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Detecting Structural Changes in Longitudinal
Network Data

Jong Hee Park’* and Yunkyu Sohn*

Abstract. Dynamic modeling of longitudinal networks has been an increasingly
important topic in applied research. While longitudinal network data commonly
exhibit dramatic changes in its structures, existing methods have largely focused
on modeling smooth topological changes over time. In this paper, we develop
a hidden Markov network change-point model (HNC) that combines the multi-
linear tensor regression model (Hoff, 2011) with a hidden Markov model using
Bayesian inference. We model changes in network structure as shifts in discrete
states yielding particular sets of network generating parameters. Our simulation
results demonstrate that the proposed method correctly detects the number, loca-
tions, and types of changes in latent node characteristics. We apply the proposed
method to international military alliance networks to find structural changes in
the coalition structure among nations.
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1 Introduction

Multi-way array representation of network data is becoming a standard way to model
longitudinal network datasets (Hoff, 2009a, 2011; Rai et al., 2015; Hoff, 2015; Minhas
et al., 2016; Johndrow et al., 2017; Han and Dunson, 2018). Compared to network models
for static snapshots or matrix-valued datasets, this approach significantly advances our
modeling possibility. A longitudinal network dataset can be represented as a three-
way array V = {Y|t € {1,...,T}} € RV*¥N>xT in which its ¢-th slice is an N x N
square matrix Y; = {y; j|¢,7 € {1,..., N}}. Here y; ; + informs the dyadic relationship
between actors ¢ and j at time ¢. While dynamic modeling of longitudinal networks has
been an increasingly important topic in social, biological, and other fields of science,
a fully probabilistic treatment of dynamic network process has been challenging due
to simultaneous dependence between dyadic and temporal observations that are often
associated with fundamental shifts in data generating processes.!
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Figure 1: A dynamic network with a change-point. The network has two clusters at
t = 1 whereas networks at ¢ = 2 and ¢t = 3 have three clusters. The top panel shows
node traits on the latent space of networks and the bottom panel shows it in a matrix
format. Gray lines between layers in the top panel indicate node identity. Nodes in the
same color exhibit dense connections whereas nodes in different colors exhibit sparse
connections. Same cluster connections are represented by their node group color. Links
between clusters are colored in white. Olive and yellow colors shown in the backgrounds
of top and bottom panels indicate the hidden regimes of latent space shared among
layers.

In this paper, we present a Bayesian method to model change-point process in lon-
gitudinal networks by employing a Bayesian framework of multilinear array decompo-
sition by Hoff (2011) and Hoff (2015). The motivation of our method is firmly based
on a common observation in network analysis that longitudinal network datasets fre-
quently exhibit irregular dynamics, implying multiple changes in their data generating
processes (e.g. Guo et al., 2007; Heard et al., 2010; Wang et al., 2014; Cribben and Yu,
2016; Ridder et al., 2016).

Figure 1 shows an example of longitudinal network data with a change-point. The
top panel shows node traits on the latent space of networks and the bottom panel
shows it in a matrix format. The distance between each pair of nodes on the space
represents their probability of connection, so that proximal nodes are more likely to
have connections. As clearly shown by the blocks of matrices at the bottom panel, the
clustered patterns of connections are well depicted by the node positions, that can be
recovered using our method, on the top panel. Colors in the backgrounds of the layers
represent latent regimes inferred using our method. In addition to the latent traits that
are specific to each network, one can easily notice that the two cluster networks at ¢t = 1
turned into a three cluster network at ¢ = 2. Contrary to the dramatic change of the
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overall network structure at ¢ = 2, the network at ¢ = 3 exhibits identical node positions
to the ¢t = 2 network. The same color indicates layers sharing latent node positions. The
goal of our method is to uncover 1) latent traits representing data generating processes
at each regime sharing those traits (colored node positions/groupings in the top panel)
and 2) the timing of unspecified number of changes (t = {1} for regime 1 and ¢t = {2, 3}
for regime 2 in the example).

Conventional approaches to dynamic network modeling typically extend a static net-
work analysis framework by assuming smooth topological changes over time or applying
completely separate models for each time period (Robins and Pattison, 2001; Hanneke
et al., 2010; Desmarais and Cranmer, 2012; Snijders et al., 2006, 2010; Westveld and
Hoff, 2011; Ward et al., 2013). These methods rely largely on heuristic algorithms to
detect structural changes in data generating parameters. Recently, several methods for
the “network change-point detection” problem have been proposed, noting the impor-
tance of irregular changes in network structures. For example, Cribben and Yu (2016)
introduce a two-step approach to network change-point detection in which the cosine
distances for the principal eigenvectors of time-specific graph Laplacian matrix are used
to find change-points given pre-specified significance thresholds.? Another group of stud-
ies (Guo et al., 2007; Wang et al., 2014) allow parameter values of exponential random
graph models (ERGMs) to change over time. However, both models exhibit computa-
tional inefficiency. For instance, the maximum size of network analyzed was 11 nodes in
Guo et al. (2007) and 6 nodes in Wang et al. (2014).> By incorporating the stochastic
blockmodel (SBM) framework, which presumes the existence of discrete node groups,
Ridder et al. (2016) propose a method to identify a single parametric break. Ridder
et al. (2016)’s method compares the bootstrapped distribution of the log-likelihood ra-
tio between a null model and an alternative. However, the asymptotic distribution of
a SBM with a break approaches to a mixture of y2-distributions. Hence it does not
meet the regularity condition of the log-likelihood ratio test statistic (Drton, 2009). A
recent approach by Bartolucci et al. (2018) is also restricted to model changes in group
membership in the SBM setting when the number of group is fixed. Likewise, existing
methods for the “network change-point detection” problem lack the capacity of a fully
probabilistic modeling and fail to incorporate uncertainty in the model structure and
parameter estimation.

Our approach diverges from previous methods in two significant ways. First, we
build a dynamic model using Hoff (2011, 2015)’s multilinear tensor regression model
(MTRM). MTRM allows us to decompose longitudinal network data into node-specific
(or row and column) random effects and time-specific (or layer-specific) random effects.
These two effects correspond to the node positions at the top panel of Figure 1 and data
generating parameters associated with the global patterns of connections respectively.

2@Graph Laplacian is one of the most well-known linear operators for adjacency matrix that is
designed to minimize the summed quadratic distances between latent positions of connected (uncon-
nected) node pairs for an assortative (dissortative) network.

3In the framework of the temporal exponential random graph models (TERGM), Cranmer et al.
(2014) pre-tested the existence of parametric breaks in global network statistics. Although this type of
two-step approaches could be useful in learning specific aspects of network evolution, they are inherently
unstable and inefficient by understating uncertainties in each estimation step and hence do not provide
principled tools to select the number of parametric breaks.
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For example, let {2; ; ;} be a continuous latent variable that captures the link probability
between i and j observed at time ¢ and x; ;; be a vector of known covariates affecting
{%i,j,+}. Then, based on the notion of multilayer exchangeability (Hoff, 2009b), MTRM
models {z; ;;} as a function of covariates, node-specific random effects ({ui,...,un})
and a diagonal matrix of time-specific random effects (V):

Pr(yije = 1xije wi v, ve) = (2i) (1)
Zige = XigB+ui Vous e, (2)
€t ~ N(0,1) (3)
where {uy,...,uy} represent (time-constant) R-dimensional latent node positions and
vig - 0
V=] : . : | is a diagonal matrix of (time-varying) network generation rules.
0 - wpgy

In a 2-dimensional latent space, for example, u; = (u; 1, u;2) indicates node i’s latent
position, and u? V; u; represents the latent connection probability between node ¢ and
node j at time 1.* As we will explain in details, this multiplicative decomposition is
highly useful for the joint estimation of time-varying network generation rules in con-
junction with latent node positions that are constant for the duration of a hidden regime.
Different from SBM formulation, the continuous multidimensional node position formu-
lation let us to model any underlying latent structure including both group-structured
networks, treated by SBM, and networks without group substructures that are unable
to be modeled by SBM.

The second departure of our approach from existing methods is the use of hidden
Markov model (HMM) to characterize the change-point process. The conditional inde-
pendence assumption in HMM turns out to be highly useful to model unknown changes
in the latent network traits. More specifically, latent node positions ({uy,...,un}),
which are constrained to be constant over time in Hoff (2011), are allowed to change
depending on the transition of hidden states.

We call the resulting model a hidden Markov network changepoint model (HNC).
HNC assumes that a dynamic network process can be modeled as discrete changes in
the latent space representation of network layers at each time point. These changes
reflect fundamental shifts in structural properties of networks under consideration. For
example, structural changes in military alliance networks reflect the transformation
of the international system such as the balance of power system during the Concert
of Europe, the bifurcated system in the run-up to the World War I, and the bipolar
structure during the Cold War, as we will see shortly.

The proposed method has several notable contributions to longitudinal network anal-
ysis. First, we show that degree heterogeneity hinders the recovery of meaningful traits

4In a 2-dimensional latent space, uiTvtu]- is

Ui 1V U v 0 uj
1,1V1,t U5 1 — [ win Ui 2 } % 1,t % 1,1 . (4)
Uj 202 t U5 2 0
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in the latent space approach. We demonstrate that degree correction formulations (Kar-
rer and Newman, 2011; Chaudhuri et al., 2012) make a crucial difference in the recovery
of ground-truth group structures underlying our example data generation. Second, our
method provides an important tool to understand dynamic network processes by al-
lowing researchers to model fundamental changes in factors underlying the evolution of
longitudinal networks. Changes in longitudinal network data can take a variety of forms
and our method does not restrict the types of network generating models. Finally, we
provide an open-source R package, NetworkChange, that implements all the methods
introduced in the paper including Bayesian model diagnostic tools: the approximate log
marginal likelihood (Chib, 1995), the Watanabe-Akaike Information Criterion (WAIC)
(Watanabe, 2010). We report the performance test results of these diagnostics.

2 Understanding Multilinear Tensor Regression Model

2.1 Latent Space Model for Array Data

Let U = (uy,...,uy)’ € R¥XE he the R-dimensional latent node positions of N nodes
and v; = (vi4,...,0r¢) € R be the vector exhibiting dimension-specific network
generation rules at time ¢. In this formulation, network effects are modeled by the
product of latent node traits (u; for node ¢ and u; for node j) and layer-specific node-
connection rules (v; at time ¢ or tth layer) as follows:

Pr(yije = 1xijeuiu5,ve) = (x84 (W, ve, u5))
U ~ matrix normal(M = 1u};, Iy, ¥y)
V ~ matrix normal(M = 1ul I, Uy)

2
€ije ~ N(0,0%) (
R . . .
where (u;, vy, u;) = >, w04t and matrix normal (M, U, V) is an N X R matrix-
variate normal distribution with mean matrix M, row variance U, and column variance
V.

The resulting estimates of node-specific latent variables recover a specific type of
similarity between nodes that is easily interpretable (Hoff, 2008). If u; and u; exhibit
similar values, they will have similar inner product outcomes with node k’s latent po-
sition vector ug. This means that the probability of connection with k is analogous
for ¢ and j. This corresponds to the notion in network theory that nodes i and j are
structurally equivalent (Wasserman and Faust, 1994). In addition, the network genera-
tion rule parameter v; contains the information on what the distance relationships on
each dimension of the U space reveal about their connection probability. For example,
v1,+ > 0 corresponds to the case when a network generation rule for the first dimension
at time t is homophilous (or assortative). In words, this indicates that two nodes on
the first dimension at time ¢ are more likely to be connected if they are located in the
same side of the axis and the magnitude of their product is high. Similarly, v; ; < 0
corresponds to the case when a network generation rule for the first dimension at time
t is heterophilous (or dissortative), so that nodes located on the opposite sides are more
likely to be connected than the ones with the same sign.
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2.2 Degree Correction

The formulation of MTRM in Equation (5) is designed to estimate consistent regression
parameters (3), considering network effects as a nuisance parameter. Hence it entails
a critical weakness in uncovering latent node traits. One of the most prominent latent
node traits for changepoint analysis is meso-scopic network properties. Meso-scopic net-
work properties indicate characteristics of a network at the group level. Examples of
meso-scopic network properties are homophily (the tendency to link with similar oth-
ers), heterophily (the tendency to link with different others), a community structure, a
stochastic block, and a core-periphery structure. The emergence (and changes) of group
structures is commonly observed in real-world network data.

Except for exogenous covariates (x; ), Equation (5) has no treatment to account
for degree heterogeneity that has been known to confound the recovery of meso-scopic
network properties (e.g. Newman, 2006, 2010; Karrer and Newman, 2011). The intuition
is that the distribution of degrees in empirical networks is highly heterogeneous and
skewed following power law or exponential distributions while the implicit assumption
in the group structure recovery is that the expected degree of nodes having a similar role
(i.e. proximal in the latent space or belonging to the same group) is similar. This problem
is well known in the network science literature and various degree-correction methods
have been proposed (Newman, 2006, 2010; Karrer and Newman, 2011; Chaudhuri et al.,
2012; Zhao et al., 2012).

(A) Network Layer 1 (B) Network Layer 2 (C) Latent Space (Degree Not Corrected) (D) Latent Space (Degree Corrected)
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Figure 2: Degree Correction for Group Structure Discovery. Two undirected networks
with 30 nodes and 3 groups are generated. While they share exactly same group struc-
ture, Layer 1 is a homophilous network and Layer 2 is a heterophilous network. Specifi-
cally, we generated the Layer 1 network by setting the within-group link probability (the
probability of being connected with in-group nodes) at 0.7 and the between-group link
probability (the probability of being connected with out-group nodes) at 0.2. In Layer
2, the within-group link probability is set at 0.2 and the between-group link probability
is set at 0.7.

Figure 2 illustrates the problem in a simple setting using a 2 layer network. We
generate two undirected networks consisting three groups in Figure 2(A) and Figure
2(B). The number of groups and node membership are identical but the connection
rules are opposite. In Figure 2(A), the within group link probability is much larger than
the between group link probability and the probabilities are flipped in Figure 2(B). The
node colors indicate group memberships and the lines indicate links. Without assuming
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a change between 2 layers, our task is to identify 3 hidden groups from the data using
their recovered node positions.

We first fit a probit MTRM shown in Equation (5) without external covariates. Then,
we applied the k-means clustering algorithm to the estimated latent node positions to
identify group membership. The results are reported in Figure 2(C). The MTRM fails
to distinguish the light gray group from the dark gray and researchers will conclude
erroneously that the data are generated by two groups.

A simple fix to this problem is to use a null model to control for the expected level of
associations among pairs of nodes. One example is an additive null model (€;), consist-
ing of the principal eigenvalue (A} = max(|A(Y})|)) and its associated eigenvector
(Peixoto, 2013): 4

Qija = A" 0007, (9)
where 11;; is the ith row of the associated eigenvector.® In matrix form, we denote the
principal eigenmatrix as €2; for the t-th slice.

Figure 2(D) shows the results from the linear MTRM using the transformed data B
whose t-th slice By = Y; — ;. In accordance with clustering of the positions, k-means
clustering result in Figure 2(D) perfectly agrees with true group labels. The use of a
null model allows us to recover three distinct groups in the data.b

3 The Proposed Method

To develop a dynamic network model for structural changes, we must start from the
question, “What constitutes structural changes in networks?” On the one hand, one
can think of a change in summary statistics of global network properties (e.g. average
shortest path length or network density) as a structural change. On the other hand, a
change in the population statistics of local network properties (e.g. transitivity or node
degree) can be considered as a structural change. However, global network statistics and
local properties cannot fully represent generative processes of dynamic networks as the
granularity of the information entailed in such measures is too limited. For instance, it is
common to observe networks having exactly same average shortest path length or local
network structures whereas their data generational processes are completely different.
In contrast, it is hard to imagine a fundamental change in a network’s generation process
without a change in the structure of subgroups and their connection patterns. For this
reason, we define a structural change in networks as a change in meso-scopic features
of networks.

5 Alternatively, one can use a modularity matrix (M; ;;):
kik;
2m
where the total number of links m = .V | k;/2 and k; is the sum of weights for ¢ (Newman and
Girvan, 2004). Both methods are available in NetworkChange.

60ne may think of an alternative way of controlling for the expected level of associations by including
a list of external covariates. However, when the goal is to identify hidden groups, using a null model
is more intuitive and computationally less expensive than including a list of covariates. For more
information about uncovering hidden groups from an array of network data, see Sohn and Park (2017).

Mi g0 = Yig,e —
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In the following, we introduce a hidden Markov network change-point model to
detect changes in meso-scopic network features. Next, we discuss sampling algorithms
of the proposed model. Then, we explain diagnostic methods for the proposed model.

3.1 Hidden Markov Network Change-point Model

As shown by Chib (1998), multiple change-point problems are equivalent to the esti-
mation of a nonergodic (or forward-moving) HMM, which has advantages in avoiding
label-switchings of hidden states thanks to the order constraint in hidden states. Let
us denote S as a vector of hidden state variables where S; is an integer-valued hidden
state variable at ¢

S={(S1,....87): S, €{l,...., M}, t=1,...,T}, (10)

and P as a M x M transition matrix where p,, ,, is the mth diagonal element of P and
M is the number of hidden states.

Suppose © be a collection of parameters that represents a network generating process
of a longitudinal network and B be a degree-corrected longitudinal network data. Then,
we can write the likelihood using the conditional independence assumption of the HMM:

T M

p(B1©) = [ p(si1@)p(Bi[S:.©) [] Y p(Bil®,) Pr(S, = m[Si-1.©)dS.

t=2m=1

From the above notation, the connection between MTRM and HNC becomes clear:
HNC is a collection of multiple MTRMs following the Markov dependence of hidden
states.

In a regression form, we substitute the regime-specific subscript m by S, which is
an integer-valued hidden state variable at ¢. Then,

B, = UgV,Uf +E, (11)
E { Ny« n (0, O'gvt In,Iy) for Normal Error
.~

12
J\/NxN(O,%flU%tIN,IN) for Student-t Error. (12)

One may concern that the normal distribution of E; does not fit the data very well.
In that case, the above model can be modified to include a Student-t distributed error
(Carlin and Polson, 1991) where the prior distribution of «; follows a gamma distribution

(G(n0/2,11/2)).

For prior distributions of U and V, we follow Hoff (2011)’s hierarchical scheme with
two major modifications. First, we orthogonalize each column of Ug, using the Gram-
Schmidt process (Bjorck, 1996; Guhaniyogi and Dunson, 2015) in each simulation step.
Hoff (2011)’s hierarchical scheme centers rows of Ug, around its global mean (g, g,)
using a multivariate normal distribution. This does not guarantee the orthogonality
of each latent factor in Ug,. The lack of orthogonality makes the model unidentified,
causing numerical instability in parameter estimation and model diagnostics (Murphy,
2012; Guhaniyogi and Dunson, 2015).
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Second, we use independent inverse-gamma distributions instead of inverse-Wishart
distribution for the prior distribution of a variance parameter (¥, g,,¥,). The use of
inverse-Wishart distribution for the prior distribution of a variance parameter
(Pus,,¥,) comes at a great cost because choosing informative inverse-Wishart prior
distributions for ¥, ,, and ¥, is not easy and a poorly specified inverse-Wishart prior
distribution has serious impacts on the marginal likelihood estimation. In our trials,
the log posterior inverse-Wishart density of ¥, s, and ¥, often goes to a negative in-
finity, failing to impose proper penalties. In HNC, the off-diagonal covariance of U,, is
constrained to be 0, thanks to the Gram-Schmidt process, and the off-diagonal covari-
ance of V is close to 0 as v; measures time-varying weights of independent U,,. Thus,
inverse-gamma distributions resolve a computational issue without a loss of information.

The resulting prior distributions of U and V are matrix-variate normal distributions
in which each column vector (u; g, and v;) follows a multivariate normal distribution.
We first discuss the prior distribution of U:

Ust = (ul,gt,...,uNﬁt)T S RVXE (13)
;.8 NR(IJ’u,SU \I}u,st) (14)
l'l’u,St|\I/u7St ~ NR(NO,uSt7 \I’%St) (15)
U1 4,3, ... 0
Vs, = 0 Uy, S, 0 (16)
0 o VR .S,
Uup U1

U ~ 1 <_7 _) 1

Vru,8, 955 (17)

The prior distributions of V are similar to U but one difference is that only diagonal
elements of V; are modeled as a multivariate normal distribution:

V1,t 0
Vt = O Ur.t O (18)
0 e UR,t
V¢ = (’Ul,ty . ,UR’t)T € RRXI (19)
Ve o NR(Nva \IIU) (20)
""v‘\IIU ~ NR(“’O,U? \Ijv) (21)
V1o ... O
\I/U = O wr,v O (22)
O e d)Rﬂ)
Vo V1
v~ T0(305) 25)

Then, we complete the model building by introducing HMM-related prior specifica-
tions following Chib (1998):

St|Si—1, P~ Markov(P,m) (24)
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P = o 2
N, (pla ) pM) ( 5)
M x M

pi ~ Dirichlet(c;1,..., ;) (26)

where 7 is the initial probability of a non-ergodic Markov chain (mg = (1,0,...,0)).
The duration of hidden state m follows a geometric distribution of 1 —py, ,, where pp,
is the mth diagonal element of transition matrix P. The regime change probability can
be computed using the posterior draws of hidden states. For example, if one wishes to
compute the probability of a regime change from regime 1 to regime 2 between t and
t+1is & Zlez(st(i’l = Q\St(g) = 1) where Z(-) indicates a count function and G is
the number of MCMC simulation.

3.2 Sampling Algorithm

Let © indicate a parameter vector beside hidden states (S) and a transition matrix (P):
e={U,V,u,, VY, pn, Y, 0%} Let Og, denote regime-specific @ at t. Then, the joint
posterior density p(©®, P, S|B) is

T

p(©,P,S|B) NNXN(B1|®1)H(NNXN(Bt‘Btfla®St)p(5t‘stflvp)> (27)
t=2
M
(NR(Mu,m“’l’O,u,m?w-,uym)NR<H’v|“’O,v7w.,v,m)) (28)
m=1

M=
=

(Ig(wr,u,m \Uo,m, ul,m,)Ig (7/)r,1;,m ‘UO,mm Ul,m)) (29)

m=1r=1
M
[T (29(o2Ico, do)Beta(pmmla,b)) (30)
m=1
where B;_1 = (B4,...,B;_1). Using the conditional independence we decompose the

joint posterior distribution into three blocks and marginalize conditional distributions
(Liu et al., 1994; van Dyk and Park, 2008):

p(©,P,8|B) = p(O©|B,P,S)p(P|B,S)p(S|B).
—_——— —— —
Part 1 Part 2 Part 3

The sampling algorithm of the HNC can be summarized as follows:

Step 1 The sampling of regime specific U, u, ¥,, consists of the following three steps

Vium - 0
for each regime m. Let ¥, = 0 U u,m 0
0 coo YRum

T
L. p(Vyum|B, P, S, @ Vum) x TG <“O;N, Um“;’"*“l).
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2. p(tty ,n|B,P,S,© Hum) o multivariate normal(U},1/(N + 1), Wy /(N +
1)).

3. p(U,|B,P,S,® Un) « matrix normaleR(Mu,m,IN, \i/um) where

v , = (Quym/ggn + \II;;n)_l
My = Lun/0m + Lty Vo) Y
Qumn = (UnUn)o (Vi Vi)
L,m = Z b.it ® (Um0 Vi)
jt: t€S=m

4. Orthogonalize U, using the Gram-Schmidt algorithm.

Step 2 The sampling of V, u,,, ¥,, is done for each regime. Let

wl,v,m cee 0
\IJU = 0 d)r,v,m 0
0 e 'IZJR,v,m

v Vrmvrm+v1
(¢T1)77L|B P S e Wy, m) O(Ig( O+T - >

2. p(tty 0B, P, S, @ Hom) oc multivariate normal(VE 1/(Th +1), Wy n /(T +
1)).

3. p(Viu|B,P,S,® V) o matrix normaly,, « g(My.m, Iz, , ¥, ) where

‘i/v,m = (Q’U,'m/a’?n + \Ij;jn)il
Mv,nz = (Lv,m/a'gn + 1“{%\Il;1n)ilvv7n
L’u,m = Z bi’j’. & (Um,i,~ o Um,j,-)

Step 3 The sampling of 02, from ZG (CoJeréNm-Tm7 do+3 L, 0, 22?:1 b'i'j’t_‘”'j’t)

Step 4 Sample S recursively using Chib (1998)’s algorithm. The joint conditional dis-
tribution of the latent states p(Sp, ..., S7|®, B,P) can be written as the product
of T numbers of independent conditional distributions:

p(SOa < '7ST|@7B7P) :p(ST|®aBaP) .- 'p(St|St+17®787P) . 'p(S0|Sla 678713)

Using Bayes’ Theorem, Chib (1998) shows that

p(St|St+1a®7B7P) 08 p(St‘®7B1:t7P) p(St-‘rl‘ShP)
— ——

State probabilities given all data Transition probability at ¢
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The second part on the right hand side is a one-step ahead transition probability
at ¢, which can be obtained from a sampled transition matrix (P). The first part
on the right hand side is state probabilities given all data, which can be simulated
via a forward-filtering-backward-sampling algorithm as shown in Chib (1998).

During the burn-in iterations, if sampled S has a state with single observation,
randomly sample S with replacement using a pre-chosen perturbation weight

(Wperturb = (wl, cee 7wM))

Step 5 Sample each row of P from the following Beta distribution:

Py, ~ Beta(ao + jrx — 1,00 + i k+1)

where Py, 1, is the probability of staying when the state is k, and ji x is the number
of jumps from state k to k, and ji 41 is the number of jumps from state k to
k+1.

We provide the sampling details of the HNC with a Student-t distributed error the
supplementary material.

3.3 Assessing Model Uncertainty

We provide three metrics for model diagnostics and break number detection: the approx-
imate log marginal likelihood method, WAIC, and the average loss of break points. The
first measure is the approximate log marginal likelihood method using the candidate’s
estimator (Chib, 1995). Main advantages of the approximate log marginal likelihood
are its direct connection with Bayes’ theorem and its consistency when models are well
identified and MCMC chains converge to the target distribution. A disadvantage of the
approximate log marginal likelihood is its computational cost arising from additional
MCMC runs at each Gibbs sampling block. Using the Rao-Blackwell approximation, the
approximate log marginal likelihood of HNC with M numbers of latent states (M)
can be computed as follows:

log p(BPP [ Mar) = logp(BUPP |y, 007y, s 7y 02" Y, M)
the log likelihood
M
+ Z 1ogp(y‘:,m’ d}.*,u,vm Au':,mv w.*,v,m? O'grj’p:n,m |MM)
m=1
the log prior density of posterior means
M
= 108 P s Vs B s s Tt s i B2, Man )
m=1

the log posterior density of posterior means

where {py, V", wy, V5, o%*,P*} are posterior means of MCMC outputs. The log like-
lihood is computed by summing log predictive density values evaluated at posterior
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means across all states and over all upper triangular array elements as follows:

T N N-1

upper * * * * 2% *
E :E : § : § : JJ'Bt—l Hu’u,mrw.,u,m7”v,mvw.,v,mv m’P =m MI\/I)

t=1 i=1 j=i+1m=1

_ upper * * * * 2% *
p(St = mlBt—l y Moy, ms w.m,m’ Koy mo wﬂv,nu Om s Pm’ MM)

The computation of the log posterior density of posterior means requires a careful
blocking in a highly parameterized model as discussed in Chib (1995). In our HNC, the
log posterior density evaluated at posterior means is decomposed into seven blocs:

R
10g (s, % s 15, 07, 0™ P*IB) = logp(py|B) + Y logp(¢r,,|B, 1)
r=1
+log p(psy |B, poy Y7
R
+ Y logp(ty |8, w0y )
r=1

+log p(o™*|B, ply, %, i, U7,
+1og p(P* (B, pis, 0% o, s, 0%, 07).

The second measure of model diagnostics is WAIC (Watanabe, 2010). WAIC ap-
proximates the expected log pointwise predictive density by subtracting a bias for the
effective number of parameters from the sum of log pointwise predictive density. WAIC
approximates leave-one-out cross validation (LOO-CV) in singular models and hence
can serve as a metric for out-of-sample predictive accuracy of HNC (Gelman et al.,
2014). Predictive accuracy is a good standard for detecting the number of breaks be-
cause overfitting is a major concern in analysis using mixture models and HMMs. Also,
the cost of computation is very low as WAIC is computed from MCMC outputs. Note
that WAIC of HNC partitions the data into T pieces of conditional density, and the
estimated WAIC scores are dependent upon latent state estimates. The dependence on
estimated latent states indicate that our measure of WAIC cannot be used to predict fu-
ture networks given the sequence of network observation. Instead, we aim to use WAIC
to compare predictive accuracies of HNCs given a varying number of breaks.

Using the formula suggested by Gelman et al. (2014), WAIC for HNC with M
number of latent states (Mpyy) is

WAIC s,

T
=-2 ( Z log
t=1

G
Z (BYPPET | (g) w(g) u(g) z/}'(,91})702»(9)7P(g),s(g)M\/lM)} —

the expected log pointwise predictive density

T
ZVG {logp( uppcr“llqg) dj(%utu’v 711).(,‘%) 2:(9) P(g MM)})

t=1

bias for the effective number of parameters
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where G is the MCMC simulation size, V[] indicates a variance, and 0@ P are the
gth simulated outputs. Throughout the paper, we report the approximate log marginal
likelihood in the deviance scale by multiplying -2 to log p(B"PPe*| M ;) for easy compar-
ison with WAIC following the advice of Gelman et al. (2014): The smaller the deviance,
the better the accuracy.

The last measure of model diagnostics is the average loss of break points. The in-
clusion of redundant break points (e.g. imposing two breaks on a single break process)
produces an instability in draws of hidden state variables. An easy way to check the
existence of redundant breaks is to estimate average variances of simulated break points.
This measure is equivalent to the average loss of break points assuming the simulation
mean of break points (7,,) as true break points:

a
1 1
= — — = (92
Average Loss ( e g (T — 1397) )

where G is the MCMC simulation size and M is the total number of breaks. The average
loss is close to 0 if simulated break points are highly stable. Average Loss becomes larger
if at least one of break points swings widely in each simulation.

4 Simulation Studies

In this section, we check the performance of the proposed method using simulated
block-structured network data. Due to space limitation, we only report the results of
two simulation tests (a block-splitting break and a block-merging break followed by a
block-splitting break) here. Additional simulation results (no break, a block-splitting
break, and a block-merging break followed by a block-splitting break) are available in
the web appendix.

4.1 Simulation Setup

Blocks in simulated data were generated by an assortative rule in which nodes belonging
to the same group had a higher connection probability (p;, = 0.5) than nodes belonging
to different groups (powt = 0.05).7 In the block merging examples, two groups were
merged so that the tie formation probability between the members of the two groups
changed from p,,: to pin. In the block splitting examples, an existing group split into
two equal size groups so that the connection probability between the members of the two
different groups became p,,: from p;,. The length of time layers was 40. The planted
break occurred at t = 20 in the case of the single break examples and ¢ = 10 and
t = 30 in the case of two breaks. We fit four different HNCs from no break (M) to
three breaks (Ms) and compare their model diagnostics, recovered latent spaces, and
time-varying network generation rules.

Tie. Vb; = bj, pij = pin and Vb; # b;, p;j = Pout Where b; and b; are group labels for nodes i and
j respectively. This simple formulation, with two difference values for the block diagonal connection
probability and the off-diagonal connection probability, is called the planted partition model.
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4.2 Block-Structured Networks with a Block-Splitting Break

The first test is dynamic network data with a single group-splitting break. The ground
truth is that the number of latent groups changes from 2 to 3 in the middle. Table 1
shows the results of the simulation. Again, we read the model diagnostic results from
the first column.

WAIC correctly identifies the single break model as the best-fitting model while the
approximate log marginal likelihood favors the three break HNC. As we have seen in the
previous example, the approximate log marginal likelihood fails to penalize the model
with redundant breaks. The source of the problem is the singleton state (a latent state
consisting of a single observation). A similar problem has been noticed in finite mixture
models with singular components (Hartigan, 1985; Bishop, 2006). In the three break
model, the second state has only one observation, which increases the log likelihood
dramatically. Since a singleton state is highly unlikely in reality, researchers can ignore
false diagnostic results simply by checking the existence of singleton states.® Interest-
ingly, the network generation rule in the last column shows almost identical patterns,
regardless of the number of imposed breaks. Note that the second dimensional network
generation rule (v9) jumps to a large positive number in the middle as the number of
groups increases from 2 to 3.

The average loss of break points clearly favors the one break model. Adding re-
dundant breaks increases the average loss of break points significantly. For example,
simulated break points of the three break model swing +1.4 around the estimated
break points on average while simulated break points of the one break model stay con-
stant.

4.3 Block-Structured Networks with Two Breaks

Next, we check whether our method correctly recovers more complicated network
changes. The first break is planted at ¢ = 10 and it corresponds to a block-merging
change. Another break is planted at ¢ = 30, which corresponds to a block-splitting
change. Thus, the number of latent groups changes from 3, 2 to 3. Table 2 reports the
results of the two break test.

WAIC correctly detects My as the best-fitting model while the approximate log
likelihood favors M3, the pattern of which is constant in our simulation. Again, the
presence of a singleton state in the three break model is the source of the problem
for the approximate log likelihood. The average loss of break points correctly favors
the two break model. Fitting the one break model increases the average loss of break
points because the latent state sampler falls into either of the breaks. In contrast,

8Chib (1995)’s algorithm is based on the summation of log likelihoods evaluated at posterior means
and hence sensitive to the presence of singleton states in high dimensional time series data. In contrast,
WAIC relies on the log pointwise predictive density as a measure of the goodness of the fit and its
variance as a penalty. Since the log pointwise predictive density is averaged over the entire MCMC scan
(é PP p(BIPPeT|@(9) P9 M), it is less sensitive to singular components in high dimensional
mixture models like HNC. This is why WAIC outperforms in the break number detection in the context
of HNC.
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adding more than two breaks increases the average loss of break points significantly
because the existence of a redundant break makes it difficult to pin down break points
in simulations.

If we look at the recovered latent states, the two break HNC correctly recovers the
two underlying changes between ¢ = 10 and ¢ = 11 (block merging) and between ¢t = 30
and t = 31 (block splitting). Changes in the relative size of network generation rules (the
last column) inform us the types of changes underlying network structures go through.
For example, when the number of groups changes from 2 to 3 in the transition to Regime
3, v returns to its previous level at Regime 1.

Overall, our simulation results clearly show that the proposed model and multiple
metrics for model diagnostics work very well in (1) correctly identifying the number of
breaks, (2) recovering latent group structure changes, and (3) identifying state-specific
latent node positions. The approximate log marginal likelihood performs well when there
is no singleton state while WAIC performs consistently well regardless of the existence of
singleton states. The average loss also shows steady performance, signaling the existence
of redundant states in a tested model.

5 Applications

In this section, we apply the proposed method to analyze structural changes in inter-
national military alliance networks. The structure of military alliance networks reflects
the distribution of military power among coalitions of states, which changes over time
in response to exogenous shocks to the international system or endogenous network dy-
namics. However, there has been no study that investigates changes in coalition struc-
tures of military alliance networks over time using a principled statistical approach. A
main reason is the lack of statistical methods that model unknown structural changes
in longitudinal network data.

To highlight how HNC works in a simple setting, we use a small dataset consisting
of seven “major powers” (Austria-Hungary, France, Germany, Italy, Japan, Russia, and
the United Kingdom) from 1816 to 1938.9 We aggregated every 2 year network from
the original annual binary networks to increase the density of each layer. Changing the
granularity of aggregation does not change the substantive findings. These seven major
powers are main players of the balance of power system in Europe during the 19th
century and the early 20th century. Also, the period from 1816 to 1938 corresponds
to the era of shifting alliances among major powers. Thus, changes in the structure of
alliance indicate changes in the international system.

Figure 3 shows the model diagnostic results for the major power alliance data. We
dropped the results for the models with more than 3 breaks as they show strong signs
of non-convergence, which indicate the existence of redundant regimes. All metrics of
model diagnostics point to the two break model as the best-fitting model. In particular,
the average loss of break points significantly drops in the two break model.

9The source of the data is Gibler (2008). Additional results using a larger dataset are available in
the web appendix.
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Figure 3: Model Diagnostics of Major Power Alliance Network Changes, 1816 - 1938.

Figure 4 visualizes changes in latent node positions of major powers (top) and chang-
ing patterns of the major-power network topology (bottom) from the two break model.°
Node colors (online) indicate clusters of each node using the k means clustering method.
Regime-specific network generation rule parameters v,.; are reported in axis labels. Sev-
eral substantive findings are noteworthy.

The first observation is the centrality of Austria-Hungary which connects the groups
of major powers between 1816 and 1890. This period includes what historians call “the
age of Metternich” (1815-1848) (Rothenberg, 1968). After the end of Napoleonic Wars,
Chancellor of Austria-Hungary played an important role in maintaining the European
balance of power system. The first dimension of Regime 1 clearly distinguishes Austria-
Hungary from the other major powers. In Regime 2 (1854-1890), Germany challenged
the position of Austria-Hungary. However, throughout Regime 1 and Regime 2, the
network position of Austria-Hungary remained highly critical in the sense that the
removal of Austria-Hungary would have made the major power alliance network com-
pletely disconnected. In the language of social network analysis, Austria-Hungary filled
a “structural hole” in the major power alliance network at the time, playing the role of
broker (Burt, 2009).

The second observation is the timing of the first break between 1852 and 1854.
This break point coincides with the outbreak of the Crimean War. In this war, Russia
was defeated by the united powers of Britain, France, Austria-Hungary, and Prussia
(Germany). The rise of Germany led by Otto von Bismarck and the defeat of Russia
marked the first break in the balance of power system.

The third observation is the timing of the second break between 1890 and 1892.
Scholars of international relations and historians have focused on the formation of the
Dual Alliance between Germany and Austria-Hungary in 1879 and a sequence of al-
liances that followed, led by a structural change in the balance of the power system
(Snyder, 1997; Vermeiren, 2016).!! These series of events transformed a web of shift-

L0All network diagrams are drawn using a Fruchterman-Reingold layout, which locates nodes with
more connections and short topological distance in proximal locations, for the better visibility of the
state labels.

U PRirst, Russia formed alliances with Germany and Austria-Hungary (Three Emperors’ Alliance) in
1881. Then, Italy joined Germany and Austria-Hungary (Triple Alliance) in 1882. France, a long-time
rival of Germany, formed an alliance with Russia in 1894 to check Germany and Austria-Hungary. In
this process, an important cleavage in the alliance networks emerged.
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Figure 4: Changing Node Positions and Network Topology of Military Alliance Networks
Among Major Powers, 1816 - 1938: Node colors (online) indicate clusters. Regime aver-
ages of vy values for each dimension are reported on each axis (top panel). Line widths
are proportional to the duration of alliance links (bottom panel). Included states are
Austria-Hungary (AUT), France (FRA), Germany (GMY), Italy (ITA), Japan (JAP),
Russia (RUS), and the United Kingdom (GBR). Each node is colored by its cluster
label obtained through k-means clustering.

ing alliances into a clearly diverged group structure consisting of two clusters: Austria-
Hungary, Germany, and Italy on one hand and France, Russia, and the United Kingdom
on the other. The network diagram of the third regime (bottom-right) shows members
of the two clusters, which formed each side of belligerents in World War 1.

6 Concluding Remarks

In this article, we presented HNC as a statistical method to detect and analyze changes
in structural properties of longitudinal network data. The proposed method has several
advantages over existing dynamic network models.

First, the proposed method combines a highly flexible generative model of multilayer
networks (MTRM) with HMM which has proved to be an effective tool to model irreg-
ular dynamics in temporal data. This formulation is flexible enough to accommodate
a variety of network representations such as graph Laplacian (Rohe et al., 2011) and
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motif Laplacian (Benson et al., 2016) as an input data format. The simulation studies
showed that our generative approach is a powerful tool to detect and analyze diverse
types of network changes.

Second, the Bayesian inference of HNC enables researchers to identify the number of
network changes in a principled way. Our simulation studies show that WAIC correctly
identifies the number of breaks and the type of network changes in all tests while the
approximate log marginal likelihood consistently favor overfitted models.

Finally, HNC provides an important tool to investigate changes in meso-scale prop-
erties of longitudinal network data. Changes in meso-scale network properties are im-
portant quantities that correspond to fundamental changes in the network generating
process.

While we only consider undirected networks, our model can be extended to analyze
other types of longitudinal network data consisting of directed networks or bipartite
networks using a singular value decomposition-based framework (De Lathauwer et al.,
2000; Hoft, 2007) and the hierarchical multilinear framework (Hoff, 2011).
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