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We congratulate Johannes Schmidt-Hieber for his elegant and thought-provoking results.
His article uses deep-learning-inspired methods in the context of nonparametric regression.
Schmidt-Hieber defines a rich class of composition-based functions G(q,d, t,β,K) and a
class of sparse multilayer neural networks F(L,p, s,F ). He proves that least squares estima-
tion over the class of sparse neural networks (with suitably chosen architecture (L,p, s,F ))
achieves nearly minimax prediction error over G(q,d, t,β,K).

The modeling and analysis in this paper are both elegant and original. They trigger a
natural question: how much of the empirical success of deep learning can be understood
using this model? As a way to stimulate reflection on this question, we will discuss three
challenges: 1. Sparsity and generalization; 2. Curse of dimensionality; 3. Computation.

Throughout, we will denote by ε∗ = min0≤i≤q[2β∗
i /(2β∗

i + ti)] ∈ (0,1) the minimax ex-
ponent in the class G(q,d, t,β,K). Also, in our discussion we shall focus on multilayer
perceptrons, and, in particular, we exclude convolutional networks. The latter have entirely
different structure, and they do not follow within the scope of the present paper.

1. Sparsity and generalization. Modern multilayer neural networks are highly over-
parametrized. Schmidt-Hieber uses sparsity of the weights as a gauge to control the model’s
complexity and, hence, to be able to bound the generalization error using tools from empirical
process theory.

Is sparsity the right complexity measure in practical deep-learning methods? The present
paper requires the number of nonzero weights to be s � n1−ε∗

logn. As an example, consider
the VGG-19 architecture [13] which is a state-of-the art deep network trained on ImageNet.1

This network has approximately 143 · 106 parameters, of which 123 · 106 are in the fully-
connected layers. Figure 1 reports the distribution of these weights after training: we are not
able to identify any sparsity structure. Notice that—for ImageNet—the sample size is roughly
n ≈ 1.2 · 106, hence, much smaller than the number of nonzero coefficients.

The nascent research community in theoretical deep learning is well aware of the fact that
some measure of complexity is necessarily controlled by overparametrized neural networks.
A popular heuristic explanation uses the notion of of “implicit regularization”: model com-
plexity is not controlled by an explicit penalty or procedure but by the dynamics of stochastic
gradient descent (SGD) itself [12]. Defining the precise complexity measure that is implicitly
controlled by SGD is an open problem, except in some simple examples [7, 9, 14]. A parallel
line of work directly analyzes gradient descent and shows that the generalization error can be
controlled even in the presence of infinitely overparametrized networks, as long as gradient
descent is stopped early [3, 10].
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1The trained parameters were downloaded from Keras 2.2.4.
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FIG. 1. First fully-connected layer of a VGG-19 network after training. Left frame: Sample quantiles plotted
against quantiles of a Gaussian with first two moments matching the empirical moments. Right frame: Empirical
density of the weights plotted alongside the Gaussian density. While the tail of the distribution of the weights
is slightly heavier than the Gaussian distribution, the bulk of the distributions are rather similar: 1st, 50th and
99th percentiles of the empirical distribution are {−0.0052,−0.0002,0.0057} while the same percentiles for a
Gaussian with matching first two moments are {−0.0055,−0.0001,0.0052}. (A similar plot is obtained for the
second layer.)

2. Curse of dimensionality. An important achievement of the present paper is to estab-
lish a dimension-independent error rate R(f̂n, f0) � n−ε∗

log2 n (with ε∗ independent of d

for many cases of interest), holding for any near-minimizer f̂n of the empirical risk. Indeed,
obtaining a dimension-independent rate appears to be an important guiding principle for the
construction of the function class G(q,d, t,β,K). Does this result fully address the curse of
dimensionality?

The present analysis establishes an upper bound of the form R(f̂n, f0) ≤ C(d)n−ε∗ log2 n

without characterizing the d-dependence of the prefactor. Further, it assumes n large enough,
that is, n ≥ n0(d) for an unspecified n0(d).

Consider the example of additive models which is discussed in the paper. Applying the
current proof strategy requires n� dd . Namely, we consider the function

f0(x1, . . . , xd) =
d∑

i=1

fi(xi),(1)

where fi ∈ C
β
1 ([0,1],K). Then, we have f0 = g1 ◦ g0 where g0 : [0,1]d → [−K,K]d with

g0(x) = (f1(x1), . . . , fd(xd))T and g1 : [−K,K]d → [−Kd,Kd] with g1(z) = ∑d
i=1 zi .

Since for any γ > 1, g1 ∈ C
γ
d ([−K,K], (K + 1)d), we have

f0 ∈ G
(
1, (d, d,1), (1, d),

(
β, (β ∨ 2)d

)
, (K + 1)d

)
.

The present paper implies convergence at rate R(f̂n, f0) � n
− 2β

2β+1 log3 n. Examining the
proof, we find that this bound holds for n ≥ maxi (βi + 1)2β∗

i +ti . Indeed, the proof of Theo-
rem 1 requires N = c · maxi=0,...,q nti/(2β∗

i +ti ) for a c small enough. The statement of Theo-
rem 5 requires N ≥ (βi + 1)ti . This gives a lower bound of n for Theorem 1 to hold which is
n ≥ maxi (βi + 1)2β∗

i +ti . As a consequence, in the case of additive models we need n� dd .
While the example (1) can be treated via an ad hoc analysis,2 it raises the question of

whether the present results are strong enough to break the curse of dimensionality.
As a side remark, the condition n � dd is not necessary for learning the model (1); see, for

example, [1].

2One possible fix of this issue is to treat the function g1 as the composition of k = log2 d functions (assuming k

is an integer), g1 = g1,k ◦g1,k−1 ◦g1,1, where g1,j :Rd/2j−1 →R
d/2j

, z �→ (z1 +z2, . . . , zd/2j−1−1 +zd/2j−1).
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3. Computation. Classical statistical theory views statistical questions as decoupled
from computational ones. Schmidt-Hieber’s contribution belongs to this tradition: it postu-
lates an estimator f̂n that is a near-minimizer of the empirical risk and derives statistical rates
for this estimator. In contrast, a broad research effort in modern high-dimensional statis-
tics is emphasizing the fundamental role played by computational bottlenecks. For a large
number of problems, there are fundamental computational limitations that are dramatically
more stringent than statistical ones. A somewhat arbitrary list of examples include high-
dimensional regression (for certain types of prior information) [6], matrix factorization [4],
community detection [8], sparse principal component analysis [2], tensor principal compo-
nent analysis [11] and so on.

In practice, multilayer neural networks are efficiently learnt via SGD or its variants. This
seems to us as an important constraint on any statistical theory aiming at explaining the
success of deep learning.

We consider the problem of learning a simple ridge function

f�(x) = ϕ�

(〈θ ,x〉)(2)

with the following choices of the nonlinearity ϕ�, � ∈ {1,2}:
ϕ1(x) = tanh(x)

0.628
, ϕ2(x) = 1

0.1275

(
tanh(x) + c1 tanh3(x) + c2 tanh5(x)

)
,(3)

where c1 = −3.422, c2 = 2.551. These coefficients are chosen in such a way that
E{ϕi(G)2} ≈ 1 (for G ∼ N(0,1)), and ϕ2 has vanishing projection (in L2(e−x2/2dx/

√
2π))

onto the space of polynomials of degree at most four. (See [5] for a related construction in
the statistics literature.) Both of these regression functions belong to the class G(q,d, t,β,K)

with d0 = t0 = d , d1 = t1 = 1, d2 = 1 and β1 = β2 = ∞. The theory developed in the present
paper suggests that it should be possible to estimate them at the nearly parametric rate,
(logn)2/n, without distinguishing between ϕ1 and ϕ2.

We choose the true parameter vector θ ∈ R
d uniformly at random with ‖θ‖2 = 1.

We consider data (yi,xi ), where xi ∼ Unif([−a, a]d), a = √
3 (to fix the normalization

E{‖x‖2
2} = d) and yi = f�(xi ) for either of the two models f�(x) = ϕ�(〈θ�,x〉), � ∈ {1,2}.

Using SGD, we try to learn these functions by fitting fully connected ReLU networks of
various depths. Figure 2 reports the results of our experiments. We use d = 500, while the
number of neurons in each hidden layer is fixed to 100. We vary the number of training data
points, n, from 75k to 250k. Our data suggest that these networks, independently of their
depth, have difficulty in learning f2(·). At the same time, f1(·) is learnt even with a small
amount of training data.

FIG. 2. Test (solid lines) and training (dashed lines) loss for fully connected networks trained on the two data
distributions f�(x) = ϕ�(〈θ�,x〉), � ∈ {1,2}. We consider networks with {1,2,3} hidden layers. Each model is
trained for 150 epochs via SGD. For reference, the loss of the trivial predictor f̂ (x) = 0 is 1.
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