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We study estimation methods under communication constraints in a dis-
tributed version of the nonparametric random design regression model. We
derive minimax lower bounds and exhibit methods that attain those bounds.
Moreover, we show that adaptive estimation is possible in this setting.

1. Introduction. In this paper we study some aspects of the fundamental possibilities
and limitations of distributed methods for high-dimensional or nonparametric problems. The
design and study of such methods has attracted substantial attention recently. This is for
a large part motivated by the ever increasing size of datasets, leading to the necessity to
analyze data while distributed over multiple machines and/or cores. Other reasons to consider
distributed methods include privacy considerations or the simple fact that in some situations
data are physically collected at multiple locations.

By now a variety of methods are available for estimating nonparametric or high-
dimensional models to data in a distributed manner. A (certainly incomplete) list of recent
references includes the papers [1, 4, 8, 10, 12, 15–17, 23]. Some of these papers propose new
methods, some study theoretical aspects of such methods and some do both. The number of
theoretical papers on the fundamental performance of distributed methods is still rather lim-
ited however. In the paper [19] we recently introduced a distributed version of the canonical
signal-in-white-noise model to serve as a benchmark model to study aspects like convergence
rates and optimal tuning of distributed methods. We used it to compare the performance of a
number of distributed nonparametric methods recently introduced in the literature. The study
illustrated the intuitively obvious fact that in order to achieve an optimal bias-variance trade-
off or, equivalently, to find the correct balance between over- and underfitting, distributed
methods need to be tuned differently than methods that handle all data at once. Moreover,
our comparison showed that some of the proposed methods are more successful at this than
others.

A major challenge and fundamental question for nonparametric distributed methods is
whether or not it is possible to achieve a form of adaptive inference. In other words, whether
we can design methods that do automatic, data-driven tuning in order to achieve the optimal
bias-variance trade-off. We illustrated by example in [19] that naively using methods that are
known to achieve optimal adaptation in nondistributed settings can lead to suboptimal perfor-
mance in the distributed case. In the recent paper [26], which considers the same distributed
signal-in-white-noise model and was written independently and concurrently as the present
paper, it is in fact conjectured that adaptation in the considered particular distributed model
is not possible.

In order to study convergence rates and adaptation for distributed methods in a meaningful
way, the class of methods should be restricted somehow. Indeed, if there is no limitation on
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communication or computation, then we could simply communicate all data from the various
local machines to a central machine, aggregate it and use some existing adaptive, rate-optimal
procedure. In this paper we consider a setting in which the communication between the local
and the global machines is restricted, much in the same way as the communication restrictions
imposed in [23] in a parametric framework and recently in the simultaneously written paper
[26] in the context of the distributed signal-in-white-noise model we introduced in [19].

In the distributed nonparametric regression model with communication constraints that we
consider, we can derive minimax lower bounds for the best possible rate that any distributed
procedure can achieve under smoothness conditions on the true regression function. Tech-
nically, this essentially relies on an extension of the information theoretic approach of [23]
to the infinite-dimensional setting (this is different from the approach taken in [26] which
relies on results from [21, 25]). It turns out there are different regimes, depending on how
much communication is allowed. On the one extreme end and in accordance with intuition, if
enough communication is allowed, then it is possible to achieve the same convergence rates
in the distributed setting as in the nondistributed case. The other extreme case is that there is
so little communication allowed that combining different machines does not help. Then, the
optimal rate under the communication restriction can already be obtained by just using a sin-
gle local machine and discarding the others. The interesting case is the intermediate regime.
For that case we show there exists an optimal strategy that involves grouping the machines in
a certain way and letting them work on different parts of the regression function.

These first results on rate-optimal distributed estimators are not adaptive, in the sense that
the optimal procedures depend on the regularity of the unknown regression function. The
same holds true for the procedure obtained in parallel in [26]. In this paper we go a step
further and show that contrary perhaps to intuition and contrary to the conjecture in [26],
adaptation is in fact possible. Indeed, we exhibit in this paper an adaptive distributed method
which involves a very specific grouping of the local machines in combination with a Lepski-
type method that is carried out in the central machine. We prove that the resulting distributed
estimator adapts to a range of smoothness levels of the unknown regression function and that,
up to logarithmic factors, it attains the minimax lower bound.

Although our analysis is theoretical, we believe it contains interesting messages that
are ultimately very relevant for the development of applied distributed methods in high-
dimensional settings. First of all, we show that, depending on the communication budget,
it might be advantageous to group local machines and let different groups work on differ-
ent aspects of the high-dimensional object of interest. Second, we show that it is possible to
have adaptation in communication restricted distributed settings, that is, to have data-driven
tuning that automatically achieves the correct bias-variance trade-off. We note, however, that
although our proof of this fact is constructive, the method we exhibit appears to be still
somewhat unpractical. We view our adaptation result primarily as a first proof of concept
that hopefully invites the development of more practical adaptation techniques for distributed
settings.

1.1. Notation. For two positive sequences an, bn we use the notation an � bn if there
exists an universal positive constant C such that an ≤ Cbn. Along the lines an � bn denotes
that an � bn and bn � an hold simultaneously. Furthermore, we write an � bn if an/bn =
o(1). Let us denote by �a� and �a� the upper and lower integer value of the real number
a, respectively. The sum

∑b
i=a xj , for a, b real numbers, denotes the sum

∑
i∈N:a≤i≤b xj .

For a set A let |A| denote the size of the set. For f ∈ L2[0,1] we denote the standard L2-
norm as ‖f ‖2

2 = ∫ 1
0 f (x)2 dx while for bounded functions ‖f ‖∞ denotes the L∞-norm. The

function sign : R �→ {0,1} evaluates to 0 on (−∞,0) and 1 on [0,∞). Furthermore, we use
the notation mean{a1, . . . , an} = (a1 + · · · + an)/n. Throughout the paper c and C denote
global constants whose value may change from one line to another.
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2. Main results. We work with the distributed version of the random design regression
model. We assume that we have m “local” machines and in the ith machine we observe pairs
of random variables (T

(i)
� ,X

(i)
� ), � = 1, . . . , n/m, (with n/m ∈ N) satisfying

X
(i)
� = f0

(
T

(i)
�

)+ σε
(i)
� where

T
(i)
�

iid∼ U(0,1), ε
(i)
�

iid∼ N(0,1), � = 1, . . . , n/m, i = 1, . . . ,m,

(2.1)

and f0 ∈ L2[0,1] (which is the same for all machines) is the unknown functional parameter
of interest. For simplicity we take σ = 1. We denote the data distribution and expectation
corresponding to the ith machine in (2.1) by P

(i)
f0,T

and E
(i)
f0,T

, respectively, and the joint
distribution and expectation over all machines i = 1, . . . ,m, by Pf0,T and Ef0,T , respectively.
We assume that the total sample size n is known to every local machine. For our theoretical
results we will assume that the unknown true function f0 belongs to some regularity class.
We work in our analysis with Besov smoothness classes, more specifically we assume that
for some degree of smoothness s > 0 we have f0 ∈ Bs

2,∞(L) or f0 ∈ Bs∞,∞(L). The first
class is of Sobolev type, while the second one is of Hölder type with minimax estimation
rates n−s/(1+2s) and (n/ logn)−s/(1+2s), respectively. For precise definitions see Section B
in the Supplementary Material [18]. Each local machine carries out (parallel to the others) a
local statistical procedure and transmits the results to a central machine which produces an
estimator for the signal f0 by somehow aggregating the messages received from the local
machines.

We study these distributed procedures under communication constraints between the local
machines and the central machine. We allow each local machine to send at most B(i) bits
on average to the central machine. More formally, a distributed estimator f̂ is a measurable
function of m binary strings, or messages, passed from the local machines to the central
machine. We denote by Y (i) the finite binary string transmitted from machine i to the central
machine which is a measurable function of the local data T (i), X(i). For a class of potential
signals F ⊂ L2[0,1], we restrict the communication between the machines by assuming
that for numbers B(1), . . . ,B(m), it holds that Ef0,T [l(Y (i))] ≤ B(i) for every f0 ∈ F and
i = 1, . . . ,m, where l(Y ) denotes the length of the string Y . We denote the resulting class of
communication restricted distributed estimators f̂ by Fdist(B

(1), . . . ,B(m);F). The number
of machines m = mn and the communication constraints B(i) = B

(i)
n are allowed to change

with the overall sample size n. In fact, that is the interesting situation. However, to alleviate
the notational burden somewhat, we do not make this explicit in the notation.

2.1. Distributed minimax lower bounds for the L2-risk. The first theorem we present
gives a minimax lower bound for distributed procedures for the L2-risk, uniformly over
Sobolev-type Besov balls; see Section B in the Supplementary Material for rigorous defi-
nitions.

THEOREM 2.1. Consider s,L > 0, log2 n ≤ m = O(n
2s

1+2s / log2 n) and communication
constraints B(1), . . . ,B(m) > 0. Let the sequence δn = o(1) be defined as the solution to the
equation

δn = L−2 min
{

m

n log2 n
,

m

n
∑m

i=1[(log2(n)δ
1

1+2s
n B(i)) ∧ 1]

}
.(2.2)

Then, in distributed random design nonparametric regression model (2.1) we have that

inf
f̂ ∈Fdist(B

(1),...,B(m);Bs
2,∞(L))

sup
f0∈Bs

2,∞(L)

Ef0,T ‖f̂ − f0‖2
2 � L2δ

2s
1+2s
n .
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PROOF. See Section 3.1. �

We briefly comment on the derived result. First of all, note that the quantity δn in (2.2)
is well defined, since the left-hand side of the equation is increasing, while the right-hand
side is decreasing in δn. In general, there is no explicit expression for δn. See the corollary
below, however, for the special case that the communication constraints are the same for each
machine, in which case we have explicit lower bounds.

The proof of the theorem is based on an application of a version of Fano’s inequality, fre-
quently used to derive minimax lower bounds. More specifically, as a first step we find, as
usual, a large enough finite subset of the functional space Bs

2,∞(L) over which the minimax
rate is the same as over the whole space. This is done by finding the “effective resolution
level” jn in the wavelet representation of the function of interest and perturbing the corre-
sponding wavelet coefficients while setting the rest of the coefficients to zero. This effective
resolution level for s-smooth functions is usually (1 + 2s)−1 log2 n in case of the L2-norm for
nondistributed models (e.g., [7]). However, in our distributed setting the effective resolution
level changes to (1 + 2s)−1 log δ−1

n , which can be substantially different from the nondis-
tributed case, as it strongly depends on the number of transmitted bits. The dependence on
the expected number of transmitted bits enters the formula by using a variation of Shannon’s
source coding theorem. Many of the information theoretic manipulations in the proof are an
extended and adapted version of the approach introduced in [23], where similar results were
derived in context of distributed methods with communication constraints over parametric
models.

To understand the result, it is illustrative to consider the special case that the com-
munication constraints are the same for all machines, that is, B(1) = · · · = B(m) = B for
some B > 0. We can then distinguish three regimes: (i) the case B ≥ (L2n)1/(1+2s)/ log2 n;
(ii) the case (L2n log2(n)/m2+2s)1/(1+2s) ≤ B < (L2n)1/(1+2s)/ log2 n; and (iii) the case
B < (L2n log2(n)/m2+2s)1/(1+2s).

In regime (i) we have a large communication budget and by elementary computations we
get that the minimum in (2.2) is attained in the second fraction and hence that δn = 1/(L2n).
This means that in this case the derived lower bound corresponds to the usual nondistributed
minimax rate L2/(1+2s)n−2s/(1+2s). In the other extreme case, regime (iii), the minimum is
taken at the first term in (2.2) and δn = m/(L2n log2 n), so the lower bound is of the order
L2/(1+2s)(n log2(n)/m)−2s/(1+2s). This rate is, up to the log2 n factor, equal to the minimax
rate corresponding to the sample size n/m. Consequently, in this case it does not make sense
to consider distributed methods, since by just using a single machine the best rate can already
be obtained (up to a logarithmic factor). In the intermediate case (ii) it is straightforward to
see that δn = (L2nB log2 n)(1+2s)/(2+2s). It follows that if B = o(n1/(1+2s)/ log2 n), that is, if
we are only allowed to communicate “strictly” less than in case (i), then the lower bound is
strictly worse than the minimax rate corresponding to the nondistributed setting.

The findings above are summarized in the following corollary.

COROLLARY 2.2. Consider s,L > 0, communication constraints B(1) = · · · = B(m) =
B > 0 and assume that log2 n ≤ m = O(n

2s
1+2s / log2 n). Then

(i) if B ≥ (L2n)1/(1+2s)/ log2 n,

inf
f̂ ∈Fdist(B,...,B;Bs

2,∞(L))

sup
f0∈Bs

2,∞(L)

Ef0,T ‖f̂ − f0‖2
2 � L

2
1+2s n− 2s

1+2s ;

(ii) if (L2n log2(n)/m2+2s)1/(1+2s) ≤ B < (L2n)1/(1+2s)/ log2 n,

inf
f̂ ∈Fdist(B,...,B;Bs

2,∞(L))

sup
f0∈Bs

2,∞(L)

Ef0,T ‖f̂ − f0‖2
2 � L

2
1+s

(
n1/(1+2s)

B log2 n

) s
1+s

n− 2s
1+2s ;
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(iii) if (L2n log2(n)/m2+2s)1/(1+2s) > B ,

inf
f̂ ∈Fdist(B,...,B;Bs

2,∞(L))

sup
f0∈Bs

2,∞(L)

Ef0,T ‖f̂ − f0‖2
2 � L

2
1+2s

(
n log2 n

m

)− 2s
1+2s

.

2.2. Nonadaptive rate-optimal distributed procedures for L2-risk. Next, we show that
the derived lower bounds are (nearly) sharp by presenting distributed procedures that attain
the bounds (up to logarithmic factors). We note that it is sufficient to consider only the case
B ≥ (L2n log2(n)/m2+2s)1/(1+2s), since otherwise distributed techniques do not perform bet-
ter than standard techniques carried out on one of the local servers. Therefore, in case (iii)
one would probably prefer to use a single local machine instead of a complicated distributed
method with (possibly) worse performance.

As a first step let us consider Daubechies wavelets ψjk , j = 0, . . ., k = 0,1, . . . ,2j − 1
with at least s vanishing moments (for details see Section B in the Supplementary Material).
Then, let us estimate the wavelet coefficients of the underlying function f0 in each local
problem, that is, for every j = 0, . . ., and k = 0,1, . . . ,2j − 1 let us construct

f̂
(i)
jk = m

n

n/m∑
�=1

X
(i)
� ψjk

(
T

(i)
�

)

and note that

Ef0,T f̂
(i)
jk =

∫ 1

0
f0(t)ψjk(t) dt = f0,jk.

Since one can only transmit finite amount of bits, we have to approximate the estimators of
the wavelet coefficients. Let us take an arbitrary x ∈ R and write it in a scientific binary rep-
resentation, that is, |x| = ∑log2 |x|

k=−∞ bk2k , with bk ∈ {0,1}, k ∈ Z. Then, let us take y consisting
the same digits as x up to the (D log2 n)th digits, for some D > 0, after the binary dot (and

truncated there), that is, |y| = ∑log2 |x|
k=−D log2 n bk2k ; see also Algorithm 1.

Observe that the length of y (viewed as a binary string) is bounded from above by 1+ (1∨
log2 |x|) + D log2 n bits. The following lemma asserts that if E(1 ∨ log2 |X|) = o(log2 n),
then the expected length E[l(Y )] of the constructed binary string approximating X is less
than constant times log2 n (for sufficiently large n) and the approximation is polynomially
close to X.

LEMMA 2.3. Assume that E(1 ∨ log2 |X|) = o(log2 n). Then, the approximation Y of X

given in Algorithm 1 satisfies that

0 ≤ |X − Y | ≤ n−D and E
[
l(Y )

] ≤ (
D + o(1)

)
log2(n).

PROOF. See Section 3.4. �

After these preparations we can exhibit procedures attaining (nearly) the theoretical limits
obtained in Corollary 2.2.

Algorithm 1 Transmitting a finite-bit approximation of a number
1: procedure TRANSAPPROX(x)
2: Transmit: sign(x), b−�D log2 n�, . . . , b�log2 |x|�.

3: Construct: y = (2sign(x) − 1)
∑log2 |x|

k=−D log2 n bk2k .
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Algorithm 2 Nonadaptive L2-method, case (i)
1: In the local machines:
2: for i = 1 to m do:
3: for 2j + k = 1 to (L2n)1/(1+2s) ∧ (B/ log2 n) do
4: Y

(i)
jk := TransApprox(f̂

(i)
jk )

5: In the central machine:
6: for 2j + k = 1 to (L2n)1/(1+2s) ∧ (B/ log2 n) do
7: f̂jk := mean{Y (i)

jk : 1 ≤ i ≤ m}.
8: Construct: f̂ = ∑

f̂jkψjk .

We first consider the case (i) that B ≥ (L2n)1/(1+2s)/ log2 n. In this case each local ma-
chine i = 1, . . . ,m transmits the approximations Y

(i)
jk (given in Algorithm 1 with D = 1/2)

of the first (L2n)1/(1+2s) ∧ (B/ log2 n) wavelet coefficients f̂
(i)
jk , that is, for 2j + k ≤

(L2n)1/(1+2s) ∧ (B/ log2 n). Then, in the central machine we simply average the transmit-
ted approximations to obtain the estimated wavelet coefficients

f̂jk =

⎧⎪⎪⎨
⎪⎪⎩

1

m

m∑
i=1

Y
(i)
jk if 2j + k ≤ (

L2n
)1/(1+2s) ∧ (B/ log2 n),

0 else.

The final estimator f̂ for f0 is the function in L2[0,1] with these wavelet coefficients, that
is, f̂ = ∑

f̂jkψjk . The method is summarized as Algorithm 2.
We note again that the procedure outlined in Algorithm 2 is just a simple averaging, some-

times called “divide and conquer” or “embarrassingly parallel” in the learning literature (e.g.,
[14, 24]).

The following theorem asserts that the constructed estimator indeed attains the lower
bound in case (i) (up to a logarithmic factor for B close to the threshold). Note that in this
upper bound result (and in the ones ahead) we do not have to assume the technical condition
on the number of machines as in the lower bounds.

THEOREM 2.4. Let s,L > 0, m ≤ n, and suppose that B ≥ (L2n)1/(1+2s)/ log2 n. Then,

the distributed estimator f̂ described in Algorithm 2 belongs to Fdist(B, . . . ,B;Bs
2,∞(L))

and satisfies

sup
f0∈Bs

2,∞(L),‖f0‖∞≤M

Ef0,T ‖f̂ − f0‖2
2 �

(
L

2
1+2s n− 2s

1+2s
)∨ (

L2(B/ log2 n)−2s).
PROOF. See Section 3.2. �

Next we consider the case (ii) of Corollary 2.2, that is, the case that the communication
restriction satisfies (L2n log2(n)/m2+2s)1/(1+2s) ≤ B < (L2n)1/(1+2s)/ log2 n. For technical
reasons we also assume that B ≥ log2 n. Using Algorithm 2 in this case would result in a
highly suboptimal procedure, as we prove at the end of Section 3.3. It turns out that under
this more severe communication restriction we can do much better if we form different groups
of machines that work on different parts of the signal.

We introduce the notation η = �(L2n)
1

2+2s ((log2 n)/B)
1+2s
2+2s �∧m. Then, we group the local

machines into η groups and let the different groups work on different parts of wavelet domain
as follows: the machines with numbers 1 ≤ i ≤ m/η each transmit the approximations Y

(i)
jk of
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Algorithm 3 Nonadaptive L2-method, case (ii)
1: In the local machines:
2: for � = 1 to η do
3: for i = �(� − 1)m/η� + 1 to ��m/η� do
4: for 2j + k = (� − 1)�B/ log2 n� + 1 to ��B/ log2 n� do

5: Y
(i)
jk := TransApprox(f̂

(i)
jk ).

6: In the central machine:
7: for 2j + k = 1 to η�B/ log2 n� do
8: f̂jk := mean{Y (i)

jk : μjkm/η < i ≤ (μjk + 1)m/η}.
9: Construct: f̂ = ∑

f̂jkψjk .

the estimated wavelet coefficients f̂
(i)
jk for 1 ≤ 2j + k ≤ �B/ log2 n�; the next machines, with

numbers m/η < i ≤ 2m/η, each transmit the approximations Y
(i)
jk for �B/ log2 n� < 2j + k ≤

2�B/ log2 n�, and so on. The last machines with numbers (η − 1)m/η < i ≤ m transmit
the Y

(i)
jk for (η − 1)�B/ log2 n� < 2j + k ≤ η�B/ log2 n�. Then, in the central machine we

average the corresponding transmitted noisy coefficients in the obvious way. Formally, using
the notation μjk = �(2j + k)�B/ log2 n�−1� − 1, the aggregated estimator f̂ is the function
with wavelet coefficients given by

f̂jk =
⎧⎪⎨
⎪⎩

mean
{
Y

(i)
jk : μjkm

η
< i ≤ (μjk + 1)m

η

}
if 2j + k ≤ η�B/ log2 n�,

0 else.

The procedure is summarized as Algorithm 3.
The following theorem asserts that this estimator attains the lower bound in case (ii) (up

to a logarithmic factor). We also prove in Section 3.3 that Algorithm 2 is suboptimal in this
case.

THEOREM 2.5. Let s,L > 0, m ≤ n and suppose that (L2n log2(n)/

m2+2s)1/(1+2s) ∨ log2 n ≤ B < (L2n)1/(1+2s)/ log2 n. Then, the distributed estimator f̂ de-
scribed in Algorithm 3 belongs to Fdist(B, . . . ,B;Bs

2,∞(L)) and satisfies

sup
f0∈Bs

2,∞(L),‖f0‖∞≤M

Ef0,T ‖f̂n − f0‖2
2 �MnL

2
1+s

(
n1/(1+2s)

B log2 n

) s
1+s

n− 2s
1+2s ,

with Mn = (log2 n)2s .

PROOF. See Section 3.3. �

REMARK 2.6. Instead of an upper bound on the expected number of transmitted bits
Ef0,T [l(Y (i))] ≤ B(i), one could consider a stronger, almost sure restriction, that is, l(Y (i)) ≤
B(i) holds P(i)

f0,T
-a.s., for all i = 1, . . . ,m. It is straightforward to see that the minimax lower

bounds derived in Theorem 2.1 and Corollary 2.2 still hold under this assumption. Further-
more, we can show that the lower bounds are tight, that is, by slightly modifying the Algo-
rithms 2 and 3 we get the same convergence rate as in Theorems 2.4 and 2.5 under the more
restrictive almost sure upper bound on the number of communicated bits. The proof of the
remark is deferred to Section 3.5.
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REMARK 2.7. The computational complexity of the estimator f̂
(i)
jk , for any j , k, i is

O(n/m). Since each local machine transmits at most (B/ log2 n) ∨ n1/(1+2s) wavelet coeffi-
cients, the total computational complexity is O(((B/ log2 n) ∨ n1/(1+2s))n/m). In the central
machine we average out the local estimators. The computational cost of each estimator f̂jk

is O(m/η) and, since we compute ηB/ log2 n coefficients, the total computational cost in
the central machine is O(mB/ log2 n). As a benchmark the computational complexity of a
nondistributed wavelet thresholding estimator is O(n1/(1+2s)n).

2.3. Distributed minimax results for L∞-risk. When we replace the L2-norm by the L∞-
norm and correspondingly change the type of Besov balls we consider, we can derive a lower
bound similar to Theorem 2.1 (see Section B in the Supplementary Material for the rigorous
definition of Besov balls).

THEOREM 2.8. Consider s,L > 0, communication constraints B(1), . . . ,B(m) > 0, and

assume that log2 n ≤ m = O(n
2s

1+2s / log2 n). Let the sequence δn = o(1) be defined as the
solution to the equation (2.2). Then, in the distributed random design regression model (2.1)
we have that

inf
f̂ ∈Fdist(B

(1),...,B(m);Bs∞,∞(L))

sup
f0∈Bs∞,∞(L)

Ef0,T ‖f̂ − f0‖∞

� L
1

1+2s

(
n

logn

)− s
1+2s ∨ Lδ

s
1+2s
n .

PROOF. See Section 4.1. �

The proof of the theorem is very similar to the proof of Theorem 2.8. The first term on the
right-hand side follows from the usual nondistributed minimax lower bound. For the second
term we use the standard version of Fano’s inequality. We again consider a large enough finite
subset of Bs∞,∞(L). The effective resolution level for the L∞-norm in the nondistributed case
is (1 + 2s)−1 log2(n/ log2 n). Similar to the L2 case, the effective resolution level changes to
(1 + 2s)−1 log δ−1

n in the distributed setting which can be again substantially different from
the nondistributed case. The rest of the proof follows the same line of reasoning as the proof
of Theorem 2.8.

Similarly to the L2-norm, we consider again the specific case where all communication
budgets are taken to be equal, that is, B(1) = B(2) = · · · = B(m) = B . One can easily see that
there are again three regimes of B (slightly different compared to the L2-case).

COROLLARY 2.9. Consider s,L > 0, communication constraint B(1) = · · · = B(m) =
B > 0, and assume that log2 n ≤ m = O(n

2s
1+2s / log2 n).

(ib) If B ≥ (L2n/(log2 n)3+4s)1/(1+2s), then

inf
f̂ ∈Fdist(B,...,B;Bs∞,∞(L))

sup
f0∈Bs∞,∞(L)

Ef0,T ‖f̂ − f0‖∞ � L
1

1+2s (n/ log2 n)−
s

1+2s .

(iib) If (L2n log2(n)/m2+2s)1/(1+2s) ≤ B < (L2n/(log2 n)3+4s)1/(1+2s), then

inf
f̂ ∈Fdist(B,...,B;Bs∞,∞(L))

sup
f0∈Bs∞,∞(L)

Ef0,T ‖f̂ − f0‖∞

� L
1

1+s

(
n

1
1+2s

B(log2 n)
3+4s
1+2s

) s
2+2s

(
n

log2 n

)− s
1+2s

.
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(iiib) If (L2n log2(n)/m2+2s)1/(1+2s) > B , then

inf
f̂ ∈Fdist(B,...,B;Bs∞,∞(L))

sup
f0∈Bs∞,∞(L)

Ef0,T ‖f̂ − f0‖∞ � L
1

1+2s

(
n log2 n

m

)− s
1+2s

.

Next we provide matching upper bounds (up to a logn factor) in the first two cases, that
is, (ib) and (iib). In the third case the lower bound matches (up to a logarithmic factor) the
minimax rate corresponding to a single local machine, hence it is not advantageous at all to
develop complicated distributed techniques as a single server with only fraction of the total
information performs at least as well. In the previous section dealing with L2 estimation, we
have provided two algorithms (one where the machines had the same tasks and one where
the machines were divided into groups and were assigned different tasks) to highlight the
differences between the cases. Here, for simplicity we combine the algorithms to a single
one, but essentially the same techniques are used as before.

In each local machine we compute the local estimators of the wavelet coefficients f̂
(i)
jk

and transmit a finite digit approximation of them Y
(i)
jk , as in the L2-case. Then, let us

divide the machines into η = (�(L2n(log2 n)2s/B1+2s)
1

2+2s � ∧ m) ∨ 1 equal sized groups
(η = 1 corresponds to case (ib), while η > 1 corresponds to case (iib)). Similarly to be-
fore machines with numbers 1 ≤ i ≤ m/η transmit the approximations Y

(i)
jk of the es-

timated wavelet coefficients f̂
(i)
jk for 1 ≤ 2j + k ≤ �B/ log2 n� ∧ (n/ log2 n)

1
1+2s , and so

on, the last machines with numbers (η − 1)m/η < i ≤ m transmit the approximations

Y
(i)
jk for ((η − 1)�B/ log2 n�) ∧ (n/ log2 n)

1
1+2s < 2j + k ≤ (η�B/ log2 n�) ∧ (n/ log2 n)

1
1+2s .

In the central machine we average the corresponding transmitted coefficients in the ob-
vious way, that is, the aggregated estimator f̂ is the function with wavelet coefficients
given by

f̂jk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mean
{
Y

(i)
jk : μjkm

η
< i ≤ (μjk + 1)m

η

}

if 2j + k ≤ η

⌊
B

log2 n

⌋
∧
(

n

logn

) 1
1+2s

,

0 else,

where μjk = �(2j + k)�B/ log2 n�−1� − 1. The procedure is summarized as Algorithm 4
and the (up to a logarithmic factor) optimal behaviour is given in Theorem 2.10 be-
low.

Algorithm 4 Nonadaptive L∞-method, combined
1: In the local machines:
2: for � = 1 to η do
3: for i = �(� − 1)m/η� + 1 to ��m/η� do
4: for 2j + k = (� − 1)�B/ log2 n� + 1 to ��B/ log2 n� do

5: Y
(i)
jk := TransApprox(f̂

(i)
jk ).

6: In the central machine:
7: for 2j + k = 1 to η�B/ log2 n� do
8: f̂jk := mean{Y (i)

jk : μjkm/η < i ≤ (μjk + 1)m/η}.
9: Construct: f̂ = ∑

f̂jkψjk .
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THEOREM 2.10. Let s,L > 0. Then, the distributed estimator f̂ described in Algo-
rithm 4 belongs to Fdist(B, . . . ,B;Bs∞,∞(L)) and satisfies

• for B ≥ n1/(1+2s)(log2 n)2s/(1+2s),

sup
f0∈Bs∞,∞(L)

Ef0,T ‖f̂n − f0‖∞ � L
1

1+2s (n/ log2 n)−
s

1+2s ;

• for (n(log2 n)/m2+2s)1/(1+2s) ∨ log2 n ≤ B < n1/(1+2s)(log2 n)2s/(1+2s),

sup
f0∈Bs∞,∞(L)

Ef0,T ‖f̂n − f0‖∞ �MnL
1

1+s

(
n

1
1+2s

B(log2 n)
3+4s
1+2s

) s
2+2s

(n/ log2 n)−
s

1+2s ,

with Mn = (log2 n)s∨
3s

2+2s .

PROOF. See Section 4.2. �

We can draw similar conclusions for the L∞-norm as for the L2-norm. If we do not trans-
mit a sufficient amount of bits (at least n1/(1+2s) up to a logn factor) from the local machines
to the central one, then the lower bound from the theorem exceeds the minimax risk corre-
sponding to the nondistributed case. Furthermore, by transmitting the sufficient amount of
bits (i.e., n1/(1+2s) up to a logn factor) corresponding to the class Bs∞,∞(L), the lower bound
will coincide with the nondistributed minimax estimation rate.

REMARK 2.11. We have restricted the analysis to Bs
2,∞ and Bs∞,∞ Besov balls. Obvi-

ously, a more complete picture over a broader scale of Besov spaces would be desirable. We
note, however, that Bs

p,q spaces can be handled similarly to the Bs
2,∞ case with the cost of

some additional technical and notational complexity; see for instance [2, 7, 9] for extension
of results in Bs

2,∞, Bs∞,∞ to general Bs
pq .

2.4. Adaptive distributed estimation. The (almost) rate-optimal procedures considered
so far have in common that they are nonadaptive, in the sense that they all use the knowledge
of the regularity level s of the unknown functional parameter of interest. In this section we
exhibit a distributed algorithm attaining the lower bounds (up to a logarithmic factor) across
a whole range of regularities s simultaneously. In the nondistributed setting it is well known
that this is possible, and many adaptation methods exist, including, for instance, the block
Stein method, Lepski’s method, wavelet thresholding and Bayesian adaptation methods, just
to mention but a few (e.g., [7, 20]). In the distributed case the matter is more complicated.
Using the usual adaptive tuning methods in the local machines will typically not work (see
[19]), and in fact it was recently conjectured that adaptation, if at all possible, would require
more communication than is allowed in our model (see [26]).

We will show, however, that in our setting, if all machines have the same communication
restriction given by B ≥ log2 n, it is possible to adapt to regularities s ranging in the interval
(smin, smax), where

smin = lim sup
n

(
inf

{
s > 0 : (n(log2 n)2/m2+2s) 1

1+2s ≤ B
})

(2.3)

and smax is the regularity of the considered Daubechies wavelet and can be chosen arbitrarily
large. Note that smin is well defined. If s ∈ (smin, smax), then we are in one of the nontrivial
cases (i) or (ii) of Corollary 2.2. We will construct a distributed method which, up to loga-
rithmic factors, attains the corresponding lower bounds, without using knowledge about the
regularity level s.



ADAPTIVE DISTRIBUTED ESTIMATION 2357

REMARK 2.12. We provide some examples for the value of smin for different choices of
B and m. Taking m = √

n, we have for all B ≥ log2 n that smin = 0. For m = logn and B =√
n, we get smin = 1/2. For m = logn and B = log2 n, we have that smin = ∞. Note that it is

intuitively clear that in case the number of machines is large, then it is typically advantageous
to use a distributed method compared to a single local machine as we would lose too much
information in the later case. However, if we have a small number of machines and can
transmit only a very limited amount of information, then it might be more advantageous to
use only a single machine to make inference.

In the non-adaptive case we saw that different strategies were required to attain the
optimal rate, case (ii) requiring a particular grouping of the local machines. The cut-
off between cases (i) and (ii) depends, however, on the value of s, so in the present
adaptive setting we do not know beforehand in which of the two cases we are. In or-
der to tackle this problem, we introduce a somewhat more involved grouping of the
machines which basically gives us the possibility to carry out both strategies simul-
taneously. This is combined with a modified version of Lepski’s method, carried out
in the central machine, ultimately leading to (nearly) optimal distributed concentration
rates for every regularity class s ∈ (smin, smax), simultaneously. We note that in our dis-
tributed regression setting, deriving an appropriate version of Lepski’s method requires
some nonstandard technical work; see Section 3.6. For a treatment and discussion of
Lepski’s method in the usual signal-in-white-noise model, see, for instance, Chapter 8
of [7].

Loosely speaking, the grouping of the machines can be described as follows. As a first
step we divide the machines into two equal size clusters. Machines in the first cluster are
all assigned the same task; each of them transmits the wavelet coefficients up to resolution
level jB,n, depending on the communication budget. The machines in the second cluster
are then responsible for transmitting the remaining wavelet coefficients (up to some large
enough resolution level jmax = c log2 n, for some constant c > 0). Since the number of these
wavelet coefficients (typically) exceeds the communication budget of a single machine, it is
not possible to assign the same protocol to each of the machines in the second cluster. We
therefore further divide the machines in the second cluster into jmax − jB,n equally sized
subclusters. Then, the machines in each subcluster are assigned to transmit the wavelet co-
efficients at a given resolution level between jB,n + 1 and jmax. Since the numbers of coef-
ficients at these resolution levels still exceed the communication budget, we further divide
the subclusters into equally large subgroups, such that any coefficient will be transmitted by
the machines belonging to exactly one subgroup. We proceed by making this strategy pre-
cise.

As a first step in our adaptive procedure, we divide the machines into groups. To simplify
the notation somewhat, we assume that m is even (otherwise, replace m/2 by �m/2� or �m/2�
where appropriate). We first take m/2 machines and denote the set of their index numbers
by I . Then, the remaining machines are split into η̃ = η̃n = jmax − jB,n equally sized groups
(for simplicity each group has �(m/2)/η̃� machines and the leftovers are discarded), where

jB,n := ⌊
log2�B/ log2 n�⌋,

jmax := ⌈
(2 + 2smin)

−1 log2(nB)
⌉∧ ⌈

(1 + 2smin)
−1 log2 n

⌉
.

The corresponding sets of indexes are denoted by I0, I1, . . . , Iη̃−1. Note that |It | � m/ log2 n,
for t ∈ {0, . . . , η̃ − 1}. Then, the machines in the group I transmit the approxima-
tions Y

(i)
jk (with D = 1/2 in Algorithm 1) of the local estimators of the wavelet coef-

ficients f̂
(i)
jk , for 0 ≤ j ≤ jB,n − 1, k = 0, . . . ,2j − 1 to the central machine. The ma-
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chines in group It , t ∈ {0, . . . , η̃ − 1}, will be responsible for transmitting the coef-
ficients at resolution level j = jB,n + t . First, for every t ∈ {0, . . . , η̃ − 1}, the ma-
chines in group It are split again into 2t equal size groups (for simplicity each group
has �2−t�(m/2)/η̃�� ≥ 1 machines and the leftovers are discarded again), denoted by
It,1, It,2, . . . , It,2t . A machine i in one of the groups It,� for � ∈ {1, . . . ,2t } transmits the

approximations Y
(i)
jk (again with D = 1/2 in Algorithm 1) of the local estimators of the

wavelet coefficients f̂
(i)
jk , for j = jB,n + t and (� − 1)2jB,n ≤ k < �2jB,n to the central ma-

chine.
In the central machine we first average the transmitted approximations of the correspond-

ing coefficients. We define

(2.4) f̂jk =

⎧⎪⎪⎨
⎪⎪⎩

|I |−1
∑
i∈I

Y
(i)
jk if j < jB,n, k = 0, . . . ,2j − 1,

|It,�|−1
∑

i∈It,�

Y
(i)
jk if jB,n ≤ j ≤ jB,n + η̃, k = 0, . . . ,2j − 1.

Using these coefficients we can construct for every j the preliminary estimator

f̃ (j) = ∑
l≤j−1

2l−1∑
k=0

f̂lkψlk.(2.5)

This gives us a sequence of estimators from which we select the appropriate one using a
modified version of Lepski’s method. We consider J = {0, . . . , jmax} and define ĵ as

ĵ = min
{
j ∈ J : ∥∥f̃ (j) − f̃ (l)

∥∥2
2 ≤ τ2l/nl,∀l > j, l ∈ J

}
,(2.6)

for some sufficiently large parameter τ > 1 (defined later) and nj = |Ij−jB,n,1|n/m �
nB

2j (log2 n)2 , for j ≥ jB,n and nj = |I |n/m � n for j < jB,n. Then, we construct our final

estimator f̂ simply by taking f̂ = f̃ (ĵ ).
We summarize the above procedure (without discarding servers for achieving exactly equal

size subgroups) in Algorithm 5, below.

THEOREM 2.13. For every s,L > 0 the distributed method f̂ described above belongs
to Fdist(B, . . . ,B;Bs

2,∞(L)), and for all s ∈ (smin, smax)

sup
f0∈Bs

2,∞(L)

Ef0,T ‖f̂ − f0‖2 �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L1/(1+2s)n−s/(1+2s)

if B ≥ 4
(
L2n

)1/(1+2s) log2 n,

MnL
1

1+s

(
n1/(1+2s)

B log2 n

) s
2+2s

n− s
1+2s

if B < 4
(
L2n

)1/(1+2s) log2 n,

with Mn = (log2 n)s/(1+2s).

PROOF. See Section 3.6. �

REMARK 2.14. Compared to the lower bound in Corollary 2.2, one can observe that in
case B ≥ n1/(1+2s) log2 n the upper bound is sharp. For B < 4(L2n)1/(1+2s) log2 n, we might
get an extra slowly varying term of order at most O((logn)s/(1+2s)). Also, note that our
method is sharp in the radius of the Besov ball L.
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Algorithm 5 Adaptive L2-method
1: In the local machines:
2: for i = 1 to m/2 do
3: for j = 0 to jB,n − 1 do
4: for k = 0 to 2j − 1 do
5: Y

(i)
jk := TransApprox(f̂

(i)
jk ).

6: for t = 0 to η̃ − 1 do
7: Let j := jB,n + t .
8: for � = 1 to 2t do
9: for i = m/2 + t�m/2

η̃
� + (� − 1)�2−t�m/2

η̃
�� + 1 to m/2 + t�m/2

η̃
�+

10: +��2−t�m/2
η̃

�� do

11: for k = (� − 1)2jB,n to �2jB,n − 1 do
12: Y

(i)
jk := TransApprox(f̂

(i)
jk ).

13: In the central machine:
14: (1) Averaging the local observations:
15: for j = 0 to jB,n − 1 do
16: for k = 0 to 2j − 1 do
17: f̂jk := mean{Y (i)

jk : i ≤ m/2}.

18: for t = 0 to η̃ − 1 do
19: Let j := jB,n + t .
20: for � = 1 to 2t do
21: for k = (� − 1)2jB,n to �2jB,n − 1 do
22: f̂jk := mean{Y (i)

jk : m/2 + t�m/2
η̃

� + (� − 1)�2−t�m/2
η̃

�� < i ≤
23: ≤ m/2 + t�m/2

η̃
� + ��2−t�m/2

η̃
��}.

24: (2) Lepski’s method:
25: for j = 0 to jmax do
26: f̃ (j) := ∑

l≤j−1
∑2j−1

k=0 f̂jkψjk .

27: Let ĵ := jmax, stop := FALSE.
28: while stop == FALSE and ĵ ≥ 0 do
29: Let l := ĵ + 1.
30: while stop == FALSE and l ≤ jmax do
31: if ‖f̃ (j) − f̃ (l)‖2

2 ≤ τ2l/nl then
32: l := l + 1.
33: else stop := TRUE.
34: if stop == FALSE then
35: ĵ := ĵ − 1.
36: Construct: f̂ = f̃ (ĵ ).

REMARK 2.15. The computational complexity of the adaptive algorithm in each local
machine is O(Bn/(m log2 n)), since B/ log2 n empirical wavelet coefficients f̂

(i)
jk are com-

puted and each of them requires O(n/m) operations. In the central machine the computa-
tional complexity of the estimators f̂jk for j < jB,n is O(m), while for jB,n ≤ j ≤ jmax

is O(m2jB,n−j / log2 n), hence the total computational complexity of the estimators f̂jk ,
j ≤ jmax, 0 ≤ k ≤ 2j−1 is O(mB/ log2 n). Then, to compute ‖f̃ (j) − f̃ (l)‖2

2, j < l < jmax,
requires O(2l) = O(n1/(1+2smin)) operations; hence, a conservative upper bound for the com-
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putational complexity of ĵ is O(n1/(1+2smin) log2
2 n), but this could be further reduced by

saving the values ‖f̃ (j) − f̃ (j + 1)‖2
2 and reusing them multiple times.

A slight modification of the above algorithm also leads to a (up to a logarithmic factor)
minimax adaptive estimation rate in the L∞-norm. We construct the truncation estimator
f̃ (j) as in Algorithm 5; see (2.5). The only difference to the L2-case is that we introduce an
extra l term in the definition of ĵ , that is,

ĵ = min
{
j ∈ J : ∥∥f̃ (j) − f̃ (l)

∥∥∞ ≤ τ

√
l2l/nl,∀l > j, l ∈ J

}
.

Finally, we define f̂ = f̃ (ĵ ) and show below that it attains the nearly optimal minimax rate
adaptively.

THEOREM 2.16. For every L, s > 0, the distributed method f̂ described above belongs
to Fdist(B, . . . ,B;Bs∞,∞(L)). Furthermore, for all s ∈ (smin, smax),

sup
f0∈Bs∞,∞(L)

Ef0,T ‖f̂ − f0‖∞ �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L1/(1+2s)(n/ log2 n)−s/(1+2s)

if B ≥ B,

MnL
1/(1+s)

(
n1/(1+2s)

B(log2 n)
3+4s
1+2s

) s
2+2s

(
n

log2 n

)− s
1+2s

if B < B,

with B = 4(L2n(log2 n)2s)
1

1+2s and Mn = (log2 n)
1+2s
1+s .

PROOF. See Section 4.3. �

3. Proofs for the L2-norm.

3.1. Proof of Theorem 2.1. Note that without loss of generality we can multiply δn with
an arbitrary constant. In the proof we define δn as the solution to

δn = C−1
1 L−2 min

{
m

n log2 n
,

m

n
∑m

i=1[(δ
1

1+2s
n log2(n)B(i)) ∧ 1]

}
,(3.1)

for some sufficiently large C1 ≥ 1 to be specified later. We prove the desired lower bound
for the minimax risk using a modified version of Fano’s inequality, given ahead. As a first
step we construct a finite subset F0 ⊂ Bs

2,∞(L). We use the wavelet notation outlined in
Section B of the Supplementary Material and consider Daubechies wavelets with at least s

vanishing moments. Define jn = �(log2 δ−1
n )/(1 + 2s)�. Next, we divide the interval [0,1]

into a partition of 2jn/C2 disjoint intervals I1, . . . , I2jn/C2
, for some large enough C2 > 0

(without loss of generality we assume that 2jn/C2 ∈ N), such that each interval Ik contains the
full support of a wavelet basis function ψjn,�, � ∈ {0, . . . ,2jn − 1} (for Daubechies wavelets
with s vanishing moments this is possible for C2 ≥ 2s + 2). Slightly abusing our notation,
let us denote a basis function corresponding to the kth interval Ik by ψjn,k and by Kjn =
{1,2, . . . ,2jn/C2} the index set of the intervals (and basis functions). Note that the basis
functions ψjn,k , k ∈ Kjn , have disjoint supports.

For β ∈ {−1,1}|Kjn |, let fβ ∈ L2[0,1] be the function with wavelet coefficients

fβ,jk =
{
Lβkδ

1/2
n if j = jn, k ∈ Kjn,

0, else,
(3.2)
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and take C1 = 217C2‖ψ‖2∞. Now, define F0 = {fβ : β ∈ {−1,1}|Kjn |}. Note that F0 ⊂
Bs

2,∞(L), since

‖fβ‖2
Bs

2,∞
= sup

j

22sj
2j−1∑
k=0

f 2
β,jk ≤ L222sjn |Kjn |δn ≤ L2.

For this set of functions F0, the maximum and minimum number of elements in balls of
radius t > 0, given by

Nmax
t = max

fβ∈F0

∣∣{fβ ′ ∈ F0 : ‖fβ − fβ ′‖2 ≤ t
}∣∣,

Nmin
t = min

fβ∈F0

∣∣{fβ ′ ∈ F0 : ‖fβ − fβ ′‖2 ≤ t
}∣∣,

satisfy Nmax
t = Nmin

t = ∑t̃
i=0

(|Kjn |
i

)
< |F0|/2 for t̃ = t2/(4δnL

2) < |Kjn |/2 (and therefore
Nmax

t < |F0| − Nmin
t ).

Let F be a uniform random variable over the set {−1,1}|Kjn |, which we identify with
the set F0. Note that the design T is independent of F , while the data X depends on F . In
each local machine i we observe the pair of random variables (T (i),X(i)), and we transmit
a measurable function Y (i) of this local data to the central machine. This provides us the
Markov chains F → (T (i),X(i)) → Y (i), i = 1, . . . ,m or by jointly writing them in the form

F → (T ,X) → Y.(3.3)

In this setting the following general theorem applies. It is a slight extension of Corollary 1
of [5]; see also Theorem A.6 with the corresponding proof in the Supplementary Material.

THEOREM 3.1. If the semimetric space (F, d) contains a finite set F0 and |F0|−Nmin
t >

Nmax
t , then for all p, t > 0,

inf
f̂ ∈E(Y )

sup
f ∈F

Ef dp(f̂ , f ) ≥ tp
(

1 − I (F ;Y) + log 2

log(|F0|/Nmax
t )

)
,

where E(Y ) denotes the set of measurable functions of Y , I (F ;Y) is the mutual information
between the uniform random variable F (on F0) and Y in the Markov chain F → X → Y ,
and Ef is the expectation with respect to the distribution of Y given F = f .

We apply this theorem with p = 2, t2 = 2L2δn|Kjn |/3, and d(f, g) = ‖f − g‖2 to obtain

inf
f̂ ∈Fdist(B

(1),...,B(m);Bs
2,∞(L))

sup
f0∈Bs

2,∞(L)

Ef0,T ‖f̂ − f0‖2
2

� L2δn|Kjn |
(

1 − I (F ;Y) + log 2

log(|F0|/Nmax
t )

)
,

(3.4)

where I (F ;Y) is the mutual information between the random variables F and Y .
To lower bound the right-hand side, first note that Nmax

t = ∑t̃
i=0

(|Kjn |
i

)
< 2

(|Kjn |
t̃

) ≤
2(e|Kjn |/t̃)t̃ and, therefore, for t̃ = |Kjn |/6 (i.e., t2 = 2L2δn|Kjn |/3),

log
(|F0|/Nmax

t

) ≥ |Kjn | log
(
2(6e)−1/62−1/|Kjn |) ≥ |Kjn |/6.

Hence, to derive the statement of the theorem from (3.4) it is sufficient to show that

I (F ;Y) ≤ |Kjn |/8 + O(1).(3.5)

The proof of the next lemma is deferred to Section 5.1.
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LEMMA 3.2. For the Markov chain F → (T ,X) → Y introduced in (3.3) we have for

m = O(n
2s

1+2s / log2
2 n) that

I (F ;Y) ≤ 4L2C2‖ψ‖2∞δn|Kjn |n
m

m∑
i=1

((
212 log2(n)|Kjn |−1B(i))∧ 1

)

+ O(1).

(3.6)

Since in view of the definition of δn, we have that

δn ≤ 212C−1
1 L−2m

n
∑m

i=1[(212 log2(n)δ
1

1+2s
n B(i)) ∧ 1]

;

the right-hand side of (3.6) is further bounded by 2−3|Kjn | + O(1), finishing the proof of
assertion (3.5) and concluding the proof of the theorem.

3.2. Proof of Theorem 2.4. First, note that by using Cauchy–Schwarz inequality we get
that

Ef0,T

(
log2

∣∣f̂ (i)
jk

∣∣∨ 1
) ≤ 1 +Ef0,T

∣∣f̂ (i)
jk

∣∣ = 1 +Ef0,T

∣∣X(i)
1 ψjk

(
T

(i)
1

)∣∣
≤ 1 + ‖f0‖2‖ψjk‖2 + ‖ψjk‖2Ef0

∣∣ε(i)
1

∣∣ = O(1).

Hence, in view of Lemma 2.3 (with D = 1/2) the approximation satisfies

0 ≤ ∣∣f̂ (i)
jk − Y

(i)
jk

∣∣ ≤ 1/
√

n and Ef0,T

[
l
(
Y

(i)
jk

)] ≤ (
1/2 + o(1)

)
log2 n.

Therefore, we need at most (1/2 + o(1))B bits in expected value to transmit {Y (i)
jk : 2j + k ≤

(L2n)1/(1+2s) ∧ �B/ log2 n�}; hence, f̂n ∈ Fdist(B, . . . ,B;Bs
2,∞(L)).

Next, for convenience we introduce the notation for the approximation error W
(i)
jk = Y

(i)
jk −

f̂
(i)
jk , satisfying |W(i)

jk | ≤ n−1/2. The estimator f̂ is given by its wavelet coefficients f̂jk ,

j ∈ N, k ∈ {0,1, . . . ,2j − 1}. For 2j + k > (L2n)1/(1+2s) ∧ �B/ log2 n�, we have f̂jk = 0,
while for 2j + k ≤ (L2n)1/(1+2s) ∧ �B/ log2 n�,

f̂jk = 1

m

m∑
i=1

Y
(i)
jk = 1

m

m∑
i=1

(
f̂

(i)
jk + W

(i)
jk

) = f0,jk + Zjk + Wjk,

where Zjk = m−1 ∑m
i=1(f̂

(i)
jk −Ef0,T f̂

(i)
jk ) and |Wjk| = |m−1 ∑m

i=1 W
(i)
jk | ≤ n−1/2. Note that

in view of assumption ‖f0‖∞ ≤ M

Ef0,T Z2
jk ≤ 2Ef0,T

(
1

n

m∑
i=1

n/m∑
�=1

f0
(
T

(i)
�

)
ψjk

(
T

(i)
�

)−Ef0,T f0
(
T

(i)
�

)
ψjk

(
T

(i)
�

))2

+ 2Ef0,T

(
1

n

m∑
i=1

n/m∑
�=1

ε
(i)
� ψjk

(
T

(i)
�

))2

≤ 2n−1
ET

(
f0
(
T

(1)
1

)
ψjk

(
T

(1)
1

)−ET f0
(
T

(1)
1

)
ψjk

(
T

(1)
1

))2

+ 2n−1
Ef0

(
ε
(1)
1

)2
ET ψ2

jk

(
T

(1)
1

)
≤ 2n−1

∫ 1

0
f 2

0 (t)ψ2
jk(t) dt + 2n−1 ≤ 2

(
M2 + 1

)
/n.
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For convenience we also introduce the notation jn = �log2((L
2

1+2s n
1

1+2s ) ∧ �B/ log2 n�)�.
Then, by combining the above inequalities we get that the risk is bounded from above
by

Ef0,T ‖f̂ − f0‖2
2 ≤ ∑

j≥jn

2j−1∑
k=0

f 2
0,jk + 2

jn∑
j=0

2j−1∑
k=0

Ef0,T

(
Z2

jk + W 2
jk

)

�
∑
j≥jn

2−2js sup
j≥jn

22js
2j−1∑
k=0

f 2
0,jk +

jn∑
j=0

2j−1∑
k=0

n−1

� L22−2jns + 2jn/n

�
(
L

2
1+2s n−2s/(1+2s))∨ (

L2(B/ log2 n)−2s).

(3.7)

3.3. Proof of Theorem 2.5. Similarly to the proof of Theorem 2.4 we get that
Ef0,T [l(Y (i)

jk )] ≤ (1/2 + o(1)) log2 n and since each machine transmits at most �B/ log2 n�
coefficients, the total amount of transmitted bits per machine is bounded from above by B

(for large enough n); hence, f̂ ∈ Fdist(B, . . . ,B;Bs
2,∞(L)).

Next, let Ajk = {�μjkm/η�+1, . . . , �(μjk +1)m/η�} be the collection of machines trans-

mitting the (j, k)th approximated wavelet coefficient Y
(i)
jk , and note that the size of the set

satisfies |Ajk| � m/η. Then, our aggregated estimator f̂ satisfies for 2j + k ≤ η�B/ log2 n�
(i.e., the total number of different coefficients transmitted) that

f̂jk = 1

|Ajk|
∑

i∈Ajk

Y
(i)
jk = f0,jk + Zjk + Wjk,

where |Wjk| = 1
|Ajk | |

∑
i∈Ajk

W
(i)
jk | ≤ n−1/2 and Zjk = 1

|Ajk |
∑

i∈Ajk
(f̂

(i)
jk −

Ef0,T f̂
(i)
jk ). Note that similarly to above

Ef0,T Z2
jk ≤ 2Ef0,T

(
m

n|Ajk|
∑

i∈Ajk

n/m∑
�=1

f0
(
T

(i)
�

)
ψjk

(
T

(i)
�

)

−Ef0,T f0
(
T

(i)
�

)
ψjk

(
T

(i)
�

))2

+ 2Ef0,T

(
m

n|Ajk|
∑

i∈Ajk

n/m∑
�=1

ε
(i)
� ψjk

(
T

(i)
�

))2

≤ 2m

n|Ajk|ET

(
f0
(
T

(1)
1

)
ψjk

(
T

(1)
1

)−ET f0
(
T

(1)
1

)
ψjk

(
T

(1)
1

))2

+ 2m

n|Ajk|Ef0

(
ε
(1)
1

)2
ET ψ2

jk

(
T

(1)
1

)

≤ 2(M2 + 1)m

n|Ajk| .

(3.8)
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Let jn = �log2(η�B/ log2 n�)�. Then, similarly to (3.7) the risk of the aggregated estimator
is bounded as

Ef0,T ‖f̂ − f0‖2
2

≤ ∑
j≥jn

2j−1∑
k=0

f 2
0,jk + 2

jn∑
j=0

2j−1∑
k=0

Ef0,T

(
Z2

jk + W 2
jk

)

�
∑
j≥jn

2−2js sup
j≥jn

22js
2j−1∑
k=0

f 2
0,jk +

jn∑
j=0

2j−1∑
k=0

η/n

� L2
(

Bη

log2 n

)−2s

+ Bη2

n log2 n
(3.9)

� (
L

2
1+s (nB/ log2 n)−

s
1+s

)∨
(
L2

(
Bm

log2 n

)−2s)

=
(
L

2
1+s (log2 n)

2s
1+s

(
n1/(1+2s)

B log2 n

) s
1+s

n− 2s
1+2s

)
∨
(
L2

(
Bm

log2 n

)−2s)
,(3.10)

concluding the proof of the theorem.
Finally, we show that Algorithm 2 is in general suboptimal in this case. Consider the

function f0 ∈ Bs
2,∞(1) with wavelet coefficients f0,jk = 2−j (s+1/2), j ∈ N, k = 0, . . . ,2j −1,

and take jn = �log2�B/ log2 n��, then

Ef0,T ‖f̂ − f0‖2
2 ≥ ∑

j≥jn

2j−1∑
k=0

f 2
0,jk ≥

2j−1∑
k=0

2−jn(2s+1)

�
(

B

log2 n

)−2s

= M̃n

(
n1/(1+2s)

B log2 n

) s
1+s

n− 2s
1+2s ,

where the multiplication factor M̃n = (
n(log2 n)3+2s

B1+2s )
s

1+s tends to infinity and can be of polyno-
mial order, yielding a highly suboptimal rate.

3.4. Proof of Lemma 2.3. One can easily see by construction that

0 ≤ |X − Y | ≤ n−D.(3.11)

Next, note that the expected number of transmitted bits is bounded from above by

E
(
1 + (

1 ∨ log2 |X|)+ D log2 n
) = 1 + D log2(n) +E

(
1 ∨ log2 |X|)

= (
D + o(1)

)
log2 n.

3.5. Proof of Remark 2.6. Let us assume for simplicity that B ≥ 2 logn. We propose a
simple modification of Algorithms 2 and 3 such that the resulting estimator f̃ satisfies the
stronger, almost sure communication constraints and achieves the same convergence rate,
as f̂ . In the data transmission subroutine (i.e., Algorithm 1) we distinguish two cases; if
log2 |x| < logn, then we follow the protocol of Algorithm 1 (with D = 1/2) and transmit Y

(i)
jk ,

else, we transmit a single 0 digit (to note that the number we want to transmit is larger than
n). We also reduce the number of transmitted coefficients per local machines from B/ log2 n

to B/(2 log2 n). Then, in the central machine for the coordinate (j, k) we follow the routine
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of Algorithms 2 and 3 (i.e., f̃jk = f̂jk), if f̂
(i)
jk ≤ n, for all i = 1, . . . ,m, else we simply set

f̃jk = 0.
It is straightforward to see that the proposed algorithm satisfies the stronger, almost sure

communication constraints. Next, let us denote by Ejk , j = 1, . . . , log2 n, k = 0, . . . ,2j − 1
the event that f̃jk �= 0 and note that

Pθ0

(
Ec

jk

) ≤
m∑

i=1

Pθ0

(∣∣f̂ (i)
jk

∣∣ ≥ n
) ≤ mPθ0

(
m

n

n/m∑
�=1

X
(i)
� ψjk

(
T

(i)
�

) ≥ n

)

≤ mPθ0

(
2j/2‖ψ‖∞ max

�

(∣∣Z(i)
�

∣∣+ M
) ≥ n

)

≤ nPθ0

(∣∣Z(1)
�

∣∣ ≥ c1
√

n
) ≤ ne−c2n = o

(
n−2),

for some small enough constants c1, c2 > 0 and large enough n. Then, note that for arbitrary
jn ≤ log2 n,

Ef0,T ‖f̃ − f0‖2
2 = ∑

j≥jn

2j−1∑
k=0

f 2
0,jk +

jn∑
j=0

2j−1∑
k=0

Ef0,T (f0,jk − f̃jk)
21Ejk

+
jn∑

j=0

2j−1∑
k=0

Ef0,T (f0,jk − f̃jk)
21Ec

jk

≤ ∑
j≥jn

2−2js sup
l≥jn

22ls
2l−1∑
k=0

f 2
0,lk +

jn∑
j=0

2j−1∑
k=0

Ef0,T (f0,jk − f̂jk)
2

+
jn∑

j=0

2j−1∑
k=0

f 2
0,jkPθ0

(
Ec

jk

)

� L22−2jns +
jn∑

j=0

2j−1∑
k=0

Ef0,T

(
Z2

jk + W 2
jk

)+ o
(
n−1).

We conclude the proof by noting that the first two terms on the right-hand side have the
required upper bounds (see the proofs of Theorems 2.4 and 2.5), while the third term is of
smaller order than the previous ones.

3.6. Proof of Theorem 2.13. First, recall that for every s,L > 0 and f0 ∈ Bs
2,∞(L) we

have f 2
0,jk ≤ L2, j ≥ 0, k ∈ {0,1, . . . ,2j − 1}. Therefore, in view of Lemma 2.3 (with D =

1/2) we have Ef0,T [l(Y (i)
jk )] ≤ (1/2 + o(1)) log2 n. Since the machines in group I and the

machines in It,�, t ∈ {0, . . . , η̃ − 1}, � ∈ {1, . . . ,2t } transmit at most �B/ log2 n� coefficients,
we have that in expected value at most

�B/ log2 n�(1/2 + o(1)
)

log2 n ≤ B

bits are transmitted per machine (for n large enough). Therefore, the estimator indeed belongs
to Fdist(B, . . . ,B;Bs

2,∞(L)).

Next, we show that the estimator f̂ achieves the minimax rate. First, let us introduce the
notation |W(i)

jk | = |Y (i)
jk − f̂

(i)
jk | ≤ n−1/2. Then, note that for j ≤ jmax and k ∈ {0,1, . . . ,2j −1}



2366 B. SZABÓ AND H. VAN ZANTEN

the aggregated quantities f̂jk defined in (2.4) are equal to

f̂jk = 1

|Ajk|
∑

i∈Ajk

Y
(i)
jk = f0,jk + Zjk + Wjk,(3.12)

where

Ajk =
{
I if j < jB,n, k = 0,1, . . . ,2j − 1,

Ij−jB,n,� if j ≥ jB,n, (� − 1)2jB,n ≤ k < �2jB,n,

where |Wjk| = n−1
j |∑i∈Ajk

W
(i)
jk | ≤ n−1/2, Zjk = |Ajk|−1 ∑

i∈Ajk
(f̂

(i)
jk −

Ef0,T f̂
(i)
jk ), and recall that nj = n|Ajk|/m for every j ≤ jmax, k ∈ {0, ..,2j − 1}. Recall

also that nj � nB/(2j (log2 n)2) for j ≥ jB,n and nj � n for j < jB,n.
Note that the squared bias satisfies∥∥Ef0,T f̃ (j) − f0

∥∥2
2 �

∥∥K(f0, j) − f0
∥∥2

2 + 2j /n � 2−2js‖f0‖2
Bs

2,∞
+ 2j /n,

where K(f0, j) = ∑j−1
l=0

∑2l−1
k=0 f0,lkψlk . Furthermore, also note that for � ≤ j we have n� ≥

nj and, hence, in view of (3.8)

Ef0,T

∥∥f̃ (j) −Ef0,T f̃ (j)
∥∥2

2 �
∑

�≤j−1

2�−1∑
k=0

(
Ef0,T Z2

�k +Ef0,T W 2
�k

)

�
∑

�≤j−1

2�−1∑
k=0

n−1
� ≤ 2j /nj .

Let us introduce the notation B(j,f0) = 2−2js‖f0‖2
Bs

2,∞
and define the optimal choice of

the parameter j (the optimal resolution level) as

j∗ = min
{
j ∈ J : B(j,f0) ≤ 2j /nj

}
,

balancing out the squared bias and variance terms. Note that since the right-hand side is
monotone increasing and the left-hand side is monotone decreasing in j , we have that

B(j,f0) ≤ 2j /nj for j ≥ j∗ and

B(j,f0) > 2j /nj for j < j∗.
(3.13)

Therefore,

2j∗−1/nj∗−1 < B
(
j∗ − 1, f0

) = 22sB
(
j∗, f0

) ≤ 22s2j∗
/nj∗ .

Let us distinguish three cases according to the value of j∗. If j∗ < jB,n, then nj∗−1 =
nj∗ � n and therefore 2j∗ � (‖f0‖2

Bs
2,∞

n)1/(1+2s) (using the definition B(j∗, f0) =
2−2j∗s‖f0‖2

Bs
2,∞

). Note that the inequality j∗ < jB,n is implied by B(jB,n − 1, f0) ≤
2jB,n−1/njB,n−1 which in turn holds if 2jB,n−1 ≥ (‖f0‖2

Bs
2,∞

n)1/(1+2s). Therefore, we can

conclude that B ≥ 4(‖f0‖2
Bs

2,∞
n)1/(1+2s) log2 n implies the inequality j∗ < jB,n (by recall-

ing that 2jB,n ≥ B/(2 log2 n)). If j∗ = jB,n (i.e., 2j∗ � B/ log2 n), then nj∗ � n/ log2 n,
nj∗−1 � n which together with (3.13) (for j = j∗ − 1) implies (‖f0‖2

Bs
2,∞

n/ log2 n)1/(1+2s) �
2j∗ � (‖f0‖2

Bs
2,∞

n)1/(1+2s). Finally, if j∗ > jB,n, then nj∗−1 � nj∗ � nB/(2j∗
log2

2 n) which
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together with (3.13) (for j = j∗ − 1) implies that 2j∗ � (‖f0‖2
Bs

2,∞
nB/ log2

2 n)1/(2+2s) and

nj∗ � ‖f0‖− 1
1+s

Bs
2,∞

(nB/ log2
2 n)

1+2s
2+2s . We summarize these findings in the following displays:

(3.14) 2j∗ �

⎧⎪⎪⎨
⎪⎪⎩

(‖f0‖2
Bs

2,∞
n
)1/(1+2s) if B ≥ B,

B/ log2 n if B ≤ B < B,(‖f0‖2
Bs

2,∞
nB/ log2

2 n
)1/(2+2s) if B < B,

and

(3.15) nj∗ �

⎧⎪⎪⎨
⎪⎪⎩

n if B ≥ B,

n/ log2 n, if B ≤ B < B,

‖f0‖−1/(1+s)

Bs
2,∞

(
nB/ log2

2 n
)(1+2s)/(2+2s) if B < B,

where B = 4(‖f0‖2
Bs

2,∞
n)1/(1+2s) log2 n and B = (‖f0‖2

Bs
2,∞

n)
1

1+2s (log2 n)
2s

1+2s . Note that in

all cases j∗ ≤ jmax holds.
Let us split the risk into two parts,

Ef0,T ‖f0 − f̂ ‖2

= Ef0,T

∥∥f0 − f̃ (ĵ )
∥∥

21
ĵ>j∗ +Ef0,T

∥∥f0 − f̃ (ĵ )
∥∥

21
ĵ≤j∗,

(3.16)

and deal with each term on the right-hand side separately. First, note that

Ef0,T

∥∥f0 − f̃ (ĵ )
∥∥2

21
ĵ≤j∗

≤ 2Ef0,T

∥∥f̃ (
j∗)− f̃ (ĵ )

∥∥2
21

ĵ≤j∗ + 2Ef0,T

∥∥f̃ (
j∗)− f0

∥∥2
2

� τ2j∗
/nj∗ + ∥∥Ef0,T f̃

(
j∗)− f0

∥∥2
2 +Ef0,T

∥∥f̃ (
j∗)−Ef0,T f̃

(
j∗)∥∥2

2

� 2j∗
/nj∗ + ‖f0‖2

Bs
2,∞

2−2j∗s,

which implies together with (3.14) and (3.15), that

(3.17)

Ef0,T ‖f0 − f̂ ‖2
21

ĵ≤j∗

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖f0‖2/(1+2s)

Bs
2,∞

n−2s/(1+2s) if B ≥ B,

B/n if B ≤ B ≤ B,

‖f0‖2/(1+s)

Bs
2,∞

(
nB/ log2

2 n
)−2s/(2+2s) if B ≤ B.

Since |f0‖Bs
2,∞ ≤ L, the preceding upper bounds are bounded from above by the ones stated

in the theorem.
Next, we deal with the first term on the right hand side of (3.16). By Cauchy–Schwarz

inequality and Lemma 3.3 we get that

Ef0,T ‖f0 − f̂ ‖21
ĵ>j∗

≤
jmax∑

j=j∗+1

E
1/2
f0,T

∥∥f0 − f̃ (j)
∥∥2

2P
1/2
f0,T

(ĵ = j)

�
jmax∑

j=j∗+1

P
1/2
f0,T

(ĵ = j) � jmaxe
−(cnδ∧√

nr ) +
∞∑

k=1

e−(c/2)2j∗
k

= o
(
n−1)+ o

(
2−j∗s),
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resulting in the required upper bound in view of (3.17), concluding the proof of our state-
ment.

LEMMA 3.3. Assume that f0 ∈ Bs
2,∞(L), for some s,L > 0. Then, there exists a univer-

sal constants c, δ > 0 such that for every j > j∗ we have

Pf0,T (ĵ = j) � e−(c2j∧nδ∧√
nr ).

PROOF. Let us introduce the notation j− = j − 1 and note that for every j > j∗ we have
j− ≥ j∗. Then, by the definition of ĵ

Pf0,T (ĵ = j) ≤
jmax∑
l=j

Pf0,T

(∥∥f̃ (
j−)− f̃ (l)

∥∥2
2 > τ2l/nl

)
.

Note that the left-hand side term in the probability in view of Parseval’s inequality can be
given in the form

∥∥f̃ (
j−)− f̃ (l)

∥∥2
2 =

l−1∑
r=j−

2r−1∑
k=0

(f0,rk + Zrk + Wrk)
2

≤ 3
l−1∑

r=j−

2r−1∑
k=0

(
f 2

0,rk + Z2
rk + W 2

rk

)
.

We deal with the three terms on the right-hand side separately. Note that the functions j �→
B(j,f0) and j �→ nj are monotone decreasing; hence, by the definition of j∗ we get for
l ≥ j− ≥ j∗

l−1∑
r=j−

2r−1∑
k=0

f 2
0,rk ≤ B

(
j−, f0

) ≤ B
(
j∗, f0

) ≤ 2j∗
/nj∗ ≤ 2l/nl.

Furthermore,
∑l−1

r=j−
∑2r−1

k=0 W 2
rk ≤ 2l/n ≤ 2l/nl .

Let S(r) = {∑r
l=0

∑2l−1
k=0 blkψlk : ∑r

l=0
∑2l−1

k=0 b2
lk = 1} denote the unite sphere in the lin-

ear subspace spanned by the basis functions ψlk , l ≤ r , 0 ≤ k ≤ 2l − 1. Then, in view of
Lemma 5.3 of [3] (see also Lemma C.4 in the Supplementary Material) and the inequality
(a + b)2 ≤ 2a2 + 2b2 we get that

2r−1∑
k=0

Z2
rk =

2r−1∑
k=0

(
1

nr

∑
i∈Ark

n/m∑
�=1

(
Y

(i)
� ψjk

(
T

(i)
�

)−Ef0,T Y
(i)
� ψjk

(
T

(i)
�

)))2

≤ 2 sup
g∈S(r)

(
1

nr

∑
i∈Ark

n/m∑
�=1

(
f0
(
T

(i)
�

)
g
(
T

(i)
�

)−ET f0
(
T

(i)
�

)
g
(
T

(i)
�

)))2

+ 2
2r−1∑
k=0

(
1

nr

∑
i∈Ark

n/m∑
�=1

(
ε
(i)
� ψjk

(
T

(i)
�

)))2

.

(3.18)

We deal with the two terms on the right-hand side separately, starting with the first one.
Note that for every g ∈ S(r) the inequality ‖g‖∞ ≤ C2r/2 holds, for some universal constant
C > 0 and

sup
g∈S(r)

VT

(
f0
(
T

(1)
1

)
g
(
T

(1)
1

)) ≤ ‖f0‖2∞.
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Next, for convenience let us introduce the notation

ν(g) = 1

nr

∑
i∈Ark

n/m∑
�=1

(
f0
(
T

(i)
�

)
g
(
T

(i)
�

)−ET f0
(
T

(i)
�

)
g
(
T

(i)
�

))
.

Then, by the definition of S(r) and Cauchy–Schwarz inequality

ET sup
g∈S(r)

∣∣ν(g)
∣∣ ≤ 2r−1∑

k=0

ET

(
ν(ψr,k)

2) =
2r−1∑
k=0

1

nr

VT

(
f0
(
T

(1)
1

)
ψrk

(
T

(1)
1

))

≤ ‖f0‖2∞2r

nr

.

Therefore, in view of Lemma 5 of [11] (see also Lemma C.1 in the Supplementary Material)
there exist constants c1, c2, c2 > 0 such that

ET sup
g∈S(r)

[(
1

nr

∑
i∈Ark

n/m∑
�=1

(
f0
(
T

(i)
�

)
g
(
T

(i)
�

)−ET f0
(
T

(i)
�

)
g
(
T

(i)
�

)))2

− c12r/nr

]
+

≤ c2
1

nr

e−c32r + c4
2r

n2
r

e−√
nr � 1

nr

e−(c32r∧√
nr ).

(3.19)

Therefore, by Markov’s inequality we get that

PT

(
sup

g∈S(r)

(
1

nr

∑
i∈Ark

n/m∑
�=1

(
f0
(
T

(i)
�

)
g
(
T

(i)
�

)

−ET f0
(
T

(i)
�

)
g
(
T

(i)
�

)))2

≥ 2c12r

nr

)
� 2−re−(c32r∧√

nr ).

(3.20)

Next, we deal with the second term on the right-hand side of (3.18). Let us introduce the
shorthand notation Z̃rk = n−1

r

∑
i∈Ark

∑n/m
�=1 ε

(i)
� ψrk(T

(i)
� ). Note that cov(Z̃rk, Z̃rk′ |T ) = 0

for |k − k′| ≥ C, for some large enough constant C, following from the disjoint support of
the wavelet basis functions ψrk and ψrk′ , and

Z̃rk|T ∼ N

(
0,

1

n2
r

∑
i∈Ark

n/m∑
�=1

ψrk

(
T

(i)
�

)2

)
.

Furthermore, let us denote by Br the event that in each bin Ir,l = [(l − 1)2−r , l2−r ], at
most 2nr/2r observations T

(i)
� , i ∈ Ark , � = 1, . . . ,m, k = 0, . . . ,2r − 1 fall. Since there are

2r−jBn ≤ 2r subgroups of machines at resolution level r , we note that in view of Lemma 5.2
we have that PT (Bc

r ) ≤ 22r+1e−nr2−r−3
. Then, by recalling that for r ≤ jB,n, nr � n, while

for r > jB,n, nr = nB/(2r log2 n), we get that nr/2r � (nB/ log2
2 n)

2smin
2+2smin ∧ n

2smin
1+2smin ; hence,

PT

(
Bc

r

)
� e−nδ

for any δ < 2smin/(2 + 2smin),(3.21)

and on Br the inequality n−2
r

∑
i∈Ark

∑n/m
�=1 ψrk(T

(i)
� )2 ≤ Cn−1

r holds, for some sufficiently
large C > 0. Let us denote the covariance matrix of the random vector (Z̃r0, . . . , Z̃r(2r−1))|T
by �T . In view of the preceding argument, the in absolute value largest entry of �T is
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bounded from above by Cn−1
r on the event T ∈ Br and by noting that �T has band size

C, in view of Gershgorin circle Theorem [6] (see also Lemma C.3 in the Supplementary
Material) the eigenvalues of �T satisfy that 0 < λi ≤ Cn−1

r , i = 1, ..,2r . Then, by the tail
bounds of chi-square distributions (see, for instance, Theorem 4.1.9 of [7] or Lemma C.2 in
the Supplementary Material),

Pf0

(2r−1∑
k=0

Z̃2
rk ≥ C12r

nr

∣∣∣T = t

)

= P

( 2r∑
i=1

λiζ
2
i ≥ C12r

nr

)
≤ P

( 2r∑
i=1

ζ 2
i ≥ C22r

)
� e−C32r

,

for some sufficiently large constants C1,C2 > 0 and small C3 > 0, where ζi
iid∼ N(0,1).

Hence, we can conclude that

Pf0,T

(2r−1∑
k=0

(
1

nr

∑
i∈Ark

n/m∑
�=1

ε
(i)
� ψrk

(
T

(i)
�

))2

≥ C12r

nr

)

≤
∫
t∈Br

Pf0

(2r−1∑
k=0

Z̃2
rk ≥ C12r

nr

∣∣∣T = t

)
dt + PT

(
Bc

r

)
� e−(C2r∧nδ),

finishing the proof of the lemma. �

4. Proofs for the L∞-norm.

4.1. Proof of Theorem 2.8. First of all, we note that in the nondistributed case,
where all the information is available in the central machine, the minimax L∞-risk is
L1/(1+2s)(n/ logn)−s/(1+2s). Since the class of distributed estimators is clearly a subset of
the class of all estimators, this will be also a lower bound for the distributed case. The rest of
the proof goes similarly to the proof of Theorem 3.1.

We consider the same subset of functions F0 as in the proof of Theorem 3.1, with functions
given by (3.2). Note that each function fβ ∈F0 belongs to the set Bs∞,∞(L), since

‖fβ‖Bs∞,∞ = sup
j

2(s+1/2)j sup
k=0,...,2j−1

fβ,jk = 2(s+1/2)jnLδ1/2
n ≤ L.

Furthermore, if fβ �= fβ ′ , then there exists a k ∈ Kjn such that βk �= β ′
k . Then, due to the

disjoint support of the corresponding Daubechies wavelets ψjn,k , k ∈ Kjn , the L∞-distance
between the two functions is bounded from below by

‖fβ − fβ ′‖∞ ≥ |fβ,jnk − fβ ′,jnk| · ‖ψjn,k‖∞�L2jn/2δ1/2
n ≥ Lδ

s
1+2s
n .

Now, let F be a uniform random variable on the set F0. Then, in view of Fano’s inequality
(see, for instance, Theorem A.5 in the Supplementary Material with δ = δ

s/(1+2s)
n and p = 1)

we get that

inf
f̂ ∈Fdist(B

(1),...,B(m);Bs∞,∞(L))

sup
f0∈Bs∞,∞(L)

Ef0,T

(‖f̂ − f0‖∞
)

� Lδ
s

1+2s
n

(
1 − I (F ;Y) + log 2

log2 |F0|
)
.

We conclude the proof by noting that the term in the bracket on the right-hand side of the
preceding display is bounded from below by a constant; see the proof of Theorem 3.1.
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4.2. Proof of Theorem 2.10. Similarly to the proof of Theorem 2.4, we get that
Ef0,T [l(Y (i)

jk )] ≤ (1/2 + o(1)) log2 n, hence, we need at most (1/2 + o(1))B bits in expected

value to transmit the �B/ log2 n� ∧ (L2n/ log2 n)1/(1+2s) approximated coefficients. There-
fore, the total amount of transmitted bits per machine is bounded from above by B (for large
enough n), hence f̂ ∈ Fdist(B, . . . ,B;Bs∞,∞(L)).

Similarly to the proof of Theorem 2.5, let Ajk = {�μjkm/η� + 1, . . . , �(μjk + 1)m/η�}
be the collection of machines transmitting the (j, k)th approximated wavelet coefficient and
note that the size of the set satisfies |Ajk| � m/η. And recall that the aggregated estimator f̂

satisfies for 2j +k ≤ (η�B/ log2 n�)∧(L2n/ log2 n)1/(1+2s) (i.e., the total number of different
coefficients transmitted) that

f̂jk = 1

|Ajk|
∑

i∈Ajk

Y
(i)
jk = f0,jk + Zjk + Wjk,

where |Wjk| = |Ajk|−1|∑i∈Ajk
W

(i)
jk | ≤ n−1/2 and Zjk = |Ajk|−1 ∑

i∈Ajk
(f̂

(i)
jk −Ef0,T f̂

(i)
jk ).

We show below that for all 2j ≤ n/η,

Ef0,T sup
k

|Zjk|�
√

(log2 n)η/n.(4.1)

Next, note that by triangle inequality

Ef0,T ‖f0 − f̂ ‖∞ ≤ ‖f0 −Ef0,T f̂ ‖∞ +Ef0,T ‖f̂ −Ef0,T f̂ ‖∞.

We deal with the two terms on the right-hand side separately. Let us introduce the notation

jn = ⌊
log2

((
η�B/ log2 n�)∧ (

L2n/ log2 n
)1/(1+2s))⌋ ≤ log2(n/η).

Then, by triangle inequality and noting that there exists a universal constant C > 0, such that

for each resolution level j the inequality ‖∑2j−1
k=0 |ψjk|‖∞ ≤ C2j/2 holds,

‖f0 −Ef0,T f̂ ‖∞ ≤
∥∥∥∥∥

∞∑
j=jn

2j−1∑
k=0

f0,jkψjk

∥∥∥∥∥∞
+
∥∥∥∥∥

jn∑
j=0

2j−1∑
k=0

Ef0,T Wjkψjk

∥∥∥∥∥∞

≤ ‖f0‖Bs∞,∞

∞∑
j=jn

2−j (s+1/2)

∥∥∥∥∥
2j−1∑
k=0

|ψjk|
∥∥∥∥∥∞

+ n−1/2
jn∑

j=0

∥∥∥∥∥
2j−1∑
k=0

|ψjk|
∥∥∥∥∥∞

� L

∞∑
j=jn

2−js +
√

2jn/n � L2−jns +
√

2jn/n.

(4.2)

Furthermore, in view of (4.1),

Ef0,T ‖f̂ −Ef0,T f̂ ‖∞

≤
jn∑

j=0

Ef0,T max
k

(|Zjk| + |Wjk|)
∥∥∥∥∥

2j−1∑
k=0

|ψjk|
∥∥∥∥∥∞

�
jn∑

j=0

2j/2(√(log2 n)η/n +
√

1/n
)
�

√
2jnη(log2 n)/n,

(4.3)

providing the upper bound in the statement of the lemma.
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It remained to prove assertion (4.1). First, note that

Zjk|T ∼ N
(
μn,m,k,T , σ 2

n,m,k,T

)
with

μn,m,k,T = η

n

∑
i∈Ajk

n/m∑
�=1

ψjk

(
T

(i)
�

)
f0
(
T

(i)
�

)− f0,jk � 2j/2,

σ 2
n,m,k,T =

(
η

n

)2 ∑
i∈Ajk

n/m∑
�=1

ψ2
jk

(
T

(i)
�

)
� 2j η/n.

Using standard bounds on the maximum of Gaussian variables (see, for instance,
Lemma 3.3.4 of [7]), we have that

Ef0|T max
k

|Zjk −Ef0|T Zjk| ≤
√

2(j + 1)max
k

σn,m,k,T .

Furthermore, note that for k ≥ 2

ET

(
ψjk

(
T

(i)
�

)
f0
(
T

(i)
�

))k
+ ≤ ‖f0‖k∞‖ψjk‖k−2∞ ET ψjk

(
T

(i)
�

)2 � 2(k−2)j/2,

hence, in view of Bernstein’s inequality (with c = C2j/2 and v = Cn/η) (see Proposition 2.9
of [13] or Lemma C.5 in the Supplementary Material), we get that

PT

(
|μn,m,k,T | ≥ C

(√
γ η log2 n

n
+ 2j/2η

n

))
� (n/η)−γ ,

which implies for 2j ≤ n/η that

PT

(
max

k
|μn,m,k,T | ≥ Cγ

√
(log2 n)η/n

)
� (n/η)−γ+1.(4.4)

Therefore, one can deduce that

ET

(
max

k
|μn,m,k,T |

)
≤ Cγ

√
(log2 n)η/n + 2j/2(n/η)−γ+1

�
√

(log2 n)η/n,

for large enough choice of γ > 0. Combining the above displays leads to

Ef0,T max
k

|Zjk| = ET

(
Ef0|T

(
max

k
|Zjk|

))

≤ ET

(
max

k
|μn,m,k,T |

)
+
√

2(j + 1)ET max
k

σn,m,k,T

≤ c
(√

(log2 n)η/n + 2j/2√je−cnδ ) ≤ C
√

(log2 n)η/n,

for some large enough constants c,C > 0 and 2j ≤ n/η, where in the last line we have used
that under the event Bj (i.e., the event that in each bin Ij,l = [(l − 1)2−j , l2−j ], at most

2n/(η2j ) observations T
(i)
� , i ∈ Ajk , � = 1, . . . , n/m, k = 0, . . . ,2j − 1 fall) we have that

maxk σ 2
n,m,k,T ≤ C, and PT (Bc

j ) ≤ Ce−cnδ
; see (3.21).

4.3. Proof of Theorem 2.16. The proof of the theorem goes similarly to the proof of
Theorem 2.13, here we only highlight the differences. First, recall that for every s,L > 0 and
f0 ∈ Bs∞,∞(L) we have f0,jk ≤ L, for all j ≥ 0, k ∈ {0,1, . . . ,2j −1}, hence, following from
the same argument as in Theorem 2.13, the estimator belongs to Fdist(B, . . . ,B;Bs∞,∞(L)).
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Let us next introduce the notation B(j,f0) = 2−js‖f0‖Bs∞,∞ and

j∗ = min
{
j ∈ J : B(j,f0) ≤

√
j2j /nj

}
.

Then, by the definition of j∗ we have

√(
j∗ − 1

)
2j∗−1/nj∗−1 < B

(
j∗ − 1, f0

) = 2sB
(
j∗, f0

) ≤ 2s
√

j∗2j∗
/nj∗ .

Distinguish again three cases according to the value of j∗, we get that

(4.5) 2j∗ �

⎧⎪⎪⎨
⎪⎪⎩
(‖f0‖2

Bs∞,∞n/ log2 n
)1/(1+2s) if B ≥ B,

B/ log2 n if B ≤ B < B,(
nB‖f0‖2

Bs∞,∞/ log3
2 n

)1/(2+2s) if B < B,

and

(4.6) nj∗ �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n if B ≥ B,

n/ log2 n if B ≤ B < B,

‖f0‖−1/(1+s)
Bs∞,∞

(
nB/ log

1+4s
1+2s

2 n
) 1+2s

2+2s if B < B,

where B = (‖f0‖2
Bs∞,∞n)

1
1+2s (log2 n)

2s−1
1+2s and B = 4(‖f0‖2

Bs∞,∞n)
1

1+2s (log2 n)
2s

1+2s similarly to

Section 3.6. Note that in all cases j∗ ≤ jmax holds.
We split the risk into two parts

Ef0,T ‖f0 − f̂ ‖∞

= Ef0,T

∥∥f0 − f̃ (ĵ )
∥∥∞1

ĵ>j∗ +Ef0,T

∥∥f0 − f̃ (ĵ )
∥∥∞1

ĵ≤j∗
(4.7)

and deal with each term on the right-hand side separately. Note that in view of the definition
of ĵ and assertions (4.2) and (4.3)

Ef0,T

∥∥f0 − f̃ (ĵ )
∥∥∞1

ĵ≤j∗

≤ Ef0,T

∥∥f̃ (
j∗)− f̃ (ĵ )

∥∥∞1
ĵ≤j∗ +Ef0,T

∥∥f̃ (
j∗)− f0

∥∥∞

≤ τ
√

j∗2j∗
/nj∗ + ∥∥Ef0,T f̃

(
j∗)− f0

∥∥∞ +Ef0,T

∥∥f̃ (
j∗)−Ef0,T f̃

(
j∗)∥∥∞

�
√

(log2 n)2j∗
/nj∗ + ‖f0‖Bs∞,∞2−j∗s,

which implies together with (4.5) and (4.6) that

Ef0,T ‖f0 − f̂ ‖∞1
ĵ≤j∗ �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖f0‖1/(1+2s)
Bs∞,∞ (n/ log2 n)−s/(1+2s) if B ≥ B,√

B(log2 n)/n if B ≤ B ≤ B,

‖f0‖1/(1+s)
Bs∞,∞

(
nB/ log3

2 n
)−s/(2+2s) if B ≤ B.

Noting that ‖f0‖Bs∞,∞ ≤ L leads to the claimed upper bounds.
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Next, we deal with the first term on the right-hand side of (4.7). First, note that in view of
(4.2), ∥∥f0 −Ef0,T f̃ (j)

∥∥2
∞ � L22−2js + 2j /n.

Furthermore, by using the upper bound ψ2
lk � 2l

Ef0,T

∥∥f̃ (j) −Ef0,T f̃ (j)
∥∥2
∞ � Ef0,T

(
sup

x∈[0,1]

j∑
l=0

2l−1∑
k=0

∣∣ψlk(x)
∣∣(|Zlk| + |Wlk|)

)2

� 22j
Ef0,T

j∑
l=0

2l−1∑
k=0

(
Z2

lk + W 2
lk

)

� 23j (
Ef0,T Z2

lk + n−1)� 23j .

Then, by Cauchy–Schwarz inequality and Lemma 4.1 we get that

Ef0,T ‖f0 − f̂ ‖∞1
ĵ>j∗

≤
jmax∑

j=j∗+1

E
1/2
f0,T

∥∥f0 − f̃ (j)
∥∥2
∞P

1/2
f0,T

(ĵ = j)

�
jmax∑

j=j∗+1

2(3/2)j
P

1/2
f0,T

(ĵ = j) � 2j∗
e−cτ 2j∗ + 2(3/2)jmaxn−2

= o
(
2−j∗s + 1/

√
n
)
,

for sufficiently large choice of τ > 0, resulting in the required upper bound and concluding
the proof of our statement.

LEMMA 4.1. Assume that f0 ∈ Bs∞,∞(L), for some s,L > 0. Then, for every C > 0
there exist positive constants c > 0 such that for every j > j∗ and sufficiently large τ > 0 we
have

Pf0,T (ĵ = j) � e−cτ 2j + n−2.

PROOF. Let us introduce the notation j− = j − 1 and note that for every j > j∗ we have
j− ≥ j∗. Then, by the definition of ĵ

Pf0,T (ĵ = j) ≤
jmax∑
l=j

Pf0,T

(∥∥f̃ (
j−)− f̃ (l)

∥∥∞ > τ

√
l2l/nl

)
.

By triangle inequality∥∥f̃ (
j−)− f̃ (l)

∥∥∞ ≤ ∥∥f̃ (
j−)−Ef0,T f̃

(
j−)∥∥∞ + ∥∥f̃ (l) −Ef0,T f̃ (l)

∥∥∞
+ ∥∥Ef0,T f̃

(
j−)−Ef0,T f̃ (l)

∥∥∞.

We deal with the terms on the right-hand side separately. First, note that∥∥Ef0,T f̃
(
j−)−Ef0,T f̃ (l)

∥∥∞

≤
∥∥∥∥∥

l∑
r=j−

2r−1∑
k=0

f0,rkψrk

∥∥∥∥∥∞
+
∥∥∥∥∥

l∑
r=j−

2r−1∑
k=0

Ef0,T Wrkψrk

∥∥∥∥∥∞



ADAPTIVE DISTRIBUTED ESTIMATION 2375

≤ c
(‖f0‖Bs∞,∞2−j−s +

√
2l/n

) ≤ C
(
B
(
j−, f0

)+
√

2l/n
)

≤ C
(
B
(
j∗, f0

)+
√

2l/n
) ≤ C

(√
j∗2j∗

/nj∗ +
√

2l/n
)

≤ C

√
l2l/nl.

Furthermore,

∥∥f̃ (l) −Ef0,T f̃ (l)
∥∥∞ ≤

l∑
j=0

max
k

(|Zjk| + |Wjk|) sup
x∈[0,1]

2j−1∑
k=0

∣∣ψjk(x)
∣∣

≤ C

(
l∑

j=0

2j/2 max
k

|Zjk| +
√

2l/n

)
.

We show below that for any γ ≥ 1,

Pf0,T (max
k

(|Zlk| ≥ τ
√

γ l/nl

)
� n

1−γ
l + e−cτ 2l(4.8)

holds for some sufficiently large τ > 0 and sufficiently small c > 0. By combining the above
results we get that

Pf0,T

(∥∥f̃ (
j−)− f̃ (l)

∥∥∞ ≥ τ

√
l2l/nl

)
� Pf0,T

(∥∥f̃ (l) −Ef0,T f̃ (l)
∥∥∞ ≥ τ − C

2

√
l2l/nl

)

�
l∑

j=0

Pf0,T

(
max

k
|Zjk| ≥ τ − 2C

2C

√
l/nl

)

≤ lPf0,T

(
max

k
|Zlk| ≥ τ − 2C

2C

√
l/nl

)

� (log2 n)n
1−γ
l + e−(c/2)τ 2l .

The above inequality together with the first display of the proof then implies that

Pf0,T (ĵ = j) �
jmax∑
l=j

(
(log2 n)n

1−γ
l + e−(c/2)τ 2l)

� (log2 n)2n
1−γ
jmax

+ e−(c/2)τ 2j � n−2 + e−(c/2)τ 2j ,

for γ ≥ 5, in view of njmax � (nB/ log2
2 n)

1+2smin
2+2smin ≥ √

n, for any smin > 0, providing the state-
ment of the lemma.

It remained to prove assertion (4.8). Note that by triangle inequality we get that

max
k

|Zlk| ≤ max
k

|Zlk −Ef0|T Zlk| + max
k

|Ef0|T Zlk|.(4.9)

In view of assertion (4.4) with PT -probability at least 1 − Cn
1−γ
l , the second term on the

right-hand side is bounded from above by C
√

γ l/nl . Furthermore, recall from the proof of
Theorem 2.10 (i.e., Assertion (3.21)) that n−2

l

∑
i∈Alk

∑n/m
�=1 ψ2

lk(T
(i)
� ) � n−1

l holds with PT -

probability at least 1 − Ce−cnδ
, for some sufficiently small δ > 0. Under the above event we

have that there exists small enough constant c > 0 such that

Pf0|T
(|Zl1 −Ef0|T Zl1| ≥ τ

√
l/nl

) ≤ exp
{−cτ 2l

}
.
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Therefore, the first term on the right-hand side of (4.9) is bounded from above by τ
√

l/nl with
Pf0|T -probability at least 1 − C2le−cτ 2l ≤ 1 − Ce−(c/2)τ 2l on T ∈ Bl , for some sufficiently
large constants τ,C > 0 and sufficiently small positive constant c. �

5. Technical lemmas. In this section we provide the technical lemmas applied in the
previous two sections.

5.1. Proof of Lemma 3.2. We are going to apply the general information bound given by
Theorem A.13 in the Supplementary Material. To this end, we need a number of definitions.

Without loss of generality we can assume that T
(i)

1 ≤ T
(i)
2 ≤ · · · ≤ T

(i)
n/m, i = 1, . . . ,m,

and let �k = �
(i)
k = max{j ∈ {1, . . . , n/m} : T (i)

j ∈ Ik} denote the index of the largest element

T
(i)
j in the interval Ik = [(k − 1)C22−jn, kC22−jn], k = 1, . . . , |Kjn | = 2jn/C2. Note that

T
(i)
�k−1+1, . . . , T

(i)
�k

∈ Ik . For convenience let us introduce the following notation:

X
(i)
[j1:j2] = (

X
(i)
j1

,X
(i)
j1+1, . . . ,X

(i)
j2

)
,

d = |Kjn |,
F−k = (F1, ..,Fk−1,Fk, . . . ,Fd),

δ = Lδ1/2
n 2jn/2‖ψ‖∞,

a2 = 25nδ2

dm/ log(dm)
,

μk(t) = (
Lδ1/2

n ψjn,k(tj )
)
j=(�k−1+1),...,�k

,

Bk(t) = {
x ∈ R

�k−�k−1 : ∣∣μk(t)
T x

∣∣ ≤ a
}
,

B =
{
t ∈ [0,1]n/m : n

2dm
≤ �k − �k−1 ≤ 2n

dm
,k = 1, . . . , d

}
.

Note that X
(i)
[(�k−1+1):�k]|(T (i),Fk) is independent of F−k and

X
(i)
[(�k−1+1):�k]|

(
T (i) = t,Fk = βk

) ∼ P
(i)

βk |T (i)=t
= N�k−�k−1

(
βkμk(t), I

)
.

Furthermore, note that the inequalities δ2 ≤ 0.42md
27n log(dm)

(in view of C1 ≥ 0.4−228L2‖ψ‖2∞C2)

and n/m ≥ 26d log(n/m) (in view of m = O(n
2s

1+2s / log2 n)) hold.
Then, by the definition of Bk(t) we have for all t ∈ [0,1]n/m and k = 1, . . . , d that

sup
x∈Bk(t)

ϕμk(t)(x)

ϕ−μk(t)(x)
= sup

x∈Bk(t)

exp
{ |‖x − μk(t)‖2

2 − ‖x + μk(t)‖2
2|

2

}

= sup
x∈Bk(t)

exp
{
2
∣∣xT μk(t)

∣∣} = exp{2a},

where ϕμ denotes the density function of a normal distribution with mean vector μ and
identity covariance matrix. Then, by Theorem A.13 in the Supplementary Material (with
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F0 = {β = (βk)k=1..d : βk ∈ {−1,1}, k = 1, . . . , d}) we have that

I
(
F ;Y (i)) =

∫
[0,1]n/m

I
(
F ;Y (i)|T (i) = t

)
dt

≤
d∑

k=1

(log 2)

∫
[0,1]n/m

√
P

(i)

βk |T (i)=t

(
X

(i)
[(�k−1+1):�k] /∈ Bk(t)

)
dt

+
d∑

k=1

∫
[0,1]n/m

P
(i)

βk |T (i)=t

(
X

(i)
[(�k−1+1):�k] /∈ Bk(t)

)
dt

+ 2C2(C − 1)2I
(
X(i);Y (i)|T (i)),

(5.1)

with C = exp{27/2δ
√

n log(dm)/
√

dm}.
Note that I (X(i);Y (i)|T (i)) ≤ H(Y (i)|T (i)) ≤ H(Y (i)). In view of Lemma 5.2, we have

that PT (T (i) ∈ B) ≥ 1 − 2de−n/(8md) ≥ 1 − 2(md)−4 following from the inequality n/m ≥
26d log(n/m). Besides, for arbitrary t ∈ B we have in view of

∥∥μk(t)
∥∥2

2 ≤
�k∑

j=�k−1+1

δnψjn,k(tj )
2 ≤ ‖ψ‖2∞δn2jn(�k − �k−1) ≤ 2nδ2/(md)

that

P
(i)
fk

(
X

(i)
[(�k−1+1):�k] /∈ Bk(t)|T (i) = t

) = P
(i)
f

(∣∣μk(t)
T X

(i)
[(�k−1+1):�k]

∣∣ > a|T (i) = t
)

≤ 2 exp
{
−(a − ‖μk(t)‖2

2)
2

2‖μk(t)‖2
2

}

≤ 2 exp
{
− a2

4‖μk(t)‖2
2

}
≤ 2(md)−4.

Therefore,

∫
[0,1]n/m

√
P

(i)

βk |T (i)=t

(
X

(i)
[(�k−1+1):�k] /∈ Bk(t)

)
dt

≤
∫
B

√
P

(i)

βk |T (i)=t

(
X

(i)
[(�k−1+1):�k] /∈ Bk(t)

)
dt + PT

(
T (i) /∈ B

)
≤ √

2(md)−2 + 2(md)−4 ≤ 2(md)−2,

and similarly
∫
[0,1]n/m P

(i)

f |T (i)=t
(X

(i)
[(�k−1+1):�k] /∈ Bk(t)) dt ≤ 4(md)−4. Then, by plugging in

the above inequalities into (5.1) and using the inequalities ex ≤ 1+2x for x ≤ 0.4 and C2 ≤ 2
we get that

I
(
F ;Y (i)) ≤ 4 log 2

m2d
+ 212δ2n log(dm)

md
H
(
Y (i)).



2378 B. SZABÓ AND H. VAN ZANTEN

Furthermore, from the data-processing inequality and the convexity of the KL divergence

I
(
F ;Y (i)) ≤ I

(
F ; (T (i),X(i))) ≤ I

(
F ;X(i)|T (i))+ I

(
F ;T (i))

=
∫
t∈[0,1]n/m

I
(
F ;X(i)|T (i) = t

)
dt

≤
∫
t∈[0,1]n/m

1

|F0|2
∑

β,β ′∈F0

K
(
P

(i)

β|T (i)=t
‖P(i)

β ′|T (i)=t

)
dt

≤ 1

2|F0|2
∑

β,β ′∈F0

n/m∑
�=1

∑
k∈Kjn

(
β ′

k − βk

)2
L2δn

∫ 1

0
ψ2

jn,k(t�) dt�

≤ 2δ2n/m.

(5.2)

Then, by combining the previous upper bounds and using the data processing inequality
I (F ;Y) ≤ ∑m

i=1 I (F ;Y (i)) we get that

I (F ;Y) ≤ 4δ2n

m

m∑
i=1

min
{
210 log(md)d−1H

(
Y (i)),1

}+ 4 log 2

≤ 4L2δn2jn‖ψ‖2∞n

m

m∑
i=1

min
{
210 log(md)d−1H

(
Y (i)),1

}+ 4 log 2.

Finally, we arrive to our statement by using Lemma 5.3 and 2jn = C2d .

REMARK 5.1. We note that in [22] it is sufficient to provide the upper bound (5.2) for the
mutual information as there is no limitation in the amount of transmitted bits. In our setting
one has to take into account the code length as well, hence, sharper upper bounds are required
which is actually the core and most challenging part of the proof of Lemma 3.2.

LEMMA 5.2. Let X1,X2, . . . ,Xn be independent and uniformly distributed over {1,2,

. . . , r}, and denote by χk = {� ∈ {1, . . . , n} : X� = k} the index set of the observations belong-
ing to the kth bin, k = 1, . . . , r . Then,

P
(
2−1n/r ≤ |χk| ≤ 2n/r, k = 1, . . . , r

)≥ 1 − 2re−n/(8r).

PROOF. We start with the proof of the upper bound. Note that by Chernoff’s bound

P
(

sup
k=1,...,r

|χk| ≥ 2n/r
)

≤
r∑

k=1

P
(|χk| ≥ 2n/r

) ≤ re−n/(3r),

and similarly for the lower bound

P
(

inf
k=1,...,r

|χk| ≤ 2−1n/r
)

≤ re−n/(8r). �

5.2. Entropy of a finite binary string. In the proof of Theorem 2.1 we need to bound the
entropy of transmitted finite binary string Y (i). Since we do not want to restrict ourself only
to prefix codes, we can not use a standard version of Shannon’s source coding theorem for
this purpose. Instead, we use the following result:

LEMMA 5.3. Let Y be a random finite binary string. Its entropy and expected length
satisfy the inequality

H(Y) ≤ 2El(Y ) + 1.
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PROOF. We construct and auxiliary random string U such that l(U) and l(Y ) have the
same distribution and such that, given its length, U has a uniform distribution on the set of
strings with that length. Specifically, let N = l(Y ) and consider a random binary string U

with distribution U |N = n ∼ Unif({0,1}n). Let S denote the set of all finitely long binary
strings. Then, the KL-divergence between Y and U is given by

K(Y,U) = ∑
s∈S

P(Y = s) log
P(Y = s)

P(U = s)

= ∑
s∈S

P(Y = s) log
1

P(U = s)
− H(Y)

= ∑
n

∑
s∈{0,1}n

P(Y = s) log
1

P(U = s)
− H(Y).

Now, for every n and s ∈ {0,1}n, we have P(U = s) = P(U = s | N = n)P(N = n) =
2−n

P(N = n). It follows that

∑
s∈{0,1}n

P(Y = s) log
1

P(U = s)
=P(N = n) log

2n

P(N = n)
.

Hence,

K(Y,U) ≤ (log 2)EN + H(N) − H(Y).

The nonnegativity of the KL-divergence thus implies that H(Y) ≤ EN + H(N).
To complete the proof we show that H(N) ≤ EN + 1. To do so, consider the index set

I = {i : P(N = i) ≥ e−i} and note that the function x �→ x log(1/x) is monotone increasing
for x ≤ e−1. Then,

H(N) = ∑
i∈I

P(N = i) log
1

P(N = i)
+ ∑

i∈I c

P(N = i) log
1

P(N = i)

≤ ∑
i∈I

P(N = i)i + ∑
i∈I c

e−i i ≤ EN + 1.

This completes the proof. �
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