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The last decade has witnessed significant methodological and theoretical
advances in estimating large precision matrices. In particular, there are sci-
entific applications such as longitudinal data, meteorology and spectroscopy
in which the ordering of the variables can be interpreted through a bandable
structure on the Cholesky factor of the precision matrix. However, the mini-
max theory has still been largely unknown, as opposed to the well established
minimax results over the corresponding bandable covariance matrices. In this
paper we focus on two commonly used types of parameter spaces and develop
the optimal rates of convergence under both the operator norm and the Frobe-
nius norm. A striking phenomenon is found. Two types of parameter spaces
are fundamentally different under the operator norm but enjoy the same rate
optimality under the Frobenius norm which is in sharp contrast to the equiva-
lence of corresponding two types of bandable covariance matrices under both
norms. This fundamental difference is established by carefully constructing
the corresponding minimax lower bounds. Two new estimation procedures
are developed. For the operator norm our optimal procedure is based on a
novel local cropping estimator, targeting on all principle submatrices of the
precision matrix, while for the Frobenius norm our optimal procedure relies
on a delicate regression-based thresholding rule. Lepski’s method is consid-
ered to achieve optimal adaptation. We further establish rate optimality in
the nonparanormal model. Numerical studies are carried out to confirm our
theoretical findings.

1. Introduction. Covariance matrix plays a fundamental role in many important mul-
tivariate statistical problems. They include the principal component analysis, linear and
quadratic discriminant analysis, clustering analysis, regression analysis and conditional de-
pendence relationship studies in graphical models. During the last two decades, with the ad-
vances of technology, it is very common that the datasets are high dimensional (the dimension
p can be much larger than the sample size n) in many applications such as genomics, fMRI
data, astrophysics, spectroscopic imaging, risk management, portfolio allocation and numer-
ical weather forecasting [19, 24, 25, 33, 42, 48]. It has been well known that the sample co-
variance matrix performs poorly and can yield to invalid conclusions in the high-dimensional
settings. For example, see [20, 28, 29, 43, 51, 52] for details on the limiting behaviors of the
spectra of sample covariance matrices when both n and p increase.

To avoid the curse of dimensionality, certain structural assumptions are almost necessary
in order to estimate the covariance matrix or its inverse, the precision matrix, consistently. In
this paper we consider large precision matrix estimation with bandable Cholesky factor. Its
connection with other structures are discussed at the end of the Introduction. Both the opera-

tor norm loss (‖S‖op = sup‖x‖2=1 ‖Sx‖2) and the Frobenius norm loss (‖S‖F = (
∑

i,j s2
ij )

1
2 )

are investigated.
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We begin with introducing the bandable Cholesky factor of the precision matrix. Assume
that X = (X1, . . .Xp)T is a centered, p-variate random vector with covariance matrix �. Let
ai = (ai1, . . . , ai(i−1))

T be the coefficients of the population regression of Xi on its previous
variables X1,i−1 = (X1,X2, . . . ,Xi−1)

T . In other words, X̂i =∑i−1
t=1 aitXt = XT

1,i−1ai is the

linear projection of Xi on X1,i−1 in population (define X̂1 = 0). Set A as the lower triangular
matrix with zeros on the diagonal and zero-padded coefficients (aT

i ,0) arranged in the rows.
Denote the residual ε = X − X̂ = (I − A)X and D = Var(ε). The regression theory implies
the residuals are uncorrelated, and thus the matrix D is diagonal. The modified Cholesky
decomposition of � is

(1) � = �−1 = (I − A)T D−1(I − A),

where I −A is the Cholesky factor of �. There is a natural order on the variables based on the
above Cholesky decomposition. Indeed, the well-known AR(k) model can be characterized
by the k-banded Cholesky factor A ≡ [aij ]p×p of the precision matrix in which aij = 0
if i − j > k. Inspired by the auto-regression model, we consider the bandable structures
imposed on the Cholesky factor. More specifically, for M > 0, η > 1 we define the parameter
space Pα(η,M) of precision matrices by

Pα(η,M) =
{
� : η−1 ≤ λmin(�) ≤ λmax(�) < η,

max
i

∑
j<i−k

|aij | < Mk−α, k ∈ [p]
}
.

(2)

Here, λmax(�), λmin(�) are the maximum and minimum eigenvalues of � and the index set
[p] = {1,2, . . . , p}. We follow the convention that the sum over an empty set of indices is
equal to zero when i − k ≤ 1. This parameter space was first proposed in [7]. The parameter
α specifies how fast the sequence aij decays to zero as j goes away from i. The covariance
matrix estimation problem has been extensively studied when a similar bandable structure
is imposed on the covariance matrix (e.g., [7, 15]). Unlike the order in these bandable co-
variance matrices in which large distance |i − j | implies nearly independence, the order in
bandable Cholesky factor encodes a natural auto-regression interpretation in the sense that
the coefficient aij is close to zero when i − j > 0 is large.

Although several approaches have been developed to estimate the precision matrix with
bandable Cholesky factor, the optimality question remains mostly open, partially due to
the following two reasons: (i) Intuitively, one would expect the minimax rate of conver-
gence over Pα(η,M) under the operator norm to be the same as that over the class of
bandable covariance matrices with the same decay parameter α. Under sub-Gaussian as-

sumptions [15] established the optimal rate of convergence E‖�̃ − �‖2
op � n

−2α+1
2α + logp

n

uniformly for all bandable covariance matrices � = �−1 = [σij ]p×p with bounded spec-
tra such that maxi

∑
|j−i|>k |σij | < Mk−α , k ∈ [p]. To establish such a rate of convergence

for Pα(η,M), [34] provided a lower bound with the matching rate. However, we show a
surprising result in this paper that estimation over Pα(η,M) is a much harder task than
that over bandable covariance matrices. Therefore, the lower bound in [34] is suboptimal,

and all attempts on showing the same rate of convergence n
−2α+1

2α + logp
n

intrinsically can-
not succeed. (ii) From the methodological aspect, due to the regression interpretation of the
Cholesky decomposition (1), almost all existing methods rely on an intermediate estimator of
A obtained by running regularized regression of each variable against its previous variables
Xi ∼∑i−1

j=1 aijXj . For instance, [7] estimated each row of A by fitting the banded regression

model Xi ∼ ∑i−1
j=max{1,i−k} aijXj with some bandwidth k. [53] used an AIC or BIC penalty
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to pick the best bandwidth k. In addition, [27] proposed adding a lasso or ridge penalty
while [36] proposed using a nested lasso penalty to the regression. See, for instance, [3, 34]
for Bayesian approaches following the similar idea. The typical analysis for those estimation
procedures in a row-wise fashion is to bound the operator norm by its matrix �1/�∞ norm. Al-
though this analysis may provide optimal rates of convergence under the operator norm loss
for some sparsity structure (see, i.e., [12, 16] for sparse covariance and precision matrices
estimation), it might be suboptimal for the bandable structure, as seen in bandable covariance
matrix estimation [7, 15]. Therefore, in order to obtain rate optimality over Pα(η,M), a novel
analysis or even a new estimation approach is expected.

Main results. With regard to the above two issues, we provide satisfactory solutions in
this paper. We at the first time show that the rate of convergence under the operator norm over
Pα(η,M) is intrinsically slower than that over the counterpart class of bandable covariance
matrices. This is achieved via a novel minimax lower bound construction. Moreover, in order
to obtain a rate-optimal estimator, we propose a novel local cropping estimator which does
not rely on any estimator of A and thus requires a new analysis. Our local cropping approach
targets on accurate estimation of principal submatrices of the precision matrix under the op-
erator norm which results in a tradeoff between one variance term and two bias terms. The
name comes after the idea of estimating each principal submatrix of the precision matrix,
which is to crop the center k by k submatrix of the inverse of 3k by 3k sample covariance
matrix using their neighbors in two directions of the same size. (During the finalizing process
of this paper, we realized that a similar estimator is independently proposed to estimate pre-
cision matrices with a different structure [26].) Since our procedure does not directly explore
the structure on each row of A, the analysis of bias terms is much more involved, requir-
ing a blockwise partition strategy. More details are discussed in Sections 2.1 and 3.1. In the
end, besides Pα(η,M), a similar type of classes of parameter spaces with bandable Cholesky
factor is considered as well,

Qα(η,M) = {
� : η−1 ≤ λmin(�) ≤ λmax(�) < η,

|aij | < M(i − j)−α−1, j ∈ [i − 1]}.(3)

We further establish another surprising result. The optimal rates of convergence of two
spaces, namely Pα(η,M) and Qα(η,M), are different under the operator norm. This remark-
able distinction is different from the comparison of two similar types of parameter spaces
for bandable covariance matrices in [15] and bandable Toeplitz covariance matrices in [13].
The contrast of minimax results on Pα(η,M) and Qα(η,M) is summarized in Theorem 1
below. We mainly focus on the high-dimensional setting, assuming that logp = O(n) and
n = O(p). Theorem 1 implies inconsistency when logp = O(n) is violated. In addition, one
can easily obtain that when n = O(p) is violated, the minimax rate becomes the smaller value
between p/n and the one shown in Theorem 1 for each space.

THEOREM 1. Under normality assumption the minimax risk of estimating the precision
matrix � over the parameter space Pα(η,M) with α > 1

2 given in (2) under the operator
norm satisfies

(4) inf
�̃

sup
Pα(η,M)

E‖�̃ − �‖2
op � n− 2α−1

2α + logp

n
.

The minimax risk of estimating the precision matrix � over the parameter space Qα(η,M)

with α > 0 given in (3) under the operator norm satisfies

(5) inf
�̃

sup
Qα(η,M)

E‖�̃ − �‖2
op � n− 2α

2α+1 + logp

n
.
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Moreover, we also consider the minimax rates of convergence of precision matrix estima-
tion under the Frobenius norm loss over Pα(η,M) and Qα(η,M). This time, we prove that
two types of spaces enjoy the same optimal rate of convergence. Together with the different
rates of convergence under the operator norm loss, we demonstrate the intrinsic difference be-
tween operator norm and Frobenius norm. The Frobenius norm of a p by p matrix is defined
as the �2 vector norm of all entries. Driven by this fact, our estimation approach is naturally
obtained by optimally estimating A and D in (1) separately. Due to the decay structure in
Pα(η,M), which is defined in terms of nested �1 norm of each row of A, our estimator is
based on regression with a delicate thresholding rule. The minimax procedure is motivated
by wavelet nonparametric function estimation, although the space Pα(η,M) cannot be ex-
actly described by any Besov ball [11, 18]. We summarize the optimality result under the
Frobenius norm in Theorem 2 below.

THEOREM 2. Under normality assumption the minimax risk of estimating the precision
matrix � over Pα(η,M) and Qα(η,M) given in (2) and (3) satisfies

(6) inf
�̃

sup
Pα(η,M)

1

p
E‖�̃ − �‖2

F � inf
�̃

sup
Qα(η,M)

1

p
E‖�̃ − �‖2

F � n− 2α+1
2α+2 .

Related literature. During the last decade various structural assumptions are imposed in
literature of high-dimensional statistics in order to estimate the covariance/precision matrix
consistently under various loss functions. While mostly driven by the specific scientific appli-
cations, popular structures include ordered sparsity (bandable covariance matrices, precision
matrices with bandable Cholesky factor), unordered sparsity (sparse covariance matrices,
sparse precision matrices) and other more complicated ones such as certain combination of
sparsity and low rankness (spike covariance matrices, covariance with tensor product, latent
graphical models). Many estimation procedures have been proposed accordingly to estimate
high-dimensional covariance/precision matrices via taking advantages of these specific struc-
tures. For example, banding [7, 8, 54, 55] and tapering methods [15, 23] were developed to
estimate bandable covariance matrices or precision matrices with bandable Cholesky factor;
thresholding procedures were used in [6, 9, 21] to estimate sparse covariance matrices; penal-
ized likelihood estimation [2, 17, 27, 32, 44, 46, 58] and penalized regression methods [10,
39, 45, 50, 57] are designed for sparse precision matrix estimation.

The fundamental difficulty of various covariance/precision matrices estimation problems
have been carefully investigated in terms of the minimax risks under the operator norm loss
among other losses, especially for those ordered and unordered sparsity structures. Specifi-
cally, for unordered structures, [16] considered the problems of optimal estimation of sparse
covariance while [12] (see [45] as well) established the optimality results for estimating
sparse precision matrices. For ordered structures [15] established the optimal rates of con-
vergence over two types of bandable covariance matrices. In addition, with an extra Toeplitz
structure [13] studied optimal estimation of two types of bandable Toeplitz covariance matri-
ces. However, it was still largely unknown about the optimality results on estimating preci-
sion matrices with bandable Cholesky factor. See an exposure paper with discussion [14] and
references therein on minimax results of covariance/precision matrix estimation under some
other losses. In this paper we provide a solution to this open problem by establishing the
optimal rates of convergence over two types of precision matrices with bandable Cholesky
factor. Thus, this paper completes the minimaxity results of all four sparsity structures com-
monly considered in literature.
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Organization of the paper. The rest of the paper is organized as follows. First, we propose
our estimation procedures for precision matrix estimation in Section 2. In particular, local
cropping estimators and regression-based thresholding estimators are designed for estimating
precision matrices under the operator norm and the Frobenius norm respectively. Section 3
establishes the optimal rates of convergence under the operator norm for two commonly
used types of parameter spaces Pα(η,M) and Qα(η,M). A striking difference between two
spaces are revealed when considering operator norm loss. Section 4 considers rate-optimal
estimation under the Frobenius norm. The results reveal that the fundamental difficulty of
estimation for two parameter spaces are the same when considering Frobenius norm loss.
Section 5 considers the adaptive estimation through a variation of Lepski’s method under
the operator norm. In Section 6 we extend the results to nonparanormal models for inverse
correlation matrix estimation by applying local cropping procedure to rank-based estimators.
Section 7 presents the numerical performance of our local cropping procedure to illustrate
the difference between two parameter spaces by simulation studies. We also demonstrate the
suboptimality of banding estimators. Discussion and all technical lemmas used in proofs of
main results are relegated to the Supplementary Material [38].

Notation. We introduce some basic notations that will be used in the rest of the paper.
1(·) indicates the indicator function while 1 indicates the all-ones vector. sgn(·) indicates
the sign function. 	s
 represents the largest integer which is no more than s. �s� represents
the smallest integer which is no less than s. Define an � bn if there is a constant C > 0
independent of n such that C−1 ≤ an/bn ≤ C. For any vector x, ‖x‖p indicates its �p norm.
For any p by q matrix S = [sij ]p×q ∈ Rp×q , we use ST to denote its transpose. The �p

matrix norm is defined as ‖S‖p = sup‖x‖p=1 ‖Sx‖p . The �2 matrix norm is also called the
operator norm or the spectral norm and denoted as ‖S‖op. The Frobenius norm is defined as

‖S‖F = (
∑

i,j s2
ij )

1
2 . λmax(S) and λmin(S) are the largest and smallest singular values of S

when S is not symmetric. When S is a real symmetric matrix, λmax(S) and λmin(S) denote
its largest and smallest eigenvalues. rowi (S) and coli (S) indicate the ith row and column of
matrix S. a : b denotes the index set {a, a + 1, . . . , b}. [p] is short for the set 1 : p. For the
random vector X ∈ Rp×1 and the data matrix Z ∈ Rn×p , Xa:b and Za:b indicate the (a : b)-
th columns of XT and Z. For any square matrix S, diag(S) denotes the diagonal matrix
with diagonal entries being those on the main diagonal of S while, for any vector v, diag(v)

denotes the diagonal matrix with diagonal entries being v. In the estimation procedure under
the operator norm, we use the matrix notation in the form of S

(k)
m to facilitate the proof; where

S is always a square matrix, m indicates the location information and (k) indicates that the
size of S

(k)
m is k. Throughout the paper we denote by C a generic positive constant which

may vary from place to place but only depends on α, η, M and, possibly, some sub-Gaussian
distribution constant ρ in (17).

2. Methodologies. In this section we introduce our methodologies for estimating preci-
sion matrices over Pα(η,M) and Qα(η,M) under both the operator norm and the Frobenius
norm. Assume that X = (X1, . . . ,Xp)T , a p-variate random vector with mean zero and preci-
sion matrix �p . Our estimation procedures are based on its n i.i.d. copies Z ∈Rn×p . We write
Z = (Z1, . . . ,Zp), where each Zi consists of n i.i.d. copies of Xi . Our estimation procedures
are different under the operator norm and the Frobenius norm.

2.1. Estimation procedure under the operator norm. We focus on the estimation prob-
lem under the operator norm first. As we discussed in the Introduction, almost all existing
methodologies [7, 27, 53] directly appeal the Cholesky decomposition of the precision ma-
trix. They first estimate the Cholesky factor A and D by autoregression and then estimate
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FIG. 1. An illustration of the cropping operator and the expanding operator.

the precision matrix according to � = (I − A)T D−1(I − A). The corresponding analysis in
the row-wise fashion may not suitable for the operator norm loss. In this paper we propose a
novel local cropping estimator which focuses on the estimation of � directly.

To facilitate the illustration of the estimation procedure, we define two matrix operators.
The cropping operator is designed to crop the center block out of the matrix. For a p by p

matrix E ≡ [eij ]p×p , we define the k×k matrix Ck
m(E) ≡ [cij ]k×k , where 1 ≤ m ≤ p−k+1,

with

(7) cij = ei+m−1,j+m−1, when 1 ≤ i, j ≤ k.

The parameter m indicates the location and k indicates the dimension. It is clear that Ck
m(E)

is a principal submatrix of E. The expanding operator is designed to put a small matrix onto
a large zero matrix. For a k by k matrix, C ≡ [cij ]k×k , define the p × p matrix Ep

m(C) ≡
[eij ]p×p , where 1 ≤ m ≤ p − k + 1, with

(8) eij = ci−m+1,j−m+1, when m ≤ i, j ≤ m + k − 1, otherwise eij = 0.

The parameter m indicates the location and p indicates the dimension. Note that for a k by k

matrix C, we have Ck
m(Ep

m(C)) = C. An illustration of two operators is provided in Figure 1.
In addition, for technical reasons (of obtaining rates of convergence in expectation rather

than in probability), we introduce a projection operator. For a real square matrix S, let the sin-
gular value decomposition of S be S = U
V T with UUT = I , V V T = I and 
 = diag(λi).
Let 
∗ = diag(λ∗

i ), where λ∗
i = min{max{λi, η

−1}, η}, then define

(9) Pη(S) = U
∗V T .

For a symmetric matrix S, we modify Pη(·) a little bit and define Pη(S) = U
∗UT , where
S = U
UT is its eigendecomposition. Since all eigenvalues of Pη(·) are in the interval
[η−1, η], Pη(S) is always invertible and positive definite.

We are ready to construct the local cropping estimator �̃
op
k with bandwidth k < p. At a

high level we first propose an estimator of each principal submatrix of size k and 2k in �

using cropping and expanding operators. Then, we arrange over those local estimators to
estimate �. Since the core idea of estimating those local estimators in our procedure is to
crop the inverse of sample covariance matrix with a relatively larger size, we call �̃

op
k in (12)

the local cropping estimator.
Specifically, we first define an estimator �̃

(k)
m of the principal submatrix Ck

m(�) at each
location m. To this end, we select the sample covariance matrix with a relative larger size, in
this case, 3k. Let the modified local sample covariance matrix be

(10) �̃
(3k)
m−k = Pη

(
C3k

m−k

(
1

n
ZT Z

))
, 2 − k ≤ m ≤ p.
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We refer to Remark 1 for the treatment when the index is beyond the index set [p]. Note
that the operator Pη(·) guarantees �̃

(3k)
m−k to be invertible. Then, we use the center part of its

inverse to estimate Ck
m(�), that is,

(11) �̃(k)
m = Ck

k+1
((

�̃
(3k)
m−k

)−1)
.

Similarly, we can define local estimators of �̃
(2k)
m via replacing k by 2k. Arranging over these

estimators in the form of weighted sum, we obtain the estimator of �, that is,

(12) �̃
op
k = Pη

(
1

k

( p∑
m=2−2k

Ep
m

(
�̃(2k)

m

)−
p∑

m=2−k

Ep
m

(
�̃(k)

m

)))
.

The operator Ep
m(·) makes these local estimators in the correct places. The final step (12)

is motivated by the analysis of optimal bandable covariance matrix estimation procedure
proposed in [15]. Indeed, the optimal tapering estimator in [15] can be rewritten as a sum
of many principal submatrices of the sample covariance matrix in a similar way as (12). In
contrast, our estimator is not in a form of tapering the sample covariance matrix. However, in
the analysis of our local cropping estimator in Section 3, the direct target of �̃

op
k is a certain

tapered population precision matrix with bandwidth k. There are natural bias and variance
terms involved in the distance of �̃

op
k and its direct target. Together with the bias of the

tapered population precision matrix, our analysis involves two bias terms and one variance
term which critically determine the optimal choice of bandwidth. It is worthwhile to mention
that, although the local estimators in (12) overlap with each other significantly, the variance
term is not influenced too much by the overlap due to a technique of rearranging all local
estimators in the analysis. Please refer to the proof of Theorem 3 for further details.

In Section 3 we show that the local cropping estimator with an optimal choice of bandwidth
would achieve the minimax risk under the operator norm over parameter spaces Pα(η,M)

in (2) and Qα(η,M) in (3). However, the optimal choices of bandwidth are fundamentally
distinct between Pα(η,M) and Qα(η,M). Specifically, we show that the optimal bandwidth

over Pα(η,M) is k � n
1

2α while that one over Qα(η,M) is k � n
1

2α+1 .

REMARK 1. Of note, the estimator �̃
op
k depends on Z2−4k, . . . ,Zp+4k−1. The index of

variable is clear most of the time, while we need to be careful when it is close to the boundary.
When the index is beyond the index set [p], we shrink the size of the corresponding block by
discarding the data with meaningless indexes. It can be shown that this shrinking operation
would not change the theoretical properties of the final estimator.

2.2. Estimation procedure under the Frobenius norm. Under the Frobenius norm our
estimation procedure is based on the Cholesky decomposition of the precision matrix (1).
More specifically, we estimate the matrix A and D respectively by autoregression and then
combine them to construct the estimator of �. The following estimation procedure applies to
both the parameter space Pα(η,M) and Qα(η,M), as we will show that they enjoy the same
optimal rate of convergence in Section 4.

Our estimator of the ith row of A is based on the regression of Xi against its previous
variables. Unlike those existing methods [7, 27, 53] which rely on certain banding or penal-
ized approaches for such a regression problem, we apply a thresholding procedure due to the
decay structure in Pα(η,M) which is defined in terms of nested �1 norm. To this end, we
first regress Xi against Xi−k1:i−1 = (Xi−k1, . . . ,Xi−1)

T with bandwidth k1 = �n
c
� with some

sufficiently large c > 0. Recall that the n × 1 matrix Zi consists of n observations of Xi , and
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the n × k1 matrix Zi−k1:i−1 represents n observations of Xi−k1:i−1. The empirical regression
coefficients are

(13) (âi(i−k1), . . . , âi(i−1))
T = (

ZT
i−k1:i−1Zi−k1:i−1

)−1ZT
i−k1:i−1Zi .

We then further threshold the coefficients by taking advantages of the bandable structure of
the Cholesky factor A. Specifically, we define â∗

i ∈Ri−1 with coordinate â∗
ij as follows:

(14) â∗
ij =

⎧⎪⎪⎨
⎪⎪⎩

âij , if i − k0 < j ≤ i − 1,

âij 1
(|âij | > λj

)
, if i − k1 < j ≤ i − k0,

0, if 1 ≤ j ≤ i − k1,

where k0 = �n 1
2α+2 �, the threshold level λj = (�logi−j

2 − logk0
2 �R)

1
2 and R = 8η‖(ZT

i−k1:i−1 ×
Zi−k1:i−1)

−1‖op. Note that we keep the last k0 coefficients and apply an entrywise threshold-
ing rule for which the thresholding level remains the same in each block and the size of each
block doubles backward sequentially for the remaining coefficients in (14). Our procedure
is inspired by the optimal estimation procedure over Besov balls for many nonparametric
function estimation problems or, equivalently, the corresponding Gaussian sequence models
(see [11] the reference therein). We emphasize that any linear estimator of the coefficients
(âi(i−k1), . . . , âi(i−1))

T cannot yield to the optimal rates of convergence in our setting under
the Frobenius norm.

Our estimator of I − A can be constructed by arranging zero-padded â∗T
i , i ∈ [p] ac-

cordingly with an identity matrix. Specifically, set the ij th entry of Â∗ as â∗
ij when i ∈ [p],

j ∈ [i − 1], otherwise as zero. We also need to bound the singular values of (I − Â∗). To this
end, we define

Ĩ − A = Pη

(
I − Â∗)

as our estimator of (I − A), where Pη(·) is defined in (9).
The estimation of D is based on the sample variances of those empirical residuals in the

regression of Xi against Xi−k1:i−1 = (Xi−k1, . . . ,Xi−1)
T . For each i, the sample variance of

the empirical residual is

(15) d̂i = 1

n − k1
ZT

i (I − Mi )
T (I − Mi)Zi ,

where Mi = Zi−k1:i−1(ZT
i−k1:i−1Zi−k1:i−1)

−1ZT
i−k1:i−1. Let D̂ = diag(d̂), where d̂ = (d̂1,

. . . , d̂p)T . We define D̃ = Pη(D̂) as our estimator of D.
Finally, define our estimator of � as

(16) �̃F
k = (Ĩ − A)T D̃−1(Ĩ − A).

REMARK 2. For the parameter space Qα(η,M), a much simpler banding estimation
scheme on the empirical regression coefficients is able to achieve the minimax risk. Set

k = �n 1
2α+2 �. We use the empirical residuals and coefficients obtained by regressing each

Xi against Xi−k:i−1 to directly construct the estimators of A and D. It can be proved that this
estimator achieves the minimax risk over the parameter space Qα(η,M).
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3. Rate optimality under the operator norm. In this section we establish the optimal
rates of convergence for estimating the precision matrix over the parameter spaces Pα(η,M)

and Qα(η,M) given in (2) and (3) under the operator norm. We first derive the risk upper
bound of the local cropping estimator in Section 3.1 over parameter space Pα(η,M). We
provide a matching risk lower bound by applying Assouad’s lemma and Le Cam’s method in
Section 3.2 over Pα(η,M). The establishment of the rate optimality over the parameter space
Qα(η,M) is similar to the one over Pα(η,M) which is provided in Section 3.3.

Throughout this section we assume that X = (X1, . . . ,Xp)T follows certain sub-Gaussian
distribution with constant ρ > 0, that is,

(17) P
{∣∣vT (X −EX)

∣∣> t
}≤ 2 exp

(−t2/(2ρ)
)
,

for all t > 0 and all unit vectors ‖v‖2 = 1.

REMARK 3. The sub-Gaussian distribution is often assumed in high-dimensional sta-
tistical problems. In our settings this assumption is critical to derive the exponential-type
concentration inequality for the quadratic terms of X. When only certain moment conditions
are posed, one can replace each local estimator in (11) by a Huber-type estimator proposed
in [30, 40]. We leave the theoretical investigation in future works.

3.1. Minimax upper bound under the operator norm over Pα(η,M). In this section we
develop the following upper bound of our estimation procedure proposed in Section 2.1.

THEOREM 3. When �n 1
2α � ≤ p, the local cropping estimator defined in (12) of the pre-

cision matrix � over Pα(η,M) with α > 1
2 given in (2) satisfies

sup
Pα(η,M)

E
∥∥�̃op

k − �
∥∥2

op ≤ Ck−2α+1 + C
logp + k

n
.

When k = �n 1
2α �, we have

sup
Pα(η,M)

E
∥∥�̃op

k − �
∥∥2

op ≤ Cn− 2α−1
2α + C

logp

n
.

The optimal choice of k � n
1

2α is due to the bias-variance tradeoff. Combining Theorem 3
with the minimax lower bound derived in Section 3.2, we immediately obtain that the local
cropping estimator is rate optimal.

PROOF. As we discussed in Section 2.1, the direct target of our local cropping estimator
is certain tapered population precision matrix with bandwidth k which can be written as a
weighted sum of many principal submatrices of the population precision matrix. We construct
this corresponding tapered population precision matrix �∗

k as follows. Denote the precision
matrix � ≡ [ωij ]p×p . We define �∗

k ≡ [ω∗
ij ]p×p such that for i, j ∈ [p],

ω∗
ij = mijωij ,

where mij = max
{

0,2 − 1

k
|i − j |

}
− max

{
0,1 − 1

k
|i − j |

}
.

(18)

The following lemma elucidates the decomposition of this tapered precision matrix �∗
k .
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LEMMA 1. The �∗
k defined in (18) can be written as

�∗
k = 1

k

(2k+1∑
m=2

(	p/2k
∑
j=−1

Ep
m+2kj

(
C2k

m+2kj (�)
))

−
k+1∑
m=2

(	p/k
∑
j=−1

Ep
m+kj

(
Ck

m+2kj (�)
)))

.

The proof of Lemma 1 can be found in [15] (refer to the proof of Lemma 1 with covariance
matrix therein replaced by the precision matrix) and thus omitted. Define

�̃∗
k = 1

k

(2k+1∑
m=2

(	p/2k
∑
j=−1

Ep
m+2kj

(
�̃

(2k)
m+2kj

))−
k+1∑
m=2

(	p/k
∑
j=−1

Ep
m+kj

(
�̃

(k)
m+kj

)))
.

It is easy to check �̃
op
k = Pη(�̃

∗
k). Since the eigenvalues of � are in the interval [η−1, η], the

operator Pη(·) would not increase the risk much. Indeed, according to (B.1) in Lemma B.1 of
[38], we have

E
∥∥�̃op

k − �
∥∥2

op ≤ 4E
∥∥�̃∗

k − �
∥∥2

op
(19)

≤ 8E
∥∥�̃∗

k − �∗
k

∥∥2
op + 8

∥∥�∗
k − �

∥∥2
op.

The following lemma bounds the bias between our direct target �∗
k and the population preci-

sion matrix.

LEMMA 2. For � in the parameter space Pα(η,M) defined in (2) with α > 1
2 , �∗

k defined
in (18), we have ∥∥�∗

k − �
∥∥2

op ≤ Ck−2α+1.

REMARK 4. Unlike existing methods, our procedure does not directly utilize the decay
structure of Cholesky factor. Consequently, the proof of Lemma 2 is involved and requires a
blockwise partition strategy.

Then, we turn to the analysis of E‖�̃∗
k − �∗

k‖2
op:

E
∥∥�̃∗

k − �∗
k

∥∥2
op

≤ 2E

(
1

k

2k+1∑
m=2

∥∥∥∥∥
	p/2k
∑
j=−1

Ep
m+2kj

(
�̃

(2k)
m+2kj

)−
	p/2k
∑
j=−1

Ep
m+2kj

(
C2k

m+2kj (�)
)∥∥∥∥∥

op

)2

(20)

+ 2E

(
1

k

k+1∑
m=2

∥∥∥∥∥
	p/k
∑
j=−1

Ep
m+kj

(
�̃

(k)
m+kj

)−
	p/k
∑
j=−1

Ep
m+kj

(
Ck

m+kj (�)
)∥∥∥∥∥

op

)2

.

These two terms can be bounded in the same way; we only focus on the second term:

E

(
1

k

k+1∑
m=2

∥∥∥∥∥
	p/k
∑
j=−1

Ep
m+kj

(
�̃

(k)
m+kj

)−
	p/k
∑
j=−1

Ep
m+kj

(
Ck

m+kj (�)
)∥∥∥∥∥

op

)2

≤ E

(
max

m

∥∥∥∥∥
	p/k
∑
j=−1

(
Ep

m+kj

(
�̃

(k)
m+kj

)− Ep
m+kj

(
Ck

m+kj (�)
))∥∥∥∥∥

2

op

)
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≤ E
(
max
m,j

∥∥�̃(k)
m+kj − Ck

m+kj (�)
∥∥2

op

)
(21)

≤ 2E
(

max
m∈[p]

∥∥�̃(k)
m − Ck

k+1
((

C3k
m−k

(
�−1))−1)∥∥2

op

)

+ 2
(

max
m∈[p]

∥∥Ck
k+1

((
C3k

m−k

(
�−1))−1)− Ck

m(�)
∥∥2

op

)
,

where we further have variance term and bias term of local estimators. For the variance term
in (21) we further have ∥∥�̃(k)

m − Ck
k+1

((
C3k

m−k

(
�−1))−1)∥∥

op

≤ ∥∥(�̃(3k)
m−k

)−1 − (
C3k

m−k

(
�−1))−1∥∥

op

≤ η2∥∥�̃(3k)
m−k − C3k

m−k

(
�−1)∥∥

op

≤ 2η2
∥∥∥∥C3k

m−k

(
1

n
ZZT

)
− C3k

m−k

(
�−1)∥∥∥∥

op
.

(22)

The last two inequalities hold because of the fact that the eigenvalues of �̃
(3k)
m−k and

C3k
m−k(�

−1) are in the interval [η−1, η], and Lemma B.1 of [38]. The following concentration
inequality of sample covariance matrix facilitates our proof.

LEMMA 3. For the observations Z following certain sub-Gaussian distribution with con-
stant ρ and precision matrix �, we have

E

(
max
m∈[p]

∥∥∥∥C3k
m−k

(
1

n
ZZT

)
− C3k

m−k

(
�−1)∥∥∥∥2

op

)
≤ C

logp + k

n
.

Lemma 3 is an extension of the result in Chapter 2 of [47]. Its proof can be found in
Lemma 3 of [15].

Combining Lemma 3, (21) and (22), we have

(23) E
(

max
m∈[p]

∥∥�̃(k)
m − Ck

k+1
((

C3k
m−k

(
�−1))−1)∥∥2

op

)
≤ C

logp + k

n
.

We turn to bounding the bias term of local estimator in (21).

LEMMA 4. Assume that � ∈ Pα(η,M) defined in (2) with α > 1
2 . Then, we have

∥∥Ck
k+1

((
C3k

m−k

(
�−1))−1)− Ck

m(�)
∥∥2

op ≤ Ck−2α+1.

Lemma 4, together with (23), (21) and (20), implies that

(24) E
∥∥�̃∗

k − �∗
k

∥∥2
op ≤ C

logp + k

n
+ Ck−2α+1.

Plugging Lemma 2 and (24) into (19), we finish the proof of Theorem 3. �

3.2. Minimax lower bound under the operator norm over Pα(η,M). Theorem 3 in Sec-
tion 3.1 proves that the local cropping estimator defined in (12) attains the convergence rate

of n
−2α+1

2α + logp
n

. In this section we establish the following matching lower bound which
proves the rate optimality of the local cropping estimator.
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THEOREM 4. The minimax risk of estimating the precision matrix � over Pα(η,M)

defined in (2) under the operator norm with α ≥ 1
2 satisfies

(25) inf
�̃

sup
Pα(η,M)

E‖�̃ − �‖2
op ≥ τ 2

32

(
n− 2α−1

2α + logp

n

)
,

where 0 < τ < min{M, 1
4η−1, η

1
2 − 1}.

REMARK 5. Theorems 3 and 4 together show the minimax risk for estimating the preci-
sion matrices over Pα(η,M) stated in (4) of Theorem 1. It is worthwhile to notice that there
is no consistent estimator over Pα(η,M) under the operator norm, when α ≤ 1

2 .

PROOF. The lower bound of parameter space Pα(η,M) can be established by the lower
bounds over its subsets. We construct two subsets, P1 and P2, and calculate the lower
bound over those two subsets separately. Let τ be a positive constant which is less than

min{M, 1
4η−1, η

1
2 − 1}.

First, we construct P1. Set k = min{�n 1
2α �, p

2 }. Set the index set  = {0,1}k , that is, for any
θ ≡ {θi}1≤i≤k ∈ , each θi is either 0 or 1. Then, we define the k×k matrix A∗

k(θ) ≡ [aij ]k×k

with aij = τn− 1
2 θi1(j = k) and

A(θ) =
⎡
⎣ 0k×k 0k×k 0k×(p−2k)

A∗
k(θ) 0k×k 0k×(p−2k)

0(p−2k)×k 0(p−2k)×k 0(p−2k)×(p−2k)

⎤
⎦ .

We then define P1 as the collection of 2k matrices indexed by ,

(26) P1 = {
�(θ) : �(θ) = (

Ip − A(θ)
)T (

Ip − A(θ)
)
, θ ∈ 

}
.

Next, we construct P2 as the collection of the diagonal matrices in the following equation:

P2 = {
�(m) ≡ [

wij (m)
]
p×p :

wij (m) = (
1(i = j) + τa

1
2 1(i = j = m)

)−1
,m ∈ 0 : p},(27)

where a = min{ logp
n

,1}.
LEMMA 5. P1 and P2 are subsets of Pα(η,M).

Note that we assume logp = O(n) and n = O(p). Without loss of generality, we further
assume logp < n < p. For any estimator �̃ based on n i.i.d. observations, we establish the
lower bounds over those two subsets in Sections 3.2.1 and 3.2.2, respectively,

sup
P1

E‖�̃ − �‖2
op ≥ τ 2

16
n−1 min

{
n

1
2α ,

p

2

}
≥ τ 2

16
n− 2α−1

2α ,(28)

sup
P2

E‖�̃ − �‖2
op ≥ τ 2

16
n−1 min{logp,n} ≥ τ 2

16

logp

n
.(29)

According to Lemma 5, (P1 ∪P2) ⊂ Pα(η,M). Therefore, we obtain

sup
Pα(η,M)

E‖�̃ − �‖2
op ≥ max

{
sup
P1

E‖�̃ − �‖2
op, sup

P2

E‖�̃ − �‖2
op

}

≥ τ 2

32

(
n− 2α−1

2α + logp

n

)
which completes the proof of Theorem 4. �
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We introduce some further notation before establishing (28) using Assouad’s lemma in
Section 3.2.1 and (29) using Le Cam’s method in Section 3.2.2. Let H(θ, θ ′) =∑k

i=1 |θi −θ ′
i |

be the Hamming distance on {0,1}k which is the number of different elements between θ and
θ ′. The total variation affinity ‖P ∧Q‖ = ∫

p∧q dμ, where p and q are the density functions
of two probability measure P and Q with respect to any common dominating measure μ.

3.2.1. Assouad’s lemma in proof of (28). Assouad’s lemma [1] is a powerful tool to pro-
vide the lower bound over distributions indexed by the hypercube  = {0,1}k . Let Pθ be the
distribution generated from observations indexed by �(θ). The proof of Lemma 6 can be
found in [56] and thus omitted.

LEMMA 6 (Assouad). Let �̃ be an estimator based on observations from a distribution
in the collection {Pθ , θ ∈ }, where  = {0,1}k . Then,

sup
θ∈

22Eθ

∥∥�̃ − �(θ)
∥∥2

2 ≥ min
H(θ,θ ′)≥1

‖�(θ) − �(θ ′)‖2
2

H(θ, θ ′)
k

2
min

H(θ,θ ′)=1
‖Pθ ∧ Pθ ′‖.

Applying Assouad’s lemma to the subset P1, we have the following results.

LEMMA 7. Let Pθ be the joint distribution of n i.i.d. observations from N(0,�(θ)−1),
where �(θ) ∈ P1 defined in (26). Then,

min
H(θ,θ ′)=1

‖Pθ ∧ Pθ ′‖ ≥ 0.5.

LEMMA 8. Consider all �(θ) ∈P1 defined in (26). Then,

min
H(θ,θ ′)≥1

‖�(θ) − �(θ ′)‖2
2

H(θ, θ ′)
≥ (

τn− 1
2
)2

.

Lemmas 6, 7 and 8 together imply the desired (28), with the choice k = �n 1
2α �. The proofs

of the above lemmas can be found in the Supplementary Material [38].

3.2.2. Le Cam’s method in proof of (29). Le Cam’s method can be used to establish the
lower bound via testing a single distribution against a convex hull of distributions. Set r =
infm∈[p] ‖�(0) − �(m)‖2

op. Let Pi be the distribution generated from observations indexed

by �(i), where 0 ≤ i ≤ p. Define P̄ =∑p
m=1 Pm. The proof of the following lemma can be

found in [56] and thus omitted.

LEMMA 9 (Le Cam). Let �̃ be an estimator based on observations from a distribution
in the collection {Pi,0 ≤ i ≤ p}. Then,

sup
0≤m≤p

E
∥∥�̃ − �(m)

∥∥2
op ≥ 1

2
r‖P0 ∧ P̄ ‖.

Applying Le Cam’s method to P2, we obtain that r = ( τa
1
2

1+τa
1
2
)2 ≥ 1

4τ 2a and the following

results.

LEMMA 10. Let Pm be the joint distribution of n i.i.d. observations from N(0,�(m)−1),
where �(m) ∈ P2 defined in (27). Then,

‖P0 ∧ P̄‖ >
7

8
.
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Combining the above results in Lemmas 9 and 10, we obtain the desired (29), that is,

sup
0≤m≤p

E‖�̃ − �‖2
op ≥ 7

64
τ 2a ≥ τ 2

16
min

{
logp

n
,1
}
.

3.3. Rate optimality under the operator norm over Qα(η,M).

3.3.1. Minimax upper bound. In this section we establish the upper bound of the pro-
posed local cropping estimator over Qα(η,M). Compared to that over Pα(η,M), the analysis

here involves smaller bias terms which lead to a different optimal bandwidth k � n
1

2α+1 .

THEOREM 5. When �n 1
2α+1 � ≤ p, the local cropping estimator defined in (12) of the

precision matrix � over Qα(η,M) given in (3) satisfies

sup
Qα(η,M)

E
∥∥�̃op

k − �
∥∥2

op ≤ Ck−2α + C
logp + k

n
.

When k = �n 1
2α+1 �, we have

sup
Qα(η,M)

E
∥∥�̃op

k − �
∥∥2

op ≤ Cn− 2α
2α+1 + C

logp

n
.

PROOF. We employ the same proof strategy as that of Theorem 3. Only two lemmas
bounding bias terms need to be replaced. We only emphasize the differences here.

We replace Lemma 2 in the proof by Lemma 11 which bounds the distance of the popula-
tion precision matrix and its tapered one.

LEMMA 11. For � in the parameter space Qα(η,M) defined in (3), �∗
k is defined in

(18), we have ∥∥�∗
k − �

∥∥2
op ≤ Ck−2α.

In addition, we replace Lemma 4 by Lemma 12 which bounds the bias term of each local
estimator.

LEMMA 12. For � ∈ Qα(η,M) defined in (2) with α > 0, we have∥∥Ck
k+1

((
C3k

m−k

(
�−1))−1)− Ck

m(�)
∥∥2

op ≤ Ck−2α.

The remaining part of the proof remains the same, including a similar upper bound for the
variance term stated in Lemma 3. Therefore, we complete our proof. �

3.3.2. Minimax lower bound.

THEOREM 6. The minimax risk for estimating the precision matrix � over Qα(η,M)

defined in (3) under the operator norm with α > 0 satisfies

(30) inf
�̃

sup
Qα(η,M)

E‖�̃ − �‖2
op ≥ τ 2

32

(
n− 2α

2α+1 + logp

n

)
.

REMARK 6. Theorems 5 and 6 together show that the minimax risk for estimating the
precision matrices over Qα(η,M) stated in (5) of Theorem 1. In contrast to Pα(η,M), the
optimal rate of convergence over Qα(η,M) is faster. In particular, rate-optimal local cropping
estimators are always consistent as long as α > 0.
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PROOF. To establish the lower bound for Qα(η,M) in which the decay of aij is in the
entrywise fashion, we repeat the proof scheme in Section 3.2 with a few changes. Let τ be a

positive constant which is less than min{M, 1
4η−1, η

1
2 − 1}.

Set k = min{�n 1
2α+1 �, p

2 } and the index set  = {0,1}k , that is, for any θ ∈ , θ ≡
{θi}1≤i≤k , each θi is either 0 or 1. Define the k × k matrix B∗

k (θ) ≡ [bij ]k×k with bij =
τ(nk)− 1

2 θi . Define

B(θ) =
⎡
⎣ 0k×k 0k×k 0k×(p−2k)

B∗
k (θ) 0k×k 0k×(p−2k)

0(p−2k)×k 0(p−2k)×k 0(p−2k)×(p−2k)

⎤
⎦ .

We construct the collection of 2k matrices as

(31) P3 = {
�(θ) : �(θ) = (

Ip − B(θ)
)T (

Ip − B(θ)
)
, θ ∈ 

}
.

LEMMA 13. P3 is a subset of Qα(η,M).

Let Pθ be the joint distribution of n i.i.d. observations from N(0,�(θ)−1), where �(θ) ∈
P3 defined in (31). Parallel to Lemmas 7 and 8 and the lower bound (28) for P1, we establish
the following lower bound for P3.

LEMMA 14. Consider all �(θ) ∈ P3 defined in (31). Then,

min
H(θ,θ ′)=1

‖Pθ ∧ Pθ ′‖ ≥ 0.5,(32)

min
H(θ,θ ′)≥1

‖�(θ) − �(θ ′)‖2
2

H(θ, θ ′)
≥ (

τn− 1
2
)2

.(33)

According to Assouad’s lemma, for any estimator �̃ based on n i.i.d. observations, we have

(34) sup
P3

E‖�̃ − �‖2
op ≥ τ 2

16
n−1 min

{
n

1
2α+1 ,

p

2

}
.

It is easy to show (P3 ∪P2) ⊂ Qα(η,M), where P2 is defined in (27). Therefore, combin-
ing (34) and (29), we complete the proof of Theorem 6. �

REMARK 7. The estimation of the covariance matrix � is of significant importance as
well. We propose the estimator of � by inverting our estimator �̃

op
k given in (12). The re-

sults and the analysis given in Section 3 can be used to establish the minimax optimality
of our estimator under the operator norm. According to the inequality ‖(�̃op

k )−1 − �‖op ≤
‖(�̃op

k )−1‖op‖�̃op
k − �‖op‖�−1‖op and the fact that both ‖�̃op

k )−1‖op and ‖�−1‖op are
bounded by η, we establish the upper bound of our estimator (�̃

op
k )−1. Furthermore, con-

sidering the analog between the covariance matrix and the precision matrix in the subset P1
and P2 defined in (26) and (27), the matching lower bound can be proved by a similar ar-
gument in Section 3.2. Therefore, we have the following rate optimality of estimating the
covariance matrix under the operator norm, which can be achieved by estimator (�̃

op
k )−1,

inf
�̃

sup
Pα(η,M)

E
∥∥�̃−1 − �−1∥∥2

op � n− 2α−1
2α + logp

n
,

inf
�̃

sup
Qα(η,M)

E
∥∥�̃−1 − �−1∥∥2

op � n− 2α
2α+1 + logp

n
.
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4. Rate optimality under the Frobenius norm. In this section we establish that the
optimal rates of convergence for estimating the precision matrix over the parameter spaces
Pα(η,M) and Qα(η,M) are identical under the Frobenius norm. Intuitively, estimating pre-
cision matrix under the Frobenius norm is equivalent to estimating each row of Cholesky
factor A under the �2 vector norm. Consequently, it is not a surprise to see that Qα(η,M)

and Pα(η,M) enjoy the same optimal rates here. Since Qα(η,αM) ⊂ Pα(η,M), one imme-
diately obtains that

inf
�̃

sup
Pα(η,M)

1

p
E‖�̃ − �‖2

F ≥ inf
�̃

sup
Qα(η,αM)

1

p
E‖�̃ − �‖2

F.(35)

In order to show (6) in Theorem 2, it suffices to establish the upper bound over the parameter
space Pα(η,M) and the matching lower bound over the parameter space Qα(η,M). We
assume that X follows the p-variate Gaussian distribution, with mean zero and precision
matrix � in this section.

4.1. Minimax upper bound under the Frobenius norm. In this section we establish the
following risk upper bound of the regression-based thresholding estimation procedure we
proposed in Section 2.2 under the Frobenius norm over Pα(η,M).

THEOREM 7. Assume �n 1
2α+2 � ≤ p. The estimator defined in (16) of the precision matrix

� over Pα(η,M) and Qα(η,αM) given in (2) and (3) with k = �n 1
2α+2 � satisfies

(36) sup
Qα(η,αM)

1

p
E
∥∥�̃F

k − �
∥∥2

F ≤ sup
Pα(η,M)

1

p
E
∥∥�̃F

k − �
∥∥2

F ≤ Cn− 2α+1
2α+2 .

PROOF. We focus on the second inequality since the first one is trivial. Note that �̃F
k =

(Ĩ − A)T D̃−1(Ĩ − A) according to (16) while � = (I − A)T D−1(I − A). The risk upper

bound can be controlled by bounding Ĩ − A − (I − A) and D̃ − D. To this end, we first
provide some properties of our estimator.

LEMMA 15. Assume that X follows the p-variate Gaussian distribution with mean zero
and precision matrix � = (I −A)T D−1(I −A) which belongs to parameter space Pα(η,M)

defined in (2). For any fixed i, di is the ith diagonal of D, ai ∈ Ri−1 corresponds the ith row
of the lower triangle in A. d̂i is defined in (15), and â∗

i ∈ Ri−1 corresponds with the ith row
of the lower triangle in Â∗ defined in (14). Then, we have

E|d̂i − di |2 ≤ Cn− 2α+1
2α+2 ,

E
∥∥â∗

i − ai

∥∥2
2 ≤ Cn− 2α+1

2α+2 .

We are ready to establish the upper bounds of Ĩ − A− (I −A) and D̃−D separately. Note
that ‖D̃−1‖op ≤ η and ‖D−1‖op ≤ η which is due to Lemma B.2 of [38]. Therefore, Lemma
B.1 of [38] yields E‖D̃ − D‖2

F ≤ 4E‖D̂ − D‖2
F, which further implies that

1

p
E
∥∥D−1 − D̃−1∥∥2

F ≤ 1

p
E
∥∥D̃−1∥∥2

op‖D̃ − D‖2
F
∥∥D−1∥∥2

op

≤ 4η4 1

p
E‖D̂ − D‖2

F

≤ 4η4 1

p

∑
i

E|d̂i − di |2.
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Together with Lemma 15, it follows that

(37)
1

p
E
∥∥D−1 − D̃−1∥∥2

F ≤ Cn− 2α+1
2α+2 .

Next, we turn to prove that 1
p
E‖ ˜(I − A)− (I −A)‖2

F ≤ Cn− 2α+1
2α+2 . Lemma B.1 of [38] implies

1

p
E
∥∥ ˜(I − A) − (I − A)

∥∥2
F ≤ 4

p
E
∥∥Â∗ − A

∥∥2
F ≤ 4

p

∑
i

E
∥∥â∗

i − ai

∥∥2
2.

Combining above equation with Lemma 15, we have

(38)
1

p
E
∥∥ ˜(I − A) − (I − A)

∥∥2
F ≤ Cn− 2α+1

2α+2 .

At last, we derive the risk upper bound of our estimator. It is clear that ‖Ĩ − A‖op ≤ η,
‖D̃−1‖op ≤ η. According to Lemma B.2 of [38], ‖I − A‖op ≤ η, ‖D−1‖op ≤ η. Combining
these facts with (37) and (38), we have

1

p
E‖�̃ − �‖2

F ≤ 3

p
E
(‖I − A‖2

op
∥∥D−1∥∥2

op

∥∥ ˜(I − A) − (I − A)
∥∥2

F

+ ‖I − A‖2
op
∥∥D−1 − D̃−1∥∥2

F‖Ĩ − A‖2
op

+ ∥∥ ˜(I − A) − (I − A)
∥∥2

F

∥∥D̃−1∥∥2
op‖Ĩ − A‖2

op
)

≤ 6η4 1

p
E
∥∥ ˜(I − A) − (I − A)

∥∥2
F + 3η4 1

p
E
∥∥D−1 − D̃−1∥∥2

F

≤ Cn− 2α+1
2α+2 .

Therefore, we finish the proof of Theorem 7. �

4.2. Minimax lower bound under the Frobenius norm. In this section we establish the
matching lower bound n− 2α+1

2α+2 over parameter spaces Pα(η,M) and Qα(η,M).

THEOREM 8. The minimax risk for estimating the precision matrix � over Pα(η,M)

and Qα(η,αM) under the Frobenius norm satisfies

inf
�̃

sup
Pα(η,M)

1

p
E‖�̃ − �‖2

F ≥ inf
�̃

sup
Qα(η,αM)

1

p
E‖�̃ − �‖2

F ≥ τ 2

32
n− 2α+1

2α+2 .

REMARK 8. The minimax risk for estimating the precision matrices over Pα(η,M) and
Qα(η,M) under the Frobenius norm in Theorem 2 immediately follows from Theorems 7
and 8.

PROOF. It is sufficient to establish the lower bound over Qα(η,M) since the first in-
equality immediately follows from (35). We construct a least favorable subset in Qα(η,M).

Without loss of generality, we assume p
2k

is an integer where k = min{�n 1
2α+2 �, p

2 }. Define

the index set ′ = {0,1} kp
2 . For each θ ∈ ′, we further denote it as p

2k
many k2 dimen-

sional vectors, that is, θ = {θ(s)}1≤s≤� p
2k

�, where θ(s)ij is equal to 0 or 1. For such an index
θ , there is a corresponding p × p block diagonal matrix C(θ) such that each k × k block
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Cs(θ(s)) ≡ [c(s)ij ]k×k , where c(s)ij = τn− 1
2 θ(s)ij , s ∈ � p

2k
�. We set τ as a positive constant

which is less than min{M, 1
4η−1, η

1
2 − 1}.

C(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0k 0k

C1
(
θ(1)

)
0k

02k . . . 02k

02k
0k 0k

C2
(
θ(2)

)
0k

. . . 02k

...
...

. . .
...

02k 02k . . .
0k 0k

C� p
2k

�
(
θ

(⌈
p

2k

⌉))
0k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, we define the subset of Qα(η,M) indexed by ′ as follows:

(39) P4 = {
�(θ) : �(θ) = (

Ip − C(θ)
)T (

Ip − C(θ)
)
, θ ∈ ′}.

LEMMA 16. P4 is a subset of Qα(η,M).

Applying Lemma 6 to P4, we obtain that

inf
�̃

max
θ∈�(′)

22Eθ

∥∥�̃ − �(θ)
∥∥2
F

≥ min
H(θ,θ ′)≥1

‖�(θ) − �(θ ′)‖2
F

H(θ, θ ′)
kp

4
min

H(θ,θ ′)=1
‖Pθ ∧ Pθ ′‖.

(40)

LEMMA 17. Let Pθ be the joint distribution of n i.i.d. observations from N(0,�(θ)−1),
where �(θ) ∈ P4 defined in (39). Then,

(41) min
H(θ,θ ′)=1

‖Pθ ∧ Pθ ′‖ ≥ 0.5

and

(42) min
H(θ,θ ′)≥1

‖�(θ) − �(θ ′)‖2
F

H(θ, θ ′)
≥ τ 2n−1.

Applying Lemma 17 into (40), we obtain

inf
�̃

sup
Qα(η,M)

1

p
E‖�̃ − �‖2

F ≥ inf
�̃

sup
P4

1

p
E‖�̃ − �‖2

F

≥ τ 2

32
n−1 min

{
n

1
2α+2 ,

p

2

}
,

which completes the proof of Theorem 8, noting that n < p. �

5. Adaptive estimation. To achieve the minimax rates in Theorem 1 under the operator
norm, the local cropping estimator �̃

op
k requires the knowledge of smoothness parameter α as

the optimal choice of bandwidth k = �n 1
2α � and k = �n 1

2α+1 � over Pα(η,M) and Qα(η,M),
respectively. In this section we consider adaptive estimation, where the goal is to construct
a single procedure which is minimax rate optimal simultaneously over each parameter space
Pα(η,M) (α > 1/2) and Qα(η,M) (α > 0). Throughout this section we assume that X fol-
lows certain sub-Gaussian distribution defined in (17).
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Recall that for each k, the local cropping estimator �̃
op
k is defined in (12). Without the

knowledge of α, the bandwidth k needs to be picked in a data-driven fashion. Motivated by
Lepski’s methods for nonparametric function estimation problems [35], we select the band-
width k̂ through the following procedure:

(43) k̂ = min
{
k ∈ H : ∥∥�̃op

k − �̃
op
l

∥∥2
op ≤ CL

logp + l

n
, for all l ≥ k

}
,

where H = {1,2, . . . � n
logp

�} and CL > 0 is a sufficiently large constant. If the set that is

minimized over is empty, we use the convention k̂ = � n
logp

�. The adaptive local cropping

estimator �̃
op
k̂

enjoys the following theoretical guarantee and, thus, is adaptive minimax rate
optimal.

THEOREM 9. Assume logp = O(n), n = O(p). Then, the adaptive estimator �̃
op
k̂

with

k̂ defined in (43) of the precision matrix � over Pα(η,M) with α > 1
2 satisfies

sup
Pα(η,M)

E
∥∥�̃op

k̂
− �

∥∥2
op ≤ Cn− 2α−1

2α + C
logp

n
.

In addition, the adaptive estimator �̃
op
k̂

over Qα(η,M) with α > 0 satisfies

sup
Qα(η,M)

E
∥∥�̃op

k̂
− �

∥∥2
op ≤ Cn− 2α

2α+1 + C
logp

n
.

PROOF. We only show the upper bound over Pα(η,M) with α > 1
2 . The proof over space

Qα(η,M) with α > 0 can be shown similarly and thus omitted.

Set the oracle bandwidth k∗ = �n 1
2α �. For any � ∈ Pα(η,M), we decompose the risk as

follows:

(44) E
∥∥�̃op

k̂
− �

∥∥2
op ≤ 2E

∥∥�̃op

k̂
− �̃

op
k∗
∥∥2

op + 2E
∥∥�̃op

k∗ − �
∥∥2

op.

Since k∗ is deterministic, we immediately obtain from Theorem 3 that

(45) E
∥∥�̃op

k∗ − �
∥∥2

op ≤ Cn− 2α−1
2α + C

logp

n

which controls the second term of the risk decomposition (44).
We turn to bound the first term of (44). Due to the definition of k̂ and k∗, we have that on

the event {k̂ ≤ k∗},

(46)
∥∥�̃op

k̂
− �̃

op
k∗
∥∥2

op ≤ CL

logp + k∗

n
≤ Cn− 2α−1

2α + C
logp

n
.

It suffices to show that k̂ ≤ k∗ with high probability. The following lemma, a probability
version of Theorem 3, facilitates our proof of this claim.

LEMMA 18. Assume �n 1
2α � ≤ p. Then, for any constant C1 > 0, there exists a sufficiently

large constant C > 0 irrelevant of α such that the local cropping estimator defined in (12)
satisfies

P

(∥∥�̃op
k − �

∥∥2
op ≤ Ck−2α+1 + C

logp + k

n

)
> 1 − exp

(−C1(logp + k)
)
,

simultaneously for each k ∈H and each � ∈ Pα(η,M) with α > 1
2 .
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Notice that for any l, we have ‖�̃op
k∗ − �̃

op
l ‖2

op ≤ 2‖�̃op
k∗ − �‖2

op + 2‖� − �̃
op
l ‖2

op. Thus,

P
(
k̂ > k∗)
≤ ∑

l≥k∗
P

(∥∥�̃op
k∗ − �̃

op
l

∥∥2
op > CL

logp + l

n

)

≤ ∑
l≥k∗

(
P

(∥∥�̃op
k∗ − �

∥∥2
op >

CL

4

logp + k∗

n

)

+ P

(∥∥�̃op
l − �

∥∥2
op >

CL

4

logp + l

n

))

≤ n
(
exp

(−C1
(
logp + k∗))+ exp

(−C1(logp + l)
))

≤ n−1η−2.

(47)

We have used the fact k∗ ≤ l and the definition of k∗ in the inequalities above, noting that a
sufficiently large C1 > 0 can be picked to guarantee the last inequality holds. The second to
last inequality holds because of Lemma 18 and a sufficiently large CL. Therefore, we have
shown that the event k̂ ≤ k∗ holds with probability at least 1 − n−1η−2.

In the end, combining (44)–(47), we obtain that for any � ∈Pα(η,M),

E
∥∥�̃op

k̂
− �

∥∥2
op

≤ 2E
∥∥�̃op

k∗ − �
∥∥2

op + 2E
(∥∥�̃op

k̂
− �̃

op
k∗
∥∥2

op : k̂ ≤ k∗)
+ 2E

(∥∥�̃op
k̂

− �̃
op
k∗
∥∥2

op : k̂ > k∗)
≤ Cn− 2α−1

2α + C
logp

n
+ 8η2P

(
k̂ > k∗)

≤ Cn− 2α−1
2α + C

logp

n
+ 8n−1

≤ C

(
n− 2α−1

2α + logp

n

)
,

where we also used that ‖�̃op
k̂

− �̃
op
k∗‖2

op ≤ 4η2 in the second inequality. Therefore, we com-
plete the proof. �

6. An extension to nonparanormal distributions. In this section we extend the min-
imax framework to the nonparanormal model. Assume that X = (X1,X2, . . . ,Xp)T fol-
lows the p-variate Gaussian distribution with covariance matrix �. Instead of n i.i.d. copies
X1,X1, . . . ,Xn of X, we only observe their transformations. Specifically, we denote the trans-
formed variables of X by Y = (f1(X1), f2(X2), . . . , fp(Xp))T , where each fi is some un-
known strictly increasing function. Then, our observation is Z = (Y1,Y2, . . . ,Yn)

T ∈ Rn×p ,
where each Yi is the transformed Xi . This is a form of the Gaussian copula model [5] or
the nonparanormal model [37]. To avoid the identifiability issue, we set diag(�) = I which
makes � the correlation matrix. Here, we consider the same structural assumption as in pre-
vious sections on the inverse of the correlation matrix which is denoted by �. Based on
Pα(η,M) and Qα(η,M) and defined in (2) and (3), the following two types of parameter
spaces are of interest:

(48) P ′
α(η,M) =

{{
�, {fi}} : diag

(
�−1)= I,� ∈ Pα(η,M);

fi is strictly increasing, i ∈ [p]
}
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and

(49) Q′
α(η,M) =

{{
�, {fi}} : diag

(
�−1)= I,� ∈ Qα(η,M);

fi is strictly increasing, i ∈ [p]
}

.

Our goal is to estimate the latent correlation structure, the inverse of the correlation matrix
�, using the observation Z. We establish the minimax risk of estimating � over the parameter
spaces P ′

α(η,M) and Q′
α(η,M) under the operator norm in the following theorem.

THEOREM 10. Assume logp = O(n), n = O(p). Then, for the nonparanormal model,
the minimax risk of estimating � under the operator norm over P ′

α(η,M) with α > 1
2 satisfies

(50) inf
�̃

sup
{�,{fi}}∈P ′

α(η,M)

E‖�̃ − �‖2
op � n− 2α−1

2α + logp

n
.

The minimax risk of estimating � under the operator norm over Q′
α(η,M) satisfies

(51) inf
�̃

sup
{�,{fi}}∈Q′

α(η,M)

E‖�̃ − �‖2
op � n− 2α

1+2α + logp

n
.

Finally, we introduce our rate-optimal estimation procedure over the parameter spaces
P ′

α(η,M) and Q′
α(η,M) under the operator norm. The approach to estimate the inverse of

the correlation matrix in nonparanormal model is almost the same as the estimation scheme
of the precision matrix under the operator norm in Section 2.1, except that the sample covari-
ance matrix needs to be replaced by its rank-based nonparametric variant via Kendall’s tau
(τ ) [31] or Spearman’s correlation coefficient rho (ρ) [49]. Rank-based estimators are widely
applied in the nonparanormal model. Progress has been made in this field during the last
decade, especially for high-dimensional statistics. For instance, see [41] for bandable corre-
lation matrix estimation, [4] for Gaussian graphical models and [22] for multitask regression
via Cholesky decomposition.

Kendall’s tau is defined as

τ̂ij = 2

n(n − 1)

∑
1≤k1<k2≤n

sgn(Zk1i − Zk2i)sgn(Zk1j − Zk2j ).

Then, define

(52) �̂τ =
[
sin

(
π

2
τ̂ij

)]
p×p

.

Spearman’s rho is defined as

ρ̂ij =
∑n

k=1(rki − (n + 1)/2)(rkj − (n + 1)/2)√∑n
k=1(rki − (n + 1)/2)2 ∑n

k=1(rkj − (n + 1)/2)2
,

where rij is the rank of Zij among Z1j ,Z2j , . . . ,Znj . Define

(53) �̂ρ =
[
2 sin

(
π

6
ρ̂ij

)]
p×p

.

It is well known that both �̂τ and �̂ρ are unbiased estimators of the population correla-
tion matrix �. We adopt almost the same estimation procedure proposed in Section 2.1 but
replace 1

n
ZT Z in (10) with either �̂τ or �̂ρ . In this way we construct the nonparametric

local cropping estimators �̃τ
k and �̃

ρ
k in place of �̃

op
k in (12). Note that the optimal choices

of the bandwidth k are picked differently over two types of parameter spaces P ′
α(η,M) and

Q′
α(η,M), as we did over Pα(η,M) and Qα(η,M) in Section 2.1. To provide some technical

insights, we rely on some recent results in [41] to bound the variance of each local estimator
in (10) under the operator norm which is the key to establish the upper bounds in Theorem 10.
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7. Numerical studies. In this section we turn to the numerical performance of the pro-
posed rate-optimal estimators under the operator norm for Pα(η,M) and Qα(η,M) defined
in (2) and (3) to further illustrate the fundamental difference of Pα(η,M) and Qα(η,M). In
addition, we compare them with the banding estimator proposed in [6] which is based on
the auto-regression between variables. Specifically, for a given bandwidth k < n, the band-
ing estimator is defined as �̃BL = (I − ÃBL)T (D̃BL)−1(I − ÃBL). Here, the ith row of the
lower triangular matrix ÃBL is the vector âi in (13), that is, the least square estimates of the
coefficients for the regression of Xi against Xi−k:i−1. The ith entry of the diagonal matrix
D̃BL is the estimate of the residual variance for the regression of Xi against Xi−k:i−1.

7.1. Simulation in Qα(η,M) under the operator norm. We first focus on the parameter
space Qα(η,M) and compare the performance of local cropping estimator and the banding
estimator. Specifically, we generate the precision matrix in the following form:

� = (I − A)T D−1(I − A), A ≡ [aij ]p×p,D = Ip,

where aij = −(i − j)−α−1 when i > j ; otherwise, aij = 0. It is easy to check that � ∈
Qα(η,1) with some large η > 0. The simulation is done with a range of parameter values for
p, n, α. Specifically, the decay rate α ranges from 0.5 to 2 with a step of 0.5, the sample size
n ranges from 500 to 4000, the dimension p ranges from 500 to 2000.

In this setting we compare our local cropping estimator (denoted as cropping.Q.) with
the banding estimator (denoted as BL) proposed in [6]. According to [6], the bandwidth of
banding estimator is chosen as k � (n/ logp)1/(2α+2). The optimal bandwidth over Qα(η,M)

is k � n1/(2α+1). In the simulation the bandwidth of BL estimator is 	(n/ logp)1/(2α+2)
 and
the bandwidth of crop.Q is 	n1/(2α+1)
.

Table 1 reports the average errors of the banding estimator (BL) and local cropping es-
timator (crop.Q) under the operator norm over 100 replications. The smaller errors in each
experiment are highlighted in boldface. Figure 2 displays the boxplots of the errors of BL
and crop.Q.

It can be seen from Table 1 that crop.Q outperforms BL in most cases with a few exceptions
when n is small. As the sample size increases, the average errors of both methods decrease

TABLE 1
The average errors under the operator norm of the banding estimator (BL) and the local cropping estimator

(crop.Q) over 100 replications

p n α = 0.5 α = 1 α = 1.5 α = 2

crop.Q BL crop.Q BL crop.Q BL crop.Q BL

500 500 4.68 5.44 1.64 2.38 1.18 1.16 0.93 0.81
1000 3.29 4.89 1.17 1.72 0.82 1.08 0.66 0.69
2000 2.47 4.45 0.89 1.33 0.59 0.69 0.48 0.59
4000 1.84 3.80 0.62 1.07 0.41 0.64 0.34 0.53

1000 500 4.96 5.74 1.75 2.40 1.30 1.19 0.99 0.84
1000 3.43 5.19 1.24 1.74 0.86 1.10 0.68 0.70
2000 2.58 4.75 0.93 1.35 0.62 0.71 0.51 0.60
4000 1.93 4.10 0.66 1.33 0.44 0.65 0.36 0.55

2000 500 5.14 5.97 1.85 2.41 1.33 1.21 1.06 0.89
1000 3.58 5.41 1.30 1.76 0.90 1.12 0.72 0.71
2000 2.69 4.97 0.98 1.37 0.65 0.73 0.54 0.62
4000 2.01 4.32 0.69 1.34 0.45 0.66 0.38 0.55
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FIG. 2. The boxplot of the errors from the local cropping estimator with the optimal bandwidth in Qα(η,M)

(cropping.Q) and the banding estimator (BL) over 100 replications.

which matches our intuition. In addition, the dimension p has minor effect on the errors of

both estimators which is partially reflected by the optimal rates (dominating term n− 2α
2α+1 )

obtained in Theorem 1. For each fixed dimension p, the superiority crop.Q over BL becomes
more significant as the sample size n increases which implies that BL estimator is indeed
suboptimal.

7.2. Simulation in Pα(η,M) under the operator norm. We demonstrate the fundamen-
tal difference between two types of parameter space Pα(η,M) and Qα(η,M) by numerical
studies in this section. Of note, although local cropping estimators proposed in (12) are rate-
optimal over both Pα(η,M) and Qα(η,M), the corresponding optimal choices of bandwidth
are distinct. We generate precision matrices in the following way to guarantee that � is al-
ways in Pα(η,M) but not in Qα(η,M) with some fixed η and M . Considering

� = (I − A)T D−1(I − A), A ≡ [aij ]p×p,D = Ip,

where the first column of A is ai1 = −2(i − 1)−α , 2 ≤ i ≤ p. The remaining entries are all
zeros. It is easy to check that � ∈ Pα(η,2) with some large η > 0. The simulation is carried
out with a similar range of values for p, n, α as in Section 7.1. Note that the consistent
estimator exists only if α > 0.5. Therefore, in this setting, the decay rate α varies among 1,
1.5 and 2.

The optimal choice of bandwidth of local cropping estimator over Pα(η,M) is k � n
1

2α

which is different from the one of crop.Q. We denote this rate-optimal estimator in Pα(η,M)
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TABLE 2
The average errors under the operator norm of the banding estimator (BL) and the local cropping estimators

(crop.P & crop.Q) over 100 replications

p n α = 1 α = 1.5 α = 2

crop.P crop.Q BL crop.P crop.Q BL crop.P crop.Q BL

500 500 1.50 1.18 2.32 0.66 0.73 0.86 0.52 0.65 0.53
1000 1.09 0.96 1.80 0.47 0.56 0.83 0.38 0.56 0.45
2000 0.83 0.80 1.53 0.35 0.43 0.55 0.27 0.32 0.41
4000 0.64 0.68 1.33 0.26 0.35 0.54 0.19 0.24 0.38

1000 500 1.50 1.20 2.36 0.68 0.74 0.91 0.57 0.68 0.59
1000 1.12 0.98 1.82 0.49 0.58 0.81 0.39 0.55 0.46
2000 0.84 0.81 1.54 0.37 0.44 0.55 0.27 0.32 0.41
4000 0.65 0.68 1.52 0.26 0.35 0.53 0.19 0.24 0.38

2000 500 1.51 1.21 2.39 0.69 0.75 0.96 0.62 0.71 0.63
1000 1.16 1.00 1.81 0.51 0.60 0.84 0.39 0.56 0.46
2000 0.85 0.81 1.55 0.39 0.44 0.56 0.27 0.33 0.41
4000 0.65 0.69 1.70 0.26 0.35 0.53 0.19 0.24 0.38

FIG. 3. The boxplot of the errors from the local cropping estimator with the optimal bandwidth in Pα(η,M)

(cropping.P), the local cropping estimator with the optimal bandwidth in Qα(η,M) (cropping.Q) and the banding
estimator (BL) over 100 replications.
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by crop.P. In the simulation the bandwidth of crop.P is 	n 1
2α 
. We also include BL estimator

as a reference.
Table 2 reports the average errors of the three procedures, crop.P, crop.Q and BL, under the

operator norm over 100 replications. The smallest errors in each experiment are highlighted
in boldface. Figure 3 plots the boxplots of their errors for p = 500,1000,2000.

Since � always belongs to Pα(η,M) but not Qα(η,M), the estimator crop.Q is suboptimal
and thus expected to have an inferior performance. Table 2 shows this point, that is, for fixed p

and α, the advantage of crop.P is more obvious as n increases. Especially, crop.P outperforms
the other two estimators when n = 4000. We also see a similar pattern as in Table 1 that p

has minor effect on the errors of all the estimators.
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SUPPLEMENTARY MATERIAL

Supplement to “Minimax estimation of large precision matrices with bandable
Cholesky factor” (DOI: 10.1214/19-AOS1893SUPP; .pdf). In this supplement, we provide
key lemmas in the proofs of those main theorems, additional numerical studies as well as
some discussions.
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