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First we would like to congratulate Professor Johannes Schmidt-Hieber for his excellent
paper, which shows the surprising result that deep neural networks can achieve good rates of
convergence even in case of nonsmooth activation functions.

In the following we divide our discussion into three parts:

1. The importance of compository assumptions.
2. The necessity of the sparsity of the networks.
3. The theoretical difference between ReLU and sigmoidal functions.

1. The importance of compository assumptions. In the sequel we use the following
definition of (p,C)-smoothness.

DEFINITION 1. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R

is called (p,C)-smooth if, for every α = (α1, . . . , αd) ∈ N
d
0 with

∑d
j=1 αj = q , the partial

derivative ∂qm/(∂x
α1
1 · · · ∂x

αd

d ) exists and satisfies∣∣∣∣ ∂qm

∂x
α1
1 · · · ∂x

αd

d

(x) − ∂qm

∂x
α1
1 · · · ∂x

αd

d

(z)

∣∣∣∣ ≤ C · ‖x − z‖s

for all x, z ∈R
d , where ‖ · ‖ denotes the Euclidean norm.

Remark that this assumption on the regression function is similar to the class Cβ
r (D,K)

of functions mentioned in Section 3 in the paper under discussion. It is well known that the
optimal rate of convergence for the estimation of a (p,C)-smooth regression function is

n
− 2p

2p+d .

In case d is relatively large compared to p, this rate suffers from the well-known curse of
dimensionality. The only way to circumvent this phenomenon is to impose additional as-
sumptions on the regression function. One way is to impose compository assumptions, which
were already used by Horowitz and Mammen (2007), where regression functions have been
studied which are of the form

m(x) = g

(
L1∑

l1=1

gl1

(
L2∑

l2=1

gl1,l2

(
. . .

Lr∑
lr=1

gl1,...,lr

(
xl1,...,lr

))))

for g,gl1, . . . , gl1,...,lr : R → R (p,C)-smooth functions and xl1,...,lr single components of
x ∈ R

d (not necessarily different for two different indices (l1, . . . , lr )). With the use of a
penalized least squares estimate for smoothing splines, they proved the rate n−2p/(2p+1).
Kohler and Krzyżak (2017) extended this function class in form of the so-called generalized
hierarchical interaction models introduced as follows:
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DEFINITION 2. Let d ∈N, d∗ ∈ {1, . . . , d} and m :Rd →R.

(a) We say that m satisfies a generalized hierarchical interaction model of order d∗ and
level 0, if there exist a1, . . . , ad∗ ∈ R

d and f :Rd∗ →R such that

m(x) = f
(
aT

1 x, . . . , aT
d∗x

)
for all x ∈R

d .

(b) We say that m satisfies a generalized hierarchical interaction model of order d∗ and
level l + 1, if there exist K ∈ N, gk : Rd∗ → R (k = 1, . . . ,K) and f1,k, . . . , fd∗,k : Rd → R

(k = 1, . . . ,K) such that f1,k, . . . , fd∗,k (k = 1, . . . ,K) satisfy a generalized hierarchical
interaction model of order d∗ and level l and

m(x) =
K∑

k=1

gk

(
f1,k(x), . . . , fd∗,k(x)

)
for all x ∈ R

d .

(c) We say that the generalized hierarchical interaction model defined above is (p,C)-
smooth, if all functions f and gk occurring in its definition are (p,C)-smooth.

They showed that for such models suitably defined multilayer neural networks (in which
the number of hidden layers depends on the level of the generalized interaction model)
achieve the rate of convergence n−2p/(2p+d∗) (up to some logarithmic factor) in case p ≤ 1.
Bauer and Kohler (2019) showed that this result even holds for p > 1, provided the sigmoidal
function is suitably chosen.

In case K in part (b) of Definition 2 equals one for all levels and the vectors a1, . . . ,
ad∗ in part (a) are chosen as unit vectors, the corresponding function is recursively defined
as a function of d∗ variables, where all variables are either a function of the same kind or
one of the components of the input variable (here, it is allowed that the same component
appears several times). In practice, it is conceivable that there exist input–output relationships
which can be described in this way with a small to moderate value of d∗. Particulary, such an
assumption is motivated by applications in connection with complex technical systems which
are constructed in a modular form. Here, each modular part can be again a complex system
which also explains the recursive construction in the above definition.

The function class studied by Schmidt-Hieber forms a generalization of Definition 2 in the
sense that smoothness and dimension of the gk in different levels in the recursive construction
are allowed to be different (compare also Section 4 in the paper under discussion). This can
be generalized one step further by allowing smoothness and dimension to change within each
level.

DEFINITION 3. Let d ∈N and m :Rd →R.

(a) We say that m satisfies a hierarchical composition model of level 0, if there exists a
i ∈ {1, . . . , d} such that

m(x) = x(i) for all x = (
x(1), . . . , x(d))T ∈R

d .

(b) We say that m satisfies a hierarchical composition model of level l + 1, if there exist
J ∈ N, g : RJ → R and f1, . . . , fJ : Rd → R such that f1, . . . , fJ satisfy a hierarchical
composition model of level l and

m(x) = g
(
f1(x), . . . , fJ (x)

)
for all x ∈R

d .

(c) We say that a hierarchical composition model satisfies the smoothness and order con-
straint P , where P is a subset of (0,∞) × N, if in its definition all functions g occurring in
part (b) satisfy g :RJ →R and g (p,C)-smooth for some (p, J ) ∈ P and C > 0.
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In case P ⊆ [1,∞)×N, a suitably defined least squares neural network regression estimate
achieves (up to some logarithmic factor) the rate of convergence

max
(p,J )∈P n

− 2p
2p+J

(cf., e.g., Theorem 1 below). We would like to point out that Definition 3 (which is basically
a (slight) generalization of the assumption used in Schmidt-Hieber’s paper) is a valuable
extension of Definition 2 (which was introduced by Kohler and Krzyżak (2017)), because it
seems to be even more realistic for the applications described above.

2. The necessity of the sparsity of the networks. One of the key features of the neural
networks in the paper under discussion is that the considered neural networks are not fully
connected. We would like to point out that this is not necessary required, since similar results
also hold for fully connected deep neural network, as the next theorem shows.

THEOREM 1. Let (X,Y ), (X1, Y1), . . . , (Xn,Yn) be independent and identically dis-
tributed random variables with values in R

d ×R such that supp(X) is bounded and

(1) E
{
exp

(
c1 · Y 2)}

< ∞
for some constant c1 > 0. Let P ⊆ [1,∞) ×N be such that

pmax = max
(p,J )∈P p < ∞ and max

(p,J )∈P J < ∞.

Assume that the regression function m(·) = E{Y |X = ·} satisfies a hierarchical composition
model of finite level l and with smoothness and order constraint P . Set

Ln =
⌈
c2 · max

(p,J )∈P n
J

2·(2p+J )

⌉
and rn = c3

for c2, c3 > 0 sufficiently large. Let σ : R → R be the linear rectifier. Let Fσ (Ln, rn) be the
set of all fully connected neural networks with Ln hidden layers, rn neurons in each hidden
layer and σ as actication function. Let m̃n be the least squares estimate defined by

(2) m̃n(·) = arg min
h∈Fσ (Ln,rn)

1

n

n∑
i=1

∣∣Yi − h(Xi)
∣∣2,

and define mn = Tc4·log(n)m̃n for some c4 > 0 sufficiently large, where Tβz = max{min{z,β},
−β} for z ∈ R and β > 0. Then,

E
∫ ∣∣mn(x) − m(x)

∣∣2PX(dx) ≤ c5 · (logn)4 · max
(p,J )∈P n

− 2p
2p+J

holds for sufficiently large n.

PROOF. See Kohler and Langer (2019). �

A comparison with Theorem 1 in the paper under discussion shows that we can reach
the same convergence rate also with simple fully connected networks. Here, the topology
of our networks is completely specified which makes an implementation of a corresponding
estimate much easier.
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3. The theoretical difference between ReLU and sigmoidal functions. Schmidt-
Hieber’s paper focuses on the ReLU activation function which is, nowadays, quite popular
in applications. One useful characteristic of this kind of function is that their derivatives are
always either zero or one. Consequently, the derivative of the neural network can be com-
puted much faster in an application, and the backpropagation algorithm can be applied with
a much large number of gradient descent steps for the linear rectifier (cf., e.g., Fan, Ma and
Zhong (2019)). However, theoretically, we cannot see much of a difference in comparison to
sigmoidal activation functions, due to the following approximation result:

LEMMA 1. Let σ : R → [0,1] be 2-admissible; that is, assume that σ is nondecreasing
and Lipschitz continuous and that, in addition, the following three conditions are satisfied:

(i) The function σ is three times continuously differentiable with bounded derivatives.
(ii) A point tσ ∈ R exists, where all derivatives up to the order 2 of σ are different from

zero.
(iii) If y > 0, the relation |σ(y) − 1| ≤ 1

y
holds. If y < 0, the relation |σ(y)| ≤ 1

|y| holds.

Then, for any ε ∈ (0,1] and a ≥ max{1, 3
ε
} a neural network

f (x) =
6∑

k=1

dk · σ
( 2∑

i=1

bk,i · σ(ai · x + tσ ) + bk,3 · σ(a3 · x) + tσ

)

exists such that ∣∣f (x) − max{x,0}∣∣ ≤ ε

holds for all x ∈ [−a, a]. The coefficients of this network satisfy

|ai | ≤ 3

ε
, |bk,i | ≤ c20

a
and |dk| ≤ c21 · a6

ε2

for i ∈ {1, . . . ,3}, k ∈ {1, . . . ,6}.
PROOF. Let fid(x) and fmult be the networks of Lemma 1 and Lemma 3 in Kohler,

Krzyżak and Langer (2019) which satisfy∣∣fid(x) − x
∣∣ ≤ ε

3
for x ∈ [−a, a]

and ∣∣fmult(x, y) − x · y∣∣ ≤ ε

3
for x, y ∈ [−2a,2a].

Then, ∣∣∣∣fmult

(
fid(x), σ

(
3

ε
· x

))
− max{x,0}

∣∣∣∣
≤

∣∣∣∣fmult

(
fid(x), σ

(
3

ε
· x

))
− fid(x) · σ

(
3

ε
· x

)∣∣∣∣
+

∣∣∣∣fid(x) · σ
(

3

ε
· x

)
− x · σ

(
3

ε
· x

)∣∣∣∣ +
∣∣∣∣x · σ

(
3

ε
· x

)
− x · 1[0,∞)(x)

∣∣∣∣
≤ ε

3
+ ε

3
· 1 + ε

3
= ε. �

Using this lemma, it is possible to approximate any neural network with ReLU activation
function by a neural network with sigmoidal activation function. However, in contrast to the
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networks in Professor Schmidt-Hieber’s paper, the weights will no longer be bounded in ab-
solute value by one. This might be considered as a drawback, but, from a theoretical point of
view, we do not know any result indicating that least squares neural network regression esti-
mates with small weights achieve a better rate of convergence than neural networks with large
weights (as long as the absolute values of the weights do increase at most like a polynomial
in the sample size).
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