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Axel Munk

Abstract. Super-resolution microscopy is rapidly gaining importance as an
analytical tool in the life sciences. A compelling feature is the ability to la-
bel biological units of interest with fluorescent markers in (living) cells and
to observe them with considerably higher resolution than conventional mi-
croscopy permits. The images obtained this way, however, lack an absolute
intensity scale in terms of numbers of fluorophores observed. In this article,
we discuss state of the art methods to count such fluorophores and statis-
tical challenges that come along with it. In particular, we suggest a mod-
eling scheme for time series generated by single-marker-switching (SMS)
microscopy that makes it possible to quantify the number of markers in a
statistically meaningful manner from the raw data. To this end, we model the
entire process of photon generation in the fluorophore, their passage through
the microscope, detection and photoelectron amplification in the camera, and
extraction of time series from the microscopic images. At the heart of these
modeling steps is a careful description of the fluorophore dynamics by a
novel hidden Markov model that operates on two timescales (HTMM). Be-
sides the fluorophore number, information about the kinetic transition rates of
the fluorophore’s internal states is also inferred during estimation. We com-
ment on computational issues that arise when applying our model to sim-
ulated or measured fluorescence traces and illustrate our methodology on
simulated data.
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quantitative nanoscopy, biophysics and computational biology, inhomoge-
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1. INTRODUCTION

During the past decades cell biology has undergone a
profound transition, shifting its character from qualitative
work about basic cell activity to increasingly quantitative
methods to study fine details like the role of individual
proteins for signaling and transport. This trend was cru-
cially supported by the advancement of super-resolution
microscopy (nanoscopy) techniques, highlighted by the
2014 Nobel prize in chemistry, which have since become
an indispensable tool for modern biomedical research [6,
21, 23, 49]. While previous imaging methods for cellular
structures were either limited due to a lack of resolution
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(like conventional light microscopy) or due to their inva-
siveness (like X-ray or electron microscopy), fluorescence
nanoscopy enables high-resolution imaging of living cells
to the nanometer scale without the necessity to prepare
samples in ways that prohibit natural biochemical activity.
The limits of super-resolution microscopy, both in princi-
ple and application, are still being explored as progress
unfolds at a remarkable pace [3, 22].

By now, many initial hurdles for the usage of fluores-
cence nanoscopy in various disciplines, like physiology,
biology, and medicine, have been overcome: structures
within living prokaryotic and eukaryotic cells are probed
on unprecedented spatial scales in experiments [2, 31],
and popular model organisms like fruit flies and mice are
studied in vivo [5, 46]. It is hard to overstate the practical
implications of bringing improved imaging resolution to
these fields. From virology [10, 36, 40], immunology [38,
54] and neurology [11, 34] to cancer [9, 47] and plant
biology [29], new ground in fundamental research is in-
creasingly broken by means of nanoscopy. We exemplar-
ily refer to [44] for an in-depth review about the unfolding
role of super-resolution microscopy in cell biology.

The advancement of nanoscopy does not only raise new
opportunities for experimentalists and lab scientists but
also for statisticians. They are called to address a series
of challenges that are highly relevant for exploiting the
full potential of state-of-the-art fluorescence microscopy
schemes (see [1], where further background on the un-
derlying optics and the physical modeling of nanoscopy
is given from a statistical perspective). Indeed, all current
implementations of super-resolution microscopy are af-
fected by the inherently stochastic behavior of fluorescent
molecules, or fluorophores, which (randomly) emit pho-
tons if struck by incident light. In modes of nanoscopy
that operate in a coordinate-targeted way (scanning ob-
servation points), like STED [21, 23] and RESOLFT [8,
18, 26], this stochasticity often plays a secondary role.
Still, for quantitative analysis of the images (i.e., count-
ing the actual number of fluorophores), the photon emis-
sion statistics turns out to be central. For example, indi-
vidual fluorophores can be identified in STED nanoscopy
by measuring the simultaneous arrival of emitted photons
[28, 50]. In case of RESOLFT, an on-off Markov model
for fluorophores has recently been demonstrated to be ca-
pable of extracting the contribution of single fluorophores
in the total signal [16]. Other methodologies, like MIN-
FLUX [3, 13], rely on a statistical treatment by design. In
MINFLUX—fluorescence nanoscopy via minimal photon
fluxes—a doughnut shaped laser intensity profile targeted
to different spots on a biological sample is used to ex-
cite a fluorophore with unknown position. Based on the
(approximately Poisson distributed) number of photons
measured as response for each position of the excitation
spot, the location of the fluorophore is inferred statisti-
cally, for example, via maximum likelihood estimation.

Questions regarding the optimal measurement design—
where to place the spots and which laser profile to use—
naturally fit a Bayesian perspective and are still open for
investigation.

The major focus of this article, however, will be another
family of nanoscopy schemes, which exploit the fact that
fluorophores have a tendency to blink over time, meaning
that they (randomly) switch between active and inactive
states. Under suitable conditions, fluorophores can thus
be observed and localized individually even when clus-
tered together. Methods that make use of this switching
property are collected under the umbrella term single-
marker-switching (SMS) nanoscopy, and include PALM
[6], STORM [43], GSDIM [15], or variations thereof
[12, 24, 52]. SMS nanoscopy works by recording a se-
ries of diffraction limited fluorescence images (or frames)
in which only a small number of fluorophores is active
and emits photons during the respective exposure. Spa-
tially close molecules are therefore likely to be sepa-
rated in time. As illustrated in Figure 1, the detected flu-
orophore positions from all frames can be used to create
a pointillistic image with superior resolution. For a video
that compares conventional fluorescence microscopy and
SMS nanoscoy of a Rhodamine labeled microtubular net-
work on the basis of 30,000 frames of experimental data,
see stochastik.math.uni-goettingen.de/SMSData.

The stochastic nature of the frames recorded during
SMS microscopy opens up a rich and fruitful field for sta-
tistical investigation. Indeed, major issues like the correc-
tion of spatial drifts in the image sequence, which orig-
inally required experimental intervention via so-called
fiducial markers, have recently been tackled by fully sta-
tistical means—see [20] and the references therein. An-
other emergent topic is the temporal statistical model-
ing of the fluorophore dynamics, which also plays a cru-
cial role for the present article. The most prominent ap-
proaches in this context are (hidden) Markov models, see
[27, 35, 42, 51]. Recently, in [39], the photo switching
behavior of fluorophores was characterized by a specif-
ically tailored time-homogeneous hidden Markov model
that reliably improves the estimation of kinetic transition
rates from SMS data when compared to more basic meth-
ods, like exponential fitting of the dwell-times of the flu-
orophore in active/inactive states [33].

Moreover, Markov models allow for the refined extrac-
tion of quantitative information from SMS images, like
counting the number of individual fluorophores in given
image regions. This task of “quantitative nanoscopy”
turns out to be much more involved than it appears at a
first glance. The difficulty is that each fluorophore leaves a
sophisticated intensity trace on the recorded image series,
as it only causes a visible spot during frames in which the
fluorophore is active—else it is invisible. Consequently,
when a spot on the microscopic frames is lit up several

http://stochastik.math.uni-goettingen.de/SMSData
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FIG. 1. Principle of single-marker-switching microscopy. By exciting a biological sample that is labeled with fluorophores (top row) via a suitable
laser, a temporal series of frames capturing fluorescent activity is recorded (bottom row). In each frame, only a sparse selection of fluorophores
emits photons (green circles). The recorded images are blurry because of inevitable diffraction effects. Still, the center positions of the individual
diffraction limited spots can be determined with higher precision due to spatial sparsity. This can be used to create a pointillistic nanoscopy image
with superior resolution as compared to conventional fluorescence microscopy, where the photons emitted by all fluorophores would be recorded at
the same time.

times consecutively, it is not evident how many (close-
by) fluorophores are responsible for the observed intensity
pattern. This problem of mapping fluorescence intensity
traces to the number of contributing molecules is of high
practical relevance and poses a fundamental challenge for
the application of SMS microscopy in quantitative biol-
ogy.

In recent years, several methods to obtain such flu-
orophore numbers from fluorescence images have been
proposed [27, 32, 42, 51]. They usually rely on the de-
tection of switching events or on counting the number of
steps during photobleaching (i.e., a fluorophore becom-
ing irreversibly inactive). While these methods have been
successfully applied to count 50 fluorophores and more
in specific circumstances [32, 51], they can be prone to
errors when misidentifying switching events or bleaching
steps. These issues are particularly detrimental in the pres-
ence of many fluorophores within a diffraction limited re-
gion or when the fluorophore kinetics of bleaching and
switching are fast in comparison to the image acquisition
rate.

In this article, we lay the statistical foundations for a
new method to estimate the number of fluorophores on
SMS nanoscopy images introduced in [30]. Contrary to
established methods, no step identification—which usu-
ally involves the choice of fluorescence levels or rate
thresholds and depends on bleaching or switching—is
necessary. This becomes possible by the careful statisti-
cal modeling and analysis of the whole imaging process:
from photon generation in the fluorophore to signal am-
plification in the CCD camera. Our approach makes use
of the full history of the recorded intensity information
and exploits temporal correlations in the signal. The core
component of the model is an accurate description of the

fluorophore behavior in terms of a novel hidden Markov
model that operates on two distinct timescales. It sepa-
rates the fast dynamics that govern the emission of single
photons during the exposure from the slow dynamics that
describe fluorophore kinetics for states with dwell times
longer than the exposure for a single frame. Although our
Markov model is time-inhomogeneous, estimation of the
fluorophore number and other kinetic parameters can be
performed by applying the maximum likelihood principle
to a simplified expression of the model’s total likelihood.
This simplification is based on a second-order approxi-
mation to the true likelihood and is derived by exploiting
spectral properties of the model. Intriguingly, the infer-
ence takes place in an unusual setting: the quantity we
want to estimate—the fluorophore number—is a feature
of the initial state of the model and is lost in the asymp-
totic behavior for long times due to bleaching. In [30],
the method has been experimentally verified on super-
resolution images of DNA origami structures. This will be
complemented by simulation results in the present work.

The article is organized as follows. In Section 2, we
provide an overview of the single modeling steps that con-
tribute to our total model for the fluorescent time traces,
and we briefly describe how we estimate the fluorophore
number with it. Section 3 contains a detailed treatment of
the fluorophore dynamics. We formulate the hidden two-
timescale Markov model (abbreviated by HTMM) that
is based on the description of fluorescent molecules as
Markov chains, acting on different timescales with dif-
ferent transition rates. In particular, we derive expres-
sions for the expectation and (co-)variance of the num-
ber of emitted photons in each frame, and provide results
about spectral properties of the transition matrix which
are useful for computational purposes (Appendix E and
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F in the Supplementary Material [48]). In Section 4, we
investigate how the number of emitted photons is trans-
formed through (i) statistical thinning in the microscope
and (ii) processing and amplification in the detector. To
assist readability, the central notation that is introduced in
Sections 3 and 4 is surveyed in Table A.1 in Appendix A
of the Supplementary Material [48]. In Section 5, we then
introduce the simplified “pseudo log-likelihood”, com-
ment on numerical issues for maximum likelihood esti-
mation based on it, and present estimation results for sim-
ulated fluorescence intensity traces. Finally, in Section 6,
we specialize our general model to the commonly used
fluorophore Alexa 647. Section 7 contains a brief outlook
that emphasizes open questions related to our work.

2. MODELING AND ESTIMATION

Super-resolution microscopy with single marker
switching (SMS) relies on a series of fluorescence mi-
croscopy images, or frames, with only a small fraction of
active fluorophores per image. This way, spatially close
fluorophores are separated in time since they are unlikely
to emit photons simultaneously. The resulting frames are
used to localize the marker molecules with a superior
precision on the nanometer scale [49]. The imaging is
affected by the quantum physical behavior of the fluo-
rophore, which leads to switching and bleaching, and by
a series of subsequent manipulations of the emitted pho-
tons until they are detected by the camera and transformed
to digital values [1]. Each step in this chain (depicted in
Figure 2) modifies the original signal—photons emitted
by the fluorophore—in a characteristic way and has to be
taken into account. In the following, we present an outline
of our approach to estimate the fluorophore number based
on time traces extracted from a series of T camera im-
ages. More detailed considerations follow in subsequent
sections.

Single fluorophore

Fluorophore dynamics is successfully modeled by
Markov chains [35, 39]. The states of these chains roughly
correspond to quantum physical states of the molecule
(see Remark 1 below), which can exhibit very diverse
lifetimes. The respective transition rates are governed by
quantum mechanical kinetics that sensitively depend on
the biochemical properties of the fluorophore’s neigh-
bourhood in the sample. Two of the states have a dis-
tinguished role in our model: the bright state, in which
absorption and emission of photons is possible, and the
bleached state, in which dyes have irreversibly lost their
fluorescence functionality. Additionally, a number of tem-
porary dark states, which, for example, correspond to
triplet or redox states of the fluorophore [53], are usually
necessary for a faithful description.

REMARK 1. In Markov chains, states with the same
transition rates can be combined into a single state without
losing the Markov property (see Appendix D for details).
A reasonable fluorophore model does therefore not have
to include every possible quantum physical state explicitly
(like fine-structured rotational and vibrational substates).
Rather, it only has to capture classes of states with similar
dwell times and transition behavior. The number of such
classes can be estimated from the data.

The phenomenon of fluorophores jumping between the
bright and temporary dark states is denoted as blinking
or switching. In our generic model for fluorescence, we
finely resolve the fast dynamics inherent to the bright
state, like single photon emissions, and model it as a
Markov chain in its own right. This gives rise to a de-
scription that operates on two different time scales: a fast
inner model that runs during the exposure time, and a slow
outer model that captures states that are expected to per-
sist over several frames. Figure 3 depicts our choice of
states for the fluorophore Alexa 647, which we investi-
gate more detailed in Section 6.

FIG. 2. Overview of the modeling steps. During exposure, fluorophores within a labeled biological sample emit photons due to laser excitation.
With a certain probability, these photons pass through the microscope (optical system) and are registered by a CCD camera. Over the course of the
experiment, a series of camera frames is recorded. Summing up the intensities over a region of interest (ROI, green boxes) for each image yields a
time series that captures the fluorescent activity in the respective ROI.
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FIG. 3. Exemplary inner and outer models that are used to describe
the dynamics of the fluorophore Alexa 647 (see [30]). The wiggling red
arrow indicates that transitions from the singlet state S1 to the ground
state S0 cause the emission of a photon. The state D3 is a short-lived
dark state.

Let X′
t denote the outer state of the fluorophore directly

before the t th exposure, and let Xt denote its state after
the exposure. The transition from Xt−1 to Xt is depicted
in Figure 4. It is modeled through applying one step of
the outer dynamics on Xt−1, which yields X′

t , and then
running the inner model, which changes X′

t to Xt , and
which also yields a number Yt of emitted photons during
frame t . The distribution of Yt depends on both X′

t and
Xt . A complete description of our model for fluorophore
dynamics is therefore given by a transition matrix M� for
the long-time step, a matrix Ms for the short-time step,
and the distribution pxx′ of Yt conditioned on Xt = x and
X′

t = x′, which we assume to be stationary. The combined
chain

(X0,X
′
1,X1,X

′
2, . . .)

of outer states is an inhomogeneous Markov chain with
alternating transition matrices M� and Ms, while the in-
dividual chains (Xt)t and (X′

t )t are homogeneous with
transition matrices MsM� and M�Ms, respectively.

In experiment, the states Xt and X′
t cannot be observed

directly. We only obtain outputs of the measurement de-
vice (e.g., a CCD camera) generated through the Yt emit-
ted photons. This makes our ansatz a hidden Markov
model. In Section 3, we derive the generating function of
the process Y = (Yt )

T
t=1 and obtain its expectation μ and

the covariance �, which are eventually used to estimate
the number of fluorophores in Section 5.

REMARK 2 (Notation). We refer to the model out-
lined above as hidden two-timescale Markov model, or
HTMM. The observable part of this model, Yt , denotes
the number of photons that are emitted in the time inter-
val between X′

t and Xt . One can therefore think of X′
t as

the state Xt− directly prior to Xt , and Yt as an observation
that accumulates from t− to t .

Microscope and camera

Photons emitted by fluorescent dyes are directed ran-
domly and may fail to enter the microscope, such that
they are lost for the experiment. In addition, a photon may
be absorbed by lenses, filters, or mirrors within the opti-
cal path. Consequently, each emitted photon has a prob-
ability pc < 1 to reach the camera. When it reaches the
camera, the position of the photon on the CCD sensor
is randomized due to diffraction: light originating from
a point source is spread to a blurred spot on the detector
interface. From the viewpoint of classical physics, where
light is modeled as a wave of electromagnetic radiation,
this blurring is described by a convolution of the light in-
tensity distribution with a nonnegative point spread func-
tion h (see [7, 17] for the underlying physics and [1] for a
treatment in the context of statistics). In the quantum me-
chanical interpretation of light as photons, h(z) denotes
the probability that a photon emitted at the origin of the
sample incides at pixel z on the detector, which leads to a
multinomial distribution of incident photons to pixel loca-
tions. When the photon arrives at a pixel z, it is absorbed
with a certain probability pa and a so-called photo elec-
tron, that is, an electron ejected from the detector material
due to energy transfer from the photon, is released. The
total chance for a photon to reach the detector at any pixel
and be absorbed is denoted by pd = pcpa.

We call a region R on the image that captures the
blurred spot created by one (or several close-by) fluo-
rophores a region of interest (ROI). The total number Y ′

t

of detected photons in R is given by

Y ′
t = ∑

z∈R

Y ′
t,z,

FIG. 4. Single fluorophore model. At time t − 1, the fluorophore can be in one of several distinct outer states Xt−1. When transitioning from Xt−1
to Xt , we apply the long-time matrix M� to describe the dynamics that takes place between separate frames, and then apply the short-time matrix
Ms for the effects of the fast dynamics on the outer state during exposure. In the latter step, the fluorophore emits a number Yt of photons in frame t .
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where Y ′
t,z is the number of photons detected at pixel

z ∈ R. Since we assume that the electrical circuits un-
derlying individual pixels are identical in their properties,
we can ignore the spatial distribution of photons within
one ROI and work with Y ′

t ∼ Bin(Yt ,pd) directly. This
amounts to a binomial thinning of Yt [19].

Since the electrical charge of a photoelectron is too
small to be detected reliably, cameras employ an electron
multiplying system that operates stochastically [25, 41].
Let D denote the distribution for the number of electrons
after amplification of the incoming electron in the CCD.
Then the final camera output value Ỹt , when summed over
R, is given by

(2.1) Ỹt = c

Y ′
t∑

k=1

Ut,k + εt + o,

with Ut,k ∼ D i.i.d. for all t and k. The constant factor
c > 0 results from the analog-to-digital conversion of the
accumulated electron charge in the pixels, and the random
variables εt collect different contributions of inevitable
additional randomness—like background photons, ther-
mal electrons in the electronics, or readout noise. Addi-
tionally, a constant positive offset o is added to the camera
output to avoid noise induced fluctuations into the nega-
tive domain.

Multiple fluorophores

Each fluorophore in the bright state produces a
diffraction-limited spot during exposure, as seen in the
frame shown in Figure 2. The major difficulty for esti-
mating the number of fluorophores reliably results from
the fact that several fluorophores can contribute to the
same spot if their mutual distance is small and if they are
bright simultaneously. The core contribution of this article
is to use the information from a temporal series of frames
to estimate the total number m of fluorophores that are
present in a given region of interest R.

REMARK 3. The unknown number m of fluorophores
is the major quantity of interest to be estimated in a single
ROI. By combining estimates for m from different ROIs,
one can obtain quantitative information on the spatial flu-
orophore density in the entire image.

A crucial assumption that we use to model multi-
fluorophore systems is statistical independence, that is,
that no (relevant) physical interactions between the single
fluorophores take place. We also assume that all m flu-
orophores are identical in their physical behavior, mean-
ing that they can be described by a common fluorophore
model with a common set of parameters. Then, the total
number of emitted photons is given by the sum of m in-
dependent copies Y 1

t , . . . , Ym
t of the process Yt ,

(2.2) Y
(m)
t =

m∑
k=1

Y k
t .

Similarly, the time series obtained by summing the CCD
values over the region R is composed of m independent
versions Ỹ 1

t , . . . , Ỹ m
t of Ỹt . Therefore, the total signal we

observe is encoded in the process

Ỹ
(m)
t =

m∑
k=1

Ỹ k
t .

REMARK 4. The assumptions of independence and
identical distribution are approximations that are justified
for many typical experimental situations. Still, they can
be violated, for example, if the spatial distance of neigh-
bouring fluorophores is very small (<10 nm). Then, inter-
actions like FRET (Förster Resonance Energy Transmis-
sion) become likely. The experimental study [30] high-
lights that our model indeed produces inconsistent results
in this case.

Estimation

Our objective is to estimate m from a realization y of
the process Ỹ (m) = (Ỹ

(m)
t )t . Besides m, there are several

other parameters that may have to be estimated, like the
transition rates in the HTMM, or the initial distribution
of the outer state. These parameters depend sensitively on
details of the experimental setting, like the fluorophore
type, the biochemical conditions in the sample, or the
applied laser wavelengths and intensities. Some of these
properties may vary from ROI to ROI. Furthermore, dif-
ferent types of fluorophores may even require different
inner or outer models. This poses an interesting problem
in model selection—which we will, however, not address
in this article.

Since the number of unknown parameters, which we
call γ for the moment, is typically small (e.g., at most
16 for our Alexa 647 model with three dark states, see
Section 6), it is near at hand to employ maximum likeli-
hood estimation. However, the computation of the MLE
requires that we can evaluate the log-likelihood ly(γ ) of
the full model, which is unfeasible for two reasons: first,
the number of terms in ly(γ ) turns out to be overwhelm-
ing even for a moderate number T of frames; and sec-
ond, we lack information about how the signal is trans-
formed in the camera, since manufacturers usually only
provide information about the first two moments of the
camera-statistics D. We therefore choose an approach
that is based on approximating Ỹ (m) by a Gaussian pro-
cess with the same expectation μ = μ(γ ) and covari-
ance � = �(γ ) as Ỹ (m). This leads to the pseudo log-
likelihood

l̃y(γ ) = −1

2

[
(y − μ)�−1(y − μ) + log det�

]
,

and parameter estimation reduces to maximizing l̃y(γ ),
which is still challenging but becomes numerically fea-
sible. In particular, we have fewer degrees of freedom:
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for Alexa 647, only 11 (compared to 16) independent pa-
rameters are necessary to fully describe μ and �, since
the first two moments do not rely on all transition prob-
abilities of the HTMM individually. In Section 5, we ad-
dress a number of subtleties that come along with this ap-
proach, like nonlinear constraints on the parameter space
and practical complications with the numerical optimiza-
tion. As a proof-of-concept of our approach, we also in-
clude exemplary estimation results on simulated data.

We stress that other methods of estimation are certainly
of interest, too. In particular, a Bayesian approach be-
comes feasible when prior knowledge on parameters is
available. We do, however, not pursue this issue further in
this article and contain ourselves to (pseudo) maximum
likelihood based statistical analysis.

3. FLUOROPHORE DYNAMICS

The dynamics of fluorophores is at the heart of our
model for the imaging process in Figure 2. Due to the
i.i.d. assumption when modeling multiple fluorophores
(see Remark 4), this effectively amounts to modeling a
single fluorophore. In this section, we will treat the short-
time dynamics as a “black box” with as few assumptions
as is necessary for our intentions. Only later, when we
specialize the model to the fluorophore Alexa 647 in Sec-
tion 6, we elaborate in detail on a concrete inner model.
As a guidance for the derivations that follow, consulting
Table A.1 in Appendix A might prove helpful, as it sum-
marizes the relevant notation that is introduced in this and
the next section.

Fluorophore model

The outer state space of a fluorophore is described by
one bright and r ∈ N dark states, including the bleached
one. See Figure 3 for an example. We name the state space
S and denote its elements by x ∈ S = {0, . . . , r}, with
x = 0 being the bright and x = r being the bleached state.
On S , we consider two coupled time-discrete Markov
chains (Xt)

T
t=0 and (X′

t )
T
t=1, where T ∈ N is the number

of frames. The evolution of Xt and X′
t is given by the

(stationary) transition matrices M� and Ms, where

M�
x′x = P

(
X′

t = x′ | Xt−1 = x
)

and

Ms
xx′ = P

(
Xt = x | X′

t = x′)(3.1a)

for x, x′ ∈ S . We interpret X′
t as state of the fluorophore

directly before exposure in frame t , and Xt as state di-
rectly after exposure (see Remark 2 and Figure 4). The
full transition matrix for Xt is given by

(3.1b) M = MsM�.

The transition of the fluorophore from X′
t to Xt during

exposure is governed by the inner model, which also de-
termines the number Yt of photons that are emitted in the

corresponding frame. We characterize the photon statis-
tics of the inner model by the conditional distributions

(3.2) pxx′(y) = P
(
Yt = y | Xt = x,X′

t = x′)
for y ∈ N0, which we assume to be time-stationary. The
probabilities in (3.2) are collected in the matrix P(y) =
(pxx′)x,x′∈S . We furthermore use the symbol ν = (νx)x∈S
to denote the initial distribution, that is, the distribution of
X0. In total, specification of Ms, M�, P , and ν completely
defines a single-fluorophore model.

DEFINITION 1. Any observable process Y = (Yt )t as
constructed above, with conditional distributions P in
(3.2), transition matrices Ms and M� defined in (3.1), and
initial (hidden) distribution ν, is denoted as hidden two-
timescale Markov model, or HTMM.

LEMMA 1. The likelihood of an HTMM under obser-
vation of a time series y = (yt )

T
t=1 is

ly(M
s,M�,P, ν)

= ∑
x∈ST +1

(
T∏

t=1

∑
x′∈S

pxtx′(yt )M
s
xt x′M�

x′xt−1

)
νx0,

(3.3)

where the outer sum covers all tuples x = (x0, x1, . . . ,

xT ) ∈ ST +1.

PROOF. A single transition step under observation of
Yt = y photons is described by

P(Yt = y,Xt = x | Xt−1 = z) = ∑
x′∈S

pxx′(y)Ms
xx′M�

x′z,

and the probability to observe the full time series (yt )
T
t=1

can be written as

P(Yt = yt for all t)

= ∑
x∈ST +1

(
T∏

t=1

P(Yt = yt ,Xt = xt | Xt−1 = xt−1)

)
νx0 .

Combining these two equations yields the stated result.
�

REMARK 5. The outer sum in equation (3.3) con-
tains (r + 1)T +1 terms, and we are not aware of a way
to significantly simplify the expression under general cir-
cumstances. Since there is at least one dark outer state
(meaning r ≥ 1) and the number T of frames for SMS
microscopy is often well above 1000, it is impossible to
directly evaluate the likelihood ly numerically (21000 >

10300).

REMARK 6. We will eventually extend the HTMM
in Definition 1 by (i) the generalization to multiple i.i.d.
fluorophores, and (ii) the additional statistical modeling
of the imaging process (see Section 4). These enhanced
models will for convenience also be referred to as HT-
MMs, since the context usually clarifies which specific
fluorophore model is meant.
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Model restrictions

We introduce several restrictions on our model in or-
der to reflect physical fluorophore properties and to make
the analysis of (3.3) viable. The most evident constraint
is that the bleached state x = r acts as an absorbing state
for both Ms and M�. We also assume that the fluorophore
can leave the bright state x = 0 only during application
of the inner model. Conversely, we suppose that a fluo-
rophore that is not in its bright state is unaffected by the
inner model. With these restrictions in place, M� and Ms

can be brought in the respective parametric forms

M� =

⎛⎜⎜⎜⎜⎜⎜⎝
1 q01 · · · q0(r−1) 0
0 q11 · · · q1(r−1) 0
...

...
. . .

...
...

0 q(r−1)1 · · · q(r−1)(r−1) 0
0 qr1 · · · qr(r−1) 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Ms =

⎛⎜⎜⎜⎜⎜⎜⎝
q00 0 · · · 0 0
q10 1 · · · 0 0
...

...
. . .

...
...

q(r−1)0 0 · · · 1 0
qr0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(3.4)

where we defined transition probabilities qxz ∈ [0,1] for
x ∈ S and z ∈ S � {r}. The restrictions also imply that no
photons are emitted if the exposure starts in a non-bright
state, meaning that pxx′(0) = 1 for x′ �= 0. In contrast,
if the exposure begins in the bright state x′ = 0, the fluo-
rophore will produce photons and may switch to any other
state x ∈ S until the end of the exposure.

An additional assumption that is required to make the
model analytically tractable is that the distribution px0
does not depend on the final state x if the fluorophore exits
the bright state. This means that

(3.5) px0 = p10 if x > 0.

REMARK 7. Condition (3.5) can be understood as as-
suming a common “exit state” in the inner model that is
the only possibility for the fluorophore to become dark
during exposure. From this state, it can then jump to all
dark states of the outer model as soon as the frame ends.
Note that this exit state does not have to correspond to a
(single) physical state: it could cover several states with
similar exit conditions (see Remark 1 in this context).

Under these constraints, the conditional distributions of
the photon statistics defined in (3.2) read

(3.6) P(y) =

⎛⎜⎜⎜⎝
p00(y) δ(y) · · · δ(y)

p10(y) δ(y) · · · δ(y)
...

...
. . .

...

p10(y) δ(y) · · · δ(y)

⎞⎟⎟⎟⎠ ,

where δ denotes the Dirac measure with point mass 1 on
y = 0. Fluorophore models that satisfy conditions (3.4)
and (3.6) are collected in the set F s of (physical) single-
fluorophore models.

Generating function

Even when exploiting the additional constraints for F s,
the process Y = (Yt )t of emitted photons remains very
complex. In particular, it is hard to use the HTMM for
straightforward inference. Maximum likelihood estima-
tion, for example, is impossible for real world datasets
due to the prohibitive expense of calculating the likeli-
hood, see Remark 5. We can, however, use the moment
generating function of Y and the specific structure of F s

to calculate expressions for the expectations μt = E[Yt ]
and the covariance �,

�tt ′ = E
[
(Yt − μt)(Yt ′ − μt ′)

]
,

where t, t ′ = 1, . . . , T . These moments carry relevant
information and allow recovering the number of fluo-
rophores in case of multiple molecules (see Section 5).
For preparation, we first look at the moment generating
matrix G(s) associated to P(y) and find

(3.7) G(s) =

⎛⎜⎜⎜⎝
G00(s) 1 · · · 1
G10(s) 1 · · · 1

...
...

. . .
...

G10(s) 1 · · · 1

⎞⎟⎟⎟⎠ ,

where G00(s) = E[esYt | Xt = X′
t = 0] and G10(s) =

E[esYt | Xt = 1,X′
t = 0]. Then, we define the auxiliary

matrix

(3.8) H(s) = (
G(s) ◦ Ms)M�,

where ◦ denotes the entry-wise (Hadamard) product. In
the following, we will only consider inner models for
which the expectations G00 and G10 exist and are finite
in some vicinity (−ε, ε) of zero for ε > 0. In particular,
this implies that all derivatives of H exist at s = 0 [14].

LEMMA 2. The moment generating function GY of
the process Y is

(3.9) GY (τ) = (1, . . . ,1)H(τT ) · · ·H(τ1)ν

for τ = (τ1, . . . , τT ) ∈ (−ε, ε)T .

The proof of this statement can be found in Ap-
pendix B.

Moments of the inner model

Before we derive the expectation and covariance of Y

by differentiating equation (3.9), we introduce three pa-
rameters θ1, θ2, and θ3 that describe the photon emission
statistics p00 and p10 up to second order. The first param-
eter θ1 describes the expected number of photons emitted
during the frame if the fluorophore was in the bright state
initially,

θ1 = E
[
Yt | X′

t = 0
]

= ∑
x∈S

qx0E
[
Yt | X′

t = 0,Xt = x
]
,

(3.10a)
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where we used that qx0 = Ms
x0 = P(Xt = x | X′

t = 0) by
definition. The second parameter θ2 quantifies the contri-
bution to the expectation θ1 if the fluorophore not only
starts the frame in the bright state but also stays there,

(3.10b) θ2 = q00E[Yt | X′
t = Xt = 0]

θ1
.

Finally, we capture the conditioned variance of Yt given
X′

t = 0 via the parameter θ3,

(3.10c) θ3 = Var[Yt | X′
t = 0]

θ2
1

− 1

θ1
.

This parameter can be viewed as the excess relative vari-
ance with respect to a Poisson distribution: if Yt | Xt = 0
was distributed Poissonian, then θ3 = 0. A Poissonian
statistics is often assumed as an approximation for the
photon emission of fluorophores, but corrections may be
necessary for accurate results [1].

REMARK 8. The parameters θ = (θ1, θ2, θ3) clearly
depend on the inner model choice and are usually related
to the entries of the short-time transition matrix Ms. For
example, we show in Section 6 that θ2 is fully determined
by q00 in the inner model that we use for the fluorophore
Alexa 647.

Expectation

In order to derive analytical expressions for the expec-
tation and covariance, we will assume that the transition
matrix M = MsM� is diagonalizable and has eigenvalues
λ0, . . . , λr ∈ C. We argue that this assumption is no sig-
nificant restriction, since the stochastic matrices that are
not diagonalizable form a null set in a reasonable sense—
see Lemma E.1 in Appendix E for details. We thus write

(3.11) M = V �V −1,

where � = diag(λ0, . . . , λr) and where V is a matrix con-
taining the eigenvectors of M as columns. Due to the ab-
sorbing nature of the bleached state x = r , we can assume
that λr = 1 with eigenvector (0,0, . . . ,1)T, which hence
constitutes the last column of V .

THEOREM 1. Assume that the Markov matrix M for
a single-fluorophore model in F s is diagonalizable like in
(3.11). Then the expectation value μt of the number Yt of
photons emitted by the fluorophore at time t = 1, . . . , T is

(3.12) μt = θ1
∑
x∈S

αxλ
t−1
x ,

where the coefficients αx for x ∈ S are defined by

(3.13) αx = V0x

λx

q00

∑
z∈S

V −1
xz νz.

This statement follows from differentiating the moment
generating function GY in (3.9) and exploiting the struc-
tural restrictions of Ms, M�, and G in (3.4) and (3.7). For
a detailed proof, we refer to Appendix B.

When deriving the covariance of Y later on, we will
need the expectation value μ0

t of Yt on the condition
that the fluorophore was in the bright state at the be-
ginning of the experiment. This corresponds to the case
ν = (1,0, . . . ,0). According to equation (B.4) in the proof
of Theorem 1, we find

(3.14) μ0
t = E[Yt | X0 = 0] = θ1

q00

(
Mt )

00.

Under assumption (3.11) of diagonalizability for M , The-
orem 1 lets us write

μ0
t = θ1

∑
x∈S

α0
xλ

t−1
x ,

where the coefficients α0
x are given by equation (3.13)

with ν = (1,0, . . . ,0),

(3.15) α0
x = λx

q00
V0xV

−1
x0 .

These auxiliary coefficients can be related to αx . If ν0 = 1,
then α0

x = αx by definition. If ν0 < 1, we can plug ν′ =
1

1−ν0
(0, ν1, . . . , νr) in equation (3.13) and define

(3.16) α1
x = λx

q00
V0x

∑
z∈S

V −1
xz ν′

z,

which allows us to decompose αx as

αx = ν0α
0
x + (1 − ν0)α

1
x.

This way of splitting up the model parameters has the
advantage that a simple set of constraints for α0

x and α1
x

arises (see Lemma 3 below).

Spectral properties and parameter constraints

The eigenvalues λx and coefficients αx in Theorem 1
can in general be complex-valued. When estimating these
parameters numerically, however, it is beneficial to as-
sume real eigenvalues and eigenvectors of M . In Ap-
pendix F, we provide some criteria that guarantee λx ∈
[0,1] for r ≤ 3. In summary, (i) real and (ii) positive
eigenvalues are ensured if the diagonal values of the tran-
sition matrix M are (i) diverse and (ii) large enough. Usu-
ally, both of these assumptions are physically reasonable:
the diagonal values are diverse if the outer states of the flu-
orophore exhibit diverse live times, and they are large if
the outer states are on average stable over several frames.
Under the restriction λx ∈ [0,1] on the spectrum of M ,
equation (3.12) states that the expected number μt of
emitted photons is the superposition of exponential de-
cays with timescales determined by λx .
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Furthermore, note that the coefficients αx are implicitly
constrained by their definition in equation (3.13). First,

αr = 0

is enforced due to V0r = 0. This is physically expected
as fluorophores in the bleached state do not emit photons.
Second, summing over x ∈ S in (3.13) shows∑

x∈S
αx = 1

q00

∑
z∈S

M0zνz

= (1, q01, . . . , q0(r−1),0)ν.

(3.17)

Similarly, we find the relation

(3.18)
∑
x∈S

αx

λx

= ν0

q00

by dividing equation (3.13) by λx and again summing
over x ∈ S . Applying the last three equations to the co-
efficients α0

x and α1
0 , defined in (3.15) and (3.16), yields a

set of simple constraints.

LEMMA 3. We have α0
r = α1

r = 0. Furthermore, it
holds that∑

x∈S
α0

x = 1 and
∑
x∈S

α0
x

λx

= 1

q00
,(3.19a)

0 ≤ q00
∑
x∈S

α1
x ≤ 1 and

∑
x∈S

α1
x

λx

= 0.(3.19b)

PROOF. The first statement holds due to V0r = 0. The
relations in (3.19a) follow from equation (3.17) and (3.18)
for ν = (1,0, . . . ,0). Constraint (3.19b) follows similarly
if we take into account that ν ′ is a probability vector with
ν′

0 = 0. �
Covariance

We next look at the covariance matrix � of the process
Y , which can be obtained from the second derivatives of
the moment generating function.

THEOREM 2. Under assumption (3.11), the covari-
ance matrix � of the process Y = (Yt )

T
t=1 is

�tt = (
θ1(θ3 + 1) + 1 − μt

)
μt,(3.20a)

�tt ′ =
[(

θ2 − q00
1 − θ2

1 − q00

)
μ0

t−t ′

+ 1 − θ2

1 − q00
μ0

t−t ′+1 − μt

]
μt ′,

(3.20b)

on the diagonal and off-diagonal with t > t ′, respectively.

The theorem is proven in Appendix B. Similar to The-
orem 1, the proof crucially relies on the special structure
of Ms, M�, and G.

REMARK 9. The expectation and covariance in equa-
tions (3.12) and (3.20) depend on the eigenvalues and
eigenvectors of the matrix M = MsM�, but not on the
single transition probabilities in Ms and M� directly.
From joint knowledge of μ and �, the parameters
ν0, q00, α

0
x, α

1
x, λx, θ1, θ2, and θ3 are identifiable. Not all

of them, however, are independent (see Lemma 3), and
knowing these parameters is in general not sufficient to
reconstruct the matrices Ms and M�. Plots of μ and � as
well as simulation results for the processes X and Y are
depicted in Figures 5 and 6.

REMARK 10 (variance “dip”). Figure 5(d) illustrates
a characteristic property of the variance �tt in depen-
dence of the frame number t . Initially, the variance in-
creases for some frames before it subsequently relaxes
towards the background noise exponentially. This salient
“dip” in the variance curve is also observed in experimen-
tal data [30] for large values of ν0, that is, if most fluo-
rophores are bright at the beginning of the experiment. It
is caused by bright fluorophores getting dark during the
first few frames, such that the observable distribution of
photons Yt is effectively an additive model composed of
two parts: dark fluorophores with Yt = 0 and bright ones
with Yt around θ1. This split in the distribution of Yt tem-
porarily causes a high variance until the number of dark
fluorophores eventually dominates in the long run.

Multiple fluorophores

The signal we observe in experiments is based on the
fluorescent activity of an unknown number m of fluo-
rophores. As we will typically not be able to distinguish
between the contributions resulting from different fluo-
rophores, we can only rely on the total number Y

(m)
t of

photons emitted in frame t . It is given by the sum of m

single-fluorophore processes Y k modeled via F s,

(3.21) Y
(m)
t =

m∑
k=1

Y k
t .

We make the assumption that the contributions Y k are
independent and identically distributed (see Remark 4).
Even though these assumptions are approximations—
conditions like the biochemical properties of the fluo-
rophore’s neighbourhood or its spatial orientation have a
certain impact—they appear to lead to a decent descrip-
tion for the multi-fluorophore dynamics in practical situ-
ations [30]. The set of all multi-fluorophore models that
obey the i.i.d. assumptions is henceforth denoted by F .

The expectation and covariance of Y (m) as sum of m

i.i.d. random processes simply acquire the prefactor m

with respect to the single-fluorophore expressions. Note
that we will use the same symbols μ, μ0, and � as for the
single-fluorophore process, see (3.12), (3.14), and (3.20),
to denote the respective generalizations to m ≥ 1 fluo-
rophores.
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FIG. 5. Simulation results of the single-fluorophore HTMM. (a) shows three exemplary paths of the fluorophore in the outer state space
S = {0, . . . , r} for r = 3. One can see that two of the three fluorophores have already bleached in the first 250 time steps. (b) shows three fluo-
rescence traces y = (yt )

250
t=1 corresponding to the paths in (a). To obtain more realistic traces, Gaussian white noise with mean 0 and standard

deviation θ1/5 was added to each observation yt . (c)–(d) show the theoretical expectation μt and variance �tt of Yt compared to their empirical
estimates for 5000 and 100 simulated traces. In all simulations, we use the inner model described in Section 6. The parameters for the inner and
outer model are chosen such that the resulting traces roughly resemble the experimental data in [30].

THEOREM 3. The expectation μ and covariance � of
a multi-fluorophore process Y (m) in F are

μt = mθ1
∑
x∈S

αxλ
t−1
x

= mθ1

r−1∑
x=0

(
ν0α

0
x + (1 − ν0)α

1
x

)
λt−1

x ,

(3.22a)

and

�tt = 1

m

(
mθ1(θ3 + 1) + m − μt

)
μt,(3.22b)

�tt ′ = 1

m

[(
θ2 − q00

1 − θ2

1 − q00

)
μ0

t−t ′

+ 1 − θ2

1 − q00
μ0

t−t ′+1 − μt

]
μt ′,

(3.22c)

where

(3.22d) μ0
t = mθ1

∑
x∈S

α0
xλ

t−1
x ,

for t, t ′ = 1, . . . , T with t > t ′. The coefficients αx , α0
x ,

and α1
x are given by equations (3.13), (3.15), and (3.16),

respectively.

Parameterization

At this point, it is instructive to think about the param-
eterization of the multi-fluorophore model class F (see
also Table A.1 on page 2). The full model for the photon

emission process Y
(m)
t depends on the fluorophore num-

ber m, on all transition probabilities Q = (qxz), on the
initial state ν, and on an unspecified number of parame-
ters that come with a concrete choice of the inner model.
If we only want to describe the first two moments μ and
�, however, several parameters become hidden and are
not required to be estimated for our purposes.

According to equations (3.22a)–(3.22d), we only need
the fluorophore number m, the fraction of initially bright
fluorophores ν0, the probability q00 for a fluorophore
to stay bright during the exposure, and the eigenvalues
λ = (λx)x∈S as well as coefficients α0 = (α0

x)x∈S and
α1 = (α1

x)x∈S for the multi-exponential decay in order
to calculate the expectation and covariance. The param-
eters m and ν0 contribute one degree of freedom each,
while q00 is fixed by λ and α0 due to equation (3.19a). To
specify λ, assuming it is real, we need r free components
since λr = 1 is determined through the bleached state.
Similarly, α0

r = α1
r = 0. Due to the constraints (3.19) in

Lemma 3, the parameters α0 and α1 hence contribute
r − 1 free components each. This makes a total number
of 3r independent parameters, compared to r2 + (r − 1)

degrees of freedom needed to specify all components of
Q and ν.

The three parameters θ = (θ1, θ2, θ3) are sufficient to
specify the effect of the inner model in the second-order
description. Still, specific knowledge of the inner model
is necessary, since the relation of θ to other parameters
is unclear otherwise. For example, an inner model with a
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FIG. 6. Real and empirical covariance of the HTMM. Shown are the covariances �tt ′ for t, t ′ = 1, . . . ,50 (upper left image) as well as their
empirical counterparts for 5000 traces (lower left image) and 100 traces (four images on the right). The same simulated traces as in Figure 5(c)–(d)
are used.

Poissonian photon statistics Yt | X′
t = 0 enforces θ3 = 0,

which evidently reduces the number of free parameters.
Similarly, θ2 is not a free parameter for the inner model
that we employ to describe the fluorophore Alexa 647 in
Section 6; it is completely determined by q00.

A setting we want to emphasize is the one where ν0 = 1,
that is, where each fluorophore is bright at the beginning
of the experiment. This can be enforced by the experi-
mental setup, like in the super-resolution scheme applied
in [30]. Then, the r −1 parameters that are needed to spec-
ify the coefficients α1 drop out of the formulae for μ and
�, which makes this choice particularly beneficial.

4. IMAGE ACQUISITION

In the previous section, we introduced an elaborate sta-
tistical model F for the number of photons that are gen-
erated by a set of m fluorophores during a series of ex-
posures in super-resolution microscopy. We next look at
the image acquisition procedure and discuss the relation
between the photon emission process Y (m) and the fi-
nal time trace Ỹ (m) captured by the CCD camera. For-
tunately, most processing steps subsequent to the emis-
sion of photons—like thinning in the microscope or am-
plification through the CCD camera—can be included
into the model by modifying the photon statistics p00
and p10, see (3.6). Consequently, merely the parameters
θ = (θ1, θ2, θ3) will be affected in our second-order de-
scription, and equations (3.22a–d) for the expectation μ

and the covariance � will remain intact: we just need to
substitute θ by suitable transformed parameters θ ′.1

1This is not entirely accurate. Camera noise contributions that do not
depend on the fluorophore and its state of activity, which we called εt

in equation (2.1) of Section 2, cannot be modeled that way and have
to be considered separately. Their inclusion in the inner model would

It might thus seem superfluous to explicitly model any
further steps in the microscope and camera, since we will
typically estimate θ from the data anyway. However, there
are several reasons why it is important to understand how
the original parameter θ is transformed to θ ′. First, these
transformations could alter the constraints placed on pa-
rameters by the inner model (like θ3 = 0 if Yt | X′

t = 0
is Poissonian) by possibly introducing new parameters
(such that θ ′

3 could be a free parameter again, e.g., due
to an unknown variance of the amplification for the spe-
cific camera model). Second, the relation between θ and
θ ′ could be interesting in its own right, because θ contains
immediate information about the actual physics of the flu-
orophore, while θ ′ merges this information with further
details of the experimental setup. This additional degree
of insight could also be helpful for Bayesian inference ap-
proaches, where prior knowledge about the parameters is
taken into account.

Thinning

In Section 2, we mentioned that only a certain fraction
of emitted photons hits the detector interface and is regis-
tered at some CCD pixel. Many photons will fail to reach
the optical pathway or will be absorbed by the equipment
(like lenses or mirrors). The probability that an emitted
photon triggers a photoelectron in a specified region of
interest R of the camera was denoted by pd, such that

(4.1) Y ′
t ∼ Bin(Yt ,pd)

models the thinned photon number for a single fluo-
rophore. The parameter transformation from θ to θ ′ that
accompanies this thinning process can be established by

require a signal Yt > 0 even for fluorophores in dark states X′
t > 0,

which we explicitly prohibited during our derivations of μ and � in
the previous section.
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plugging Y ′
t in equations (3.10a-c) defining the inner pa-

rameters (see Appendix B for the respective calculations).

LEMMA 4. The moment parameters θ ′ of the thinned
photon counts Y ′

t in (4.1) are given by

(4.2) θ ′
1 = pdθ1, θ ′

2 = θ2, θ ′
3 = θ3.

Therefore, only θ1 is affected by binomial thinning while
θ2 and θ3 are left unaffected.

Signal amplification

When photoelectrons are read out in an EMCCD cam-
era, an electron amplifying system that consists of a cas-
cade of electron multipliers (EM) is triggered. Each stage
of this cascade has a certain probability of generating ex-
tra electrons, and the succession of many stages results in
a stochastic signal amplification of the incident photons.
In Appendix C, we introduce a statistical model for this
(noisy) signal amplification in the camera and derive the
transformation rules

(4.3) θ ′
1 = aθ1, θ ′

2 = θ2, θ ′
3 = θ3 + f 2 − 1

θ1
,

where a > 0 and f 2 > 0 are camera specific parame-
ters, namely the overall amplification factor and the ex-
cess noise factor.

Remarks on the full model

The preceding considerations show how the modeling
steps of thinning and signal amplification transform the
moment parameters θ . As discussed in Appendix C, how-
ever, there are other contributions to the full model for the
observed time trace, introduced as Ỹ (m) in equation (C.6),
which cannot be incorporated in the description by merely
modifying θ . These include additional noise in each frame
with (possibly time dependent) variance σ 2

t , which results
from background photons or thermal noise, and an offset
o > 0 in the single pixels of the sensor.

Some of the emerging parameters are known, like f 2,
or can be estimated independently from the fluorophore
model, like σ 2

t , a, or o. The detection probability pd, how-
ever, cannot be separated statistically from the expected
number of photons θ1. For this reason, we drop pd from
the final model formulation and simply write θ1 for what
ought to be called pdθ1 in the following. We also assume
preprocessed time traces, where the camera data Ỹ (m) has
been corrected by the offset o and divided by the total am-
plification a (see (C.7) in Appendix C). The mean μ and
the covariance � of the resulting normalized process are
then given by

μt = mθ1

r−1∑
x=0

(
ν0α

0
x + (1 − ν0)α

1
x

)
λt−1

x ,(4.4a)

�tt = 1

m

(
mθ1(θ3 + 1) + mf 2 − μt

)
μt

+ σ 2
t /a2,

(4.4b)

�tt ′ = 1

m

[(
θ2 − q00

1 − θ2

1 − q00

)
μ0

t−t ′

+ 1 − θ2

1 − q00
μ0

t−t ′+1 − μt

]
μt ′,

(4.4c)

where

μ0
t = mθ1

r−1∑
x=0

α0
xλ

t−1
x ,(4.4d)

for t, t ′ = 1, . . . , T with t > t ′. This can easily be derived
from Theorem 3 and definition (C.6) of the process Ỹ (m),
using equations (4.2) and (4.3).

5. ESTIMATION

In the previous sections, we have developed a statistical
model for the time series of the observable fluorescence
generated by m fluorophores. We now address the central
goal of this article: estimating m with our model. To this
end, let

(5.1) y = (yt )
T
t=1

be a realization of the process Ỹ (m) that models the ob-
servable fluorescence during the measurement process. In
practice, y is obtained from a series of microscopy images
(frames) by summing the camera output values over some
fixed region of interest. See [30] for details on necessary
or beneficial preprocessing steps.

The fluorophore number m will not be the only un-
known parameter of Ỹ (m). Indeed, several (or even all)
of the parameters γ = (m,q00, ν0, α

0, α1, λ, θ) that de-
scribe the first two moments of Ỹ (m) (see Table A.1 in
Appendix A) are usually not known precisely, since the
properties of the fluorophore heavily depend on the fluo-
rophore type itself and on details of the experimental set-
ting. The preferable choice is therefore to jointly estimate
all values in γ , respecting the constraints that are inherent
to the model.2

Pseudo log-likelihood

The process Ỹ (m) has a complicated non-Gaussian and
non-stationary structure with long term correlations. Fur-
thermore, it is essentially impossible to evaluate the like-
lihood function numerically for a given set of parame-
ters as it consists of too many terms (see Remark 5).
This makes direct likelihood-based methods to estimate
the model parameters γ unsuitable. To overcome this dif-
ficulty, we approximate Ỹ (m) by a Gaussian process with
known parametric form of the expectation μ = μ(γ ) and

2See the end of Section 3 for a general discussion of these con-
straints, and Section 6 for a discussion in context of the fluorophore
Alexa 647.
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covariance � = �(γ ), see equations (4.4a-d). This leads
to the pseudo log-likelihood

(5.2) l̃y(γ ) = −1

2

[
(y − μ)�−1(y − μ) + log det�

]
,

where we neglect an additive constant that would belong
to the full log-likelihood of the Gaussian process. We es-
timate the model parameters γ by finding a set of values
γ̂ that maximize this expression,

(5.3) γ̂ = arg max
γ∈�

l̃y(γ ).

While this approach significantly simplifies the estima-
tion compared to direct treatment of Ỹ (m), equation (5.3)
still represents a non-convex optimization problem over
a parameter space � that obeys several (non-linear) con-
straints. As such, there is neither a closed theory nor a
canonical method for numerical treatment available.

In the general case, where all parameters in γ need to
be estimated and no additional constraints can be posed, �
will be a manifold of dimension 3r +3 (see the discussion
at the end of Section 3). For specific choices of the inner
model, there could be fewer free parameters in θ , reducing
the dimension of �. If ν0 is known and not equal to 1 or
0, there is 1 parameter less. If it is known and equal to 1
or 0, then there are even r free parameters less, because
α1 respectively α0 drop out of the expressions in (4.4). In
case of Alexa 647, with a model of r = 3 dark states and
an additional constraint on θ2, see Section 6, we are thus
confronted with an 8, 10, or 11-dimensional parameter
space �.

Numerical procedure

Finding a numerical solution of the optimization prob-
lem (5.3) poses several challenges. First, the high dimen-
sionality of � in combination with both equality and in-
equality constraints forces one to apply very general opti-
mization schemes (like (quasi) Newton methods, primal-
dual-splitting, or nonlinear conjugate gradient methods).
Some schemes rely on gradient information about l̃y(γ )

while others are gradient-free. All of them, however, work
in a local fashion and thus crucially rely on the choice of
suitable initial parameters γinit. Indeed, optimizing over
all parameters of γ simultaneously was empirically found
to depend sensitively on the initial values and did not
always converge to the global maximum. Instead, ap-
proaches where different components of γ were held fixed
at times—and partial optimizations with methods like the
simplex-search algorithm by Nelder and Mead [37] were
conducted sequentially—turned out to be more successful
in practice.

To find suitable initial parameters, different methods
can be applied. One option is to first employ a multi expo-
nential fit of the expectation value μt . This will yield first
guesses for λ and for the product mθ1α. However, this fit

may be of poor quality if the number r of dark states is
large. The value of θ1 may furthermore be guessed from
late segments in the time traces, where with high probabil-
ity at most one fluorophore is active due to bleaching. In
case of the experimental data analyzed in [30], we eventu-
ally found a set of initial parameters that worked well on
a range of different image series in experimentally similar
conditions.

Estimation results

In order to demonstrate that the proposed pseudo log-
likelihood approach works in principle, we apply it to es-
timate γ for simulated traces. We use the same model
choices like in Figures 5 and 6 and consider the case
ν0 = 1. The true parameter values in this setting are given
by

θ1 ≈ 767, θ2 ≈ 0.95,

θ3 ≈ 0.056, q00 ≈ 0.9,

as well as

λ ≈ (0.99,0.89,0.86), α0 ≈ (0.05,1.23,−0.28).

Including the molecule number m, there are 8 degrees of
freedom in total. We contrast two different choices of ini-
tial parameters: the true parameters γ 1

init = γ , and an arbi-
trary selection γ 2

init determined by

θ1 = 1, θ3 = 0.1,

λ = (0.99,0.9,0.8), and mθ1α
0 = (1,1,1),

(5.4)

which in large part yields parameters very different from
the true ones.

The estimation results for m ∈ {10,100,1000} under
the observation of T ∈ {100,500} time points of the sim-
ulated process Y (m) are depicted in Figure 7. One can see
that the estimates are largely reasonable, especially when
m is large or when the initial parameters are set to the ora-
cle choice γ 1

init. On the other hand, the estimator evidently
struggles for small values of m and poor initial param-
eters γ 2

init, where it even fails to provide the right magni-
tude of m in about one fourth of the repetitions. Generally,
providing longer fluorescence traces (T = 500 instead
of 100) improves the estimator notably—even though it
also results in a more pronounced bias under γ 2

init for
m = 100.

The estimation of other parameters, like the average
photon number θ1, the excess relative variance θ3, or the
probability q00 that the fluorophore stays in the bright
state during exposure, performed similarly to the esti-
mation of m. However, we often observed that the esti-
mator severely struggles to guess the values of α and λ

correctly, particularly for small values of m. This is not
surprising, since the coefficients and exponents for the
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FIG. 7. Estimated molecule number for simulated fluorescence traces of length T = 100 (left column) as well as T = 500 (right column). For each
m ∈ {10,100,1000} and initial parameters γ 1

init (true values, green) or γ 2
init (“wrong” values defined by (5.4), blue), we show histograms obtained

from the empirical distribution of the pseudo log-likelihood estimator for 1000 independent repetitions. Since the estimator sometimes failed to
converge to reasonable solutions (usually resulting in exploding values for m), we collect estimates >3 m in the red bar on the right of each graph.

multi-exponential decay
∑

x∈S αxλ
t−1
x are hard to iden-

tify even under generous conditions; let alone from few
noisy molecules.

We want to emphasize that the estimation scheme in-
troduced here is preliminary and can be improved in sev-
eral ways. First, there are various (local) optimization
algorithms that typically perform superior to the basic

Nelder-Mead method we applied. For example, making
use of gradients of the pseudo log-likelihood, which can
be calculated explicitly, could greatly improve the per-
formance and runtime of the estimation process. Further-
more, our results indicate that prior knowledge—in form
of suitable initial parameters or prior distributions on the
parameters—have beneficial effects on the estimation re-
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sults. Indeed, many of the failed estimations arise due to
convergence to minima far from the true parameters. The
adoption of Bayesian methods therefore appears promis-
ing to yield more stable and reliable estimators.

6. CASE STUDY: ALEXA 647

In the following, we specialize our general model for
the fluorophore Alexa 647, which was used in the experi-
mental work of [30]. Fluorophores of the Alexa series are
popular in diverse areas of biomedical research. Due to
their properties, like high photostability and brightness,
they are amongst the most common choices for super res-
olution microscopy markers for in vitro cell experiments.
Alexa 647 dyes can be used to label a wide variety of
molecules, for example, DNA [30] or proteins like IgG
antibodies, streptavidin, or transferrin [4]. They have their
absorption maximum at 650nm and their emission maxi-
mum at 671nm.

Markov model

We focus on the inner and outer models that are illus-
trated in Figure 3. According to the statistical fluorophore
model F s established in Section 3, we need several com-
ponents in order to describe the full fluorophore behavior:
the inner and outer transition matrices Ms and M�, repre-
sented by the values Q = (qxz), and the photon statistics
p00(y) and p10(y). The outer model depicted in Figure 3
has r = 3 dark states, and the respective transition matrix
is given by

M� =

⎛⎜⎜⎝
1 q01 q02 0
0 q11 q12 0
0 q21 q22 0
0 q31 q32 1

⎞⎟⎟⎠ .

The inner model, in contrast, is given through a Markov
chain with inner states S0, S1, and D3. We furthermore in-
clude an “exit” state E (see Remark 7) in our description,
which indicates the transition to one of the dark states of
the outer model. This is the only possibility for the flu-
orophore to leave the bright state during exposure. The
short-time matrix Ms for r = 3 is

Ms =

⎛⎜⎜⎝
q00 0 0 0
q10 1 0 0
q20 0 1 0
q30 0 0 1

⎞⎟⎟⎠ .

Photons are emitted in this inner model if the fluorophore
makes the transition from the excited singlet state S1 to
the ground state S0.

Note that this model for Alexa 647 is not an exact rep-
resentation of the quantum mechanical state diagram of
the fluorophore, which would require the inclusion of a
high number of states that each possess vibrational and
rotational substates. However, the full details of the quan-
tum mechanical energy landscape are unknown for most

fluorophores, and, according to Remark 1, they also do
not have to be known, since states that live on simi-
lar timescales can be identified. In fact, it appears from
the empirical study in [30] that the description provided
above captures the essential features of the observed be-
havior of Alexa 647. Furthermore, this Markov model—
or slight modifications thereof—should be appropriate to
model other fluorophores, too.

Photon statistics

We now derive the photon statistics p00 and p10 for a
single exposure. Our derivation is not based on a rigorous
treatment of the inner Markov chain in Figure 3 but on a
reasonable approximation. For convenience, we will use
the symbol Y to refer to a random variable that has dis-
tribution Yt | X′

t = 0 in the following. This means that Y

will not refer to the single fluorophore process (Yt )
T
t=1 for

the duration of this section.
Let us call a maximal uninterrupted sequence of tran-

sitions between S0 and S1 a “burst.” A burst is ended by
a transition to D3. This leads to a geometric distribution:
do the loop S0 → S1 → S0 until failure S1 → D3. Call-
ing the probability of failure p ∈ (0,1), it is clear that the
number of loops, and hence the number of photons in this
burst, has a geometric distribution with parameter 1 − p.
During each exposure interval, there will be a number of
B bursts such that the total number of photons Y is a sum
of B independent geometrically distributed random vari-
ables. This leads to a negative binomial distribution with
parameters B and 1 − p,

Y ∼ NegBin(B,1 − p).(6.1)

The number of bursts B is a random quantity. To deter-
mine its distribution, first consider the case that occurs
when the bright state can never be left. Then the distri-
bution of B would be approximately Poissonian: divid-
ing the exposure interval into many small intervals, each
much longer than a typical burst but much smaller than
the exposure time,3 there is a small probability for a burst
in each interval and a large number of intervals such that
one is in the Poisson limit of the binomial distribution.
When taking into account the transition to the exit state
E, there is a nonzero probability for a “failure” (i.e., exit-
ing) before each burst. Hence, every burst can be viewed
as one successful trial, and the bursts continue until either
the exit state or the end of the exposure time is reached.
Therefore, the number of bursts is given by the minimum
of a Poissonian and a geometric random variable that are
independent of each other,

B = min(Z,Q),

Z ∼ Poisson(μ),(6.2)

Q ∼ Geom(1 − q),

3This is possible due to the large difference in transition rates be-
tween S0 → S1 and D3 → S0.
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with parameters μ > 0 and 0 < q < 1. The transition to
the exit state happens if and only if a failure happened be-
fore the end of the exposure time. This is the case when
Z > Q. The following result, proven in Appendix B, pro-
vides a connection between the parameters q and μ of the
photon distribution and the parameter q00 of the transition
matrix Ms.

LEMMA 5. The Alexa 647 fluorophore stays in the
bright state during exposure with probability

(6.3) q00 = P(Z ≤ Q) = e−(1−q)μ.

In Appendix B, we also derive the moment generating
function G of Y . It can be expressed via the moment gen-
erating function GB of the number B of bursts.

LEMMA 6. The moment generating function of Y is
given by

G(ξ) = GB

(
log

(
1 − p

1 − peξ

))
,(6.4)

here

GB(ξ) = e−(1−q)μe−(1−eξ )qμ

+ (
1 − e(1−q)μ) 1 − q

1 − qeξ

× 1 − e−(1−qeξ )μ

1 − e(1−q)μ

= q00G
B
00(ξ) + (1 − q00)G

B
10(ξ).

(6.5)

The functions GB
00 and GB

10 denote the generating func-
tions of B conditioned on Z ≤ Q and Z > Q, respec-
tively.

Similar results hold for the conditional generating func-
tions G00 and G10, which are expressible by GB

00 and GB
10

in a likewise fashion. Therefore, the photon statistics p00
and p10 are completely specified in terms of the inner pa-
rameters p, q , and μ by equations (6.4) and (6.5).

Moments

In order to understand the effects of our inner model for
the second-order description of the fluorophore, we look
at the parameters θ1, θ2, and θ3 as introduced in (3.10).
By differentiating G, one can show the following (see Ap-
pendix B).

LEMMA 7. In the Alexa 647 inner model, the moment
parameters are given by:

θ1 = p

1 − p

q

1 − q
(1 − q00),(6.6a)

θ2 = −q00 logq00

1 − q00
,(6.6b)

θ3 = 2

1 − q00

(
1 − q

q
− θ2 + 1

)
− 1.(6.6c)

Surprisingly, according to equations (6.6b) and (6.3),
the parameter θ2 only depends on the internal parameters
via q00 = e−(1−q)μ. This consideration shows that even
though the inner model in Figure 3 depends on three in-
dependent parameters (p, q , and μ), only two free pa-
rameters, namely θ1 and θ3, remain in the second-order
description. This must be taken into account when for-
mulating and conducting the optimization routine for the
pseudo log-likelihood (5.2) used to estimate the model pa-
rameters.

Invariance under thinning

There is another remarkable feature of this inner model
choice that deserves to be highlighted. In Section 4, we
derived how thinning—the independent loss of photons
with a certain probability—affects the parameters θ =
(θ1, θ2, θ3), and we concluded that θ1 is transformed to
θ ′

1 = pdθ1 while θ2 and θ3 are left untouched. Interest-
ingly, we can make a much stronger statement for our
model of Alexa 647. We refer to Appendix B for the re-
spective calculations.

LEMMA 8. The parametric family of the distribution
Y for Alexa 647 is left invariant by thinning. More pre-
cisely, the thinned process Y ′ ∼ Bin(Y,pd) obeys equa-
tions (6.1) and (6.2) defining Y if the parameter p is re-
placed by

p′ = ppd

1 − p + ppd
,

while q and μ remain the same.

7. OUTLOOK

Optical nanoscopy has evolved into a scientific junction
point that drives cutting-edge research in disciplines as di-
verse as optics, biochemistry, and statistics. The work we
presented in this article contributes to this development by
providing a new way to statistically model the temporal
activity pattern of fluorophores, which form the basis for
fluorescence super-resolution microscopy. More than that,
however, our work is meant to help expose the wide spec-
trum of worthwhile statistical, computational, and mathe-
matical questions that are raised by current developments
in this area.

One point of immediate interest is a better understand-
ing of the photon emission process and its approxima-
tion by a Gaussian process. Besides heuristic hints—like
the practical success for the purpose of estimating the
molecule number—we have not yet found analytical guar-
antees of how well the Gaussian approximation captures
the essential properties of the original HTMM investi-
gated in this article, or if other methods of estimation
could offer improvements. Furthermore, we lack statisti-
cal results for the estimation process via maximum likeli-
hood estimation of the pseudo log-likelihood. In this light,
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the derivation of (asymptotic) statements and confidence
bounds for Gaussian processes that are constrained like
in our case pose an interesting challenge. This kind of
insights would also help address another prevalent ques-
tion: to what extent is it possible to infer the HTMM
model parameters in situations where not all fluorophores
are bright in the beginning of the experiment, meaning
ν0 < 1? Conclusive results in this regard are still pending.
Reliable inference in this scenario, however, could be an
important step towards more flexibility in the design of
quantitative super-resolution experiments. A different as-
pect that is emphasized by our observations in Section 5,
but that we only touched upon in passing, is the beneficial
effect of prior knowledge for the estimation performance.
This underscores the crucial role that Bayesian estimation
methods routinely play for the statistical modeling of bio-
logical system. For a simplified, binomial model to count
fluorophores, the advantage of Bayesian approaches was
recently demonstrated in [45].

Another set of problems that our work calls attention
to, especially [30], is the modeling of dependencies in
biomolecular systems. Even though the description of
complex molecules via Markov chains has been proven to
be highly successful, the appropriate statistical descrip-
tion of interactions between them, and the resulting in-
fluence on measured data in experiments, is largely un-
resolved. Future research may focus on this question and
investigate dependency mechanisms for hidden Markov
models, like the proposed HTMM, which are simple
enough for analytical investigation but are still able to
capture dependency structures suggested by experimental
observations.
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