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Existing frequency domain methods for bootstrapping time series have
a limited range. Essentially, these procedures cover the case of linear time
series with independent innovations, and some even require the time series
to be Gaussian. In this paper we propose a new frequency domain bootstrap
method—the hybrid periodogram bootstrap (HPB)—which is consistent for
a much wider range of stationary, even nonlinear, processes and which can be
applied to a large class of periodogram-based statistics. The HPB is designed
to combine desirable features of different frequency domain techniques while
overcoming their respective limitations. It is capable to imitate the weak de-
pendence structure of the periodogram by invoking the concept of convolved
subsampling in a novel way that is tailor-made for periodograms. We show
consistency for the HPB procedure for a general class of stationary time se-
ries, ranging clearly beyond linear processes, and for spectral means and ratio
statistics on which we mainly focus. The finite sample performance of the
new bootstrap procedure is illustrated via simulations.

1. Introduction. Frequency domain bootstrap methods for time series are quite attrac-
tive because in many situations they can be successful without imitating the complete (po-
tentially complicated) temporal dependence structure of the underlying stochastic process as
is the case for time domain bootstrap methods. Frequency domain methods mainly focus on
bootstrapping the periodogram which is defined for any time series X1, . . . ,Xn by

In(λ) = 1

2πn

∣∣∣∣∣
n∑

t=1

Xte
−iλt

∣∣∣∣∣
2

, λ ∈ [−π,π ].(1.1)

The periodogram is an important frequency domain statistic, and many statistics of interest
in time series analysis can be written as functions of the periodogram. Furthermore, it obeys
some useful nonparametric properties for a wide class of stationary processes which makes
frequency domain bootstrap methods appealing. In particular, periodogram ordinates rescaled
by the spectral density are asymptotically standard exponential distributed, and, moreover, pe-
riodogram ordinates corresponding to different frequencies in the interval (0, π) are asymp-
totically independent. This asymptotic independence essentially means that the classical i.i.d.
bootstrap of drawing with replacement, as has been introduced by Efron (1979), can poten-
tially be applied to bootstrap the periodogram, in particular the properly rescaled periodogram
ordinates. Motivated by these considerations, many researchers have developed bootstrap
methods in frequency domain which generate pseudo periodogram ordinates with the intent
to mimic the stochastic behavior of the ordinary periodogram.

A multiplicative bootstrap approach for the periodogram has been investigated by Hurvich
and Zeger (1987), Franke and Härdle (1992) and Dahlhaus and Janas (1996). The main idea
is to exploit the (asymptotic) independence of the periodogram at different frequencies and
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to generate new pseudo periodogram ordinates by multiplying an estimator of the spectral
density at the frequencies of interest with pseudo innovations obtained by an i.i.d. resampling
of appropriately defined frequency domain residuals. Franke and Härdle (1992) proved the
validity of such an approach for estimating the distribution of nonparametric spectral density
estimators for linear processes of the form

Xt =
∞∑

j=−∞
ajεt−j , t ∈ Z,(1.2)

where (εt )t∈Z denotes an i.i.d. white noise process. Shao and Wu (2007) established valid-
ity of this procedure for the same statistic but for a much wider class of stochastic processes.
However, beyond nonparametric spectral density estimators, the range of validity of this boot-
strap approach is limited. In the following we will explain this in more detail.

It should be emphasized at this point that whenever we use the term linear process in this
work, we refer to a process as given by (1.2) including the i.i.d. assumption on the innova-
tions, as it is done in many standard references for time series; cf. Brockwell and Davis (1991)
among others. This notion is particularly important in the ensuing discussion on the range of
validity of established bootstrap methods because most of the classical methods are valid
exclusively for linear processes in this strict sense. To put this into perspective, processes
with a Wold representation similar to (1.2) but with only uncorrelated (not i.i.d.) innovations
are considered nonlinear. The same goes for popular models such as, for instance, bilinear
processes and autoregressive, moving average or ARMA processes driven by ARCH noise
or any other non-i.i.d noise. Moreover, all linear processes are obviously strictly stationary
which implies that any weakly but not strictly stationary process is nonlinear.

Even in the case of linear processes in the strict sense, Dahlhaus and Janas (1996) showed
that the multiplicative approach fails to consistently estimate the limiting distribution of very
basic statistics like sample autocovariances. This failure is due to the following: For many
periodogram-based statistics of interest consistency is achieved by letting the number of fre-
quencies at which the periodogram is evaluated increase with increasing sample size. The
dependence between periodogram ordinates at different frequencies vanishes asymptotically,
but the rate of this decay typically just compensates the increasing number of frequencies.
This leads to the fact that the dependence structure of the periodogram actually shows up in
the limiting distribution of many statistics of interest. Since the bootstrap pseudo periodogram
ordinates generated by the multiplicative approach are independent, this approach fails to im-
itate the aforementioned dependence structure of periodogram ordinates. As a consequence,
validity of this frequency domain bootstrap approach can be established only for a restricted
class of processes and statistics. To be precise, even in the special case of linear processes
(i.e., with representation (1.2) driven by i.i.d. white noise) the approach works only under
additional assumptions, such as Gaussianity of the time series or for specific statistics such
as ratio statistics. For the wide range of nonlinear processes, including all processes which
are not strictly stationary, the approach fails for most classes of statistics.

Notice that the aforementioned limitations of the multiplicative periodogram bootstrap are
common to other frequency domain bootstrap methods which generate independent pseudo
periodogram ordinates. The local periodogram bootstrap introduced by Paparoditis and Poli-
tis (1999) is such an example. Thus, for a frequency domain bootstrap procedure to be suc-
cessful for a wider class of statistics and/or a wider class of stationary processes, it also has
to reflect the dependence structure of the ordinary periodogram at different frequencies.

Attempts in this direction include the approach proposed by Janas and Dahlhaus (1994),
the autoregressive-aided periodogram bootstrap (AAPB) by Kreiss and Paparoditis (2003)
and the hybrid wild bootstrap; cf. Kreiss and Paparoditis (2012). Although the hybrid wild
bootstrap extends the validity of frequency domain bootstrap to a wider class of statistics
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compared to the multiplicative periodogram bootstrap, its limitation lies, as for the AAPB
and the approach proposed by Janas and Dahlhaus (1994), in the fact that its applicability is
also restricted to linear processes. On a side note, many popular bootstrap methods in the time
domain, such as for instance the autoregressive sieve bootstrap, share the same limitations
since—for the class of statistics considered here—they are only valid for linear processes, cf.
Kreiss, Paparoditis and Politis (2011) for a detailed discussion.

The above discussion demonstrates that a frequency domain bootstrap procedure which is
valid for a wide range of stationary stochastic processes and for a rich class of periodogram-
based statistics is missing. This paper attempts to fill this gap. Our main contribution is the
proposal of the hybrid periodogram bootstrap (HPB). This is a hybrid procedure which
combines elements from the aforementioned multiplicative approach and from a modified
convolved subsampling approach. The concept of convolved subsampling has recently been
introduced by Tewes, Politis and Nordman (2019). It approximates the distribution of a statis-
tic of interest by evaluating the same statistic on smaller samples of the original time series,
drawing independently from these subsample statistics and calculating a scaled sum of the
obtained values. Tewes, Politis and Nordman (2019) showed how this procedure is connected
to the moving block bootstrap, and they were able to show that the procedure is asymptoti-
cally valid in a very general setup as long as certain assumptions on the asymptotic behaviour
of the underlying time series are fulfilled.

Our modified convolved subsampling approach will be called convolved bootstrapped pe-
riodograms of subsamples (CBP), and it will be discussed in detail for spectral means and
ratio statistics. The CBP differs from the general convolved subsampling concept since it al-
lows the user to plug in any consistent spectral density estimator, based on the entire observed
time series, instead of implicitly using the particular subsampling estimator. In the CBP pro-
cedure “frequency domain residuals” are defined which are obtained by appropriately rescal-
ing periodograms calculated at the Fourier frequencies of subsamples of the observed time
series. These residuals together with a consistent estimator of the spectral density are used to
generate pseudo periodograms of subsamples which mimic correctly the weak dependence
structure of the periodogram. As we will see, this modification of the standard convolved sub-
sampling procedure leads to certain advantages in finite samples; see Remark 3.2(iv) below
and Section 5.2.

In our main contribution, the HPB procedure, we will combine desirable features from
both the multiplicative approach discussed earlier and the CBP procedure. The HPB is de-
signed in the following way: It employs the multiplicative approach to mimic those features
of the statistic of interest that this approach is able to approximate well. This concerns the
distributional shape of spectral means and ratio statistics and the part of the variance of these
statistics that is not affected by the weak dependence structure of the periodogram. At the
same time the HPB makes use of the CBP exclusively to imitate the part of the variance that
is due to the dependence structure of periodogram ordinates at different frequencies (which
can not be mimicked by the multiplicative approach). We will argue why this hybrid approach
is preferable compared to the pure CBP for spectral means and ratio statistics. These argu-
ments will be supported by a simulation study in which the HPB outperforms the pure CBP,
the standard convolved subsampling procedure and the multiplicative bootstrap approach.

The paper is organized as follows. Section 2 reviews some asymptotic results concerning
spectral means and ratio statistics and clarifies the limitations in approximating the distri-
bution of such statistics by classical frequency domain bootstrap methods which generate
independent periodogram ordinates. Section 3 introduces the new CBP and HPB procedures.
In Section 4 we will establish asymptotic validity of both approaches for the entire class of
spectral means and ratio statistics and for a very wide class of stationary processes. Sec-
tion 5 discusses the issue of selecting the bootstrap parameters in practice and presents some
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simulations demonstrating the finite sample performance of the new procedures. Finally, all
proofs are deferred to the Appendix of the paper and to the Supplementary Material (Meyer,
Paparoditis and Kreiss (2020)).

In the following P ∗ will denote conditional probability given the data X1, . . . ,Xn, and E∗,
and Var∗ will denote the corresponding expectations and variances.

2. Spectral means and ratio statistics. We consider a weakly stationary real-valued
stochastic process (Xt)t∈Z with mean zero, absolutely summable autocovariance function γ

and spectral density f : [−π,π ] → [0,∞); the detailed conditions can be found in Assump-
tion 1 below. The periodogram of a sample X1, . . . ,Xn from this process is defined according
to (1.1). While the periodogram is well known to be an inconsistent estimator of the spectral
density f (λ), integrated periodograms form an important class of estimators which are con-
sistent under suitable regularity conditions. For some integrable function ϕ : [−π,π ] → R

the integrated periodogram is defined as

M(ϕ, In) =
∫ π

−π
ϕ(λ)In(λ) dλ,

which is an estimator for the so-called spectral mean M(ϕ,f ). A further interesting class of
statistics is obtained by scaling a spectral mean statistic by the quantity M(1, In). In particu-
lar, this class of statistics, also known as ratio statistics, is defined by

R(ϕ, In) = M(ϕ, In)

M(1, In)
.

For practical calculations the integral in M(ϕ, In) is commonly replaced by a Riemann sum.
This is usually done using the Fourier frequencies based on sample size n, which are given
by λj,n = 2πj/n, for j ∈ G(n), with

(2.1) G(n) := {
j ∈ Z : 1 ≤ |j | ≤ [n/2]}.

The approximation of M(ϕ, In), and, respectively, of R(ϕ, In) via Riemann sum is then given
by

MG(n)(ϕ, In) = 2π

n

∑
j∈G(n)

ϕ(λj,n)In(λj,n)

and

RG(n)(ϕ, In) =
∑

j∈G(n) ϕ(λj,n)In(λj,n)∑
j∈G(n) In(λj,n)

.

Various statistics commonly used in time series analysis belong to the class of spectral
means or ratio statistics. We give some examples.

EXAMPLE 2.1.

(i) The autocovariance γ (h) of (Xt) at lag 0 ≤ h < n can be estimated by the empirical
autocovariance γ̂ (h) = n−1 ∑n−h

t=1 XtXt+h which is an integrated periodogram statistic. This
is due to the fact that choosing ϕ(λ) = cos(hλ) it follows from straightforward calculations
that γ̂ (h) = M(ϕ, In) as well as γ (h) = M(ϕ,f ).

(ii) The spectral distribution function evaluated at point x ∈ (0, π] is defined as∫ x
0 f (λ)dλ = M(ϕ,f ) for ϕ(λ) = 1(0,x](λ). The corresponding integrated periodogram esti-

mator is given by M(ϕ, In) = ∫ x
0 In(λ) dλ.
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(iii) The autocorrelation ρ(h) = γ (h)/γ (0) of (Xt) at lag 0 ≤ h < n can be estimated by
the empirical autocorrelation ρ̂(h) = γ̂ (h)/γ̂ (0) which in view of (i) is a ratio statistic, that
is, ρ̂(h) = R(cos(h·), In).

We specify the assumptions imposed on (Xt)t∈Z and the function ϕ:

ASSUMPTION 1.

(i) Assumptions on (Xt)t∈Z: The stochastic process (Xt)t∈Z is real-valued with finite
eighth moments, and it is eighth-order stationary, that is, the joint cumulants of the process
up to the eighth order

cum(Xt ,Xt+h1, . . . ,Xt+h7)

do not depend on t ∈ Z for any h1, . . . , h7 ∈ Z. The process (Xt) has mean zero, autocovari-
ance function γ : Z → R fulfilling

∑
h∈Z |h||γ (h)| < ∞ and spectral density f satisfying

infλ∈[0,π ] f (λ) > 0. Furthermore, the fourth-order joint cumulants of the process fulfil∑
h1,h2,h3∈Z

(|h1| + |h2| + |h3|)∣∣cum(X0,Xh1,Xh2,Xh3)
∣∣ < ∞,

and the eighth-order cumulants are absolutely summable, that is,∑
h1,...,h7∈Z

∣∣cum(X0,Xh1, . . . ,Xh7)
∣∣ < ∞.

(ii) Assumptions on ϕ: The function ϕ : [−π,π ] → R is square integrable and of bounded
variation.

Notice that the summability conditions imposed on the autocovariance function γ imply
boundedness and differentiability of f , as well as boundedness of the derivative f ′ of f .
Under the conditions of Assumption 1 and some additional weak dependence conditions, it
is known that M(ϕ, In) is a consistent estimator for M(ϕ,f ) and that the following central
limit theorem holds true:

(2.2) Ln = √
n
(
M(ϕ, In) − M(ϕ,f )

) d−→ N
(
0, τ 2)

,

with τ 2 = τ 2
1 + τ2, where

τ 2
1 = 2π

∫ π

−π
ϕ(λ)

(
ϕ(λ) + ϕ(−λ)

)
f (λ)2 dλ,(2.3)

τ2 = 2π

∫ π

−π

∫ π

−π
ϕ(λ1)ϕ(λ2)f4(λ1, λ2,−λ2) dλ1 dλ2,(2.4)

and where

f4(λ,μ,η) = 1

(2π)3

∑
h1,h2,h3∈Z

cum(X0,Xh1,Xh2,Xh3)e
−i(h1λ+h2μ+h3η)

is the fourth-order cumulant spectral density; cf. Rosenblatt (1985), Chapter III, Corollary 2.

REMARK 2.2. (i) In the literature the function ϕ is sometimes assumed to be even, that
is, ϕ(λ) = ϕ(−λ) for all λ. In this case the first part τ 2

1 of the limiting variance takes the form
4π

∫ π
−π ϕ(λ)2f (λ)2 dλ = 8π

∫ π
0 ϕ(λ)2f (λ)2 dλ. However, we allow for general functions ϕ

since this restriction to even functions is not necessary.
(ii) Nonparametric approaches to directly estimate the integral involving the fourth-order

cumulant spectral density and which can potentially be used to estimate the variance τ 2 have
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been proposed by some authors; see Taniguchi (1982) and Keenan (1987). However, simu-
lation results reported in the Supplementary Material (Meyer, Paparoditis and Kreiss (2020))
indicate that such methods are outperformed by the bootstrap procedure proposed in this pa-
per. Alternatively, Shao (2009) proposed an approach to construct confidence intervals for
M(ϕ,f ) based on selfnormalization which bypasses the problem of estimating the variance
term τ 2 and does not deliver an estimation of the distribution of the statistics of interest, as is
the case with the bootstrap methods proposed in this paper.

(iii) The second summand τ2 of the limiting variance τ 2 simplifies in the case of a linear
process, that is, if (Xt) admits the representation (1.2) for some square-summable sequence
of coefficients (aj )j∈Z and some i.i.d. white noise process (εt )t∈Z with finite fourth mo-
ments. Denoting σ 2 := E(ε2

1) and η := E(ε4
1)/σ

4, it then follows by standard calculations
that 2πf4(λ1, λ2,−λ2) = (η − 3)f (λ1)f (λ2). In this case the second summand τ2 of the
limiting variance from (2.2) can be written as

(2.5) τ2,lin = (η − 3)

(∫ π

−π
ϕ(λ)f (λ) dλ

)2
.

Regarding the class of ratio statistics, the situation is somehow different. Notice first that

Ln,R := √
n
(
R(ϕ, In) − R(ϕ,f )

) = 1

M(1, In)M(1, f )

√
n

∫ π

−π
w(λ)In(λ) dλ,

where w(λ) = ϕ(λ)
∫ π
−π f (α)dα − ∫ π

−π ϕ(α)f (α)dα. In view of (2.2) and the fact that

M(1, In)
P→ M(1, f ), we then have that

(2.6) Ln,R
d−→ N

(
0, τ 2

R

)
,

where τ 2
R = τ 2

1,R + τ2,R with

τ 2
1,R = 2π

M4(1, f )

∫ π

−π
w(λ)

(
w(λ) + w(−λ)

)
f (λ)2 dλ and(2.7)

τ2,R = 2π

M4(1, f )

∫ π

−π

∫ π

−π
w(λ1)w(λ2)f4(λ1, λ2,−λ2) dλ1 dλ2.(2.8)

It can be easily verified that
∫ π
−π w(λ)f (λ) dλ = 0. This implies that we get τ2,R = 0 for the

class of linear processes considered in Remark 2.2(iii) and by the same arguments to those
used there. That is, the variance of the limiting Gaussian distribution (2.6) simplifies for linear
processes to τ 2

R = τ 2
1,R and it is, therefore, not affected by the fourth order structure of the

process. Note that this simplification for ratio statistics no longer holds true when considering
nonlinear processes.

3. The hybrid bootstrap procedure. In this section we will present our main contribu-
tion, the hybrid periodogram bootstrap (HPB). The HPB is a hybrid of two other procedures.
The first ingredient is the well-established multiplicative periodogram bootstrap (MPB) dis-
cussed by Franke and Härdle (1992) and Dahlhaus and Janas (1996). The second ingredient
will be a new algorithm which we will call convolved bootstrapped periodograms of sub-
samples (CBP). The CBP is closely related to the concept of convolved subsampling which
was introduced and discussed in detail by Tewes, Politis and Nordman (2019), but CBP con-
tains an important modification that we will explicate in Section 3.2 and in Remark 3.2 of
Section 3.4.

This section will be organized as follows. In order to state the hybrid periodogram boot-
strap (HPB), we will first formulate the two algorithms that will be parts of the hybrid proce-
dure, the MPB and the CBP, in Sections 3.1 and 3.2, respectively. The HPB, which combines
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the strengths of both approaches, will be introduced in Section 3.3. Section 3.4 discusses
several features of the bootstrap algorithms considered. It may be surprising that we take
such a close look especially at the well-established MPB. But this is necessary to clarify why
the range of validity of this method and other existing frequency domain bootstraps is so re-
stricted. We will see exactly which features of the distribution of interest the MPB is not able
to mimic so that they have to be accounted for in the hybrid procedure by the CBP.

3.1. The classical MPB approach. The MPB procedure (as discussed by Franke and
Härdle (1992) and Dahlhaus and Janas (1996)) approximates the distribution L(Ln) of Ln =√

n(M(ϕ, In) − M(ϕ,f )) based on a given sample X1, . . . ,Xn by the distribution of

(3.1) V ∗
n = √

n

(
2π

n

∑
j∈G(n)

ϕ(λj,n)
(
T ∗(λj,n) − f̂n(λj,n)

))
,

where f̂n is a consistent (e.g., kernel-type) estimator of f and

(3.2) T ∗(λj,n) := f̂n(λj,n)U
∗
j .

The bootstrap random variables (U∗
j )j∈G(n) are constructed as follows: For j > 0, generate

U∗
1 , . . . ,U∗[n/2] i.i.d. with a standard exponential distribution. Then, for j < 0, set U∗

j := U∗−j .
The construction with U∗

j = U∗−j ensures that T ∗(·) is an even function which preserves
an important property of the periodogram In(·). To see the motivation for approach (3.1),
notice that V ∗

n is a Riemann approximation for
√

n(M(ϕ,T ∗) − M(ϕ, f̂n)). Moreover, the
bootstrap random variables T ∗(λj,n) are supposed to mimic the behavior of the peridogram
ordinates In(λj,n), based on the fact that In(λ)/f (λ) has an asymptotic standard exponential
distribution for λ ∈ (−π,π) \ {0}. Note that, alternatively, the U∗

j may be generated using
so-called frequency domain residuals (cf. Dahlhaus and Janas (1996)) which is second-order
equivalent to the approach described above.

Under mild conditions V ∗
n has a limiting normal distribution with mean zero and variance

τ 2
1 as defined in (2.3). The proof is given in Proposition 4.3 without the assumption of a linear

process. Hence, for a quite general class of stationary processes, the bootstrap approach (3.1)
correctly captures the first summand τ 2

1 but fails to mimic the second summand τ2 of the
limiting variance τ 2 from (2.2). Consequently, the approach asymptotically only works in
those special cases where τ2 vanishes. This happens, for example, if the underlying time
series is Gaussian or if the underlying process is linear and one is looking at ratio statistics;
see Dahlhaus and Janas (1996) and the discussion in the previous section. But except for
these special cases the classical approach via V ∗

n fails in general.

3.2. The CBP approach. In the following we propose the CBP approach denoted by L∗
n

which will be the second building block of the hybrid periodogram bootstrap.
The CBP approach is based on bootstrapped periodograms of subsamples, and it is espe-

cially tailored for spectral means and ratio statistics. As already mentioned, this procedure is
closely related to convolved subsampling; cf. Tewes, Politis and Nordman (2019). However,
our CBP algorithm contains a modification that leads to the fact that the spectral density is
not necessarily estimated by the subsampling estimator but instead by any consistent estima-
tor that the user may choose. The CBP cannot, therefore, be formulated as a special case of
the general convolved subsampling approach. Moreover, Tewes, Politis and Nordman (2019)
show for the general convolved subsampling approach that asymptotic consistency is equiva-
lent to certain high-level assumptions being met. With our CBP procedure being specifically
tailored for periodogram-based statistics, we show in Theorem 4.4 asymptotic consistency
for spectral means and ratio statistics under very mild conditions on the underlying stochas-
tic process (even without assuming strict stationarity). In Section 1 of the Supplementary
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Material (Meyer, Paparoditis and Kreiss (2020)), we also show how consistency of the CBP
can be extended to more general statistics which are functionals of the periodogram. Fur-
thermore, simulations reported in Section 5.2 and in the Supplementary Material (Meyer,
Paparoditis and Kreiss (2020)) show that the CBP modification improves the behavior of the
standard convolved subsampling for the class of statistics considered in this paper and makes
this procedure, especially for ratio statistics, less sensitive with respect to the choice of the
subsampling parameter.

CBP for spectral means and ratio statistics

(1) Choose a block length b < n. For t = 1, . . . ,N , with N := n − b + 1, let

(3.3) It,b(λj,b) = 1

2πb

∣∣∣∣∣
b∑

s=1

Xt+s−1e
−iλj,bs

∣∣∣∣∣
2

be the subsample periodograms evaluated at the Fourier frequencies λj,b (associated with
length b time series, i.e., λj,b = 2πj/b, with j ∈ G(b); cf. (2.1) for the definition of G(·)).

(2) Define the rescaled frequency domain residuals of the subsample periodogram
It,b(λj,b) as,

Ut,b(λj,b) = It,b(λj,b)

f̃b(λj,b)
, j ∈ G(b),

where f̃b(λj,b) = N−1 ∑N
t=1 It,b(λj,b).

(3) Let f̂n be the spectral density estimator used in (3.2). Set k := [n/b] and generate
random variables i∗1 , . . . , i∗k i.i.d. with a discrete uniform distribution on the set {1, . . . ,N}.
For l = 1,2, . . . , k, define

I
(l)
b (λj,b) = f̂n(λj,b) · Ui∗l ,b(λj,b),

and let I ∗
j,b = k−1 ∑k

l=1 I
(l)
b (λj,b).

(4) For spectral means approximate the distribution of Ln = √
n(M(ϕ, In) − M(ϕ,f ))

by the distribution of the bootstrap quantity

L∗
n := √

kb

(
1

k

k∑
l=1

2π

b

∑
j∈G(b)

ϕ(λj,b)
(
I

(l)
b (λj,b) − f̂n(λj,b)

))

= √
kb

2π

b

∑
j∈G(b)

ϕ(λj,b)
(
I ∗
j,b − f̂n(λj,b)

)
.

(3.4)

Furthermore, for ratio statistics approximate the distribution of Ln,R = √
n(R(ϕ, In) −

R(ϕ,f )) by that of

L∗
n,R := √

kb

(∑
j∈G(b) ϕ(λj,b)I

∗
j,b∑

j∈G(b) I
∗
j,b

−
∑

j∈G(b) ϕ(λj,b)f̂n(λj,b)∑
j∈G(b) f̂n(λj,b)

)
.(3.5)

Before we discuss some details of the CBP algorithm, we will first turn to the main contri-
bution of this paper, the hybrid periodogram bootstrap.

3.3. The hybrid periodogram bootstrap (HPB). The hybrid periodogram bootstrap uses
both the MPB and the CBP to imitate different features of the distribution of interest. We will
state the HPB algorithm in two different versions; the first is supposed to be used for spectral
means and the second for ratio statistics.
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(HPB) Hybrid periodogram bootstrap (for spectral means)

(1) Let L∗
n be generated according to (3.4), that is, as in the CBP procedure, and let V ∗

n be
defined as in (3.1) where the i.i.d. random variables U∗

j , j = 1,2, . . . , [n/2], and i∗1 , i∗2 , . . . , i∗k
are independent.

(2) Approximate the distribution of Ln = √
n(M(ϕ, In) − M(ϕ,f )) by the empirical dis-

tribution of the rescaled bootstrap quantity

Ṽ ∗
n :=

√√√√1 + τ̂ 2 − cn

τ̂ 2
1

· V ∗
n ,

where τ̂ 2 := Var∗(L∗
n), τ̂ 2

1 := Var∗(V ∗
n ) and

cn = 4π2

b

∑
j∈G(b)

ϕ(λj,b)
(
ϕ(λj,b) + ϕ(−λj,b)

)
f̂n(λj,n)

2

(
1

N

N∑
t=1

It,b(λj,b)
2

f̃b(λj,b)2
− 1

)
.

It is important to emphasize that the HPB presented above does not simply use the variance
estimate of the CBP as a correction factor for the MPB. Instead, only those features that are
connected to the weak dependence structure of the periodogram (which the MPB is not able
to mimic) are imitated by the CBP. We will give more details on this in Remark 3.1.

The HPB for ratio statistics reads a bit more tedious but is based on the very same idea as
its counterpart for spectral means. The modification is necessary due to the normalizing term
M(1, In)M(1, f ) (see the definition of Ln,R) whose stochastic behaviour has to be taken into
account.

(HPB) Hybrid periodogram bootstrap (for ratio statistics)

(1) Let

V ∗
1,n = 2π√

n

∑
j∈G(n)

ŵ(λj,n)T
∗(λj,n),

V ∗
2,n = √

kb
2π

b

∑
j∈G(b)

w̃(λj,b)I
∗
j,b,

(3.6)

V ∗
n,R = (D∗

n)−1V ∗
1,n, where D∗

n = 4π2n−2 ∑
j∈G(n) T

∗(λj,n)
∑

j∈G(n) f̂n(λj,n),

(3.7) ŵ(λ) = ϕ(λ)
2π

n

∑
j∈G(n)

f̂n(λj,n) − 2π

n

∑
j∈G(n)

ϕ(λj,n)f̂n(λj,n)

and

(3.8) w̃(λ) = ϕ(λ)
2π

b

∑
j∈G(b)

f̂n(λj,b) − 2π

b

∑
j∈G(b)

ϕ(λj,b)f̂n(λj,b).

(2) Approximate the distribution of Ln,R = √
n(R(ϕ, In) − R(ϕ,f )) by the distribution

of Ṽ ∗
n,R , where

Ṽ ∗
n,R =

√√√√1 + σ̂ 2
2,R − cn,R

σ̂ 2
1,R

· V ∗
n,R
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with σ̂ 2
1,R = Var∗(V ∗

1,n), σ̂ 2
2,R = Var∗(V ∗

2,n) and

cn,R = 4π2

b

∑
j∈G(b)

w̃(λj,b)
(
w̃(λj,b) + w̃(−λj,b)

)
f̂n(λj,b)

2

×
(

1

N

N∑
t=1

It,b(λj,b)
2

f̃b(λj,b)2
− 1

)
.

3.4. Remarks on the proposed bootstrap algorithms. Remark 3.1 looks at the HPB pro-
cedure and specifically sheds more light on how its ingredients imitate different features of
the distribution of interest. Remark 3.2 deals with the CBP algorithm in more detail while
Remark 3.3 addresses questions related to the practical implementation of the HPB.

REMARK 3.1. As we have seen, the MPB performs well in approximating the distri-
bution of Ln in cases where the fourth-order cumulant term τ2 vanishes. However, it is not

consistent in cases where τ2 	= 0. In the new HPB algorithm the factor
√

1 + (τ̂ 2 − cn)/τ̂
2
1

corrects for this shortcoming. It is important to note that this correction factor does not sim-
ply replace the variance of the MPB by that of the CBP. Instead, only the part of the variance
that is due to the dependence structure of the periodogram ordinates is imitated by the CBP,
that is, the term τ2 only. To be precise, observe that according to the proof of Theorem 4.4(i)
the variance of the CBP quantity L∗

n separates into

τ̂ 2 = Var∗
(
L∗

n

) = R1∗ + R2∗,

where R1∗ → τ 2
1 and R2∗ → τ2, in probability. Further observe that we have chosen

cn = R1∗. Therefore, the quantity τ̂ 2 − cn in the correction factor equals R2∗ which repre-
sents (even for finite sample sizes) exactly the contribution of the CBP variance that accounts

for τ2 in the limit. Thus, the correction factor converges toward
√

1 + (τ2/τ
2
1 ), and the HPB

approach has the correct asymptotic variance τ 2
1 + τ2. Due to this construction, the first sum-

mand of the limiting variance τ 2
1 is established by the classical MPB approach while the τ2

part is imitated by the CBP. Note that the distributional shape as approximated by the MPB
pseudo random variable V ∗

n , is not affected by this correction.
As we will see, this modification makes the proposed HPB procedure consistent for a

vast class of stochastic processes. Furthermore, it leads to certain advantages in finite sam-
ple situations which can be seen from the simulation results reported in Section 5.2 and in
the Supplementary Material (Meyer, Paparoditis and Kreiss (2020)). For instance, convolved
subsampling in its different versions may have a tendency (due to averaging) to move sub-
sampling distributions closer to normality which the MPB does not. It appears that the hybrid
procedure HPB outperforms the CBP and the standard convolved subsampling procedure,
and it is less sensitive with respect to the choice of the tuning parameter b.

REMARK 3.2. (i) The CBP approach differs from classical subsampling and convolved
subsampling since we do not calculate L∗

n (respectively L∗
n,R) solely based on subsamples of

the observed time series. In fact, our procedure generates new pseudo periodograms of sub-
samples I

(l)
b (λj,b), l = 1,2, . . . , k, using one’s favourite spectral density estimator f̂n based

on the entire time series X1,X2, . . . ,Xn. This also allows for the use of the same spectral
density estimator f̂n in both ingredients of the HPB (the MPB and the CBP).

(ii) Similar to the MPB, the rescaling in step (2) of the CBP ensures that E∗(Ui∗l ,b(λj,b)) =
1, that is, E∗(I (l)

b (λj,b)) = f̂n(λj,b) which avoids an unnecessary bias at the resampling step.
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(iii) Notice that L∗
n can be written as L∗

n = k−1/2 ∑k
l=1 L∗

l,n, where

L∗
l,n = √

b
2π

b

∑
j∈G(b)

ϕ(λj,b)f̂n(λj,b)
(
Ui∗l ,b(λj,b) − 1

)
.

Comparing the above expression with that of the MPB, given by

V ∗
n = √

n
2π

n

∑
j∈G(n)

ϕ(λj,n)f̂n(λj,n)
(
U∗

j − 1
)
,

clarifies that there are two essential differences between the two. The first lies in the way
the pseudo innovations in the two approaches are generated. In particular, while the U∗

j ’s are
independent the pseudo random variables Ui∗l ,b(λj,b) are (for each fixed l) not independent.
Due to using the same bootstrap sample i∗1 , . . . , i∗k for all I ∗

j,b, j ∈ G(b) and therefore for all
Fourier frequencies, the weak dependence structure of the periodogram ordinates is preserved
by I ∗

j,b, j ∈ G(b).
The second difference is the respective number of frequencies on which L∗

l,n and V ∗
n are

based. The subsample periodograms used in L∗
l,n have to be evaluated at the Fourier fre-

quencies for subsample size b < n, since we will exploit certain asymptotic properties of the
periodogram that do not hold if the periodograms are evaluated at other frequencies than λj,b,
j ∈ G(b). While this step allows for appropriately mimicking the limiting variance in general
situations, as we will show, the price to pay here is obviously that a new tuning parameter b

is introduced.
(iv) Note that the rescaling quantity f̃b used in step (2) of the CBP is actually a spectral

density estimator itself which is based on averaging periodograms calculated over subsam-
ples. Such estimators have been thoroughly investigated by many authors in the literature,
for example, Bartlett (1948, 1950) and Welch (1967); see also Dahlhaus (1985). In step (2) it
is important to use f̃b because this is the appropriate rescaling quantity; see part (ii) of this
remark. In principle one could of course set f̂n := f̃b in step (3) of the CBP procedure. How-
ever, it has to be noted that f̂n used in (3.2) and in step (3) is the quantity that approximates
f and which is identical in both corresponding algorithms. Hence, we do not have to use f̃b

at this point but can rather allow, as in the MPB, for the use of any consistent spectral density
estimator f̂n which may approximate f much better than f̃b and which makes the proposed
bootstrap approach much more flexible. Depending on the data sample at hand, either ap-
propriate parametric or nonparametric estimators may be favoured and chosen from case to
case. Due to this modification, the CBP differs from the general convolved subsampling ap-
proach of Tewes, Politis and Nordman (2019). Clearly, if one chooses f̂n = f̃b, then both
approaches are identical. However, as our simulation results show, using f̂n instead of f̃b has
certain advantages, especially for ratio statistics, cf Figure 1 in Section 5.2 and Figure II of
the Supplementary Material (Meyer, Paparoditis and Kreiss (2020)).

(v) One might ask why in step (3) of the CBP algorithm the mean of exactly k boot-
strap random variables I

(1)
b (λj,b), . . . , I

(k)
b (λj,b) is taken in order for I ∗

j,b to mimic the
periodogram appropriately. If one is only interested in Var(L∗

n), then the representation
L∗

n = k−1/2 ∑k
l=1 L∗

l,n from (iii) immediately yields that one could in principle replace k

by any natural number, here (even k = 1 is admissible), and get a modified version of L∗
n,

say L+
n . By the same arguments, as in the proof of Theorem 4.4(i), we would still get

Var∗(L+
n ) = R1∗ + R2∗, that is, L+

n has the correct variance. However, if k is chosen non-
increasing in n, for example, replacing k by 1 which yields L+

n = L∗
1,n, this would not be

a consistent approximation of the distribution of Ln. An increasing sequence k is necessary
in order to achieve asymptotic normality of L∗

n. The choice k = [n/b] is somewhat natural
in the context of convolved subsampling and block bootstrap techniques, and it also avoids
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to introduce an additional tuning parameter k. Of course, the user may choose a different
sequence that increases to infinity if this seems appropriate in the specific situation.

REMARK 3.3. In step (2) of the HPB for spectral means, the bootstrap variances
τ̂ 2 := Var∗(L∗

n) and τ̂ 2
1 := Var∗(V ∗

n ) are used. In practice, these values may, for example,
be obtained via Monte Carlo. As for V ∗

n , repeat step (1) multiple times to generate M repli-
cations V ∗

n (1), . . . , V ∗
n (M) of V ∗

n . Then use the estimate

τ̂ 2
1 ≈ 1

M − 1

M∑
j=1

(
V ∗

n (j) − V
∗
n

)2
,

where V
∗
n = M−1 ∑M

j=1 V ∗
n (j). Proceed analogously with τ̂ 2 and, regarding the HPB for ratio

statistics, with the quantities σ̂ 2
1,R and σ̂ 2

2,R used in step (2) of that algorithm. As for the HPB
algorithm for ratio statistics, the term cn,R is an estimator of τ 2

1,R appearing in the asymptotic
variance τ 2

R of Ln,R ; cf. (2.6). Moreover, notice that 2πn−1 ∑
j∈G(n) ŵ(λj,n)f̂n(λj,n) = 0

and 2πb−1 ∑
j∈G(b) w̃(λj,b)f̂n(λj,b) = 0 which make the centering of V ∗

1,n and V ∗
2,n in (3.6)

obsolete.

4. Bootstrap validity. In order to establish consistency for the aforementioned bootstrap
approaches, we impose the following assumption on the asymptotic behavior of the subsam-
ple block length b:

ASSUMPTION 2.

(i) For block length b and k = [n/b], it holds b = b(n) and k = k(n), such that b → ∞
and k → ∞, as n → ∞.

(ii) It holds b3/n → 0 and ln(n − b + 1)/b → 0, as n → ∞.

Note that under the conditions of this assumption, especially with b increasing at a slower
rate than n, we have for all asymptotic considerations n ≈ bk or, to be precise, bk = n(1 +
o(b−2)). To keep the presentation of the proofs of the upcoming results concise, we will in
those proofs often replace n by bk or vice versa. It can be easily seen that this does not change
the asymptotics.

For the bootstrap approaches considered, we assume uniform consistency for the spectral
density estimator f̂n used, that is:

ASSUMPTION 3. The spectral density estimator f̂n fulfils

sup
λ∈[−π,π ]

∣∣f̂n(λ) − f (λ)
∣∣ = oP (1).

This is a common and rather weak assumption in spectral analysis of time series. The
following two preliminary results will be useful for the proof of consistency results of the
CBP approach L∗

n.

LEMMA 4.1. Under the conditions of Assumptions 1 and 2(i), it holds for the Fourier
frequencies λj,b = 2πj/b, j ∈ G(b):

(i)
∑

j∈G(b)

∣∣f̃b(λj,b) − EI1,b(λj,b)
∣∣ =OP

(√
b3/N

)
,
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(ii)
∑

j,s∈G(b)

∣∣∣∣∣ 1

N

N∑
t=1

It,b(λj,b)It,b(λs,b) − E
(
I1,b(λj,b)I1,b(λs,b)

)∣∣∣∣∣
= OP

(√
b5/N

)
.

LEMMA 4.2. Let Assumptions 1 and 2 as well as Assertion (2.2) hold. Then, for

(4.1) Wt,b := 2π√
b

∑
j∈G(b)

ϕ(λj,b)
(
It,b(λj,b) − f̃b(λj,b)

)
,

it holds, as n → ∞:

(i) E(W 2
1,b) → τ 2, with τ 2 as in (2.2).

(ii) W1,b
d→ N (0, τ 2).

The upcoming proposition states an asymptotic result for the MPB approach V ∗
n . Dahlhaus

and Janas (1996) proved this result for the special case of linear processes as given by (1.2).
However, since this restriction is not necessary for the bootstrap quantities, we derive the
limiting distribution for general stationary processes satisfying Assumption 1(i).

PROPOSITION 4.3. Let Assumptions 1, 2 and 3 be fulfilled. Moreover, let � denote the
cdf of the standard normal distribution. Then, with τ 2

1 as defined in (2.3), it holds:

(i) Var∗(V ∗
n )

P−→ τ 2
1 ,

(ii) supx∈R |P ∗(V ∗
n ≤ x) − �(x/τ1)| = oP (1).

The next theorem shows that the CBP approaches L∗
n and L∗

n,R consistently estimate the
variance and the distribution of the statistics of interest.

THEOREM 4.4. Let the assumptions of Proposition 4.3 as well as Assertion (2.2) be
fulfilled. Then, with τ 2 as below (2.2), it holds:

(i) Var∗(L∗
n)

P−→ τ 2,
(ii) supx∈R |P ∗(L∗

n ≤ x) − P(Ln ≤ x)| = oP (1),
(iii) supx∈R |P ∗(L∗

n,R ≤ x) − P(Ln,R ≤ x)| = oP (1).

Our last theorem establishes consistency of the HPB approaches Ṽ ∗
n and Ṽ ∗

n,R .

THEOREM 4.5. Let the assumptions of Proposition 4.3 as well as Assertion (2.2) be
fulfilled. Then, with τ 2 as in Theorem 4.4, it holds:

(i) Var∗(Ṽ ∗
n )

P−→ τ 2,
(ii) supx∈R |P ∗(Ṽ ∗

n ≤ x) − P(Ln ≤ x)| = oP (1),
(iii) supx∈R |P ∗(Ṽ ∗

n,R ≤ x) − P(Ln,R ≤ x)| = oP (1).

Notice that the above theorem allows for the use of the distribution of Ṽ ∗
n (respective of

Ṽ ∗
n,R) in order to construct an asymptotic (1 − 2α) level confidence interval for M(ϕ,f )

(respectively R(ϕ,f )). More details are given in Section 3 of the Supplementary Material
(Meyer, Paparoditis and Kreiss (2020)).

The proofs of some of these results can be found in the Appendix of this paper, while the
rather technical proofs of Lemma 4.1, Lemma 4.2, Proposition 4.3 and Theorem 4.5(iii) have
been deferred to the Supplementary Material (Meyer, Paparoditis and Kreiss (2020)).
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5. Practical issues and numerical results.

5.1. Some remarks on choosing the subsampling parameter. Implementation of the pro-
posed bootstrap procedure requires the choice of the subsampling parameter b. Recall that,
for the HPB procedure, the choice of b affects only the estimation of the second variance
term τ2 in (2.4).

Notice that the rate condition b3/n → 0 as n → ∞ required for our asymptotic consider-
ations, does not provide any guidance on how to choose the parameter b in practice and for a
time series X1,X2, . . . ,Xn at hand. For this issue additional investigations are required. For
instance, the choice of this parameter can be based on some optimality considerations, like for
instance on minimizing the mean square error E(τ̂2(b) − τ2)

2. Here, τ̂2(b) denotes the boot-
strap estimator of τ2. Since such an approach faces the problem that the target τ2 is unknown,
different possibilities can be explored. For instance, one can develop a cross-validation type
criterion to select b, or one can search for approximations of the bias and of the variance of
τ̂2(b) and use these approximations together with some plug-in procedure in order to select b.
These are interesting venues of future research which require additional investigations that
go beyond the scope of the current paper. However, the following observations can be made
based on our extensive simulations discussed in the next section. The HPB procedure seems
not to be very sensitive with respect to the choice of b, provided this parameter is not chosen
too small with respect to the sample size n; see, in particular, Figure 1, Figure 2 and Fig-
ure 3 of the next section. This motivated us to suggest the following practical rule to select
b: Choose b as the smallest integer which is greater than or equal to b = 4 · n0.30. On the one
hand, this ad hoc rule delivers a value of b which is large enough and performs satisfactory
for all estimation problems and for all models considered, and on the other hand, it satisfies
the asymptotic rate condition b3 = o(n).

5.2. Simulation results. We investigate the finite sample behavior of the new bootstrap
procedures proposed in this paper and compare their performance with that of existing meth-
ods. We will focus in the following on the case of the first-order sample autocovariance γ̂ (1)

and sample autocorrelation ρ̂(1) and compare the performance of the hybrid periodogram
bootstrap approach (HPB) with that of the convolved bootstrapped periodograms of subsam-
ples (CBP), the multiplicative periodogram bootstrap (MPB) and the moving block bootstrap
(MBB). A comparison of the HPB with the standard convolved subsampling procedure is
presented in Figure II of the Supplementary Material (Meyer, Paparoditis and Kreiss (2020)).
Notice that the CBP and the MBB are essentially the only competitors of the HPB since they
are the only methods which have been proven to be consistent for all models considered in
our simulation experiment. Furthermore, although the autoregressive sieve bootstrap and the
autoregressive aided periodogram bootstrap are not consistent for the three nonlinear models
considered in the sequel, some comparisons of these methods with the HPB can be found in
the Supplementary Material (Meyer, Paparoditis and Kreiss (2020)). The following four time
series are considered:

Model I: Xt = 0.8Xt−1 + εt and i.i.d. innovations εt ∼N (0,1).
Model II: Xt = 0.3Xt−1 − 3.5Xt−1 · εt−1 + εt and i.i.d. innovations εt ∼N (0,0.12).

Model III: Xt = vt + 0.8vt−1, where vt = εt

√
1 + 0.25v2

t−1 and i.i.d. εt ∼N (0,1).
Model IV:

Xt =
{−0.3Xt−1 + εt if Xt−1 ≤ 0,

0.8Xt−1 + εt if Xt−1 > 0,

where εt are i.i.d. innovations εt ∼ N (0,1).
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The above choice covers a wide range of linear and nonlinear models commonly used
in time series analysis. In particular, model I is a linear AR(1) model with Gaussian i.i.d.
innovations, while models II–IV are nonlinear and have been considered in Auestad and
Tjøstheim (1990) and Shao (2009). Model II is a bilinear model, model III is a MA(1) model
with ARCH(1) innovations and model IV is a threshold autoregressive model.

We demonstrate the capability of the bootstrap methods compared to estimate the distri-
bution of the first-order sample autocovariance Ln = √

n(γ̂ (1) − γ (1)) and of the first-order
sample autocorrelation Rn = √

n(ρ̂(1)−ρ(1)), and we investigate the sensitivity of the HPB,
the CBP and the MBB procedures with respect to the choice of the block size b. For this pur-
pose time series of length n = 150 and of n = 2000 are considered, where the latter sample
size has been chosen in order to clearly see the differences in the consistency behavior of the
bootstrap procedures considered. In order to measure the distance of the bootstrap distribution
to the exact distribution of interest, we calculated the d1-distance between distributions de-
fined as d1(F,G) = ∫ 1

0 |F−1(x)−G−1(x)|dx for F and G distribution functions. We present
mean distances calculated over R = 200 repetitions using a wide range of different subsam-
pling sizes b. Notice that for the sample size of n = 150, respectively, n = 2000, the values
of b chosen according to the rule of thumb discussed in Section 5.1 are b = 18, respectively,
b = 40. To evaluate the exact distributions of interest, 10,000 replications have been used
while all bootstrap approximations are based on 1000 replications. To estimate the spectral
density f used in the multiplicative as well as in the HPB and CBP procedures, the Parzen
lag window estimator, see Priestley (1981), has been used with truncation lag Mn = 15 for
n = 150 and Mn = 25 for n = 2000. The MBB procedure has been implemented in its stan-
dard form, that is, by choosing with replacement k = [n/b] blocks of length b and joining
them together in the order selected to form a new pseudo sample. The results obtained are
shown in Figure 1, Figure 2 and Figure 3.

In Figure 1 the performance of the HPB is compared with that of the CBP. As it can be
seen, the HPB clearly outperforms the CBP for both statistics and for almost all choices of
the subsampling parameter b considered. Furthermore, the HPB is much less sensitive with
respect to the choice of this parameter than the CBP procedure. As Figure 2 and Figure 3
show, the differences between the MPB and the HPB method are small for the sample size of
n = 150 observations, and both methods clearly outperform the MBB procedure for all four
models and for all values of the block size, respectively, subsampling parameter b considered.
The differences between the MPB and the HBP are clearly seen for the sample size of n =
2000 observations (right columns of Figure 2 and Figure 3). Observe that the d1-distances of
the MPB estimates are for n = 2000 more or less the same as those for the case of n = 150
observations. As these exhibits show, apart from small values of b, the HPB method performs
very well for a wide range of values of the subsampling parameter b. The same observation
regarding the sensitivity of the HPB with respect to the choice of b can be made for the
case of n = 150 observations. Notice that for the Gaussian AR(1) model considered, the
MPB is consistent for estimating the distributions of Ln and Rn which is clearly seen in
the first rows of Figure 2 and Figure 3. For the same model and for the case of n = 2000
observations, the HPB and the MPB procedures behave very similar and both outperform
the MBB procedure. For the same sample size and for the nonlinear models considered, the
HPB (apart for small values of b) and the MBB procedure behave very similarly while the
MPB procedure behaves worse due to its inconsistency for this class of time series models.
Summarizing our findings, the HPB behaves good for all models and for both sample sizes
used in our simulation study which is not the case for the other three bootstrap procedures
considered.
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FIG. 1. Average d1-distances between the exact and the bootstrap approximation of the convolved bootstrapped
periodograms (CBP) and of the hybrid periodogram bootstrap (HPB) for n = 150 and for various block sizes.
Model I (first row), Model II (second row), Model III (third row) and Model IV (last row). The left panels refer to
the distribution of

√
n(γ̂ (1) − γ (1)) and the right panels to the distribution of

√
n(ρ̂(1) − ρ(1)). The dots denote

the d1-distance of the CPB, the circles the one of the HPB.

APPENDIX

PROOF OF THEOREM 4.4(i). For each Fourier frequency λj,b, j ∈ G(b), the random

variables I
(1)
b (λj,b), . . . , I

(k)
b (λj,b) are conditionally independent and each possesses a dis-
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FIG. 2. Average d1-distances between the exact and the bootstrap distribution of
√

n(γ̂ (1) − γ (1)) for various
block sizes and Model I (first row), Model II (second row), Model III (third row) and Model IV (last row). The left
panels refer to n = 150 and the right panels to n = 2000. The crosses denote the d1-distance of the multiplicative
periodogram bootstrap (MPB), the circles of the hybrid periodogram bootstrap (HPB) and the stars of the block
bootstrap (MBB) estimates.

crete uniform distribution on the set

{
f̂n(λj,b)

f̃b(λj,b)
I1,b(λj,b), . . . ,

f̂n(λj,b)

f̃b(λj,b)
IN,b(λj,b)

}
.
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FIG. 3. Average d1-distances between the exact and the bootstrap distribution of
√

n(ρ̂(1) − ρ(1)) for various
block sizes and Model I (first row), Model II (second row), Model III (third row) and Model IV (last row). The left
panels refer to n = 150 and the right panels to n = 2000. The crosses denote the d1-distance of the multiplicative
periodogram bootstrap (MPB), the circles of the hybrid periodogram bootstrap (HPB) and the stars of the block
bootstrap (MBB) estimates.

Hence, we get as an auxiliary consideration

Cov∗(
I

(1)
b (λj1,b), I

(1)
b (λj2,b)

)
= f̂n(λj1,b)f̂n(λj2,b)

f̃b(λj1,b)f̃b(λj2,b)

[
1

N

N∑
t=1

It,b(λj1,b)It,b(λj2,b) − f̃b(λj1,b)f̃b(λj2,b)

]

=: Qj1,j2,n · Hj1,j2,n.

(A.1)
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Next, note that, due to the assumption b3/n = o(1), the expression appearing in Lem-
ma 4.1(ii) has rate oP (b), which will be used in the ensuing calculation. Lemma 4.1 now
yields ∑

j1,j2∈G(b)

∣∣Hj1,j2,n − Cov
(
I1,b(λj1,b), I1,b(λj2,b)

)∣∣
≤ ∑

j1,j2∈G(b)

∣∣∣∣∣ 1

N

N∑
t=1

It,b(λj1,b)It,b(λj2,b) − E
(
I1,b(λj1,b)I1,b(λj2,b)

)∣∣∣∣∣
+ ∑

j1,j2∈G(b)

∣∣f̃b(λj1,b)f̃b(λj2,b) − EI1,b(λj1,b)EI1,b(λj2,b)
∣∣ = oP (b),

(A.2)

the bound for the second sum expression can be deduced from Lemma 4.1(i) using∑
j∈G(b) |f̃b(λj,b)| = OP (b) and

∑
j∈G(b) |EI1,b(λj,b)| = O(b). The previous calculation

(A.2) together with equation (2.8) of the Supplementary Material (Meyer, Paparoditis and
Kreiss (2020)), can be used to derive

∑
j1,j2∈G(b) |Hj1,j2,n| = OP (b). Moreover, notice that

by Assumption 3 and by equation (2.12) of the Supplementary Material (Meyer, Paparodi-
tis and Kreiss (2020)), which implies supj∈G(b) |f̃b(λj,b) − f (λj,b)| = oP (1) as well as the
assumption that f (λ) is bounded away from zero in the interval [−π,π ], we get that

(A.3) sup
j∈G(b)

∣∣∣∣ f̂n(λj,b)

f̃b(λj,b)
− 1

∣∣∣∣ P→ 0 and sup
j1,j2∈G(b)

∣∣∣∣ f̂n(λj1,b)f̂n(λj2,b)

f̃b(λj1,b)f̃b(λj2,b)
− 1

∣∣∣∣ P→ 0.

The results from (A.1) through (A.3) can be combined to replace bootstrap covariances by
their respective nonbootstrap counterparts via∑

j1,j2∈G(b)

∣∣Cov∗(
I

(1)
b (λj1,b), I

(1)
b (λj2,b)

) − Cov
(
I1,b(λj1,b), I1,b(λj2,b)

)∣∣
≤ sup

j1,j2∈G(b)

|Qj1,j2,n − 1| ∑
j1,j2∈G(b)

|Hj1,j2,n|

+ ∑
j1,j2∈G(b)

∣∣Hj1,j2,n − Cov
(
I1,b(λj1,b), I1,b(λj2,b)

)∣∣ = oP (b).

(A.4)

After these preliminaries, using conditional independence of I
(l1)
b (λj1,b) and I

(l2)
b (λj2,b) for

l1 	= l2, we get

Var∗
(
L∗

n

) = (2π)2kb

b2

∑
j1,j2∈G(b)

ϕ(λj1,b)ϕ(λj2,b)Cov∗(
I ∗
j1,b

, I ∗
j2,b

)

= (2π)2k

b

∑
j1,j2∈G(b)

ϕ(λj1,b)ϕ(λj2,b)
1

k
Cov∗(

I
(1)
b (λj1,b), I

(1)
b (λj2,b)

)
= R1∗ + R2∗,

where R∗
1 and R∗

2 are defined as

R1∗ := (2π)2

b

∑
j∈G(b)

ϕ(λj,b)
(
ϕ(λj,b) + ϕ(−λj,b)

)
Var∗

(
I

(1)
b (λj,b)

)
,

R2∗ := (2π)2

b

∑
j1∈G(b)

∑
j2∈G(b)\{j1,−j1}

ϕ(λj1,b)ϕ(λj2,b)

× Cov∗(
I

(1)
b (λj1,b), I

(1)
b (λj2,b)

)
.

(A.5)
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As for R1∗ and R2∗, note that I
(1)
b (λj1,b) = I

(1)
b (λj2,b) whenever j2 = j1 or j2 = −j1 and

that λ−j,b = −λj,b. R1∗ and R2∗ are bootstrap analogues of R1 and R2 from equation (2.7)
in the Supplementary Material (Meyer, Paparoditis and Kreiss (2020)). Now, using (A.4),
|G(b)| = O(b) and the boundedness of ϕ, it follows that |R1∗ − R1| and |R2∗ − R2| vanish
asymptotically in probability. Moreover, invoking the limiting results for R1 and R2 from
the proof of Lemma 4.2(i), we have

R1∗ = R1 + oP (1) = τ 2
1 + oP (1),

R2∗ = R2 + oP (1) = τ2 + oP (1).
(A.6)

With τ 2 = τ 2
1 + τ2, this completes the proof of (i). �

PROOF OF THEOREM 4.4(ii). Since Ln is asymptotically normal according to (2.2),
which implies supx∈R |P(Ln ≤ x) − �(x/τ)| = o(1), it suffices to show supx∈R |P ∗(L∗

n ≤
x) − �(x/τ)| = oP (1). Notice that by definition of L∗

n and recalling that i∗1 , . . . , i∗k are (con-
ditionally) i.i.d. with a discrete uniform distribution on {1, . . . ,N}, we have

L∗
n = 1√

k

k∑
l=1

2π√
b

∑
j∈G(b)

ϕ(λj,b)
(
Ii∗l ,b(λj,b) − f̃b(λj,b)

)

+ 1√
k

k∑
l=1

2π√
b

∑
j∈G(b)

ϕ(λj,b)

(
f̂n(λj,b)

f̃b(λj,b)
− 1

)(
Ii∗l ,b(λj,b) − f̃b(λj,b)

)
=: M1∗ + M2∗.

The strategy is to first show that M2∗ vanishes asymptotically in probability, and then to
show that M1∗ is asymptotically normal with mean zero and with the proper variance τ 2.

As for M2∗, we have, due to (conditional) independence of i∗l and i∗m for all l 	= m and due
to (A.1),

Var∗
(
M2∗) = 4π2

b

∑
j1,j2∈G(b)

ϕ(λj1,b)ϕ(λj2,b)

×
(

f̂n(λj1,b)

f̃b(λj1,b)
− 1

)(
f̂n(λj2,b)

f̃b(λj2,b)
− 1

)
Hj1,j2,n

≤ 4π2

b

(
sup

|λ|≤π

∣∣ϕ(λ)
∣∣)2

(
sup

j∈G(b)

∣∣∣∣ f̂n(λj,b)

f̃b(λj,b)
− 1

∣∣∣∣)2 ∑
j1,j2∈G(b)

|Hj1,j2,n|

= oP (1),

where boundedness of ϕ, Assertion (A.3) and
∑

j1,j2∈G(b) |Hj1,j2,n| = OP (b) from part (i)
have been used. This is sufficient for P ∗(|M2∗| > ε) = oP (1), ∀ε > 0, that is, M2∗ vanishes
asymptotically in probability. As for M1∗, we can write M1∗ = ∑k

l=1 W
(l)
b /

√
k with W

(l)
b :=

2π√
b

∑
j∈G(b) ϕ(λj,b)(Ii∗l ,b(λj,b) − f̃b(λj,b)), and W

(1)
b , . . . ,W

(k)
b are, for each n ∈ N and con-

ditionally on the original data sample X1, . . . ,Xn, i.i.d. random variables with a discrete
uniform distribution on {W1,b, . . . ,WN,b}, as defined in (4.1). Hence, (W

(1)
b , . . . ,W

(k)
b )n∈N

form a triangular array, and a conditional version of the Lindeberg–Feller CLT can be applied.
From the above result and Assertion (i) of Theorem 4.4, we see that

∑k
l=1 Var∗(W(l)

b /
√

k)

converges to τ 2 in probability. Hence, it suffices to prove

(A.7)
k∑

l=1

E∗((
W

(l)
b /

√
k
)21{|W(l)

b |≥ε
√

k}
) = oP (1) ∀ε > 0,
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in order for Lindeberg’s condition to be fulfilled and, therefore, the assertion to hold. In order
to do this, we will first show that the sequence (W 2

1,b)n∈N is uniformly integrable in the sense
of Billingsley (1995), that is, that

(A.8) lim
α→∞ sup

n∈N
E

(
W 2

1,b1{W 2
1,b≥α2}

) = 0.

When dealing with (W 2
1,b)n∈N in the following, recall that b = b(n) is suppressed in the

notation for convenience reasons. From Lemma 4.2(ii) we already have W 2
1,b

d→ Z2, as
n → ∞, with Z ∼ N (0, τ 2). According to Theorem 25.6 of Billingsley (1995), there ex-
ists a probability space with random variables (Yn)n∈N and Y , with Y ∼ Z2 and Yn ∼ W 2

1,b

for all n ∈ N, such that Yn → Y almost surely. Moreover, Lemma 4.2(i) implies E(Yn) =
E(W 2

1,b) → τ 2 = E(Z2) = E(Y ). Theorem 16.14(ii) of Billingsley (1995) states that this
convergence of expectations together with almost sure convergence of Yn yields uniform in-
tegrability of the nonnegative sequence (Yn)n∈N, that is, limα→∞ supn∈N E(Yn1{Yn≥α2}) = 0.
Due to Yn ∼ W 2

1,b, this assertion immediately gives (A.8). Now, we turn back to the Linde-

berg condition. Since
√

k → ∞, as n → ∞, it can be verified in a straightforward way that
(A.8) implies

(A.9) E
(
W 2

1,b1{|W1,b|≥ε
√

k}
) = o(1) ∀ε > 0.

It follows for arbitrary ε > 0, due to eighth-order stationarity of (Xt)t∈Z,

E

(
k∑

l=1

E∗
((

W
(l)
b√
k

)2
1{|W(l)

b |≥ε
√

k}
))

= E
(
E∗((

W
(1)
b

)21{|W(1)
b |≥ε

√
k}

))

= E

(
1

N

N∑
t=1

W 2
t,b1{|Wt,b|≥ε

√
k}

)
= o(1),

(A.10)

due to (A.9). Assertion (A.10) is sufficient for (A.7) which completes the proof of (ii). �

PROOF OF THEOREM 4.4(iii). Comparing the definitions of L∗
n,R and V ∗

2,n from (3.5)
and (3.6), respectively, and due to the structure of the function w̃ defined in (3.8), L∗

n,R can
be written as

L∗
n,R = 1

(2π
b

∑
j∈G(b) I

∗
j,b)(

2π
b

∑
j∈G(b) f̂n(λj,b))

V ∗
2,n =: 1

G∗
n

V ∗
2,n.

In view of (2.6), it suffices to show supx∈R |P ∗(L∗
n,R ≤ x)−�(x/τR)| = oP (1), where � de-

notes the CDF of the standard normal distribution. Invoking a conditional version of Slutsky’s
Lemma, this will be established by showing:

(a) Var∗(V ∗
2,n)

P→ M(1, f )4τ 2
R ,

(b) supx∈R |P ∗(V ∗
2,n ≤ x) − �(x/(M(1, f )2τR))| = oP (1),

(c) P ∗(|G∗
n − M(1, f )2| > ε) = oP (1) ∀ε > 0.

Verify first that from Assumption 3 we have supλ∈[−π,π ] |w̃(λ) − w(λ)| P→ 0. Moreover, the
form of w̃ yields 2πb−1 ∑

j∈G(b) w̃(λj,b)f̂n(λj,b) = 0. Hence,

(A.11) V ∗
2,n = √

kb
2π

b

∑
j∈G(b)

w̃(λj,b)
(
I ∗
j,b − f̂n(λj,b)

)
,

which means that V ∗
2,n equals L∗

n if one replaces ϕ by its linear transformation w̃. Therefore,
Assertion (a) follows with the same arguments as the result for Var∗(L∗

n) in the proof of
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Theorem 4.4(i), after replacing w̃ by w via supλ∈[−π,π ] |w̃(λ)−w(λ)| P→ 0. As for Assertion
(c), Assumption 3 can be invoked to obtain

E∗
(

2π

b

∑
j∈G(b)

I ∗
j,b

)
= 2π

b

∑
j∈G(b)

f̂n(λj,b) = 2π

b

∑
j∈G(b)

f (λj,b) + oP (1)

= M(1, f ) + oP (1).

(A.12)

Also, Var∗(2πb−1 ∑
j∈G(b) I

∗
j,b) = (kb)−1 Var∗(L∗

n) if one uses the function ϕ(λ) = 1 in L∗
n.

Therefore, Var∗(2πb−1 ∑
j∈G(b) I

∗
j,b) = OP ((kb)−1) by Theorem 4.4(i) which is sufficient

for P ∗(|2π
b

∑
j∈G(b) I

∗
j,b −M(1, f )| > ε) = oP (1) ∀ε > 0. Since the second factor in G∗

n also
converges to M(1, f ) in probability due to (A.12), Assertion (c) holds true.

Finally, to establish (b), note that from representation (A.11) V ∗
2,n can be decomposed as

V ∗
2,n = 1√

k

k∑
l=1

2π√
b

∑
j∈G(b)

w(λj,b)
(
Ii∗l ,b − f̃b(λj,b)

)

+ 1√
k

k∑
l=1

2π√
b

∑
j∈G(b)

(
w̃(λj,b) − w(λj,b)

)(
Ii∗l ,b − f̃b(λj,b)

)

+ 1√
k

k∑
l=1

2π√
b

∑
j∈G(b)

w̃(λj,b)

(
f̂n(λj,b)

f̃b(λj,b)
− 1

)(
Ii∗l ,b − f̃b(λj,b)

)
.

(A.13)

The first summand on the right-hand side equals expression M1∗ from the proof of Theo-
rem 4.4(ii) if one replaces ϕ by w there. Hence, asymptotic normality of the first summand
follows along these lines (and the proper variance has already been established in (a)). The
third summand on the right-hand side of (A.13) can be treated similar to expression M2∗
from the proof of Theorem 4.4(ii) and, therefore, vanishes asymptotically in probability us-

ing supλ∈[−π,π ] |w̃(λ) − w(λ)| P→ 0. With the same argument the second summand vanishes
which establishes asymptotic normality of V ∗

2,n and completes the proof. �

PROOF OF THEOREM 4.5(i). From the definition of R1∗ in (A.5) and from (A.1), it is
obvious that actually cn = R1∗. Hence, (A.6) implies cn = τ 2

1 +oP (1). In particular, the vari-
ance correction term cn represents exactly the contribution of L∗

n to τ 2
1 of the limiting variance

while R2∗ delivers the contribution to τ2. Now, since Var∗(Ṽ ∗
n ) = Var∗(V ∗

n )+Var∗(L∗
n)−cn,

this completes the proof of (i) due to Proposition 4.3(i) and Theorem 4.4(i). �

PROOF OF THEOREM 4.5(ii). Heuristically, the idea is that the (conditional) distribution
of V ∗

n converges to N (0, τ 2
1 ) in probability, while

v̂n :=
√√√√1 + τ̂ 2 − cn

τ̂ 2
1

=
√

τ̂ 2
1 + τ̂ 2 − cn

τ̂1
= τ

τ1
+ oP (1),

and, therefore, the distribution of Ṽ ∗
n = v̂n · V ∗

n converges in probability to N (0, τ 2). In the
following we will prove this in a more rigorous way. Denote the CDF of the standard normal
distribution by �. Observe that τ/v̂n = τ1 + oP (1) yields with a standard argument that
supx∈R |�(x/τ1) − �(xv̂n/τ)| = oP (1). Using this assertion, we can proceed by

sup
x∈R

∣∣∣∣P ∗(
Ṽ ∗

n ≤ x
) − �

(
x

τ

)∣∣∣∣
= sup

x∈R

∣∣∣∣P ∗(
V ∗

n ≤ x
) − �

(
xv̂n

τ

)∣∣∣∣
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≤ sup
x∈R

∣∣∣∣P ∗(
V ∗

n ≤ x
) − �

(
x

τ1

)∣∣∣∣ + sup
x∈R

∣∣∣∣�(
x

τ1

)
− �

(
x

(τ/v̂n)

)∣∣∣∣ = oP (1),

due to Proposition 4.3(ii). This completes the proof because (2.2) implies supx∈R |P(Ln ≤
x) − �(x/τ)| = o(1). �
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plement contains theoretical results regarding the validity of the CBP, the proofs that were
omitted in this paper and some additional numerical results.

REFERENCES

AUESTAD, B. and TJØSTHEIM, D. (1990). Identification of nonlinear time series: First order characterization and
order determination. Biometrika 77 669–687. MR1086681 https://doi.org/10.1093/biomet/77.4.669

BARTLETT, M. S. (1948). Smoothing periodograms from time-series with continuous spectra. Nature 161 686–
687.

BARTLETT, M. S. (1950). Periodogram analysis and continuous spectra. Biometrika 37 1–16. MR0035934
https://doi.org/10.1093/biomet/37.1-2.1

BILLINGSLEY, P. (1995). Probability and Measure. Wiley, New York.
BROCKWELL, P. J. and DAVIS, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York.
DAHLHAUS, R. (1985). On a spectral density estimate obtained by averaging periodograms. J. Appl. Probab. 22

598–610. MR0799283 https://doi.org/10.1017/s0021900200029351
DAHLHAUS, R. and JANAS, D. (1996). A frequency domain bootstrap for ratio statistics in time series analysis.

Ann. Statist. 24 1934–1963. MR1421155 https://doi.org/10.1214/aos/1069362304
EFRON, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1–26. MR0515681
FRANKE, J. and HÄRDLE, W. (1992). On bootstrapping kernel spectral estimates. Ann. Statist. 20 121–145.

MR1150337 https://doi.org/10.1214/aos/1176348515
HURVICH, C. M. and ZEGER, S. L. (1987). Frequency domain bootstrap methods for time series. Preprint,

Department of Statistics and Operations Research, New York University.
JANAS, D. and DAHLHAUS, R. (1994). A frequency domain bootstrap for time series. In Proc. 26th Symposium of

the Interface, Computationaly Intensive Statistical Methods (J. Sall and A. Lehmann, eds.) 423–425. Interface
Foundation of North America, Fairfax Station, VA.

KEENAN, D. M. (1987). Limiting behavior of functionals of higher-order sample cumulant spectra. Ann. Statist.
15 134–151. MR0885728 https://doi.org/10.1214/aos/1176350257

KREISS, J.-P. and PAPARODITIS, E. (2003). Autoregressive-aided periodogram bootstrap for time series. Ann.
Statist. 31 1923–1955. MR2036395 https://doi.org/10.1214/aos/1074290332

KREISS, J.-P. and PAPARODITIS, E. (2012). The hybrid wild bootstrap for time series. J. Amer. Statist. Assoc.
107 1073–1084. MR3010895 https://doi.org/10.1080/01621459.2012.695664

KREISS, J.-P., PAPARODITIS, E. and POLITIS, D. N. (2011). On the range of validity of the autoregressive sieve
bootstrap. Ann. Statist. 39 2103–2130. MR2893863 https://doi.org/10.1214/11-AOS900

MEYER, M., PAPARODITIS, E. and KREISS, J.-P. (2020). Supplement to “Extending the validity of frequency
domain bootstrap methods to general stationary processes.” https://doi.org/10.1214/19-AOS1892SUPP.

PAPARODITIS, E. and POLITIS, D. N. (1999). The local bootstrap for periodogram statistics. J. Time Series Anal.
20 193–222. MR1701054 https://doi.org/10.1111/1467-9892.00133

PRIESTLEY, M. B. (1981). Spectral Analysis and Time Series. Vol. 1. Probability and Mathematical Statistics.
Academic Press, London. MR0628735

ROSENBLATT, M. (1985). Stationary Sequences and Random Fields. Birkhäuser, Boston, MA. MR0885090
https://doi.org/10.1007/978-1-4612-5156-9

SHAO, X. (2009). Confidence intervals for spectral mean and ratio statistics. Biometrika 96 107–117. MR2482138
https://doi.org/10.1093/biomet/asn067

https://doi.org/10.1214/19-AOS1892SUPP
http://www.ams.org/mathscinet-getitem?mr=1086681
https://doi.org/10.1093/biomet/77.4.669
http://www.ams.org/mathscinet-getitem?mr=0035934
https://doi.org/10.1093/biomet/37.1-2.1
http://www.ams.org/mathscinet-getitem?mr=0799283
https://doi.org/10.1017/s0021900200029351
http://www.ams.org/mathscinet-getitem?mr=1421155
https://doi.org/10.1214/aos/1069362304
http://www.ams.org/mathscinet-getitem?mr=0515681
http://www.ams.org/mathscinet-getitem?mr=1150337
https://doi.org/10.1214/aos/1176348515
http://www.ams.org/mathscinet-getitem?mr=0885728
https://doi.org/10.1214/aos/1176350257
http://www.ams.org/mathscinet-getitem?mr=2036395
https://doi.org/10.1214/aos/1074290332
http://www.ams.org/mathscinet-getitem?mr=3010895
https://doi.org/10.1080/01621459.2012.695664
http://www.ams.org/mathscinet-getitem?mr=2893863
https://doi.org/10.1214/11-AOS900
https://doi.org/10.1214/19-AOS1892SUPP
http://www.ams.org/mathscinet-getitem?mr=1701054
https://doi.org/10.1111/1467-9892.00133
http://www.ams.org/mathscinet-getitem?mr=0628735
http://www.ams.org/mathscinet-getitem?mr=0885090
https://doi.org/10.1007/978-1-4612-5156-9
http://www.ams.org/mathscinet-getitem?mr=2482138
https://doi.org/10.1093/biomet/asn067


FREQUENCY DOMAIN BOOTSTRAP 2427

SHAO, X. and WU, W. B. (2007). Asymptotic spectral theory for nonlinear time series. Ann. Statist. 35 1773–
1801. MR2351105 https://doi.org/10.1214/009053606000001479

TANIGUCHI, M. (1982). On estimation of the integrals of the fourth order cumulant spectral density. Biometrika
69 117–122. MR0655676 https://doi.org/10.1093/biomet/69.1.117

TEWES, J., POLITIS, D. N. and NORDMAN, D. J. (2019). Convolved subsampling estimation with applications
to block bootstrap. Ann. Statist. 47 468–496. MR3909939 https://doi.org/10.1214/18-AOS1695

WELCH, P. D. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on
time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 70–73.

http://www.ams.org/mathscinet-getitem?mr=2351105
https://doi.org/10.1214/009053606000001479
http://www.ams.org/mathscinet-getitem?mr=0655676
https://doi.org/10.1093/biomet/69.1.117
http://www.ams.org/mathscinet-getitem?mr=3909939
https://doi.org/10.1214/18-AOS1695

	Introduction
	Spectral means and ratio statistics
	The hybrid bootstrap procedure
	The classical MPB approach
	The CBP approach
	The hybrid periodogram bootstrap (HPB)
	Remarks on the proposed bootstrap algorithms

	Bootstrap validity
	Practical issues and numerical results
	Some remarks on choosing the subsampling parameter
	Simulation results

	Appendix
	Acknowledgements
	Supplementary Material
	References

