], among others and references therein. Be-
sides ICA, there are other methods for blind source sep-
aration, that is, principal components analysis, singular
value decomposition, among others.

A basic assumption of ICA is that the component
sources are linearly combined, as in the well-known mo-
tivating example of the cocktail-party effect. The effect
says that if someone goes to a cocktail party and has con-
versations with other people, his brain will automatically
filter out all other noises in the background, so that he can
focus on individual(s) he’s talking with. See [3] for some
related studies.
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If we record two speakers’ speeches at the same time
using two recording devices located in a distance, and
each recorded signal is a weighted sum of the speech sig-
nals emitted by the two speakers, then we can use ICA
to recover the two original speech signals. Such an ap-
proach, via a simple linear combination of the original
source signals, can capture the essential structure of the
data in many applications, but is not sufficient for fully
solving the problem to be described next. The estimated
source signals separated from the recorded signals by us-
ing existing methods, such as ICA, contain all informa-
tion, as the method was designed to separate the data as
precisely as possible, as explained in [20]. In some sit-
uations, this is useful, precise and fast as well, but in
some other situations we might neither need nor access
that much information. Let us continue with the cocktail
party example under a different scenario: there were two
groups of people talking to each other within each group.
Suppose that two partygoers, Mary and John, were in the
party, but not in the conversations with any of these two
groups. They also did not pay attention to those two group
conversations. When conversations in these two groups
sometimes mentioned their names or something of their
interest, they would be attracted to a group’s conversation
initiatively for a short time period. As a result, by the end
they might have only memorized some major informa-
tion, while some recording devices could have all voice
signals recorded. Let us further consider an experiment:
Suppose that the brain activities of both Mary and John
can be recorded. Certainly, the output signals of the brain
activities of both Mary and John won’t be linear combina-
tions of the original source signals, that is, very different
from the output signals from the recording devices. The
output signals from the brain activities of both Mary and
John are selectively combined signals.

1.1 Motivating Example for MaxICA

This paper intends to develop a new time series model
for observed signals obtained by taking the maximum
of the source signals. These kinds of output signals are
more like the recorded signals in some practical situa-
tions, where the major information is focused on and mi-
nor information is filtered out. In nature, this phenomenon
is closer to the way the human brain functions. The fol-
lowing numerical example illustrates our idea. Suppose
that two component signals S1(¢) and S>(¢), plotted in
Figure 1, are defined by

(1.1) S1(¢) =sin(1.3t +2.5), S2(¢) = sin(0.5¢ 4 2),

where ¢ denotes a generic time point in the interval [0, T].
In Figure 2, the top panel plots the two source signals
1.281(¢;) and 2.085,(¢;), the middle panel depicts the sum
of these two source signals, that is, 1.251(#;) + 2.052(¢;),

whereas the bottom panel draws the maxima of these two
source signals, that is,

(1.2) max{1.281(%;), 2.08:(#)},

at time points {#; : i = 1,..., 1000} equally spaced in
[0, T] with T = 50. The linear combination contains all
information from the two component signals, that is, all
details will be reflected in the combined signals; even
trivial perturbation will affect the combined signal. For
the max-linear combination, the resulting curve consists
of fragments exactly coming from one of the two com-
ponent signals; some smaller waves will be covered by
larger waves. As a result, taking the maximum operation
can reduce the effects generated from small turbulence,
while it mainly focuses on the major information.

The maximum operation applied to source signals
inspires us to call the procedure “maximum indepen-
dent component analysis” (MaxICA). Analogous to ICA,
MaxICA aims to recover the component signals from the
output signals in the bottom panel of Figure 2. Let us fur-
ther consider two sequences of true signals,

signal (1) = max{1.28(#;), 2.05:(;)},

(1.3)
signal, (#;) = max{2.5S1 (), 0.552(1‘,')},

where signal;(#;) is also used in (1.2). The left pan-
els of Figure 3 display signal;(#;) and signal,(#;). After

adding random noises €1 (#;) i 0.2N(0, 1) and e (1;) i
0.2N(0, 1), the resulting observed signals X ;(t;) =
signal ; (1) +€; (i), j = 1, 2, are plotted in the right panels
of Figure 3. A natural issue is to recover the true compo-
nents {S1(#), S2(¢;)} in (1.1), from the observed signals
X1(t;) and X»(#;) in Figure 3. As seen from Figure 4, the
components recovered via the MaxICA method resemble
the true components {S(#;), S>(¢;)} (in red dashed lines),
whereas the ICA method fails to recover the true com-
ponents. See also Remark 1 for the order of recovered
components.

REMARK 1. Both ICA and MaxICA methods focus
on separating the set {S1(¢), ..., Sy(¢)} of “hidden com-
ponents” from “observed signals” X(¢), ..., X,(¢), but
in general, could not uniquely identify the original order-
ing of hidden components {S1(¢), ..., Sx(1)}.

It is readily noticed that we are dealing with inferences
for multivariate nonlinear time series. In the time series
literature, there has been much development in model-
ing nonlinear time series. Refer to [11] for an exten-
sive review of theory and methods, and [31] and refer-
ences therein for applications to neuronal functional con-
nectivity. On the other hand, the max-autoregressive and
moving-maxima models, in [24] and the recent litera-
ture, can be applicable to modeling time series of maxima
within a single brain voxel or among multiple voxels.
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Different from the existing work, a new approach
called “the maximum independent component analysis
(MaxICA)” for studying time series data is introduced
in this paper. Our new framework can be thought as an
analogue to the spectral analysis in the classical time se-
ries. In the spectral analysis, observed signals are decom-
posed into linear combinations of sine waves or functions.
In our new framework, observed signals are decomposed
into max-linear combinations of sine waves or functions.
A major tool for parameter learning of MaxICA is an
“augmented genetic algorithm,” called ERD_GA, con-
sisting of schemes for the elite weighted sum selection,
random combined crossover and dynamic mutation, re-
spectively. Extensive empirical evaluations demonstrate
the effectiveness of the MaxICA method in either extract-
ing max-linearly combined essential sources in many ap-
plications or supplying a better approximation for nonlin-
early combined source signals, such as EEG recordings
analyzed in this paper.

The rest of the paper is structured as follows. Section 2
proposes the MaxICA model and the estimation method.
Section 3 develops the ERD_GA algorithm which aug-
ments the classical genetic algorithm for estimating pa-
rameters in our MaxICA model. Section 4 presents sim-
ulation examples to assess the performance of MaxICA.
Section 5 analyzes two sets of EEG data, that is, visual
processing data and epilepsy data. Section 6 concludes.
The online supplementary file [14] collects notations and
all figures in the paper.

2. PROPOSED MaxICA MODEL AND ITS
ESTIMATION

Before introducing our proposed model for maximum
independent component analysis (MaxICA), we first
briefly review two relevant time series models widely
used in the literature.

2.1 Review of Spectral Analysis

The spectral analysis is widely used for time series
data in geophysics, oceanography, atmospheric science,
astronomy, and engineering, among others. It is usually
used in cases where several cyclical patterns are simul-
taneously presented in a time series. Different from ana-
lyzing correlation properties of time series in the time do-
main, the spectral analysis is analyzing frequency prop-
erties of time series, and said to be working in the fre-
quency domain. Following [6], we consider a time series
represented by

m
(2.1) Y, = Z{AJ cos(2nfjr) + Bjsin(2nf;1)},

Jj=1
where frequencies 0 < f} < --- < f, < 1/2 are nonran-
dom, whereas amplitudes A; and B; are independent

Gaussian random variables with zero mean and var(A ;) =
var(B;) = o*jz. Then the sequence {Y;} is stationary with
zero mean and the lag-k auto-covariance equal to y; =
ZI}“: 1 012 cos(2mkf;). Refer to [5] for other properties of
stationary processes.

2.2 Review of Model for ICA

The independent component analysis (ICA) is a useful
statistical and computational technique for finding hidden
factors that underlie sequences of observed measurements
or signals. The ICA model assumes the observed multi-
variate data to be linear mixtures of some unknown vari-
ables, with unknown mixing coefficients, and requires the
hidden variables to be jointly non-Gaussian and mutually
independent.

Consider a data matrix X = (X (%)) j=1,..., p:i=1

o7 r .
RP>"™ whose rows are vectors X , ..., X, corresponding
to p sequences of observed signals, where the superscript
T denotes transpose, and

(2.2) )?jz(X,-(n),...,Xj(tm))T

denote the jth sequence of observed signals, j = 1,
.., D, at time points #1,...,4,. Let S € RN*™M be the

. =T =T
component matrix whose rows are vectors S;,..., Sy
associated with N component signals. Let A =
@ji)j=1,.. pik=1,...N € RP*N be a mixing matrix of co-
efficients, with columns ai,...,ay. The ICA model is
written as

N
Xj(t)IZaj,kSk(t),
k=1
(2.3)
N =T
j=1,...,p, thatis, X=AS = > &S,
k=1

where ¢ denotes a generic time point, and both A and S are
unknown. If p = N, then independent components can be
obtained by

S =WX,

where the matrix W is the inverse of the matrix A. Refer to
references listed in Section 1 for recent developments and
applications of ICA. The FastICA algorithm for estimat-
ing the mixing matrix A and recovering the component
matrix S was first given by [20]. Throughout this paper,
the numerical implementation of the ICA model adopts
the FastICA package for Matlab.

In Section 2.3, we will develop a new modeling frame-
work for some ideas illustrated in Section 1.

2.3 Proposed Model for MaxICA

Consider a sequence of harmonic frequencies, {w;, =
£/n:€=1,...,n/2}, with an even integer n. It follows
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from (2.1) that a component signal at a time point ¢ may
be represented as

n/2

S(t) = Z{al <§) cos(Lmwet) + a2<§> sin(2na)gt)},

=1
where a;(£/n) and a;(£/n) are treated as regression co-
efficients. The identity cos(2mw¢t) = sin(Qrwet + 7 /2)
gives

n/2 )
S(t) = Z{al (—) sin(27m wet
2.4) =11 M
£
+7/2)+ az(—) sin(2na)gt)}.
n
For N component signals S1(¢), ..., Sy (%), they are ex-

pressed via (2.4) as

Nk

(2.5) Si() =) ag e sin(au et + Br.o),
=1

k=1,...,N,

where ny is the number of sine waves within the kth com-
ponent, {a ¢}, {ok ¢} and {Bx ¢} are unknown parameters.
For p sequences of observed signals, Xi(), ..., X, (1),
we propose the model

X1() = max{blylSl(t), . ..,bl,NSN(l‘)} +€1(2),
(2.6) :

Xl;(t) _ max{b, 1S1(t), ..., by NSN(1)} + €,(1),

for the maximum independent component analysis
(MaxICA), where Si(¢) is as defined in (2.5), and € (?),
..., €p(t) are random noise terms with zero means.

Finding the exact values of a; ¢ in (2.5) and b ; in (2.6)
can be avoided, since a ¢ can be absorbed into b; ¢, by
introducing bj ¢ =bjrare, j=1,....,p,k=1,...,N,
and £ =1, ..., n;. Here bj x ¢ stands for the coefficient in
the £th sine wave within the kth component from the jth
sequence of observed signals. We can thus redefine the
source signals in (2.6) by

n
Sik(®) = bjresin(aget + Br.e),

(2.7) =1

j=19---,p,k=1,...,N,

and accordingly, the MaxICA model (2.6) becomes

X1(t) = max{S1,1(t), ..., Sin@®} +e1(r),
(2.8) N :
X (1) =max{S, 1(t), ..., Sp v} +€,1),

where S; (7) is defined in (2.7). Since the source signal
S; k(t) includes coefficients b; i ¢, ag,¢ and By ¢, model
(2.7) contains (p+2)(n1 +- - - +ny) unknown parameters
to be estimated.

For practical convenience, if we assume that b ; ¢ in
(2.7) are identical across all £, that is, coefficients of all

sine waves within the kth component from the jth se-
quence are all equal, then the source signals can be further
simplified:

ng
Sik)=Dbjx Z sin(a, et + Br,e)s
(2.9) =1
j=1,....p,k=1,...,N.

Regarding model (2.9), the number of unknown parame-
ters reduces to Np+2(ny+---+ny), adramatic decrease
from that of model (2.7).

REMARK 2. Analogous to the spectral analysis,
S k(t) in (2.7) can be generalized to

Nk

Sik()= Z Bj ¢ sin(ay ot + Bre),
=1

j=1,....p.k=1,....N,

where Bj i ¢ are independent Gaussian random variables
with zero means.

We now present a simulation example to demonstrate
that the component signals in models (2.8) and (2.9) can
be “recovered” by the proposed ERD_GA algorithm de-
vised in Section 3.2 for our MaxICA method. Let X ()
and X»(¢) be observed signals generated from

(Xl(l)> _ (maX{bl,lsl (t),bl,zSz(t)}>
Xo(1)) — \max{bs 1S1(t), b225:(1)}

€1(t)
+ (ezm) !

with two component signals,

(2.10)

S1(t) =0.17724sin(1.2¢ + 2) + 0.4609 sin (0.5 + 1)
+0.80601 sin(0.34¢ + 23)
— 2.4463 sin(1.3 + 2) — 0.34539sin(0.6¢ — 3),
So(t) = —0.57756 5in(0.5¢ + 1.7)
— 1.1414sin(2t + 2.1) — 0.044345 sin(1.47 + 2)
+0.163765in(0.25¢ + 1)
+0.23883sin(1.67¢ + 2),

mixing coefficients by = 0.21265, b1, = —1.2195,
by 1 =0.69503 and by » = —0.55459 are generated from
the N(0, 1) distribution, and noise terms {e (), €2(¢)} i
0.25N(0, 1). From Figure 5, we observe that the fitted sig-
nals (in blue lines), using MaxICA, follow the shape and
trends of simulated data signals (in dots), lending support
to the ERD_GA algorithm for the MaxICA model (2.9).

To provide a unified discussion, this paper focuses on the
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MaxICA model (2.8) with source signals S; x(7) in (2.9),
namely,

MaxICA model (2.6) with component signals

2.11) e
Si(t) = Z sin(ag, ¢t + Br,e)-

(=1
Note that although both MaxICA and ICA aim to iden-
tify hidden components, they differ in terms of model-
ing aspects. The conventional ICA model (2.3) assumes
nonstructured components and excludes random noises,
oftentimes suffering from the “overfitting” problem as
seen in Figures 18, 20, 22 and 26, whereas the MaxICA
model (2.11) embeds structured components and incor-
porates noise terms with either known or unknown distri-
butions, ameliorating such “overfitting” problem. It is to
be remarked that both ICA and MaxICA have their own
merits, and are not treated as interchangeable. Simulation
studies in Section 4 will compare their performances un-

der different scenarios.

2.4 Proposed Estimation for MaxICA

To formulate the loss function for parameter estimation
in the MaxICA model (2.11), we define

710 =(f;0.1), ... f;®,0:0), j=1,....p,
with
fi@,1) =max{b; 1S1(1),b;25:(),....b; NSN()} +V,

where the location parameter y is used for adjusting
the horizontal location of the data, and @ = {{(ox ¢,
Bk Ye=1...ni:k=1,..N3 {bj k}k=1....N;j=1....p3 V}
collects all parameters. Together with the observed sig-
nals X ; in (2.2), the loss function of # is formed by

p -
(2.12) LO=) IX;—f;®ll,

Jj=l1

which is the overall differences in the L2-norm between
observed signals and the modeled signals. Thus, we seek
the optimization solution of ming L (@) for parameter es-
timation.

3. PROPOSED ALGORITHM FOR MaxICA
ESTIMATION

Due to the nonconvexity and nonsmoothness of the
loss function (2.12), classical parameter estimation ap-
proaches, for example, maximum likelihood method,
methods of moments, and other popular estimation meth-
ods in time series studies, are not directly applicable to
solve the optimal 6 for the MaxICA model.

For the MaxICA estimation, we will devise an alter-
native optimization method for parameter learning, mo-
tivated from the genetic algorithm (GA). Section 3.1

reviews basics of the GA. Section 3.2 develops our
ERD_GA algorithm, containing schemes for the elite
weighted sum selection, random combined crossover and
dynamic mutation, respectively. Section 3.3 summarizes
the ERD_GA algorithm for the estimation in MaxICA.

3.1 A Brief Review of Genetic Algorithms

The genetic algorithm (GA) is a stochastic search
method for optimization based on Darwin’s principle of
natural selection and genetics. Using GAs for optimiza-
tion problems, the solutions are evolving with iterations.
See [25] for some details. The algorithm starts with a set
of randomly generated solutions, called “a population,” in
a pre-specified region for parameters. Once a population
is generated, paired solutions are taken from the popula-
tion to form a new population based on some selection
rule, hoping that the newly generated population can be a
better one. By checking fitness values of solutions, better
solutions are more possible to be selected to generate new
offsprings. Here, the “fitness” is a scalar computed from
a loss function, indicating how close the given solution is
to the preselected goal. A solution, which is closer to the
goal (i.e., associated with a better fitness value), will be
more possible to reproduce. This procedure is repeated to
direct the population to the global optimum. Algorithm 1
outlines the procedure of the basic GA.

The procedure of the basic GA can be implemented for
various generic problems. For example, [17] listed some
sophisticated GAs, such as the hybrid GA and messy GA,
[26] introduced a DRQ GA for solving the facility layout

Algorithm 1 Outline of the basic GA
1: [Start] Randomly generate a population of size n;
2: [Fitness] Compute the fitness of all chromosomes in
the population;
3: [New population] Generate a new population by re-
peating the steps below:

i. [Selection] Select two parent chromosomes based
on fitness from the population with replacement;
ii. [Crossover] Crossover the parents to generate a
new offspring. If no crossover was made, the off-
spring is exactly the copy of parents;

iii. [Mutation] Mutate the new offspring with a mu-
tation probability;

iv. [Accepting] Place the newly generated offspring
in a new population;

4: [Replace] Use the newly generated population for a
further run of the algorithm;

5: [Test] If the end condition is satisfied, then stop, and
return the best solution;

6: [Loop] Go to step 2.
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problem, and [9] presented a new GA for the job-shop
scheduling problem, among others.

In the following Section 3.2, we develop an enhanced
genetic algorithm, called ERD_GA, for estimating param-
eters in the MaxICA model.

3.2 Proposed Augmented Genetic Algorithm for
MaxICA

3.2.1 Chromosome representation for MaxICA. Re-
call from Algorithm 1 that the chromosome in the GA
is the set of unknown parameters. Also, recall from Sec-
tion 2.4 that our goal is to seek the optimization solution
of (2.12) for parameter estimates. Since the set of param-
eters in our MaxICA model contains Np + 2 21](\;1 ny +
1 parameters {(ok ¢, Br,e); bjk; v}, the chromosome in
MaxICA contains Np + 2 Z,’cvzl ni + 1 elements, the or-
der of which is arranged as follows:

chromosome
={(@i,1,B1,1) s @1y, Biny))s -5
(O{N’], IBN,I)’ cec (aN,an ﬂNJlN);

(b11, . bi ) (Bpa, . bp N) YV

Note that other ways of arranging the order of parameters
are also feasible.

3.2.2 Selection operator for MaxICA. In the selection
step of GAs, solutions are selected from the population to
be parents to crossover. How to appropriately select so-
lutions is an interesting issue. Among many others, the
“Roulette Wheel Selection” method (RWS) is popularly
used; see [21] for more details and mathematical struc-
ture. Using this method, parents are selected based on
their fitness; solutions with better fitness would be more
possible to be selected. One can imagine a roulette wheel
with all solutions placed on the wheel, and the area of
each solution is proportional to its fitness value. The se-
lection procedure is similar to randomly throwing a mar-
ble on the wheel to pick up the solution, and solutions
with better fitness values will be selected more easily. Al-
gorithm 2 outlines this method. Another selection method
is called the “Rank Selection” [13], which will rank the
solutions by fitness, and thus each solution has a chance
to be selected.

Algorithm 2 Outline of the Roulette Wheel Selection
(RWS)
1: [Sum] Calculate the sum S of all chromosome fitness
values in the population;
2: [Select] Generate a random number r from the inter-
val (0, S);
3: [Loop] Go through the population and sum fitness
values from 0. Define the sum to be s*. If s* > r,
stop and return the chromosome where you are.

The disadvantages for these selection methods are ob-
vious. For the RWS method, if fitness values of some
solutions are excessively large, that is, some other solu-
tions will have very small chances to be selected, then
RWS will select those good solutions too often, and could
hardly get any new solutions. The “Rank Selection,” on
the other hand, will lead to a slower convergence, because
the best solution does not differ very much from others;
all solutions are equally likely to be selected, no matter
how good or bad it is.

To ameliorate these disadvantages, we introduce a new
selection method called the “Elite Weighted Sum Selec-

tion” (EWSS). Compute the loss function Ly = L(g(s)) in
(2.12) from the solution /0\(‘;), s=1,...,n, where

(3.1 Li<Ly<.---<L,.

Here, a smaller loss Ly corresponds to a better solution
indexed by s, and thus a better fitness value. Define by

(32) di=Ljy—Lj, j=1,....n—1,

the differences between successive values of L, illus-

d d. dn— dn—
trated by L; LN L» O L,_1 iy L, . Define

cumulative probabilities,

po=0,
=y
pl D 9y
(3.3) YL+ Y4,
p2 - D £
pnfl = 19

where d; are defined in (3.2), and D = Z’};}dj +

Z?;; dj + -+ +d,—1. The EWSS method starts by gen-
erating a random real number r from (0, 1]. If ps_1 <r <
Ps, then the sth solution is selected. The solution with the
worst fitness value is dropped from the population and
will no longer be used to generate offsprings. Compared
with RWS, EWSS guarantees that all solutions, excluding
the worst one, can have some chance to be selected, even
if fitness values of some solutions far exceed those of oth-
ers. Compared with the “Rank Selection,” chances for so-
lutions selected by EWSS are not identical, that is, better
solutions can have higher chances to be selected. More-
over, the most important aspect of EWSS is that solutions
having similar fitness values will have similar chances to
be selected.

As an illustration, let us consider an example of (or-
dered) losses L corresponding to solution indices s:

loss functions Lg:  12.5, 210, 220, 310, 375,
solution indices s: 1, 2, 3, 4, 5,
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where solution 1 has the best fitness. Figure 6 uses pie
charts to compare the roulette wheel selection (RWS)
method (in the left panel), the RWS method with the
worst solution dropped (in the middle panel), and our
EWSS method (in the right panel). Areas associated with
solutions are proportional to the selection probabilities,
namely, {1/L; : s =1,...,5} in the left panel, {1/L; :
s =1,...,4} in the middle panel, and {(ps — ps—1) X
(L, — Lg) : s =1,...,4} in the right panel, with p de-
fined in (3.3). There, due to the larger area of solution 1
than those of other solutions, the RWS method selects so-
lution 1 much more often than other solutions, and thus
can hardly find better solutions. On the contrary, for the
EWSS method in the right panel, the following obser-
vations are obtained. (i) The area of solution 1 reduces,
and all four solutions are possible to be selected. (ii)
Moreover, using EWSS, better solutions will always have
higher chances to be selected. (iii) Another advantage of
the EWSS is that solutions with similar fitness values will
have similar chances to be selected. This is visible from
solutions 2 and 3, which have fitness values 210 and 220
respectively, and occupy comparable areas. The empirical
evidence indicates that the EWSS method can be more
efficient than the RWS and “Rank Selection” methods in
complicated optimization procedures.

3.2.3 Crossover operator for MaxICA. Crossover is
another basic operator of the GA. Many crossover tech-
niques [30] have been built to get the optimum solution as
fast as possible within minimum generations. Some clas-
sic crossover methods are reviewed below.

e The first crossover method is called the “1-point cross-
over.” one of the simplest crossover techniques. This
method uses the single point fragmentation of the par-
ents and combines the parents at the selected location
to create the offspring. It first selects 2 parents used
for crossover and then randomly selects a crossover lo-
cation. Two offsprings are created by combining the
parents at the crossover location, and the values at the
crossover location from parents will be averaged. An
example is illustrated below, where numerical quanti-
ties within a row represent the parameter values of a so-
lution, and the 3rd point is selected to be the crossover
location.

Parent 1: 1 1 1 1 1 1
Parent22. 0 0 O 0 O O
Offspring1: 1 1 05 0 0 O
Offspring2: 0 0 05 1 1 1

e The second crossover method is called the “2-point
crossover.” Similar to the 1-point method, 2 crossover
locations are selected, and the offspring is created by
combining parents at 2 crossover locations. An exam-
ple is given below, where the 2nd and 6th points are

selected to be crossover locations.

Parent 1: 1 1 1 1 1 1 11
Parent22 0 O O O O O O O
Offspring1: 1 05 0 0 0 05 1 1
Offspring2: 0 05 1 1 1 05 0 O

e The third crossover method is called the “reduced
surrogate crossover.” This method minimizes the un-
wanted crossover operations in case of parents having
same genes. In this method, first check for the genes
in the parents and create a list of all possible crossover
locations where the genes of both parents are different.
After the check, if no crossover location is there, then
no action is taken. But if parents are differing in more
than 1 gene, then one crossover location is randomly
selected from the list of all crossover locations and the
1-point crossover is performed.

e The fourth crossover method is called the “uniform
crossover.” This method provides the uniformity in
combining the bits of both parents. It will first choose
a random real number u from the uniform distribution
between 0 and 1. It creates 2 offsprings of genes se-
lected from both of the parents uniformly. The random
real number decides whether the first child selects the
genes from the first or the second parent. For a thresh-
old 0.5, select a gene from the first parent if u < 0.5,
and from the second parent otherwise, followed by re-
peating this process for all genes.

e The fifth crossover method is called the “average
crossover.” Average crossover only creates one off-
spring from 2 parents. The way it creates offspring is
taking average of the 2 parents. Each gene in a child is
taken by averaging genes from both parents.

e The sixth crossover method is called the “discrete
crossover.” Similar to the “uniform crossover,” the dis-
crete crossover only creates one child from 2 parents. It
first chooses a random real number and uses the num-
ber to decide the parent whose genes are to be taken for
the child.

Selecting a crossover operator has a large impact on the
performance of the GA. Our ERD_GA, instead of select-
ing one specific crossover method, will combine differ-
ent crossover methods together. This is motivated by the
concept of the GA, which simulates the process of chro-
mosome evolution, where various crossover methods are
possible and fixing one crossover method may slow down
the speed of convergence especially for complicated op-
timization problems. Thus, in each iteration of the pro-
gram, we randomly choose one of six crossover meth-
ods to be used in that iteration. Our “Random Combined
Crossover Operator” is motivated from the “Combined
Crossover Operator (CCO)” [16], but differs from CCO
as follows.
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e In the existing CCO, more than one crossover oper-
ator are applied at each generation in a competitive
way, and the operator which produces the best result
will be finally taken into account. Four crossover op-
erators [16] are applied at each generation, that is,
Heuristic crossover, Arithmetic crossover, Simulated
binary crossover and Linear BGA crossover, which
are distinct from the six crossover methods reviewed
above.

e In our “Random CCO,” one of the six crossover oper-
ators will be randomly chosen to be taken into account
at each generation. Choices of crossover operators at
each generation are not limited to the six above; other
crossover methods are also possible depending on the
problem.

3.2.4 Mutation operator for MaxICA. The mutation
operator also plays a necessary and important role in the
GA. Mutation randomly alters each gene with a small
probability; usually, a low mutation rate, such as 0.05,
will be used. The mutation sometimes could be benefi-
cial, but sometimes may not be. In our numerical experi-
ments, we observe that changing the mutation rate, in case
the algorithm gets stuck, could increase the convergence
speed. We thus propose a dynamic mutation procedure as
follows. If the program is converging fast, a high mutation
rate is maintained. On the other hand, if the program gets
stuck, and cannot find better solutions for a number of it-
erations, then reducing the mutation rate can help avoid
harmful mutations, and thus will also increase the speed.
As a result, the mutation rate is changing dynamically.
When no better solutions are found for a number of iter-
ations, the mutation rate will decrease until it reaches the
lower bound; otherwise, if the algorithm converges fast,
the mutation rate will increase until it reaches the upper
bound. See [29] for more information about the dynamic
mutation rate operator.

3.3 Summary of the Algorithm for MaxICA

Before applying the ERD_GA algorithm to MaxICA,
we address a number of issues, related to the implemen-
tation details.

e Similar to the data structure for ICA, the data for
the MaxICA should be recorded simultaneously at the
same time period from different locations. The rea-
son is that in practice, the hidden components might
be changing with time. For example, if the electroen-
cephalogram (EEG) signals of patients with epilepsy
are recorded, components of the brain activity during
the seizure period and nonseizure period might differ.
Also, recordings from different locations can offer us
more information about the hidden components, and
thus help us find more accurate results.

Algorithm 3 Summary of the ERD_GA algorithm for
MaxICA

1: [PCA] Use PCA to decide the number of hidden com-
ponents;

2: [Piecewise Optimization] Separate the data into
pieces and apply the ERD_GA* to each piece respec-
tively.

*The augmented GA with the elite weighted
sum selection, random combined crossover and dy-
namic mutation. The stopping criterion is: no better
solution can be found for 10,000 iterations.

e As mentioned in Section 2, the number N of hidden
components and numbers ny,...,ny of sine waves
within each of the N components are needed before
data analysis. Employing the principle component anal-
ysis (PCA), we select the number N of components by
the one which accounts for the majority variation of
the data. For choices of ny, ..., ny, simulation exper-
iments suggest that the choice ny =--- =ny =95 ap-
plies well to most of the problems.

e To incorporate varying types of components, the data
can be separated into smaller pieces beforehand. Our
ERD_GA algorithm will be applied to each piece sep-
arately.

Algorithm 3 summarizes the ERD_GA algorithm for
the MaxICA method. Moreover, the ERD_GA algorithm
can be applied to solve other types of global optimization
problems, including several benchmark examples listed in
[12].

4. SIMULATION STUDIES

We present simulation studies to assess the performance
of the MaxICA method in recovering the component sig-
nals, as compared with the ICA method.

(a) In the example of Section 4.1, we simulate ob-
served signals from the MaxICA model.

(b) In the example of Section 4.2, we simulate ob-
served signals by adding noise terms to true signals from
the ICA model.

4.1 Example 1: Fitting a MaxICA Model

The observed signals {X;(¢) : j =1,...,5} are simu-
lated according to the MaxICA model (2.6), where 5 com-
ponent signals {Sx(#) :k=1,...,5},

S1(t) =sin(1.5¢ 4+ 2) 4+ sin(0.3¢ 4+ 1),
S>(t) = sin(0.7¢t 4+ 1.5) 4 sin(2t + 2.5),
“4.1n S3(¢) =sin(3¢ 4 2) + sin(¢ 4+ 0.1),
S4(¢) =sin(2t 4+ 1.5) 4 sin(1.2¢ + 0.6),
Ss5(¢) = sin(t + 0.4) + sin(3¢ + 2),
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are plotted from top to bottom panels in Figure 7, the mix-
ing coefficients b; ; given in the matrix,

biy - bis
bsy -+ bss
2.9821 1.794 1.8946 0.12226 1.1915
1.9397 3.4027 4.1967 3.8037 1.1087
=10.31721 3.8972 3.6087 0.97069 2.5573],

0.34402 1.9707 4.9086 1.5245 3.9098
3.6735 4.1914 0.60795 4.3392 2.8036

are randomly generated from the uniform distribution
on [0,5], and noise terms {e€;(t) : j = 1,...,5} i
0.5949N(0, 1).

Before applying MaxICA to the observed data matrix
X, we apply PCA to select the number N of hidden com-
ponents. Figure 8 plots the “fraction of total variance re-
tained,” which is the cumulative sum of sorted eigenval-
ues (of the sample covariance matrix for X) divided by
the sum of eigenvalues. There, 5 components account for
nearly 95% of the variance, and thus we take N =5 for
the number of hidden components.

In the data separation step, the sequence of observations
is separated into shorter parts, each part consisting of 500
observation points. The fitted signals (in blue lines) by
MaxICA in Figure 9 fit reasonably well the observed sig-
nals X ;(#;) (in dots). As seen from Figure 10, frequencies
and amplitudes of the recovered components by MaxICA
are similar to those of the true components, though the
order may not match, as mentioned in Remark 1. On the
other hand, it is visible in Figure 11 that the shape and
frequencies of components recovered by ICA don’t match
well with those of the true components.

The above results obtained from MaxICA were based
on the assumption of 5 hidden components. As a compar-
ison, the fitted signals in Figure 12 by MaxICA, assuming
4 hidden components, are comparable to those assuming
N =5, but appear to outperform those in Figure 13 as-
suming 2 hidden components. Indeed, this agrees with
Figure 8, where 4 and 2 components account for about
90% and 75% of the variance, respectively.

Recall that MaxICA utilizes the ERD_GA algorithm
which contains the EWSS, random combined crossover
and dynamic mutation; in contrast, the classical_GA algo-
rithm applies the RWS, single-point crossover and fixed
mutation rate. Figure 14 plots the fitted signals via the
classical_GA, whose optimization result was generated
by running the same number of iterations as that by
MaxICA in Figure 9. It is observed that the classical_GA
combined with RWS performs as well as ERD_GA, al-
though the classical_GA needs much more iterations be-
fore getting a good numerical fit. For another comparison,

Figure 15 plots the fitted signals by the “Simulated An-
nealing” (SA) algorithm (also a well-known optimization
method), which performs comparably well. On the other
hand, the SA algorithm is slower than the classical_GA,
particularly for the visual processing data in Section 5.1,
as SA will take longer time before getting a good solution.
Moreover, replicating the MaxICA for 100 sets of simu-
lated data signals yields 100 sets of fitted signals (in blue
lines) in Figure 16, which follow the shape and trends of
true signals (in white lines) in (4.1).

4.2 Example 2: Recovering Components in Noisy
ICA Models

In this example, the observed signals in data matrices
X] , Xz and X3,

4.2) X; =A1S; + €1,
(4.3) Xo =A18 + e,
4.4) X3 =A>S) + €1,

are simulated from noisy ICA models, with linearly com-
bined component signals,

(4.5)  S;(t) =sin(2r 4+ 0.3),
for S, and
S1(t) = sin®(2t +0.3),

S>(t) =sin(0.57 + 1),

S2(t) = sin(0.5¢ + 1),

for S,, where the mixing matrices are

2 3 5 2

and the noise matrix €; contain entries tid- 0.2N(0, 1),
and the noise matrix €, contain entries ey 0.8N(0, 1).

Figure 17 displays the recovered components (in blue
lines) by ICA and MaxICA for Xj. They both well re-
trieve the set {S1(¢), S2(¢)} of true components (in red
dashed lines) in (4.5). An examination of the fitted sig-
nals (in blue lines) to the observed signals (in dots) in
Figure 18 indicates that MaxICA mitigates the overfitting
problem of ICA. A similar observation can be made in
Figure 20 for X; and Figure 22 for X3.

For the simulated X, signals (in dots) plotted in Fig-
ure 20, noise terms in model (4.3) have larger variances
than those in model (4.2). We observe from the bottom-
right panel of Figure 19 that the recovered component (in
blue lines) by ICA follows the trend of one of the true
components {S1(¢), S$2(#)} (in red dashed lines) in (4.5).
But the top-right panel of Figure 19 reveals that the other
component recovered by ICA doesn’t follow the shape of
either S1(¢) or S2(¢). Again, as seen from Figure 19, re-
covered components by MaxICA mimic true components
S1(t) and S7(2).

Observed signals (in dots) in X3 plotted in Figure 22
are generated from model (4.4) with mixing coefficients
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in A, which contains some entries (i.e., 5 and 8) larger
than those in Aj. Figure 21 illustrates that extracted com-
ponents (in blue lines) by ICA can be treated as corre-
sponding to the true components {S(¢), S2(¢)} (in red
dashed lines). For MaxICA, the fitted signals (in blue
lines) in Figure 22 appear to follow trends of the observed
signals (in dots). Nonetheless, the top-left panel of Fig-
ure 21 reveals that MaxICA is not effective in tracking
patterns of the true component Sj(¢), though the other
true component S (¢) is well extracted in the bottom-left
panel.

In summary, for linearly combined component signals,
ICA performs very well in separating the components
from observed signals, whereas MaxICA can also re-
cover the information about linearly combined compo-
nents, even in the presence of large noises. Nonetheless,
for certain more complex components, MaxICA may not
extract as well as ICA. Analogously, for max-linearly
combined components, refer to Figure 4 for the advan-
tages of MaxICA over ICA. Due to different types of ap-
plications to which ICA and MaxICA are suitable, it is not
suggested to either replace ICA by MaxICA, or substitute
MaxICA by ICA.

5. REAL DATA ANALYSIS

We analyze two real datasets. For the visual processing
data, we apply MaxICA and ICA respectively to compare
their performances. For the epilepsy data, we try to re-
cover hidden brain components to compare different ac-
tivity patterns in different brain areas.

5.1 Visual Processing Data

This EEG (Electroencephalography) data collect 32-
channels from 14 subjects (7 males, 7 females) acquired
using the Neuroscan software. Subjects participated in
2 tasks: one was a go-nogo categorization task, and the
other one was a go-nogo recognition task. Tasks were op-
erated by presenting natural photographs in front of sub-
jects very briefly (20 ms). Each subject responded to 2500
trials. The data was sampled at 1000 Hz [7].

In the experiment, participants were seated 110 cm
away from a computer screen in a dark room. In the 2
tasks, images were equally likely to be presented to par-
ticipants. The experiment lasted 2 days, yielding 13 series
on the first day and 12 series on the second day. Each se-
ries includes 100 images. The participant needed to press
a button to start a series. A small point was drawn in the
middle of the screen, the images were presented at the
point very fast, and participants had to stare at the point.
This design can help reduce the effect of eye movement.
For each targeted image, participants lifted their finger
from the button as fast as possible, any missed response
was considered as a nogo response.

In the categorization task, for example, participants
could be asked to respond to all animals in 100 images
mixed by 50 animal images and 50 nonanimal images.
All pictures were of natural scenes. Large varieties of pic-
tures were chosen for each image category. The animal
category included birds, fishes, reptiles, etc. There were
large varieties of nontarget images as well, including pic-
tures of natural landscapes, city scenes, food, trees, etc.
In the recognition task, participants needed to learn the
target image in the learning phase in order to recognize
it in the following test phase. Participants had no a priori
information about the pictures. See [10] and [8] for more
details about the experiment.

Electric brain potentials were recorded from 32 elec-
trodes mounted on an elastic cap (Oxford Instruments).
Electrode Cz was used as a reference and a mastoid
electrode was used as ground, so we have 31 observed
EEG signals for analysis. Data acquisition was made at
1000 Hz (corresponding to a sample bin of 1 ms) using a
SynAmps recording system coupled with a PC computer.

The electrode locations are shown in the left panel of
Figure 23, with 31 channels for 31 sequences of data sig-
nals used for analysis. The reference electrode Cz is in the
center, but is not plotted in the figure.

The EEG is person-specific data [27], which means
EEG of different people varies. Cerebral characteristics
could be different between subjects, and the right panel
of Figure 23 is the beginning part of data signals at all 31
channels.

We first analyze the categorization task data from the
first subject. Figure 24 indicates that the first 5 compo-
nents account for nearly 90% of the variance, and thus
we assume 5 hidden components for MaxICA. We sepa-
rate the data into parts, each part covering 500 observation
points. As the data was sampled at 1000 Hz, the range of
500 points is 500 ms.

Figure 25 presents a partial result of fitted signals, dis-
playing the fitted signals (in blue lines) by MaxICA of the
first 6000 points from the first 2 observed signals (in dots).
The two peaks in the observed signals can be clearly spot-
ted from the fitted signals by MaxICA. Those peaks are
related to important brain activities. Thus, the components
recovered by MaxICA could be scientifically meaningful.
As a comparison, the fitted signals (in blue lines) by ICA
in Figure 26 reproduce the observed signals (in dots), ex-
emplifying the overfitting problem. Figure 27 plots the 5
hidden components recovered by MaxICA. The frequen-
cies and patterns of these components can be helpful for
revealing the activity of brain. As a comparison, com-
ponents recovered by ICA are plotted in Figure 28. One
component recovered by ICA, displayed in the top panel
of Figure 28, basically mimics (with an opposite sign) the
observed trend in the real data; the other recovered com-
ponents by ICA in the other four panels contain many
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high-frequency oscillations. As another comparison, Fig-
ure 29 plots the fitted signals to this data using the sim-
ulated annealing (SA) algorithm, which is not as good
as the ERD_GA. Actually, simulated annealing will take
much longer time to find the global optimum. Figure 30
and Figure 31 plot the fitted signals by MaxICA to ob-
served signals of subject 1’s recognition task and subject
2’s categorization task, respectively. These figures reveal
that MaxICA preforms well in the fits of signals contain-
ing important events.

5.2 Epilepsy Data

In this section, we study the intracranial EEG record-
ings from five epilepsy patients [1]. These data were
performed for the diagnostics of these patients. All
patients had longstanding pharmacoresistant temporal
lobe epilepsy, and they were candidates for epilepsy
surgery. All patients underwent long-term intracranial
EEG recordings in the Department of Neurology at the
University of Bern. The brain areas where seizures started
could be localized for all patients. Also these areas were
found in the brain that could be surgically resected, and
all patients had good surgical outcome. Three of them at-
tained complete seizure freedom, while the other two only
had auras but no other seizures following surgery.

All EEG signals were digitally band-pass filtered be-
tween 0.5 Hz and 150 Hz. All channels that detected first
ictal EEG signal changes, as judged by visual inspection
by at least two neurologists who are also board-certified
electroencephalographers, were classified as focal EEG
channels, while all other channels in the recordings were
classified as nonfocal EEG channels. Though visual anal-
ysis is not a perfect method, it is still the most important
method for helping clinical diagnosis. Pairs of simultane-
ously recorded signals were randomly selected from focal
and nonfocal EEG channels respectively; refers to [1] for
the selection rule.

First, we analyze a pair of signals from focal channels.
We assume 2 hidden components as indicated by PCA in
Figure 32. We observe from Figure 33 that MaxICA pro-
vides good fits (in blue lines) of the observed signals (in
dots); the fitted signals track most of major peaks. Fig-
ure 34 and Figure 35 plot the components recovered by
MaxICA and ICA, respectively. The components gener-
ated by these two methods appear to have similar charac-
teristics, frequencies, amplitudes, and trending. We next
use a pair of EEG signals from nonfocal channels. Fig-
ure 36 plots the fitted signals by MaxICA, and Figure 37
and Figure 38 present components recovered by MaxICA
and ICA respectively. Again, we observe that two differ-
ent methods extract similar components for the nonfocal
data.

Next, we apply MaxICA to other signal pairs. For an-
other signal pair from focal channels, the fitted signals (in

blue lines) by MaxICA are given in Figure 39. Likewise,
for another signal pair from nonfocal channels, Figure 40
gives the fitted signals by MaxICA. In both figures, dots
are observed signals. It is observed that fitted signals fol-
low the trends of observed signals, and catch most of the
major peaks.

6. CONCLUSIONS

In this paper, we developed a new MaxICA method for
blind source separation, potentially capable of discover-
ing some dominating components or characteristics hid-
den in observed signals, especially the EEG data. The to-
mography structured blind source separation of MaxICA
may lead to scientific discoveries. We have demonstrated
in simulation experiments and real data analysis that
MaxICA can be widely applicable in scientific research.
For example, the MaxICA performs well in simulations of
Section 4.1 and real data analysis of Section 5. For the vi-
sual processing data, the fitted signals by ICA in Figure 26
reproduce the observed signals; one recovered component
by ICA displayed in the top panel of Figure 28 basically
mimics (with an opposite sign) the observed trend in the
real data, and the other recovered components by ICA in
the other four panels contain many high-frequency oscil-
lations. A similar phenomenon can be observed from Fig-
ure 35 for the Epilepsy data, though not as obvious as
those in Figure 28. These numerical evidences together
with the overfitting problem of ICA, from Figures 4, 18,
20 and 22, suggest that ICA may not suit some applica-
tions. In contrast, the MaxICA method found the major
hidden components and stated a model for hidden sources
that ICA cannot provide.

The existing methods for finding blind sources are
widely used but have some limitations. For example, ICA
cannot be well applied, if the number p of observed sig-
nals is fewer than the number N of hidden components
[4, 15, 20, 28]. Moreover, ICA assumes mutual indepen-
dence and joint non-Gaussianity for the component vari-
ables. The MaxICA model removes these constraints and
thus is more flexible in applications.

In practice, the choice between ICA and MaxICA may
be made on a case-by-case basis. In the visual processing
application, to decide whether or not a subject is an an-
imal, multiple neurons/regions may simultaneously pro-
cess the signal (picture), and a dominatedly (strongest)
processed signal from a region may be recorded. Com-
paring the component signals recovered by the MaxICA
and ICA methods, one can notice from Figure 28 that one
component signal attained from ICA contains two jumps,
while none of the recovered components by MaxICA
does. It may be hard to understand a hidden component
signal to have two jumps in visual processing experi-
ments. In the epilepsy study, it is desirable to find a hidden
dominant factor (brain activity) which causes the disorder.
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In practice, when the dataset exhibits some abnormality at
some time points or there are some prior knowledge that
some hidden components can be dominating factors, the
MaxICA model can be a good candidate. Nonetheless, as
an exploratory analysis tool, MaxICA is widely applica-
ble.

Due to the nonlinear formulation and special features of
the MaxICA model, many existing optimization methods
could neither be directly applicable to parameter learning
nor deliver expected results. The developed ERD_GA al-
gorithm for the MaxICA model is a feasible approach.
Our numerical experiments indicate that ERD_GA is
more adaptive and flexible than the classical_GA in fit-
ting time series data, and outperforms the SA algorithm
with better fits and faster implementation. Issues on in-
vestigating the algorithmic convergence of the ERD_GA
and developing other more efficient algorithms in the op-
timization task are desirable for future research. More-
over, models (2.6) and (2.8) can be extended to incor-
porate functional regression components and dependent
noise processes.

The MaxICA model proposed in this paper can be used
to explore and address many scientific questions. In future
studies, questions include which brain regions are most
responsive to visual processing and which brain regions
and their connectivity are relevant to the epilepsy. We
wish to collaborate with neuroscientists and medical doc-
tors on some brain science projects and try to find domi-
nating hidden component factors, and brain regions.
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