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We consider the estimation of and inference on precision matrices of a
rich class of univariate locally stationary linear and nonlinear time series,
assuming that only one realization of the time series is observed. Using a
Cholesky decomposition technique, we show that the precision matrices can
be directly estimated via a series of least squares linear regressions with
smoothly time-varying coefficients. The method of sieves is utilized for the
estimation and is shown to be optimally adaptive in terms of estimation ac-
curacy and efficient in terms of computational complexity. We establish an
asymptotic theory for a class of L2 tests based on the nonparametric sieve
estimators. The latter are used for testing whether the precision matrices are
diagonal or banded. A Gaussian approximation result is established for a wide
class of quadratic forms of nonstationary and possibly nonlinear processes of
diverging dimensions which is of interest by itself.

1. Introduction. Consider a centered univariate nonstationary time series x1,n, . . . ,

xn,n ∈ R. Denote by �n := [Cov(x1,n, . . . , xn,n)]−1 the precision matrix of the series. Mod-
elling, estimation and inference of �n are of fundamental importance in a wide range of
problems in time series analysis. For example, the L2 optimal linear forecast of xn+1,n based
on x1,n, . . . , xn,n is determined by �n and the covariance between xn+1,n and (x1,n, . . . , xn,n)

[3]. In time series regression with fixed regressors, the best linear unbiased estimator of the
regression coefficient is a weighted least squares estimator with weights proportional to the
square root of the precision matrix of the errors [15]. Furthermore, the precision matrix is a
key part in Gaussian likelihood and quasilikelihood estimation and inference of time series
[3, 19]. We shall omit the subscript n in the sequel if no confusions arise.

Observe that � is an n × n matrix. When the time series length n is at least moderately
large, it is generally not a good idea to first estimate the covariance matrix of (x1, . . . , xn)

and then invert it to obtain an estimate of �. One main reason is that small errors in the
covariance matrix estimation may be amplified through inversion when n is large, especially
when the condition number of the covariance matrix is large. Also, matrix inversion is not
computationally efficient for large n. As a result it is desirable to directly estimate �. In this
paper we utilize a Cholesky decomposition technique to directly estimate � through a series
of least squares linear regressions. Specifically, write

(1.1) xi =
i−1∑
j=1

φijxi−j + εi, i = 2, . . . , n,

where
∑i−1

j=1 φijxi−j := x̂i is the best linear forecast of xi based on x1, . . . , xi−1 and εi is the

forecast error. Let ε1 := x1 and denote by σ 2
i the variance of εi , i = 1,2, . . . , n. Observe that

εi are uncorrelated random variables. As a result it is straightforward to show that [22]

(1.2) � = �∗D̃�,
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where the diagonal matrix D̃ is defined as D̃ = diag{σ−2
1 , . . . , σ−2

n }, � is a lower triangu-
lar matrix having ones on its diagonal and −φij at its (i, i − j)th element for j < i and ∗
denotes matrix or vector transpose. The most significant advantage of the above Cholesky
decomposition is structural simplification that transfers the difficult problem of precision ma-
trix estimation to that of estimating a series of least squares regression coefficients and error
variances.

However, the Cholesky decomposition idea is not directly applicable to precision matrix
estimation of nonstationary time series. The reason is that there are in total n(n + 1)/2 re-
gression coefficients and error variances to be estimated in the Cholesky decomposition of �.
Meanwhile, observe that there are also n(n + 1)/2 parameters to be estimated for the preci-
sion matrix of a general nonstationary time series. Hence, Cholesky decomposition, although
it performs structural simplification, does not reduce the dimensionality of the parameter
space. On the other hand, we only observe one realization of the time series with n observa-
tions. As a result dimension reduction techniques with natural assumptions in nonstationary
time series analysis are needed for the estimation of �.

We adopt two natural and widely used assumptions in nonstationary time series for the
dimension reduction. The first such assumption is local stationarity which refers to slowly
or smoothly time-varying underlying data generating mechanisms of the series. Utilizing
the locally stationary framework in Zhou and Wu [39], we show that, for a wide class
of locally stationary nonlinear processes, each off-diagonal element of the � matrix as
well as the error variance series σ 2

i can be well approximated by smooth functions on
[0,1]. Specifically, we show that there exist smooth functions φj (·) and g(·) such that
supi>b |φij − φj (i/n)| = o(n−1/2), j = 1,2, . . . , n and supi>b |σ 2

i − g(i/n)| = o(n−1/2),
where b = bn diverges to infinity with b/n → 0 whose specific value will be determined
later in the article. To our knowledge, the latter is the first result on smooth approximation to
general nonstationary precision matrices. From classic approximation theory [25], a d times
continuously differentiable function can be well approximated by a basis expansion with
O((n/ logn)1/(2d+1)) parameters. Thanks to the local stationarity assumption, the number of
parameters needed for estimating σ 2

i is reduced from n to O((n/ logn)1/(2d+1)). A similar
conclusion holds for each off-diagonal element of �.

The second assumption we adopt is short range dependence which refers to fast decay of
the dependence between xi and xi+j as j diverges. Using the physical dependence measures
introduced in Zhou and Wu [39], modern operator spectral theory and approximation theory
[9, 27], we show, as a theoretical contribution of the paper, that the off-diagonal elements of
� decay fast to zeros for a general class of locally stationary short range dependent processes.
Specifically, we show that φij can be effectively treated as 0 whenever j > b. Hence, the total
number of parameters one needs to estimate is reduced to the order b[b + (n/ logn)1/(2d+1)]
which is typically much smaller than the sample size n.

Now, we utilize the method of sieves to estimate the smooth functions φj (·) and g(·) men-
tioned above. The method of sieves refers to approximating an infinite dimensional space
with a sequence of finer and finer finite dimensional subspaces. Typical examples include
Fourier, wavelet and orthogonal polynomial approximations to smooth functions on compact
intervals. We refer to [6] by Chen for a thorough review of the subject. There are two major
advantages of the sieve method when used for precision matrix estimation. First, many sieve
estimators, such as the Fourier and wavelet methods mentioned above, do not have inferior
performances at the boundary of the estimating interval. This is important as inaccurate es-
timates at the boundary may drastically lower the accuracy of the whole precision matrix
estimation even though entries are well estimated in the interior. Second, the computational
complexities of many sieve methods are both adaptive (to the smoothness of the functions of
interest) and efficient. When estimating one smooth function of time, local methods such as
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the kernel estimation perform one regression at each time point. This could be computational
inefficient when n is large. On the contrary, the above mentioned three sieve methods only
need to perform a single regression at the whole time interval with the number of covariates
determined by the smoothness of the function of interest. In many cases this yields a much
faster estimation. For instance, in the extreme case where the time series dependence is expo-
nentially decaying and the functions are infinitely differentiable, the sieve method only needs
O(n log5 n) operations to estimate �. Under the same scenario the computational complex-
ity of the kernel method is of order O(n2kn log2 n), where kn is the bandwidth used for the
regression and is typically of the order n−1/5.

In this paper we show that the sieve estimates of the functions φj (·) achieve, uniformly
over time and j , the minimax rate for nonparametric function estimation [25]. This extends
previous convergence rate results on nonparametric sieve regression to the case of a diverging
number of covariates and nonstationary predictors and errors. Combining the latter result
with modern random matrix theory [28], we show that the operator norm of the estimated
precision matrix converges at a fast rate which is determined by the strength of time series
dependence and the smoothness of the underlying data generating mechanism. In the best
scenario where the dependence is exponentially decaying and φj (·) and g(·) are infinitely
differentiable, the convergence rate is shown to be of the order log3 n/

√
n, which is almost

as fast as parametrically estimating a single parameter from i.i.d. samples.
Sieve estimators have already been used to estimate the smooth conditional mean function

in various settings. For instance, in [1], the authors proved that the sieve least square esti-
mators could achieve minimax rate in the sense of sup-norm loss for a fixed number of i.i.d.
regressors and errors with a general class of sieve basis functions; later, Chen and Christensen
[7] showed that the spline and wavelet sieve regression estimators attain the above global uni-
form convergence rate for a fixed number of weakly dependent and stationary regressors. In
this article we study nonparametric sieve estimates for locally stationary time series with di-
verging number of covariates under physical dependence and obtain the same minimax rate
for the functions φj (·).

After estimating �, one may want to perform various tests on its structure. In this paper
we focus on two such tests, one on whether {xi}ni=1 is a nonstationary white noise and the
other on whether � is banded. Two test statistics based on the L2 distances between the es-
timated and hypothesized � are proposed. These tests boil down to quadratic forms of the
estimated sieve regression coefficients which are quadratic forms of nonstationary, dependent
vectors of diverging dimensionality. To our knowledge, there have been no previous works on
L2 inference of nonparametric sieve estimators as well as the inference of high-dimensional
quadratic forms of nonstationary nonlinear time series. Here, we utilize Stein’s method to-
gether with an m-dependence approximation technique and prove that the laws of a large class
of quadratic forms of nonstationary nonlinear processes with diverging dimensionality can be
well approximated by those of quadratic forms of diverging dimensional Gaussian processes.
Consequently, asymptotic normality can be established for those high-dimensional quadratic
forms. The latter Gaussian approximation result is of separate interest and may be of wider
applicability in nonstationary time series analysis. In [33], Xu, Zhang and Wu derived the
L2 asymptotics for the quadratic form X

∗
X, where X is the sample mean of n i.i.d. random

vectors and X
∗

is its transpose. In the present paper we prove new and much more general L2

asymptotics for quadratic forms Z
∗
EZ for any bounded positive semidefinite matrix E using

Stein’s method [24, 37], where Z is the sample mean of a high-dimensional, nonstationary
and dependent process. It is very interesting that similar ideas have been used in proving the
universality of random matrix theory [11, 13, 17, 26].

We point out that the idea of Cholesky decomposition has been used in time series analysis
under some different settings when multiple replicates of the vector of interest are available.
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Assuming a longitudinal setup where multiple realizations can be observed, Wu and Pourah-
madi [31] studied the estimation of covariance matrices using nonparametric smoothing tech-
niques. Bickel and Levina [2] considered estimating large covariance and precision matrices
by either banding or tapering the sample covariance matrix and its inverse, assuming that
multiple independent samples can be observed. On the other hand, we assume that only one
realization of the time series is observed which is the case in many real applications. Hence,
none of the aforementioned results can be applied under this scenario.

Finally, we mention that estimating large-dimensional covariance and precision matrices
has attracted much attention in the last two decades. One main research line is to assume
that we can observe n i.i.d. copies of a p dimensional random vector. When p is compara-
ble to or larger than n, it is well known that sample covariance and precision matrices are
inconsistent estimators [10, 21]. To overcome the difficulty from high dimensionality, re-
searchers usually impose two main structural assumptions in order to consistently estimate
the covariance and precision matrices, sparsity structure and factor model structure. Various
families of covariance matrices and regularization methods have been introduced assuming
some types of sparsity; this includes the bandable covariance matrices [2, 4, 31], sparse co-
variance matrices [5, 18, 36] and sparse precision matrices [34, 35]. On the other hand, factor
models in the high-dimensional setting have been used in a range of applications in finance
and economics. For a comprehensive review on factor model based methods, we refer to
[14]. Although high dimensional covariance and precision matrix estimation has witnessed
unprecedented development, there have been no previous works on precision matrix estima-
tion for nonstationary time series with only one realization to the best of our knowledge.
On the other hand, there have been a small literature on time series covariance or precision
matrix estimation. Under stationarity, [20, 32] consider thresholding and banding techniques
for estimating the covariance matrix with only one realization of the series. Under sparsity
assumptions, [8] estimates marginal covariance and precision matrices of high-dimensional
stationary and locally stationary time series using thresholding and Lasso techniques. Note
that when estimating marginal covariance or precision matrices of a p dimensional time se-
ries of length n, the series can be viewed as n dependent replicates of the vector of interest
which is completely different than the situation considered in this article.

The rest of the paper is organized as follows. In Section 2 we introduce a rich class of non-
stationary (locally stationary) and nonlinear time series and study the theoretical properties
of its covariance and precision matrices. In Section 3 we consistently estimate the preci-
sion matrices and provide convergent rates for these estimators. In Section 4 we propose two
adaptive tests using some simple statistics from our estimation procedure, where the conver-
gence rates and powers of the tests are adaptive to the strength of the temporal dependence
and the smoothness of the underlying data generating mechanism. Monte Carlo simulations,
technical proofs and auxiliary lemmas are provided in the Supplementary Material [12].

2. Locally stationary time series. Consider a locally stationary time series [38–40]

(2.1) xi = G

(
i

n
,Fi

)
,

where Fi = (. . . , ηi−1, ηi) and ηi, i ∈ Z are i.i.d. random variables and G : [0,1] ×R
∞ →R

is a measurable function such that ξi(t) := G(t,Fi) is a properly defined random variable
for all t ∈ [0,1]. The above represents a wide class of locally stationary linear and nonlinear
processes. We refer to Zhou and Wu [30, 39, 40] for detailed discussions and examples.
And following [30, 39, 40], we introduce the following dependence measure to quantify the
temporal dependence of (2.1).
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DEFINITION 2.1. Let {η′
i} be an i.i.d. copy of {ηi}. We assume that for some q > 0,

‖xi‖q < ∞, where ‖ · ‖q = [E| · |q]1/q is the Lq norm of a random variable. For j ≥ 0, we
define the physical dependence measure by

(2.2) δ(j, q) := sup
t∈[0,1]

max
i

∥∥G(t,Fi) − G(t,Fi,j )
∥∥
q,

where Fi,j := (Fi−j−1, η
′
i−j , ηi−j+1, . . . , ηi).

The measure δ(j, q) quantifies the changes in the system’s output when the input of the
system j steps ahead is changed to an i.i.d. copy. If the change is small, then we have short-
range dependence. It is notable that δ(j, q) is related to the data generating mechanism and
can be easily computed. We refer the readers to [39], Section 4, for examples of such com-
putation. In the present paper we impose the following assumptions on (2.1) and the physical
dependence measure to control the temporal dependence of the nonstationary time series.

ASSUMPTION 2.2. There exist constants τ > 10 and q > 4; for some universal constant
C > 0, we have that

(2.3) δ(j, q) ≤ Cj−τ , j ≥ 1.

Furthermore, G defined in (2.1) satisfies the property of stochastic Lipschitz continuity, for
any t1, t2 ∈ [0,1], we have

(2.4)
∥∥G(t1,Fi) − G(t2,Fi)

∥∥
q ≤ C1|t1 − t2|,

where C1 is some universal constant independent of i, t1 and t2. We also assume that

(2.5) sup
t

max
i

∥∥G(t,Fi)
∥∥
q < ∞.

Equation (2.3) indicates that the time series has short-range dependence. Further, (2.4)
implies that G(·, ·) changes smoothly over time and ensures local stationarity. Furthermore,
for each fixed t ∈ [0,1], denote

(2.6) γ (t, j) = Cov
(
G(t,F0),G(t,Fj )

)
.

Observe that γ (t, j) is the j th order autocovariance of the time series {xi}ni=1 at time t .
Equations (2.4) and (2.5) imply that γ (t, j) is Lipschitz continuous in t . Further, we need the
following assumption on the smoothness of γ (t, j).

ASSUMPTION 2.3. There exists integer d ≥ 1 such that for all j ≥ 0, we have γ (t, j) ∈
Cd([0,1]), where Cd([0,1]) is the function space on [0,1] of continuous functions that have
continuous first d derivatives.

Finally, in this paper, we assume that for any n ∈ N, there exists some universal constant
ς > 0 such that the smallest eigenvalue of the covariance matrix of (x1, . . . , xn), denoted by
λn(�n), satisfies

(2.7) λn(�n) ≥ ς.

The above assumption is commonly used in the literature on precision matrix estimation [5,
8, 34].
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2.1. Examples. In this subsection we list a few examples of locally stationary processes
satisfying Assumptions 2.2 and 2.3.

EXAMPLE 2.4 (Nonstationary linear processes). Let {εi} be i.i.d. random variables; let
aj (·), j = 0,1, . . . be Cd([0,1]) functions such that

G(t,Fi) =
∞∑

k=0

aj (t)εi−k.

The above model is studied in [39], Section 4.1. By [39], Proposition 2, we find that Assump-
tion 2.2 will be satisfied if

sup
t∈[0,1]

∣∣aj (t)
∣∣min(2,q) ≤ Cj−τ , j ≥ 1;

∞∑
j=0

sup
t∈[0,1]

∣∣a′
j (t)

∣∣min(2,q)
< ∞,

(2.8)

for some constant C > 0. Furthermore, by the assumption (2.8) and the rule of term by term
differentiation [29], Theorem 7.14, Assumption 2.3 will be satisfied if

sup
t∈[0,1]

∣∣a(d)
j (t)

∣∣min(2,q) ≤ Cj−τ , j ≥ 1.

EXAMPLE 2.5 (Nonstationary nonlinear process). Let {εi} be i.i.d. random variables. We
now consider a process of the following form:

(2.9) ξi(t) = R
(
t, ξi−1(t), εi

)
,

where R is some (possibly nonlinear) measurable function. This process has been studied in
[39], Section 4.2. Suppose that for some x0, we have supt∈[0,1]‖R(t, x0, εi)‖q < ∞. Denote

χ := sup
t∈[0,1]

L(t), where L(t) = sup
x �=y

‖R(t, x, ε0) − R(t, y, ε0)‖q

|x − y| .

It is known from [39], Theorem 6, that if χ < 1, then (2.9) admits a unique locally stationary
solution with ξi(t) = G(t,Fi) and the physical dependence measure satisfies that δ(j, q) ≤
Cχj . Hence, the temporal dependence is of exponential decay (see equation (2.15)), which
is much faster than (2.2). Furthermore, we conclude from [39] that (2.4, Proposition 4) holds
true if

sup
t∈[0,1]

∥∥M(
G(t,F0)

)∥∥
q < ∞,

where M(x) = sup
0≤t<s≤1

‖R(t, x, ε0) − R(s, x, ε0)‖q

|t − s| .

To verify Assumption 2.3, we assume that G(t,Fi) admits the following Volterra expansion
[30]:

G(t,Fi) =
∞∑

k=1

∞∑
u1,...,uk=0

gk(t, u1, . . . , uk)εi−u1 . . . εi−uk
,

where gk’s are the Volterra kernels. Suppose gk ∈ Cd [0,1] for t and

sup
t∈[0,1]

∞∑
k=1

∞∑
u1,...,uk=0

(
g

(d)
k (t, u1, . . . , uk)

)2
< ∞.

Then, we can use term by term differentiation to see that Assumption 2.3 holds.
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2.2. Properties of the time-varying best linear predictors. Many important consequences
can be derived due to Assumptions 2.2 and 2.3. We list the most useful ones in this section
and put their proofs into the Supplementary Material [12]. The following lemma controls the
uniform decay rate of γ (t, j) as j increases.

LEMMA 2.6. Under Assumptions 2.2 and 2.3 there exists some constant C > 0, such
that

sup
t

∣∣γ (t, j)
∣∣ ≤ Cj−τ , j ≥ 1.

Our first important conclusion is that the coefficients defined in (1.1) are of polynomial de-
cay. Hence, when i > b is large, where b = O(n2/τ ), we only need to focus on autoregressive
fit of order b instead of i − 1. Recall (1.1). Denote φi = (φi1, . . . , φi,i−1)

∗. Then, we have

(2.10) φi = �iγ i ,

where �i and γ i are defined as �i = [Cov(xi
i−1,xi

i−1)]−1, γ i = Cov(xi
i−1, xi), with xi

i−1 =
(xi−1, . . . , x1)

∗. The above claims are formally summarized in the following proposition.

PROPOSITION 2.7. Under Assumption 2.2 and (2.7) and letting b = O(n2/τ ), there ex-
ists some constant C > 0, such that

(2.11) |φij | ≤
{

max
{
Cn−4+5/τ ,Cj−τ }

i ≥ b2;
max

{
Cn−2+3/τ ,Cj−τ }

b < i < b2.

Furthermore, when i > b, denote φb
i = (φi1, . . . , φib) and φ̃

b
i = �b

i γ
b
i with entries (φ̃i1, . . . ,

φ̃ib), where �b
i = [Cov(xi ,xi)]−1, γ b

i = E(xixi), xi = (xi−1, . . . , xi−b), we have

sup
i

∥∥φb
i − φ̃

b
i

∥∥ ≤ Cn−2+1/τ .

To our knowledge, Proposition 2.7 is the first result on the decay rate of the best lin-
ear forecast coefficients under nonstationarity. It serves the first dimension reduction for our
parameter space. It states that we can treat φij = 0 when j > b. Hence, the number of coeffi-
cients needed for the Cholesky decomposition reduces from O(n2) to O(nb). Finally, denote
φb( i

n
) := (φ1(

i
n
), . . . , φb(

i
n
)) by

(2.12) φb

(
i

n

)
= �̃b

i γ̃
b
i ,

where �̃b
i and γ̃ b

i are defined as

�̃b
i = [

Cov(̃xi , x̃i )
]−1

, γ̃ i = Cov(̃xi , xi),

with x̃i,k = G( i
n
,Fi−k), k = 1,2, . . . , b. The following lemma shows that φb

i can be well
approximated by φb( i

n
) when i > b.

LEMMA 2.8. Under Assumption 2.2 and the assumption (2.7), there exists some constant
C > 0, such that for all j ≤ b,

sup
i>b

∣∣∣∣φij − φj

(
i

n

)∣∣∣∣ ≤ Cn−1+2/τ .
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Lemma 2.8 claims that each off-diagonal element {φij }ni=b can be well approximated by
a smooth function φj (·). It provides the second dimension reduction. Due to the smoothness
of φj (·), it can be well approximated by a sieve expansion of order c, where c � n. This will
further reduce the dimension of the parameter space from O(nb) to O(bc). Throughout of
the rest of the paper, unless otherwise specified, we will always assume b = O(n2/τ ). Recall
that εi is the prediction error with variance σ 2

i ,

(2.13) εi = xi − x̂i .

We define ε̃i := xi − ∑min(b,i−1)
j=1 φijxi−j . First of all, we deduce from Proposition 2.7 and

Assumption 2.2 that

(2.14) max
1≤i≤n

|εi − ε̃i | = o
(
n−3)

in probability.

Denote σ̃ 2
i as the variance of {̃εi}. Then, we have

LEMMA 2.9. Suppose Assumption 2.2 and (2.7) hold true. We have supi σ̃
2
i < ∞. Fur-

thermore, denote the physical dependence measure of {̃εi} as δε(j, q). Then, there exists some
constant C > 0, such that for δε(j, q) ≤ Cj−τ .

REMARK 2.10. In this paper we focus on the discussion when the physical dependence
measure is of polynomial decay, that is, (2.3) holds true. However, all our results can be
extended to the case when it is of exponential decay

(2.15) δ(j, q) ≤ Caj , 0 < a < 1.

In detail, Lemma 2.6 can be changed to supt |γ (t, j)| < Caj , j ≥ 1. Therefore, we only need
to choose b = O(logn). As a consequence, Proposition 2.7 can be updated to

sup
i>b

|φij | ≤ max
{
Cn−C,Caj }

, sup
i

∥∥φb
i − φ̃

b
i

∥∥ ≤ Cn−C,

where C > 1 is some constant. Similarly, Lemma 2.8 can be modified to

sup
i>b

∣∣∣∣φij − φj

(
i

n

)∣∣∣∣ ≤ C logn

n
, for all j ≤ b.

Finally, the analog of Lemma 2.9 is δε(j, q) ≤ Caj .

3. Estimation of precision matrices. As shown in (1.2), Proposition 2.7 and Lem-
ma 2.8, in order to estimate � it suffices to estimate φij , i ≤ b, φj (

i
n
), i > b ≥ j and the

variances of the residuals. When i > b, by (2.5) and Proposition 2.7, it is easy to see that

sup
i

∣∣∣∣∣
i−1∑

j=b+1

φijxi−j

∣∣∣∣∣ = o
(
n−1)

in probability.

Therefore, we can simply write

(3.1) xi =
b∑

j=1

φijxi−j + εi + ou

(
n−1)

, i = b + 1, . . . , n,

where Xi = ou(n
−1) means nXi converges to zero in probability uniformly.
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3.1. Estimating φij for i > b. We first estimate the time-varying coefficients φj (
i
n
) using

the method of sieves [1, 6, 7] when i > b.

LEMMA 3.1. Under Assumptions 2.2 and 2.3, for any j ≤ b, we have that φj (t) ∈
Cd([0,1]).

Based on the above lemma, we use

(3.2) θj

(
i

n

)
:=

c∑
k=1

ajkαk

(
i

n

)
, j ≤ b,

to approximate φj (
i
n
), where {αk(t)} is a set of prechosen orthogonal basis functions on

[0,1] and c ≡ c(n) stands for the number of basis functions. In the present paper, unless
otherwise specified, we always set c = O(nα1). The estimation of θj (t) boils down to that of
the ajk’s. Next, the results of the convergent rate on the approximation (3.2) can be found in
[6], Section 2.3. We summarize it in the following lemma.

LEMMA 3.2. Denote the sup-norm with respect to Lebesgue measure as

L∞ := sup
t∈[0,1]

∣∣φj (t) − θj (t)
∣∣.

We have that L∞ = O(c−d) for the orthogonal polynomials, trigonometric polynomials,
spline series with order r when r ≥ d + 1 and orthogonal wavelets with degree m when
m > d .

Then, we impose the following regularity condition on the basis functions.

ASSUMPTION 3.3. Let ⊗ be the Kronecker product. For any k = 1,2, . . . , b, denote
�k(t) ∈ R

k×k via �k
ij (t) = γ (t, |i − j |), we assume the eigenvalues of

(3.3) �k :=
∫ 1

0
�k(t) ⊗ (

b(t)b∗(t)
)
dt

are bounded above and also away from zero by a constant κ > 0, where b(t) = (α1(t), . . . ,

αc(t))
∗ ∈ R

c. Further, we assume that (2.7) holds.

Since �k(t) ⊗ (b(t)b∗(t)) is positive semidefinite for any t ∈ [0,1], the above integral is
always positive semidefinite. Assumption 3.3 is mild. It is clear that when xi is a station-
ary process, the assumption will hold immediately due to the orthonormality of the basis
functions. We next provide one specific nonstationary example. Consider a locally stationary
MA(q) process of the form

(3.4) G(t,Fi) =
q∑

j=1

aj (t)εi−j + εi, 1 ≤ q < ∞,

where εi are i.i.d. centered random variables with variance 1. The following lemma shows,
under suitable conditions, Assumption 3.3 holds true for (3.4).

LEMMA 3.4. Suppose the assumptions of Example 2.4 hold for (3.4) and

(3.5) sup
t

q∑
i=1

∣∣aj (t)
∣∣ < 1.

Then, Assumption 3.3 holds for (3.4) and any orthonormal basis functions.
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Next, we impose the following mild assumption on the parameters.

ASSUMPTION 3.5. We assume that for τ defined in (2.3), d defined in Assumption 2.3
and α1, there exists a constant C > 4, such that

C

τ
+ α1 < 1, dα1 > 2.

Note that the above assumption can be easily satisfied by choosing C < τ and α1, ac-
cordingly. When the physical dependence is of exponential decay, we only need α1 < 1 and
dα1 > 2.

We now estimate φij . Under Assumption 3.5, by (3.1), (3.2) and Lemma 3.2, we can write

(3.6) xi =
b∑

j=1

c∑
k=1

ajkzkj

(
i

n

)
+ εi + ou

(
n−1)

, i = b + 1, . . . , n,

where zkj (
i
n
) := αk(

i
n
)xi−j . In view of (3.6), we can use the ordinary least square (OLS)

method to estimate the coefficients ajk . Denote the vector β ∈ R
bc by βs = ajs,ks , where

js = � s
c
� + 1, ks = s − � s

c
� × c. Similarly, we define yi ∈ R

bc by letting yis = zks,js (
i
n
).

Furthermore, we denote Y ∗ as the bc × (n − b) design matrix of (3.6) whose columns are
yi , i = b + 1, . . . , n. We also denote by x ∈ R

n−b the vector of xb+1, . . . , xn. Hence, the OLS
estimator for β can be written as β̂ = (Y ∗Y)−1Y ∗x.

Recall xi = (xi−1, . . . , xi−b)
∗ ∈ R

b. Denote X = (xb+1, . . . ,xn) ∈ R
b×(n−b) and the ma-

trices Ei ∈ R
(n−b)×(n−b) such that (Ei)st = 1, when s = t = i − b and (Ei)st = 0 otherwise.

As a consequence we can write

(3.7) Y ∗ =
n∑

i=b+1

(
X ⊗ b

(
i

n

))
Ei.

Observe that

(3.8) β̂ = β +
(

Y ∗Y
n

)−1 Y ∗ε
n

+ oP
(
n−1)

,

where ε ∈ R
n−b consists of εb+1, . . . , εn and the error is entrywise. We decompose β into b

blocks by denoting β = (β∗
1, . . . ,β

∗
b)

∗, where each βi ∈ R
c. Similarly, we can decompose β̂ .

Therefore, our sieve estimator can be written as φ̂j (
i
n
) = β̂

∗
j b( i

n
), and it satisfies that

(3.9) φj

(
i

n

)
− φ̂j

(
i

n

)
= (βj − β̂j )

∗b
(

i

n

)
.

We impose the following assumption on the derivative of the basis functions which is also
used in [7], Assumption 4.

ASSUMPTION 3.6. There exist constants ω1,ω2 ≥ 0 such that

sup
t

∥∥∇b(t)
∥∥ ≤ Cnω1cω2, C > 0 is some constant.

The above assumption is satisfied by many of the widely used basis functions. For in-
stance, we can choose ω1 = 0, ω2 = 1

2 for trigonometric polynomials, spline series, orthog-
onal wavelets and weighted Chebyshev polynomials. For more examples satisfying this as-
sumption, we refer to [7], Section 2.1.
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THEOREM 3.7. Under Assumptions 2.2, 2.3, 3.3, 3.5 and 3.6, we have

sup
i>b,j≤b

∣∣∣∣φj

(
i

n

)
− φ̂j

(
i

n

)∣∣∣∣ = OP

(
ζc

√
logn

n
+ n−dα1

)
.

By carefully choosing c = O(nα1), we show that φ̂j (
i
n
) are consistent estimators for φj (

i
n
)

uniformly in i for all j ≤ b in Theorem 3.7. Denote ζc := supi ‖b( i
n
)‖, as discussed in [1],

Section 3; we can write ζc = O(nα∗
1 ), where α∗

1 = 1
2α1 for trigonometric polynomials, spline

series, orthogonal wavelets and weighted orthogonal Chebyshev polynomials. And α∗
1 = α1

for Legendre orthogonal polynomials. Further, by choosing α∗
1 = 1

2α1, we can show our es-
timators attain the optimal minimax convergent rate (n/(logn))−d/(2d+1) for nonparametric
regression established by Stone in [25].

COROLLARY 3.8. Under Assumptions 2.2, 2.3, 3.3, 3.5 and 3.6, using the trigonometric
polynomials, spline series, orthogonal wavelets and weighted orthogonal Chebyshev polyno-
mials, when c = O((n/(logn))1/(2d+1)), we have

sup
i>b,j≤b

∣∣∣∣φj

(
i

n

)
− φ̂j

(
i

n

)∣∣∣∣ = OP

((
n/(logn)

)−d/(2d+1))
.

3.2. Estimating φij for i ≤ b. It is notable that by Lemma 2.8, when i, j are less or equal
to b, we cannot use the estimators derived from Section 3.1. Instead, a different series of least
squares linear regressions should be used. For instance, to estimate φ21, we use the following
regression equations:

xk = φk1xk−1 + ξk,2, k = 2,3, . . . , n.

Note that ξ2,2 = ε2. Due to the local stationarity assumption, there exists a smooth func-
tion f21, such that φk1 ≈ f21(

k
n
), k = 2,3, . . . , n. Here, f21 can be estimated using the sieve

method as described by the previous discussions and φ21 can be estimated by f̂21(2/n). Gen-
erally, for each fixed i ≤ b, to estimate φi we make use of the following predictions:

(3.10) xk =
i−1∑
j=1

λk
ij xk−j + ξk,i, k = i, i + 1, . . . , n,

where λk
i = (λk

i1, . . . , λ
k
i,i−1) are the coefficients of the best linear prediction, using the i − 1

predecessors. Note that λi
i = φi . Using the Yule–Walker equation, we find λk

i = �k
i γ

k
i ,

where �k
i = [Cov(xk

i ,xk
i )]−1, γ k

i = Cov(xk
i , xk) and xk

i = (xk−1, . . . , xk−i+1). Due to As-
sumption 2.3, we define fki = (f i

1 ( k
n
), . . . , f i

i−1(
k
n
)) by

(3.11) fki = �̃k
i γ̃

k
i ,

with �̃k
i , γ̃ k

i defined by �̃k
i = [Cov(̃xk

i , x̃k
i )]−1, γ̃ k

i = Cov(̃xk
i , x̃k), where x̃k

i,j = G(k
n
,Fi−j ).

The following lemma shows that λk
i,j can be approximated by a smooth function f i

j (t).

LEMMA 3.9. Under Assumptions 2.2, 2.3 and the assumption (2.7), for each fixed i ≤ b

and for any j ≤ i − 1, f i
j (t) are Cd functions on [0,1]. Furthermore, for some constant

C > 0, we have

sup
k≥i

∣∣∣∣λk
ij − f i

j

(
k

n

)∣∣∣∣ ≤ C
(
n−1+2/τ + n−dα1

)
.
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In particular, when k = i, we have

(3.12)
∣∣∣∣φij − f i

j

(
i

n

)∣∣∣∣ ≤ C
(
n−1+2/τ + n−dα1

)
, j < i ≤ b.

Therefore, the rest of the work leaves to estimate the functions f i
j (t), j < i ≤ b, using sieve

approximation by denoting f i
j (t) = ∑c

k=1 djkαk(t) + O(c−d), where we recall Lemma 3.2.
Then, the above sieve expansion is plugged into (3.10). An OLS regression is then used to
estimate the djk . We denote the OLS estimator of f i

j ( i
n
) as f̂ i

j ( i
n
) = ∑c

k=1 d̂jkαk(
i
n
).

THEOREM 3.10. Under Assumptions 2.2, 2.3, 3.3, 3.5 and 3.6, we have

sup
i≤b,j<i

∣∣∣∣f i
j

(
i

n

)
− f̂ i

j

(
i

n

)∣∣∣∣ = OP

(
ζc

√
logn

n
+ n−dα1

)
.

Similar to the discussion of Corollary 3.8, using the trigonometric polynomials, spline
series, orthogonal wavelets and weighted orthogonal Chebyshev polynomials and setting
c = O((n/(logn))1/(2d+1)), we can obtain the optimal minimax convergent rate from Theo-
rem 3.10.

3.3. Sieve estimation for noise variances. This subsection is devoted to the estimation of
{σ 2

i }ni=1. We discuss the cases for i > b and i ≤ b separately. For i > b, denote εb
i = xi −∑b

j=1 φijxi−j and (σ b
i )2 = E(εb

i )2. σi can be well approximated using σb
i by the following

lemma.

LEMMA 3.11. Under Assumptions 2.2 and 2.3 and the assumption (2.7), for i > b and
some constant C > 0, we have

sup
i>b

∣∣σ 2
i − (

σb
i

)2∣∣ ≤ Cn−2+2/τ .

Furthermore, denote g( i
n
) = E(xi − ∑b

j=1 φijG( i
n
,Fi−j ))

2, we have

sup
i>b

∣∣∣∣(σb
i

)2 − g

(
i

n

)∣∣∣∣ ≤ Cn−1+4/τ .

Finally, g( i
n
) ∈ Cd([0,1]).

Lemma 3.11 indicates that {σ 2
i }i≥b can be well approximated by a Cd function g(·). De-

note rb
i = (εb

i )2; it is notable that rb
i cannot be observed directly. Instead, we use r̂b

i = ε̂2
i ,

where

(3.13) ε̂i = xi −
b∑

j=1

c∑
k=1

âjkzkj

(
i

n

)
, i = b + 1, . . . , n.

By Theorem 3.7 and Assumption 3.5 we conclude that

(3.14) sup
i>b

∣∣rb
i − r̂b

i

∣∣ = OP

(
n2/τ

(
ζc

√
logn

n
+ n−dα1

))
.

Invoking Lemma 3.2 and Assumption 3.5, for i > b, we can therefore utilize the method of
sieves and write

(3.15) r̂b
i =

c∑
k=1

dkαk

(
i

n

)
+ ωb

i + OP

(
n2/τ

(
ζc

√
logn

n
+ n−dα1

))
.
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The coefficients dk’s are then estimated via OLS. Similar to Lemma 2.9, we can show that
the physical dependence measure of ωb

i is also of polynomial decay. Therefore, the OLS
estimator for α = (d1, . . . , dc)

∗ can be written as α̂ = (W ∗W)−1W ∗̂r, where W ∗ is an c ×
(n − b) matrix whose ith column is (α1(

i+b
n

), . . . , αc(
i+b
n

))∗, i = 1,2, . . . , n − b and r̂ is
an R

n−b containing r̂b
b+1, . . . , r̂

b
n . We have the following consistency result. Denote σ̂ 2

i =
ĝ(i/n) = ∑c

k=1 d̂kαk(i/n), i > b.

THEOREM 3.12. Suppose Assumptions 2.2, 2.3, 3.3, 3.5 and 3.6 hold true. Then, we
have

(3.16) sup
i>b

∣∣σ̂ 2
i − σ 2

i

∣∣ = OP

(
n2/τ

(
ζc

√
logn

n
+ n−dα1

))
.

Finally, we study the estimation of σ 2
i , i = 1,2, . . . , b which enjoys the same discussion as

in Section 3.2. Recall ξk,i defined in (3.10). Denote (σk,i(ξ))2 = E(ξk,i)
2; using a discussion

similar to Lemma 3.11, we can find a smooth function gi , such that supk supi≤b |(σk,i(ξ))2 −
gi( k

n
)| ≤ O(n−1+4τ ). In particular, we can use gi( i

n
) to estimate σ 2

i . When i = 1, we need to
estimate the variance function of x1.

The rest of the work leaves to estimate gi(t) using the sieve method similar to (3.15) for
i ≤ b, where we replace the errors with r̂ i

k, k = i, . . . , n. Here, r̂ i
k is defined as

(3.17) r̂ i
k :=

(
xi −

i−1∑
j=1

f̂ i
j

(
k

n

)
xi−j

)2

, k = i, i + 1, . . . , n.

Then, for i ≤ b, we can estimate ĝi( i
n
) using the method of sieves similarly, except that the

dimension of W ∗ is c × (n + 1 − i). The results are summarized in the following theorem.
Denote σ̂ 2

i = ĝi(i/n).

THEOREM 3.13. Suppose Assumptions 2.2, 2.3, 3.3, 3.5 and 3.6 hold true. Then, we
have

(3.18) sup
i≤b

∣∣σ̂ 2
i − σ 2

i

∣∣ = OP

(
n2/τ

(
ζc

√
logn

n
+ n−dα1

))
.

In the finite sample case, for positiveness, we suggest simply choose

(3.19)
(
σ̂ ∗

i

)2 =
⎧⎨⎩σ̂ 2

i if σ̂ 2
i > 0;

1

n
if σ̂ 2

i ≤ 0.

Since n−1 is much smaller than the right-hand side of (3.16) and (3.18), (3.19) will not
influence the results in Theorems 3.12 and 3.13.

3.4. Precision matrix estimation. From the Cholesky decomposition of (1.2), it is natural
to choose �̂ := �̂∗̂̃D�̂ as our estimator for the precision matrix. As we discussed in the
previous sections, here �̂ is a lower triangular matrix whose diagonal entries are all ones.
For the off-diagonal entries, when i > b and j ≤ b, its (i, i − j)th entry is −φ̂j (

i
n
) defined

in Section 3.1. And when i ≤ b, �i,i−j is estimated using −f̂ i
j ( i

n
) from Section 3.2. All

other entries of �̂ are set to be zeros. Finally, ̂̃D is a diagonal matrix with entries {(σ̂ ∗
i )−2}

estimated from (3.19). Observe that �̂ is always positive definite.
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We now discuss the computational complexity of estimating �. It is easy to see that when
i > b, the number of regressors is bc and length of observation is n− b. Hence, the computa-
tional complexity of the least squares regression is O(n(bc)2). Similar discussion can be ap-
plied for i ≤ b, and we hence conclude that the computational complexity for estimating �̂ is
of the order O(nb3c2). As a result the computational complexity of our estimation is adaptive
to the smoothness of the underlying data generating mechanism and the decay rate of tempo-
ral dependence. In the best scenario, when assumption (2.15) holds and γ (t, j) ∈ C∞([0,1]),
our procedure only requires O(n log5 n) operations.

In the following we shall control the estimation error between � and �̂. We first observe
that, as det(��∗) = det(�̂�̂∗) = 1, combining with Assumption 2.2, there exist some con-
stants C1,C2 > 0, such that

C1 ≤ λmin
(
��∗) ≤ λmax

(
��∗) ≤ C2.

Similar results hold for �̂�̂∗.

THEOREM 3.14. Under Assumptions 2.2, 2.3, 3.3, 3.5 and 3.6, we have

(3.20) ‖� − �̂‖ = OP

(
n4/τ

(
n−dα1 + ζc

√
logn

n

))
.

Recall that ‖ · ‖ denotes the operator norm of a matrix. It can be seen from the above
theorem that the estimation accuracy of precision matrices depends on the decay rate of
the dependence and the smoothness of the covariance functions. The estimation accuracy
gets higher for time series with smoother covariance functions and faster decay speed of
dependence.

REMARK 3.15. Under the assumption (2.15), when we apply Gershgorin circle theorem
to our proof, we only need O(logn) matrix entries to bound the error terms. Hence, we can
change (3.20) to

‖� − �̂‖ = OP

(
log2 n

(
n−dα1 + ζc

√
logn

n

))
.

In the best scenario, where the dependence is exponentially decaying and φj (·) and g(·) are
infinitely differentiable, following the same arguments as those in the proof of Theorem 3.14,
it is easy to show the convergence rate of �̂ is of the order log3 n/

√
n which is almost as fast

as parametrically estimating a single parameter from i.i.d. samples.

4. Testing the structure of the precision matrices. An important advantage of our
methodology is that we can test many structural assumptions of the precision matrices us-
ing some simple statistics in terms of the entries of �̂.

4.1. Test statistics. In this subsection we focus on discussing two fundamental tests in
nonstationary time series analysis. One of those is to test whether the observed samples are
from a nonstationary white noise process in the sense that Cov(xi, xj ) = δijσ

2
i , where δij is

the Dirac delta function such that δij = 1 when i = j and δij = 0 otherwise. Note that we
allow heteroscedasticity by assuming that the variance of xi changes over time. Formally, we
would like to test

H1
0 : {xi} is a nonstationary white noise process.
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Recall (2.12). Under H1
0, we shall have that φj (

i
n
) are all zeros. Therefore, our estimation

φ̂j (
i
n
) should be small for all pairs i, j , i �= j . We hence use

(4.1) T ∗
1 =

b∑
j=1

∫ 1

0
φ̂2

j (t) dt.

The second hypothesis of interest is whether the precision matrices are banded. In our setup
the Cholesky decomposition provides a convenient way to test the bandedness. Formally, for
any k0 ≡ k0(n) < b, we are interested in testing the following hypothesis:

H2
0 : The precision matrix of{xi}is k0-banded.

Due to (1.2), as � is strictly positive definite, the Cholesky decomposition is unique. There-
fore, we conclude that � is also k0-banded using the discussion in [23], Section 2. Further-
more, under H2

0 we have that φj (
i
n
) = 0, for j > k0. Therefore, it is natural for us to use the

following statistic:

T ∗
2 =

b∑
j=k0+1

∫ 1

0
φ̂2

j (t) dt.

It is notable that both T ∗
1 and T ∗

2 can be written into summations of quadratic forms under
the null hypothesis. For instance, for T ∗

1 under H1
0, we have

φ̂2
j (t) = (

φ̂j (t) − φj (t)
)2

.

For any fixed j ≤ b, we have∫ 1

0

(
φj (t) − φ̂j (t)

)2
dt =

c∑
k=1

(âjk − ajk)
2 + O

(
n−dα1

)
.

It can be seen from the above equation that the order of smoothness and number of basis
functions are important to our analysis. Under Assumption 3.5 we can see that the error
O(n−dα1) is negligible. Recall (3.8). It is easy to see that for � := �b defined in (3.3), we
have that

(4.2)
b∑

j=1

∫ 1

0

(
φj (t) − φ̂j (t)

)2
dt = ε∗Y

n
�−1

b∑
j=1

A∗
jAj�

−1 Y ∗ε
n

+ oP(1),

where Aj ∈ R
bc is a diagonal block matrix whose j th diagonal block being the identity

matrix and zeros otherwise. Therefore, the investigation of T ∗
1 boils down to the analysis of

quadratic forms of a bc dimensional locally stationary time series {Y ∗ε}.

REMARK 4.1. In the current paper we focus our discussion on the white noise and band-
edness tests. However, many other tests could be performed using our framework. Recall
(1.1). Another possible test is to check whether the time series {xi} is correlation stationary,
that is, corr(xi, xj ) = r(|i − j |) for some function r . In this situation the null hypothesis can
be formulated as

H3
0 : φij ≡ φj , for all j.

Test of H3
0 is possible through our framework provided that an appropriate and theoretically

tractable test statistic is constructed. We shall investigate this in some future work.



2470 X. DING AND Z. ZHOU

4.2. Diverging dimensional Gaussian approximation. As we have seen from the pre-
vious subsection, both test statistics are involved with high-dimensional quadratic forms.
Observe that the distribution of quadratic forms of Gaussian vectors can be derived using
Lindeberg’s central limit theorem. Hence, our case can be tackled if we could establish a
Gaussian approximation to the quadratic form (4.2) of general nonstationary time series. In
this subsection we will prove a Gaussian approximation result for the quadratic form Z∗EZ,
where Z := ε∗Y√

n
∈ R

bc and E is a bounded positive semidefinite matrix. Denote p = bc and

zi = (zi1, . . . , zip)∗, where

(4.3) zis = xi−s̄−1εiαs′
(

i

n

)
, s̄ =

⌊
s

c

⌋
, s′ = s − s̄c, i ≥ b + 1.

As a consequence we can write Z := (Z1, . . . ,Zp) = 1√
n

∑n
i=b+1 zi . Denote U = 1√

n
×∑n

i=b+1 ui , where {ui}ni=b+1 are centered Gaussian random vectors independent of {zi}ni=b+1
and preserve their covariance structure. Our task is to control the following Kolmogorov dis-
tance:

(4.4) ρ := sup
x∈R

∣∣P (
Rz ≤ x

) − P
(
Ru ≤ x

)∣∣,
where Rz = Z∗EZ, Ru = U∗EU.

Denote ξc := supi,t |αi(t)|. It is notable that ξc can be well controlled for the commonly
used basis functions. For instance, for the trigonometric polynomials and the weighted
Chebyshev polynomials of the first kind, ξc = O(1), and, for orthogonal wavelet, ξc =
O(

√
c). The following theorem establishes the Gaussian approximation for high-dimensional

quadratic forms under physical dependence.

THEOREM 4.2. Suppose Assumptions 2.2, 2.3, 3.3, 3.5 and 3.6 hold true. Then, for some
constant C > 0, we have

ρ ≤ Cl(n),

where l(n) is defined as

l(n) = ψ−1/2 + ξcpψ
q

q+1 M
q(−τ+1)

q+1 + ξcM
−1
x ψ2p4 + M2

√
n
ψ3p6

+ pψ

(
ξ

1/2
c

M
5/6
x

+
√

M

M3
x

)√
log

p

γ
+ γ,

where Mx,ψ,M → ∞ and γ → 0 when n → ∞.

4.3. Asymptotic normality of test statistics. With the above preparation we now derive
the distributions for the test statistics T ∗

1 and T ∗
2 defined in Section 4.1. First of all, under H1

0,
we have

nT ∗
1 =

b∑
j=1

c∑
k=1

â2
jk = β̂

∗
β̂ = ε∗Y√

n
�−2 Y ∗ε√

n
+ oP(1),(4.5)

where we recall (3.8). We can analyze T ∗
2 in the same way using

nT ∗
2 =

b∑
j=k0+1

c∑
k=1

â2
jk

= (Aβ̂)∗(Aβ̂)

= ε∗Y√
n

�−1A∗A�−1 Y ∗ε√
n

+ oP(1),
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where A ∈ R
bc×bc is a block diagonal matrix with the nonzero block being the lower (b −

k0)c × (b − k0)c major part.
Note that 1√

n
Y ∗ε ∈ R

p is a block vector with size c, where the j th entry of the i-block is
1√
n

∑n
k=b+1 xk−iεkαj (

k
n
). We can therefore rewrite it as

1√
n
Y ∗ε = 1√

n

n∑
i=b+1

hi ⊗ b
(

i

n

)
,

where hi = xiεi . For i > b, hi can be regarded as a locally stationary time series, that is,
hi = U( i

n
,Fi). Denote the long-run covariance matrix of {hi} as

�̄(t) =
∞∑

j=−∞
Cov

(
U(t,Fj ),U(t,F0)

)
,

and we further define

(4.6) � =
∫ 1

0
�̄(t) ⊗ (

b(t)b∗(t)
)
dt.

For k ∈ N, denote

fk = (
Tr

[(
�1/2�−2�1/2)k])1/k

, gk = (
Tr

[(
�1/2�−1A∗A�−1�1/2)k])1/k

.

We next summarize the limiting distributions of T ∗
1 and T ∗

2 .

THEOREM 4.3. Suppose Assumptions 2.2, 2.3, 3.3, 3.5 and 3.6 hold true. Then, if l(n) →
0, we have

(1) Under H1
0, we have

nT ∗
1 − f1

f2
⇒ N (0,2).

Furthermore, there exist some positive constants ci,Ci, i = 1,2, such that

c1 ≤ f1

bc
≤ C1, c2 ≤ f2√

bc
≤ C2.

(2) Under H2
0, we have

nT ∗
2 − g1

g2
⇒ N (0,2).

Furthermore, there exist some positive constants wi , Wi , i = 1,2, such that

w1 ≤ g1

(b − k0)c
≤ W1, w2 ≤ g2√

(b − k0)c
≤ W2.

Finally, we discuss the local power of our tests. We will only focus on the white noise test
and similar discussion can be applied to the bandedness test. Consider the local alternative

Ha : n
∑∞

j=1
∫ 1

0 γ 2(t, j) dt√
bc

→ ∞.

The following proposition states that, under Ha , the power of our test will asymptotically
be 1.
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PROPOSITION 4.4. Under Assumptions 2.2, 2.3, 3.3, 3.5 and 3.6, when the alternative
hypothesis Ha holds true, for any given significant level α, we have

P

(∣∣∣∣nT ∗
1 − f1

f2

∣∣∣∣ ≥ √
2Z1−α

)
→ 1, n → ∞,

where Z1−α is the (1 − α)% quantile of the standard normal distribution.

Proposition 4.4 states that the white noise test has asymptotic power 1 whenever∑∞
j=1

∫ 1
0 γ 2(t, j) dt � √

bc/n. In an interesting special case when
∫ 1

0 γ 2(t, ji) dt � √
bc/

(nk), i = 1,2, . . . , k, T ∗
1 achieves asymptotic power 1. Note that if k here is large, then we

conclude that alternatives consist of many very small deviations from the null can be picked
up by the L2 test T ∗

1 . On the contrary, maximum deviation or L∞ norm based tests will not
be sensitive to such alternatives.

4.4. Practical implementation. It can been seen from Theorem 4.3 that the key to imple-
menting the tests is to estimate the covariance matrix of the high dimensional vector {xiεi}.
A disadvantage of using (4.5) is that the basis functions are mixed with {xi}. In the present
subsection we provide practical implementation by representing nT ∗

1 and nT ∗
2 into different

forms in order to separate the data and the basis functions. We focus our discussion on nT ∗
1 .

For i > b, j ≤ b, denote the vector Bj (
i
n
) ∈ R

bc with b-blocks, where the j th block is the
basis b( i

n
) and zeros otherwise. Therefore, for all j ≤ b, b < i ≤ n, we have

(4.7)
(
φj

(
i

n

)
− φ̂j

(
i

n

))2
= B

∗
j

(
i

n

)
�−1 Y ∗ε

n

ε∗Y
n

�−1
Bj

(
i

n

)
+ oP(1).

Denote q∗
ij = B

∗
j (

i
n
)�−1 ∈ R

bc and qijk as the kth block of qij of size c. As a consequence
we can write

(4.8) q∗
ij

Y ∗ε
n

= 1

n

n∑
k=b+1

h∗
k q̃k

ij ,

where we recall hk = εkxk , q̃k
ij ∈ R

b is denoted by (q̃k
ij )s = q∗

ijsb( k
n
). Denote Qij ∈

R
(n−b)b×(n−b)b as a block matrix with size b × b whose (k1, k2)th block is qk̃1

ij (qk̃2
ij )∗. Fur-

thermore, we denote

Q

(
i

n

)
=

b∑
j=1

Qij , Qk0

(
i

n

)
=

b∑
j=k0

Qij .

By (4.8) and Theorem 4.3 it suffices to study the following quantity:

n2T ∗∗
1 = (

�
1/2
L zL

)∗(∫ 1

0
Q(t) dt

)(
�

1/2
L zL

)
,

where �L is the covariance matrix of h = (hb+1, . . . ,hn)
∗ and zL ∼ N (0, I), I ∈ R

(n−b)b.
Similarly, we use the following statistic to study H2

0:

n2T ∗∗
2 = (

�
1/2
L zL

)∗(∫ 1

0
Qk0(t) dt

)(
�

1/2
L zL

)
.

The above expressions are useful for our practical implementation as they provide us a
way to separate the deterministic basis functions and the random part. Hence, we only need
to estimate the covariance matrix �L for h. Next, we will provide a nonparametric estimator
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for �L. Similar ideas have been employed to estimate the long-run covariance matrix in [40]
for fixed dimensional random vectors.

We observe that the covariance matrix of h is a (n − b) × (n − b) block matrix with block
size b. We first consider the diagonal part, where each block �k is the covariance matrix of
hk, k = b + 1, . . . , n. Recall that we can write {hk} into a sequence of locally stationary time
series {U( k

n
,Fk)}nk=b+1. Denote

�(t, j) = Cov
(
U(t,F0),U(t,Fj )

)
.

The following lemma shows that �kk , which is the kth diagonal block of �L, can be well
estimated by �(k

n
,0) for any k > b.

LEMMA 4.5. Under Assumptions 2.2 and 2.3 and the assumption (2.7), we have

sup
k>b

∥∥∥∥�(
k

n
,0

)
− �kk

∥∥∥∥ = O
(
n−1+4/τ )

.

Next, we consider the upper-off-diagonal blocks. For any b < k ≤ n − b + 1, we find that
for j > b + k, for some constant C > 0, we have

(4.9) ‖�kj‖ ≤ C(j − b)−τ+1,

where we use a discussion similar to Lemma 2.6 and Gershgorin circle theorem. As a con-
sequence we only need to estimate the blocks �kj for k < j ≤ k + b. Similar to Lemma 4.5,
we have ∥∥∥∥�(

k

n
, j

)
− �kj

∥∥∥∥ = O
(
n−1+4/τ )

.

Hence, we propose to estimate �(t, j),0 ≤ j ≤ b using the kernel estimators. For a smooth
symmetric density function Kh defined on R supported on [−1,1], where h ≡ hn is the
bandwidth such that h → 0, nh → ∞. We write

�̂(t, j) = 1

nh

n−j∑
k=b+1

K

(
k/n − t

h

)
hkh∗

k+j , 0 ≤ j ≤ b.

Finally we define �̂L as the estimator by setting its blocks

(4.10) (�̂L)kk = �̂

(
b + k

n
,0

)
, (�̂L)kj = �̂

(
k + b

n
, j

)
,

and zeros otherwise, where k = 1,2, . . . , n− b, k < j ≤ k + b. We can prove that our estima-
tors are consistent under mild assumptions.

THEOREM 4.6. Under Assumptions 2.2 and 2.3 and the assumption (2.7), let h → 0 and
nh → ∞, for j = 0,1,2, . . . , b, we have

(4.11) sup
t

∥∥�(t, j) − �̂(t, j)
∥∥ = OP

(
b

(
1√
nh

+ h2
))

.

As a consequence we have

(4.12) ‖�L − �̂L‖ = OP

(
b2

(
1√
nh

+ h2
))

.
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In practice, the true εi is unknown, and we have to use ε̂i defined in (3.13). We then define

�̃(t, j) = 1

nh

n−j∑
k=b+1

K

(
k/n − t

h

)
ĥkĥ∗

k+j , 0 ≤ j ≤ b,

where ĥk := xkε̂k . Similarly, we can define the estimation �̃L. The analog of Theorem 4.6 is
the following result.

THEOREM 4.7. Under the assumptions of Theorem 4.6 and Assumptions 3.3, 3.5 and
3.6, we have

sup
t

∥∥�(t, j) − �̃(t, j)
∥∥ = OP

(
b

(
1√
nh

+ h2 + θn

))
,

where θn is defined as

θn =
√

b

nh

(
ζc

√
logn

n
+ n−dα1

)
.

As a consequence we have

‖�L − �̃L‖ = OP

(
b2

(
1√
nh

+ h2 + θn

))
.

By Theorems 4.3, 4.6 and 4.7, we now propose the following practical procedure to test
H1

0 (the implementation for H2
0 is similar):

1. For j = 1,2, . . . , b, i = b + 1, . . . , n, estimate �−1 using n(Y ∗Y)−1 and calculate
Qij by the definitions.

2. Choose the tuning parameters b and c according to Section 4.5.
3. Estimate �L using (4.10) from the samples {̂hk}nk=b+1.
4. Generate B (say 2000) i.i.d. copies of Gaussian random vectors zi , i = 1,2, . . . ,B .

Here, zi ∼ N (0, I). For each k = 1,2, . . . ,B , calculate the following Riemann summation:

T 1
k = 1

n2

b∑
j=1

n∑
i=b+1

(�̂Lzk)
∗Qij (�̂Lzk).

5. Let T 1
(1) ≤ T 1

(2) ≤ · · · ≤ T 1
(B) be the order statistics of T 1

k , k = 1,2, . . . ,B . Reject H1
0

at the level α if T ∗
1 > T 1

(�B(1−α)�), where �x� stands for the largest integer smaller or equal to

x. Let B∗ = max{k : T 1
(k) ≤ T ∗

1 }, the p-value can be denoted as 1 − B∗/B .

4.5. Choices of tuning parameters. In this subsection we briefly discuss the practical
choices of the key parameters, that is, the lag b of the auto-regression in Cholesky decom-
position, the number of basis functions in sieve estimation and the bandwith selection in the
nonparametric estimation of covariance matrix.

Similar to the discussion in Section 4.1, by Proposition 2.7, Lemma 2.8 and Theorem 3.7,
for any given sufficiently large b0 ≡ b0(n), the following statistic should be small enough:

Tb =
b0∑

j=b1

∫ 1

0
φ̂2

j (t) dt.

If the b1th to b0th off-diagonal elements of � are zero, by Theorem 4.3, Tb is normally
distributed. Hence, we can follow the procedure described in the end of Section 4.4. For each
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fixed b1 < b0, we can formulate the null hypothesis as Hb1
0 : kth off-diagonal element of � is

zero for all k ≥ b1. Given level α, denote

b∗ = max
b1

{
b1 < b0 : Hb

0 is rejected
}
.

Then, we can choose b = b∗. Note that b∗ + 1 is the first off diagonal where all its entries are
effectively zeros in terms of statistical significance.

The number of basis functions can be chosen using model selection methods for nonpara-
metric sieve estimation. However, due to nonstationarity, the classic Akaike information crite-
rion (AIC) may fail under heteroskedasticity. In the present paper we use the cross-validation
method described in [16], Section 8, where the cross-validation criterion is defined as

CV(c) = 1

n

n∑
i=2

ε̂2
ic

(1 − υic)2 ,

where {̂εic} are the estimation residuals using sieve method with order of c and υic is the
leverage defined as υic = y∗

i (Y
∗Y)yi , where we recall (3.7). Hence, we can choose

ĉ = argmin
1≤c≤c0

CV(c),

where c0 is a pre-chosen large value.
Finally, the bandwidth can be chosen using the standard leave-one-out cross-validation

criterion for nonparametric estimation. Denote

Ĵ (h) := sup
j

∥∥∥∥∥
∫ 1

0
�̃(t, j) ◦ �̃(t, j) dt − 2

n

n∑
k=b+1

�̃−k(tk, j)

∥∥∥∥∥,
where ti = i

n
, ◦ is the Hadamard (entrywise) product for matrices and �̃−k is the estimation

excluding the sample ĥkĥ∗
k+j . Therefore, the selected bandwidth is

ĥ = argmin
h

Ĵ (h).
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