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The assumption of separability is a simplifying and very popular as-
sumption in the analysis of spatiotemporal or hypersurface data structures.
It is often made in situations where the covariance structure cannot be easily
estimated, for example, because of a small sample size or because of com-
putational storage problems. In this paper we propose a new and very simple
test to validate this assumption. Our approach is based on a measure of sep-
arability which is zero in the case of separability and positive otherwise. We
derive the asymptotic distribution of a corresponding estimate under the null
hypothesis and the alternative and develop an asymptotic and a bootstrap test
which are very easy to implement. In particular, our approach does neither
require projections on subspaces generated by the eigenfunctions of the co-
variance operator nor distributional assumptions as recently used by (Ann.
Statist. 45 (2017) 1431–1461) and (Biometrika 104 425–437) to construct
tests for separability. We investigate the finite sample performance by means
of a simulation study and also provide a comparison with the currently avail-
able methodology. Finally, the new procedure is illustrated analyzing a data
example.

1. Introduction. Functional and multidimensional data is usually called surface data
and arises in areas such as medical imaging (see [21, 25]) spectrograms derived from audio
signals or geolocalized data (see [3, 19]). In many of these high-dimensional problems, a
completely nonparametric estimation of the covariance operator is not possible as the num-
ber of available observations is small compared to the dimension. A common approach to
obtain reasonable estimates in this context are structural assumptions on the covariance of
the underlying process, and in recent years the assumption of separability has become very
popular, for example, in the analysis of geostatistical space-time models (see [9, 11], among
others). Roughly speaking, this assumption allows us to write the covariance

c
(
s, t, s′, t ′

) = E
[
X(s, t)X

(
s′, t ′

)]
of a (real valued) space-time process {X(s, t)}(s,t)∈S×T as a product of the space and time
covariance function, that is,

(1.1) c
(
s, t, s′, t ′

) = c1
(
s, s′)c2

(
t, t ′

)
.

It was pointed out by many authors that the assumption of separability yields a substantial
simplification of the estimation problem and thus reduces computational costs in the esti-
mation of the covariance in high dimensional problems (see, e.g., [14, 20]). Despite of its
importance, there exist only a few tools to validate the assumption of separability for surface
data.
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Many authors developed tests for spatiotemporal data. For example, [8] proposed a test
based on the spectral representation, and [15, 17, 18] investigated likelihood ratio tests under
the assumption of a normal distribution. Recently, [4] derived the joint distribution of the
three statistics appearing in the likelihood ratio test and used this result to derive the asymp-
totic distribution of the (log) likelihood ratio. These authors also proposed alternative tests,
which are based on distances between an estimator of the covariance, under the assumption
of separability and an estimator which does not use this assumption. [5] generalized the latter
(distance-based) approach to test the assumption of separability for functional time series. To
address for serial dependence, they also considered hypotheses of the form (1.1) for lagged
covariance operators. More recently, [16] introduced the concept of weak separability, which,
roughly speaking, means that the eigenfunctions of the covariance operator c can be written
as tensor products of the eigenfunctions of c1 and c2. In particular, strong separability as spec-
ified by (1.1) is a special case of weak separability, and the latter hypothesis can be tested by
checking if the Fourier coefficients calculated with respect to products of basis functions are
uncorrelated.

[1] considered the problem of testing for separability in the context of hypersurface data.
These authors pointed out that many available methods require the estimation of the full mul-
tidimensional covariance structure which can become infeasible for high dimensional data.
In order to address this issue, they developed tests based on CLT approximations, as well
as bootstrap tests for applications, where replicates from the underlying random process are
available. To avoid estimation and storage of the full covariance, finite-dimensional projec-
tions of the difference between the covariance operator and a nonparametric separable ap-
proximation (using the partial trace operator) were proposed. In particular, they suggested to
project onto subspaces generated by the eigenfunctions of the covariance operator estimated
under the assumption of separability. However, as pointed in the same references the choice
of the number of eigenfunctions onto which one should project is not trivial, and the test
might be sensitive with respect to this choice. Moreover, the computational costs increase
substantially with the number of eigenfunctions.

In this paper we present an alternative and simple test for the hypothesis of separabil-
ity in hypersurface data. We consider a similar setup as in [1] and proceed in two steps.
Roughly speaking, we derive an explicit expression for the minimal distance between the
covariance operator and its approximation by a separable covariance operator. It turns out
that this minimum vanishes if and only if the covariance operator is separable. Second, we
directly estimate the minimal distance (and not the covariance operator itself) from the avail-
able data. As a consequence the calculation of the test statistic does neither use an estimate
of the full nonseparable covariance operator nor requires the specification of subspaces used
for a projection.

In Section 2 we review some basic terminology and discuss the problem of finding a best
approximation of the covariance operator by a separable covariance operator. The corre-
sponding minimum distance could also be interpreted as a measure of deviation from sep-
arability (it is zero in the case of separability and positive otherwise). In Section 3 we pro-
pose an estimator of the minimum distance, prove its consistency and derive its asymptotic
distribution under the null hypothesis and alternative. These results are also used to develop
an asymptotic and a bootstrap test for the hypothesis of separability, which are—in contrast
to the currently available methods—consistent against all alternatives. Moreover, statistical
guarantees can be derived under more general and easier to verify moment assumptions than
in [1]. Section 4 is devoted to an investigation of the finite sample properties of the new tests
and a comparison with alternative tests for this problem which have recently been proposed
by [1] and [4]. In particular, we demonstrate that, despite their simplicity, the new procedures
have very competitive properties compared to the currently available methodology. Finally,
some technical details are deferred to the Supplementary Material [2].
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2. Hilbert spaces and a measure of separability. We begin introducing some basic
facts about Hilbert spaces, Hilbert–Schmidt operators and tensor products. For more details
we refer to the monographs of [7, 24] or [12]. Let H be a real separable Hilbert space with
inner product 〈·, ·〉 and norm ‖ · ‖. The space of bounded linear operators on H is denoted by
S∞(H) with operator norm

|||T |||∞ := sup
‖f ‖≤1

‖Tf ‖.

A bounded linear operator T is said to be compact if it can be written as

T = ∑
j≥1

sj (T )〈ej , ·〉fj ,

where {ej : j ≥ 1} and {fj : j ≥ 1} are orthonormal sets of H , {sj (T ) : j ≥ 1} are the singular
values of T and the series converges in the operator norm. We say that a compact operator T

belongs to the Schatten class of order p ≥ 1 and write T ∈ Sp(H) if

|||T |||p =
(∑

j≥1

sj (T )p
)1/p

< ∞.

The Schatten class of order p ≥ 1 is a Banach space with norm ||| · |||p and with the property
that Sp(H) ⊂ Sq(H) for p < q . In particular, we are interested in Schatten classes of order
p = 1 and 2. A compact operator T is called Hilbert–Schmidt operator if T ∈ S2(H) and
trace class if T ∈ S1(H). The space of Hilbert–Schmidt operators S2(H) is also a Hilbert
space with the Hilbert–Schmidt inner product given by

〈A,B〉 = ∑
j≥1

〈Aej ,Bej 〉

for each A,B ∈ S2(H), where {ej : j ≥ 1} is an orthonormal basis (here the inner product
does not depend on the choice of the basis).

Let H1 and H2 be two real separable Hilbert spaces. For u ∈ H1 and v ∈ H2, we define the
bilinear form u ⊗ v : H1 × H2 →R by

[u ⊗ v](x, y) := 〈u,x〉〈v, y〉, (x, y) ∈ H1 × H2.

Let P be the set of all finite linear combinations of such bilinear forms. An inner product on
P can be defined by the linear extension of 〈u ⊗ v,w ⊗ z〉 = 〈u,w〉〈v, z〉, for u,w ∈ H1 and
v, z ∈ H2. The completion of P under the aforementioned inner product is called the tensor
product of H1 and H2 and denoted as H1 ⊗ H2.

For C1 ∈ S∞(H1) and C2 ∈ S∞(H2), the tensor product C1 ⊗̃ C2 is defined as the unique
linear operator on H := H1 ⊗ H2 satisfying

(C1 ⊗̃ C2)(u ⊗ v) = C1u ⊗ C2v, u ∈ H1, v ∈ H2.

In fact C1 ⊗̃ C2 ∈ S∞(H) with |||C1 ⊗̃ C2|||∞ = |||C1|||∞|||C2|||∞. Moreover, if C1 ∈ Sp(H1)

and C2 ∈ Sp(H2) for p ≥ 1, then C1 ⊗̃ C2 ∈ Sp(H) with |||C1 ⊗̃ C2|||p = |||C1|||p|||C2|||p . For
more details we refer to Chapter 8 of [24]. In the sequel we denote the Hilbert–Schmidt inner
product on S2(H) with H = H1 ⊗H2 as 〈·, ·〉HS and that of S2(H1) and S2(H2) as 〈·, ·〉S2(H1)

and 〈·, ·〉S2(H2), respectively.
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2.1. Measuring separability. We consider random elements X in the Hilbert space H

with E‖X‖4 < ∞ (see Chapter 7 in [13] for more details on Hilbert space valued random
variables). Then, the covariance operator of X is defined as C := E[(X −EX)⊗o (X −EX)]
where for f,g ∈ H the operator f ⊗o g : H → H is defined by

(f ⊗o g)h = 〈h,g〉f for all h ∈ H.

Under the assumption E‖X‖4 < ∞, we have C ∈ S2(H). We also assume |||C|||2 = 0 which
essentially means the random variable X is nondegenerate. To test separability, we consider
the hypothesis

(2.1) H0 : C = C1 ⊗̃ C2 for some C1 ∈ S2(H1) and C2 ∈ S2(H2).

Our approach is based on an approximation of the operator C by a separable operator C1 ⊗̃C2
with respect to the norm ||| · |||2. Ideally, we are looking for

(2.2) D := inf
{|||C − C1 ⊗̃ C2|||22 | C1 ∈ S2(H1),C2 ∈ S2(H2)

}
,

such that the hypothesis of separability in (2.1) can be rewritten in terms of the distance D,
that is,

(2.3) H0 : D = 0 versus H1 : D > 0.

It turns out that it is difficult to express D explicitly in terms of the covariance operator C.
For this reason we proceed in a slightly different way in two steps. First, we fix an operator
C∗

1 ∈ S2(H1) and determine

(2.4) DC∗
1
:= inf

{∣∣∣∣∣∣C − C∗
1 ⊗̃ C2

∣∣∣∣∣∣2
2 | C2 ∈ S2(H2)

}
,

that is, we are minimizing |||C − C∗
1 ⊗̃ C2|||22 with respect to second factor C2 of the tensor

product. In particular, we will show that the infimum is in fact a minimum and derive an
explicit expression for DC∗

1
and its minimizer. Instead of working with the distance D in

(2.2), we suggest to estimate an appropriate distance from the family{
DC∗

1
| C∗

1 ∈ S2(H1)
}
.

For this purpose note that for a given covariance operator C ∈ S2(H) and C∗
1 ∈ S2(H1) the

corresponding distance DC∗
1

is in general positive. However, we also show in the following
that C is separable, that is, C = C1 ⊗̃ C2, if and only if the corresponding minimum DC1

vanishes. Thus, if we are able to estimate DC1 (for the unknown operator C1), we can test the
hypothesis (2.3) by constructing a test for the hypotheses H0 : DC1 = 0 vs. H1 : DC1 > 0. We
explain below that this is in fact possible.

For this purpose we have to introduce some additional notation and have to prove several
auxiliary results, which will be proved in Section B.1 of the Supplementary Material. The
main statement is given in Theorem 2.1 (whose formulation also requires the new notation).
First, consider the bounded linear operator T1 : S2(H) × S2(H1) �→ S2(H2) defined by

(2.5) T1(A ⊗̃ B,C1) = 〈A,C1〉S2(H1)B

for all C1 ∈ S2(H1). Similarly, let T2 : S2(H) × S2(H2) → S2(H1) be the bounded linear
operator defined by

(2.6) T2(A ⊗̃ B,C2) = 〈B,C2〉S2(H2)A

for all C2 ∈ S2(H2). The proofs of the following two auxiliary results can be found in Sections
B.2 and B.3 of the Supplementary Material.
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PROPOSITION 2.1. The operators T1 and T2 are well defined, bilinear and continuous
with 〈

B,T1(C,C1)
〉
S2(H2)

= 〈C,C1 ⊗̃ B〉HS,(2.7) 〈
A,T2(C,C2)

〉
S2(H1)

= 〈C,A ⊗̃ C2〉HS(2.8)

for all A,C1 ∈ S2(H1), B,C2 ∈ S2(H2) and C ∈ S2(H).

While the previous result clarifies the existence of the operators T1 and T2, the next propo-
sition provides a property of the operator T1 which is essential for the proof of the main result
in this section.

PROPOSITION 2.2. For any C ∈ S2(H) and C1 ∈ S2(H1), we have〈
C,C1 ⊗̃ T1(C,C1)

〉
HS = ∣∣∣∣∣∣T1(C,C1)

∣∣∣∣∣∣2
2.

THEOREM 2.1. For each C ∈ S2(H) and any fixed C∗
1 ∈ S2(H1), the distance

(2.9) DC∗
1
(C2) = ∣∣∣∣∣∣C − C∗

1 ⊗̃ C2
∣∣∣∣∣∣

2

is minimized at

(2.10) C̃2 = T1(C,C∗
1 )

|||C∗
1 |||22

.

Moreover, the minimum distance in (2.9) is given by

(2.11) DC∗
1
= |||C|||22 − |||T1(C,C∗

1 )|||22
|||C∗

1 |||22
.

In particular, DC∗
1

is zero if and only if C = C∗
1 ⊗̃ C2 for some C2 ∈ S2(H2).

REMARK 2.1. By Theorem 2.1 we can construct a test for the hypothesis

H0 : DC∗
1
= 0

for any given C∗
1 ∈ S2(H1) by estimating the quantity in (2.11). If the covariance operator C

is not separable, it follows that DC∗
1

> 0 for all C∗
1 ∈ S2(H1). If C is in fact separable (i.e.,

the null hypothesis is true) such that C = C1 ⊗̃ C2 for some C1 and C2, we have DC1 =
DC1(C2) = 0. Interestingly, we can obtain C1 from C up to a multiplicative constant using
the operator T2 defined in (2.6). More precisely, we choose an arbitrary but fixed element
� ∈ S2(H2) such that T2(C,�) = 0 and note that under the null hypothesis of separability
we have T2(C,�) = 〈C2,�〉S2(H2)C1. As the minimum distance in (2.11) is invariant with
respect to scalar multiplication of C∗

1 it follows for this choice

(2.12) D0 := DC1 = DT2(C,�) = |||C|||22 − |||T1(C,T2(C,�))|||22
|||T2(C,�)|||22

.

Note that D0 ≥ 0 and D0 vanishes if and only if C is separable. Thus, we can construct a
consistent test of the hypothesis (2.1) via a suitable estimate of the operator C in (2.12). This
program is carefully carried out in Section 3.

REMARK 2.2. Note that the representation (2.12) involves only norms of operators and
as a consequence, when it comes to estimation, we do not have to store the complete estimate
of the covariance kernel. We make this point more precise in Remark 3.4, where we discuss
the problem of estimating D0 in the context of Hilbert–Schmidt integral operators.
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2.2. Hilbert–Schmidt integral operators. An important case for applications is the set
H := L2(S × T ) of all real-valued square integrable functions defined on S × T , where
S ⊂ R

p , T ⊂ R
q are bounded measurable sets. If the covariance operator C of the random

variable X is a Hilbert–Schmidt operator, it follows from Theorem 6.11 in [24] that there
exists a kernel c ∈ L2((S × T ) × (S × T )) such that C can be characterized as an integral
operator, that is,

Cf (s, t) =
∫
S

∫
T

c
(
s, t, s′, t ′

)
f

(
s′, t ′

)
ds′ dt ′, f ∈ L2(S × T ),

almost everywhere on S×T . Moreover, the kernel is given by the covariance kernel of X, that
is, c(s, t, s ′, t ′) = Cov[X(s, t),X(s ′, t ′)], and the space H can be identified with the tensor
product of H1 = L2(S) and H2 = L2(T ).

Similarly, if C1 and C2 are Hilbert–Schmidt operators on L2(S) and L2(T ), respectively,
there exist symmetric kernels c1 ∈ L2(S × S) and c2 ∈ L2(T × T ) such that

C1f (s) =
∫
S
c1

(
s, s′)f (

s′)ds′, C2g(t) =
∫
T

c2
(
t, t ′

)
g
(
t ′

)
dt ′

(f ∈ H1, g ∈ H2) almost everywhere on S and T , respectively. The following result shows
that in this case the operators T1 and T2 defined by (2.5) and (2.6), respectively, are also
Hilbert–Schmidt integral operators. The proof can be found in Section B.5 of the Supple-
mentary Material and requires that the sets S and T are bounded.

PROPOSITION 2.3. If C and C1 are integral operators with continuous kernels c ∈
L2((S × T ) × (S × T )) and c1 ∈ L2(S × S), then T1(C,C1) is an integral operator with
kernel given by

(2.13) k
(
t, t ′

) =
∫
S

∫
S
c
(
s, t, s′t ′

)
c1

(
s, s′)ds ds′.

An analog result is true for the operator T2.

Using the explicit formula for T1 described in Proposition 2.3 the minimum distance in
Theorem 2.1 can be expressed in terms of the corresponding kernels of the operators, that is,

DC1 =
∫
T

∫
T

∫
S

∫
S
c2(

s, t, s′, t ′
)
ds ds′ dt dt ′

−
∫
T

∫
T [∫S

∫
S c(s, t, s′t ′)c1(s, s

′) ds ds ′]2 dt dt ′∫
S

∫
S c2

1(s, s
′) ds ds ′ .

3. Estimation and asymptotic properties. Formally, we estimate the minimum dis-
tance given in (2.11) by plugging in estimators for C and C1 based on a sample X1,X2, . . . ,

XN . The covariance operator C is estimated by

(3.1) ĈN := 1

N

N∑
i=1

[
(Xi − X) ⊗o (Xi − X)

]
.

As pointed out in Remark 2.1 it is sufficient to estimate the operator C1 up to a multiplica-
tive constant, due to the self-normalizing form of the second term of the minimum distance
DC1 . Let � be any fixed element of S2(H2); recall that under the null hypothesis of separa-
bility H0 : C = C1 ⊗̃ C2 we have T2(C,�) = 〈C2,�〉S2(H2)C1. Observing the representation
(2.12), we suggest to estimate (a multiple of) the operator C1 by

(3.2) Ĉ1N = T2(ĈN ,�).
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With this choice we obtain the test statistic

(3.3) D̂N = |||ĈN |||22 − |||T1(ĈN ,T2(ĈN ,�))|||22
|||T2(ĈN ,�)|||22

.

As this representation only involves norms, we do not have to store the complete estimate of
the covariance kernel (see Remark 3.4 for a more detailed discussion of this property).

3.1. Weak convergence. The main results of this section provide the asymptotic proper-
ties of the statistic D̂N under the null hypothesis of separability and the alternative.

THEOREM 3.1. Assume that E‖X‖4
2 < ∞ and the null hypothesis of separability holds.

Then, we have

(3.4)

ND̂N
d→

∣∣∣∣∣∣∣∣∣∣∣∣G − T2(G ,�) ⊗̃ T1(C,T2(C,�))

|||T2(C,�)|||22

∣∣∣∣∣∣∣∣∣∣∣∣2
2

− |||T1(G , T2(C,�)) − T1(C,T2(G ,�))|||22
|||T2(C,�)|||22

=
∣∣∣∣∣∣∣∣∣∣∣∣G − T2(G ,�) ⊗̃ C2

〈C2,�〉S2(H2)

∣∣∣∣∣∣∣∣∣∣∣∣2
2

−
∣∣∣∣∣∣∣∣∣∣∣∣T1(G ,C1)

|||C1|||2 − 〈C1, T2(G ,�)〉S2(H1)C2

〈C2,�〉S2(H2)|||C1|||2
∣∣∣∣∣∣∣∣∣∣∣∣2

2
,

where G is a centered Gaussian process with covariance operator

(3.5) � := lim
N→∞ Var(

√
NĈN) = Var(X1 ⊗o X1).

PROOF. The equality in (3.4) follows by a direct calculation using (2.5). For the proof of
the first part, define the mapping φ : S2(H) �→R by

φ(A) = |||A|||22
∣∣∣∣∣∣T2(A,�)

∣∣∣∣∣∣2
2 − ∣∣∣∣∣∣T1

(
A,T2(A,�)

)∣∣∣∣∣∣2
2.

By Proposition 5 in [6] the random variable
√

N(ĈN − C) converges in distribution to a
centered Gaussian random element G with variance (3.5) in S2(H) with respect to Hilbert–
Schmidt topology, and we will derive the asymptotic distribution of φ(ĈN) − φ(C) using
von Mises calculus as described in Section 20.1 in [23]. For this purpose we determine the
derivatives of the map φC,G : t �→ φ(C + tG) for any fixed G ∈ S2(H). Note that φC,G(t) is
a polynomial in t . More precisely, we have

φ(C + tG) = |||C + tG|||22
∣∣∣∣∣∣T2(C + tG,�)

∣∣∣∣∣∣2
2

− ∣∣∣∣∣∣T1
(
C + tG,T2(C + tG,�)

)∣∣∣∣∣∣2
2

= (
a0 + a1t + a2t

2)(
c0 + c1t + c2t

2)
− (

b0 + b1t + b2t
2 + b3t

3 + b4t
4)

,

(3.6)

where

a0 = |||C|||22, a1 = 2〈C,G〉HS, a2 = |||G|||22,
c0 = ∣∣∣∣∣∣T2(C,�)

∣∣∣∣∣∣2
2, c1 = 2

〈
T2(C,�),T2(G,�)

〉
S2(H1)

,

c2 = ∣∣∣∣∣∣T2(G,�)
∣∣∣∣∣∣2

2
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and

b0 = ∣∣∣∣∣∣T1
(
C,T2(C,�)

)∣∣∣∣∣∣2
2, b4 = ∣∣∣∣∣∣T1

(
G,T2(G,�)

)∣∣∣∣∣∣2
2,

b1 = 2
[〈
T1

(
C,T2(C,�)

)
, T1

(
C,T2(G,�)

)〉
S2(H2)

+ 〈
T1

(
C,T2(C,�)

)
, T1

(
G,T2(C,�)

)〉
S2(H2)

]
,

b2 = [
2
〈
T1

(
C,T2(C,�)

)
, T1

(
G,T2(G,�)

)〉
S2(H2)

+ ∣∣∣∣∣∣T1
(
C,T2(G,�)

)∣∣∣∣∣∣2
2

+ ∣∣∣∣∣∣T1
(
G,T2(C,�)

)∣∣∣∣∣∣2
2 + 2

〈
T1

(
G,T2(C,�)

)
, T1

(
C,T2(G,�)

)〉
S2(H2)

]
,

b3 = 2
[〈
T1

(
G,T2(G,�)

)
, T1

(
C,T2(G,�)

)〉
S2(H2)

+ 〈
T1

(
G,T2(G,�)

)
, T1

(
G,T2(C,�)

)〉
S2(H2)

]
.

Now, under the null hypothesis of separability we have for the quantity in (2.12) DC1 =
0 and T2(C,�) = 〈C2,�〉S2(H2)C1 which implies for the constant term in the polynomial
φ(C + tG)

(3.7) φ(C + tG)|t=0 = φ(C) = a0c0 − b0 = 0.

Similarly, using the fact that C = C1 ⊗̃ C2 and
|||T1(C,T2(C,�))|||22

|||T2(C,�)|||22
= |||C|||22, it follows that〈

T1
(
C,T2(C,�)

)
, T1

(
C,T2(G,�)

)〉
S2(H2)

= 〈C2,�〉S2(H2)

〈
T1(C,C1), T1

(
C,T2(G,�)

)〉
S2(H2)

= 〈C2,�〉S2(H2)〈C1,C1〉S2(H1)

〈
C2, T1

(
C,T2(G,�)

)〉
S2(H2)

= 〈C2,�〉S2(H2)〈C1,C1〉S2(H1)〈C2,C2〉S2(H2)

〈
C1, T2(G,�)

〉
S2(H1)

= |||C|||22〈C2,�〉S2(H2)

〈
C1, T2(G,�)

〉
S2(H1)

= |||C|||22
〈
T2(C,�),T2(G,�)

〉
S2(H1)

and 〈
T1

(
C,T2(C,�)

)
, T1

(
G,T2(C,�)

)〉
S2(H2)

= 〈C2,�〉2
S2(H2)

〈
T1(C,C1), T1(G,C1)

〉
S2(H2)

= 〈C1,C1〉S2(H1)

〈
C2, T1(G,C1)

〉
S2(H2)

〈C2,�〉2
S2(H2)

= 〈
C2, T1(G,C1)

〉
S2(H2)

∣∣∣∣∣∣T2(C,�)
∣∣∣∣∣∣2

2

= 〈G,C1 ⊗̃ C2〉HS
∣∣∣∣∣∣T2(C,�)

∣∣∣∣∣∣2
2 = 〈G,C〉HS

∣∣∣∣∣∣T2(C,�)
∣∣∣∣∣∣2

2,

which implies for the linear term in the polynomial φ(C + tG)

(3.8)
d

dt
φ(C + tG)|t=0 = a1c0 + a0c1 − b1 = 0

(under the null hypothesis). Next, we look at the second derivative and note the identities

|||C|||22
∣∣∣∣∣∣T2(G,�)

∣∣∣∣∣∣2
2

= 〈C1,C1〉S2(H1)〈C2,C2〉S2(H2)

〈
T2(G,�),T2(G,�)

〉
S2(H1)

= 〈C1,C1〉S2(H1)

〈
T2(G,�) ⊗̃ C2, T2(G,�) ⊗̃ C2

〉
HS
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= 〈C2,�〉2
S2(H2)

〈C1,C1〉2
S2(H1)

〈T2(G,�) ⊗̃ C2, T2(G,�) ⊗̃ C2〉HS

|||T2(C,�)|||22
= 〈T2(G,�) ⊗̃ T1(C,T2(C,�)), T2(G,�) ⊗̃ T1(C,T2(C,�))〉HS

|||T2(C,�)|||22
,

〈
T1

(
C,T2(G,�)

)
, T1

(
G,T2(C,�)

)〉
S2(H2)

= 〈
C2

〈
C1, T2(G,�)

〉
S2(H1)

, T1(G,C1)〈C2,�〉S2(H2)

〉
S2(H2)

= 〈
C1, T2(G,�)

〉
S2(H1)

〈C2,�〉S2(H2)

〈
C2, T1(G,C1)

〉
S2(H2)

= 〈〈C2,�〉S2(H2)C1, T2(G,�)
〉
S2(H1)

〈C1 ⊗̃ C2,G〉HS

= 〈
T2(C,�),T2(G,�)

〉
S2(H1)

〈C,G〉HS,

and 〈
T1

(
C,T2(C,�)

)
, T1

(
G,T2(G,�)

)〉
S2(H2)

= 〈C2,�〉S2(H2)〈C1,C1〉S2(H1)

〈
C2, T1

(
G,T2(G,�)

)〉
S2(H2)

= 〈C2,�〉S2(H2)〈C1,C1〉S2(H1)

〈
G,T2(G,�) ⊗̃ C2

〉
HS

= 〈
G,T2(G,�) ⊗̃ (〈C2,�〉S2(H2)〈C1,C1〉S2(H1)C2

)〉
HS

= 〈
G,T2(G,�) ⊗̃ T1

(
C,T2(C,�)

)〉
HS

(here we make extensive use of Proposition 2.1). This gives for the quadratic term in the
polynomial φ(C + tG)

(3.9)

1

2

d2

d2t
φ(C + tG)|t=0

= a0c2 + a1c1 + a2c0 − b2

=
∣∣∣∣∣∣∣∣∣∣∣∣G∣∣∣∣∣∣T2(C,�)

∣∣∣∣∣∣
2 − T2(G,�) ⊗̃ T1(C,T2(C,�))

|||T2(C,�)|||2
∣∣∣∣∣∣∣∣∣∣∣∣2

2

− ∣∣∣∣∣∣T1
(
G,T2(C,�)

) − T1
(
C,T2(G,�)

)∣∣∣∣∣∣2
2.

Finally, taking G := √
N(ĈN − C), t = 1/

√
N and expanding φ(C + tG) in powers of t , we

obtain (note that φ(C) = 0 under the null hypothesis and that the terms corresponding to t3

and t4 in (3.6) are at least of order N−3/2)

Nφ(ĈN) = 1

2

d2

d2t
φ

(
C + t

√
N(ĈN − C)

)|t=0 + op(1)

d→
∣∣∣∣∣∣∣∣∣∣∣∣G ∣∣∣∣∣∣T2(C,�)

∣∣∣∣∣∣
2 − T2(G ,�) ⊗̃ T1(C,T2(C,�))

|||T2(C,�)|||2
∣∣∣∣∣∣∣∣∣∣∣∣2

2

− ∣∣∣∣∣∣T1
(
G , T2(C,�)

) − T1
(
C,T2(G ,�)

)∣∣∣∣∣∣2
2.

Therefore, Theorem 3.1 follows from Slutsky’s Lemma noting that

D̂N = φ(ĈN) − φ(C)

|||T2(ĈN ,�)|||22
= φ(ĈN)

|||T2(ĈN ,�)|||22
. �

In the following let q1−α be the 100α% quantile of the limiting random variable in The-
orem 3.1, then an asymptotic level α test for the hypothesis in (2.1) is obtained by rejecting



2312 P. BAGCHI AND H. DETTE

the null hypothesis of separability, whenever

(3.10) ND̂N > q1−α.

The next result provides the asymptotic distribution under the alternative and yields as a
consequence the consistency of this test.

THEOREM 3.2. If E‖X‖4
2 < ∞, then the statistic

√
N(D̂N − D0) converges in distribu-

tion to a centered normal distribution with variance

(3.11) ν2 := 4
〈
�(A − B), (A − B)

〉
HS,

where

A = C − T2(C,�) ⊗̃ T1(C,T2(C,�))

|||T2(C,�)|||22
,

B = 1

|||T2(C,�)|||22

[
T2

(
C,T1

(
C,T2(C,�)

)) ⊗̃ �

− |||T1(C,T2(C,�))|||22
|||T2(C,�)|||22

T2(C,�) ⊗̃ �

]
and the centering term D0 is defined in (2.12).

PROOF. Observing (2.12) and (3.3) we write

(3.12)

√
N(D̂N − D0) = √

N

(
|||ĈN |||22 − |||T1(ĈN ,T2(ĈN ,�))|||2

|||T2(ĈN ,�)|||22
− |||C|||22 + |||T1(C,T2(C,�))|||2

|||T2(C,�)|||22

)
and note that D̂N and D0 are functions of the random variables

GN = (|||ĈN |||22,
∣∣∣∣∣∣T1

(
ĈN , T2(ĈN ,�)

)∣∣∣∣∣∣2, ∣∣∣∣∣∣T2(ĈN ,�)
∣∣∣∣∣∣2

2

)T
,(3.13)

G = (|||C|||22,
∣∣∣∣∣∣T1

(
C,T2(C,�)

)∣∣∣∣∣∣2, ∣∣∣∣∣∣T2(C,�)
∣∣∣∣∣∣2

2

)T
,(3.14)

respectively. Therefore, we first investigate the weak convergence of the vector
√

N(GN −
G). For this purpose we note that for K,L ∈ S2(H), the identity

|||K|||22 − |||L|||22 = |||K − L|||22 + 2〈K − L,L〉HS

holds and introduce the decomposition
√

N(GN − G) = H
(1)
N + H

(2)
N ,

where the random variables H
(1)
N and H

(2)
N are defined by

H
(1)
N = √

N
(|||ĈN − C|||22,

∣∣∣∣∣∣T1
(
ĈN , T2(ĈN ,�)

) − T1
(
C,T2(C,�)

)∣∣∣∣∣∣2
2,∣∣∣∣∣∣T2(ĈN ,�) − T2(C,�)

∣∣∣∣∣∣2
2

)T
,

H
(2)
N = 2

√
N

(〈ĈN − C,C〉HS,〈
T1

(
ĈN , T2(ĈN ,�)

) − T1
(
C,T2(C,�)

)
, T1

(
C,T2(C,�)

)〉
HS,〈

T2(ĈN ,�) − T2(C,�),T2(C,�)
〉
HS

)T
.
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Using the linearity of T1 and T2, we further write

T1
(
ĈN , T2(ĈN ,�)

) − T1
(
C,T2(C,�)

)
= T1

(
ĈN , T2(ĈN ,�)

) − T1
(
C,T2(ĈN ,�)

)
+ T1

(
C,T2(ĈN ,�)

) − T1
(
C,T2(C,�)

)
= T1

(
ĈN − C,T2(ĈN ,�)

) + T1
(
C,T2(ĈN − C,�)

)
and obtain the representation

H
(1)
N = 1√

N

⎛⎜⎜⎝
∣∣∣∣∣∣√N(ĈN − C)

∣∣∣∣∣∣2
2∣∣∣∣∣∣T1

(√
N(ĈN − C),T2(ĈN ,�)

) + T1
(
C,T2

(√
N(ĈN − C),�

))∣∣∣∣∣∣2
2∣∣∣∣∣∣T2

(√
N(ĈN − C),�

)∣∣∣∣∣∣2
2

⎞⎟⎟⎠
=: 1√

N
F1

(√
N(ĈN − C), ĈN

)
,

H
(2)
N = 2

⎛⎜⎜⎝
〈√

N(ĈN − C),C
〉
HS〈

T1
(√

N(ĈN − C),T2(ĈN ,�)
) + T1

(
C,T2

(√
N(ĈN − C),�

))
, T1

(
C,T2(C,�)

)〉
HS〈

T2
(√

N(ĈN − C),�
)
, T2(C,�)

〉
HS

⎞⎟⎟⎠
=: F2

(√
N(ĈN − C), ĈN

)
,

where the last equations define the functions F1 and F2 in an obvious manner. Note that
F := (F1,F2) : S2(H) × S2(H) �→ R

6 is composition of continuous functions and hence
continuous. By Proposition 5 in [6], the random variable

√
N(ĈN − C) converges in dis-

tribution to a centered Gaussian random element G with variance (3.5) in S2(H) with re-
spect to Hilbert–Schmidt topology. Therefore, using continuous mapping arguments, we have

F(
√

N(ĈN − C), ĈN)
d→ F(G ,C), and consequently

√
N(GN − G) = 1√

N
F1

(√
N(ĈN − C), ĈN

) + F2
(√

N(ĈN − C), ĈN

)
d→ F2(G ,C).

We write

F2(G ,C) = 2

⎛⎜⎝ 〈G ,C〉HS〈
T1

(
G , T2(C,�)

) + T1
(
C,T2(G ,�)

)
, T1

(
C,T2(C,�)

)〉
HS〈

T2(G ,�),T2(C,�)
〉
HS

⎞⎟⎠ ,

which can be further simplified as

(3.15)

F2(G ,C)

= 2

⎛⎜⎝ 〈G ,C〉HS〈
G , T2(C,�) ⊗̃ T1

(
C,T2(C,�)

)〉
HS + 〈

C,T2(G ,�) ⊗̃ T1
(
C,T2(C,�)

)〉
HS〈

G , T2(C,�) ⊗̃ �
〉
HS

⎞⎟⎠.

By Proposition 2.1 T2(G ,�) is a Gaussian process in S2(H2). This fact along with Lemma
B.3 in the Supplementary Material imply that F2(G ,C) is a normal distributed random vector
with mean zero and covariance matrix, say �. By (3.12),

√
N(D̂N − D0) = √

N
(
f (GN) − f (G)

)
,
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where the function f : R3 �→R is defined by f (x, y, z) = x −y/z and GN and G are defined
in (3.13) and (3.14), respectively. Therefore, using the delta method and the fact that

P
(∣∣∣∣∣∣T2(ĈN ,�)

∣∣∣∣∣∣2
2 > 0

) → P
(∣∣∣∣∣∣T2(C,�)

∣∣∣∣∣∣2
2 > 0

) = 1

as |||C|||2 = 0, we finally obtain

(3.16)
√

N(D̂N − D0)
d→ N

(
0,

(∇f (G)
)T

�
(∇f (G)

))
as n → ∞ where ∇f (x, y, z) = (1,−1/z, y/z2)T denotes the gradient of the function f .
Finally, the proof of the representation (3.11) of the limiting variance is given in Section B.6
of the Supplementary Material. �

REMARK 3.1. If the null hypothesis is true, that is, C = C1 ⊗̃ C2, the variance ν2 in
Theorem 3.2 becomes zero. Indeed, under the null hypothesis of separability we have

T2(C,�) ⊗̃ T1
(
C,T2(C,�)

) = 〈C2,�〉2C1 ⊗̃ T1(C,C1)

= 〈C2,�〉2〈C1,C1〉C1 ⊗̃ C2

= ∣∣∣∣∣∣〈C2,�〉C1
∣∣∣∣∣∣2

2C = ∣∣∣∣∣∣T2(C,�)
∣∣∣∣∣∣2

2C,

which implies A = 0 for the quantity A in Theorem 3.2. Similarly,

|||T1(C,T2(C,�))|||22
|||T2(C,�)|||22

T2(C,�)

= |||T1(C,C1)|||22〈C2,�〉2

|||T2(C,�)|||22
T2(C,�)

= |||〈C1,C1〉C2|||22〈C2,�〉2

|||〈C2,�〉C1|||22
T2(C,�) = |||C2|||22|||C1|||42〈C2,�〉2

|||C1|||22〈C2,�〉2
T2(C,�)

= |||C2|||22|||C1|||22T2(C,�) = 〈C2,C2〉〈C1,C1〉〈C2,�〉C1

= 〈C1,C1〉〈C2,�〉T2(C,C2) = T2
(
C,C2〈C1,C1〉)〈C2,�〉

= T2
(
C,T1(C,C1)

)〈C2,�〉
= T2

(
C,T1

(
C, 〈C2,�〉C1

)) = T2
(
C,T1

(
C,T2(C,�)

))
and consequently the quantity B in Theorem 3.2 also vanishes. Therefore, under the null

hypothesis
√

ND̂N
p→ 0 (which is also a consequence of Theorem 3.1).

REMARK 3.2. A sufficient condition for Theorems 3.1 and 3.2 to hold is E‖X‖4
2 < ∞.

As indicated in Remark 2.2(1) of [1], this is a weaker assumption than Condition 2.1 in their
paper, which assumes

∑∞
j=1(E[〈X,ej 〉4])1/4 < ∞, for some orthonormal basis (ej )j≥1 of H .

These authors used this assumption to prove weak convergence under the trace-norm topol-
ogy which is required to establish Theorem 2.3 in [1]. In contrast, the proof of Theorem 3.2
here only requires weak convergence under the Hilbert–Schmidt topology which defines a
weaker topology.

REMARK 3.3. Note that the asymptotic distribution depends (under the null hypothesis
and alternative) on the operator � . Under the assumptions of Theorem 3.2, we obtain an
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approximation of the power of the test (3.10) by

P(ND̂N > q1−α) = P

(√
N(D̂N − D0) >

q1−α√
N

− √
ND0

)

≈ 1 − �

(
q1−α√

Nν
−

√
ND0

ν

)
,

where � is the standard normal distribution function and ν2 is defined by (3.11). Under the
alternative D0 is positive. Therefore the rejection probability converges to 1 with increasing
sample size N and, consequently, the proposed test is consistent.

Moreover, if N is sufficiently large, the power is a decreasing function of the variance ν2

in (3.11). As this quantity depends on the operator � , it is desirable to choose � such that v2

is minimal. The solution of this optimization problem depends on the unknown covariance
operator C, and it seems to be intractable to obtain it explicitly. However, we will demonstrate
in Section 4 that for finite sample sizes the resulting tests are not very sensitive with respect
to the choice of the operator � .

3.2. Hilbert–Schmidt integral operators. In the remaining part of this section, we con-
centrate on the case where X is a random element in H = L2(S ×T ) and S ⊂ R

p and T ⊂ R
q

are bounded measurable sets. In this particular scenario we choose � also to be an integral
operator generated by a kernel ψ . With this choice, using the explicit formula for the opera-
tor T1 described in Proposition 2.3, the minimum distance can be expressed in terms of the
corresponding kernels, that is,

(3.17)

D0 = D
(
T2(C,�)

)
=

∫
T

∫
T

∫
S

∫
S
c2(

s, t, s′, t ′
)
ds ds′ dt dt ′

−
∫
T

∫
T [∫S

∫
S c(s, t, s′t ′)c̃1(s, s

′) ds ds ′]2 dt dt ′∫
S

∫
S c̃2

1(s, s
′) ds ds ′ ,

where c̃1 denotes the kernel corresponding to the operator T2(C,�), that is,

c̃1
(
s, s′) =

∫
T

∫
T

c
(
s, t, s′, t ′

)
ψ

(
t, t ′

)
dt dt ′.

In this case the estimator ĈN defined in (3.1) is induced by the kernel

ĉN

(
s, t, s′, t ′

) = 1

N

N∑
i=1

(
Xi(s, t) − X(s, t)

)(
Xi

(
s′, t ′

) − X
(
s′, t ′

))
,

and the estimator Ĉ1N = T2(ĈN ,�) defined in (3.2) is induced by the kernel

ĉ1N

(
s, s′) =

∫
T

∫
T

ĉN

(
s, t, s′, t ′

)
ψ

(
t, t ′

)
dt dt ′.

The estimator D̂N of D0 is calculated by plugging in ĉN and ĉ1N to the expression in (3.17).

REMARK 3.4. (a) A natural choice for � is an operator with constant kernel, that is,
ψ(t, t ′) ≡ 1 which gives

∫
T

∫
T c(s, t, s′, t ′) dt dt ′ for the kernel of the operator T1(C,�). This

operator has to be distinguished form partial trace which is defined as the integral operator
with kernel

∫
T c(s, t, s′, t) dt , and was used by [1].
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(b) Although the proposed estimator is based on the norm of the complete covariance
kernel c, numerically we do not need to store the complete covariance kernel. For example,
we obtain for the first term of the statistic D̂N the representation

|||ĈN |||22

= 1

N2

∫
T

∫
S

∫
T

∫
S

(
N∑

i=1

(
Xi(s, t) − X(s, t)

)(
Xi

(
s′, t ′

) − X
(
s′, t ′

)))2

ds dt ds′ dt ′

= 1

N2

N∑
i=1

N∑
j=1

[∫
T

∫
S

(
Xi(s, t) − X(s, t)

)(
Xj(s, t) − X(s, t)

)
ds dt

]2
.

All other terms of the estimator in (3.3) can be represented similarly using simple matrix
operations on the data matrix without storing the full or marginal covariance kernels.

3.3. Bootstrap test for separability. An obvious method for testing the hypothesis of sep-
arability is based on the quantiles of the limiting random variable given in Theorem 3.1. For
this purpose one can estimate the limiting covariance operator � from the data and simulate a
centered Gaussian process G with covariance operator �. The limiting distribution can then
be calculated as function of the simulated Gaussian processes. The simulated 100(1 − α)%
quantile is finally compared to ND̂N to test the null hypothesis of separability which gives
the test (3.10). It turns out that this approach provides a very powerful test for the hypothesis
of separability (see the empirical results in Section 4).

As this method requires the estimation of the covariance kernel �, we also propose a boot-
strap test. The simplest method would be to approximate the limiting distribution of ND̂N

by the distribution of the statistic {ND̂∗
N − ND̂N }, where D̂∗

N is the test statistic calculated
from a bootstrap sample drawn from X1, . . . ,XN with replacement.

However, this procedure fails to give good power under the alternative. This observation
can be explained by studying the test statistic a little more closely. In general, we can write

D̂N − D0 = |||ĈN |||22 − |||T1(ĈN ,T2(ĈN ,�))|||22
|||T2(ĈN ,�)|||22

− |||C|||22 + |||T1(C,T2(C,�))|||22
|||T2(C,�)|||22

= A1,N + A2,N ,

where the statistics A1,N and A2,N are given by

A1,N = |||ĈN − C|||22
− |||T1(ĈN − C,T2(ĈN ,�))|||22 + |||T1(C,T2(ĈN − C,�))|||22

|||T2(ĈN ,�)|||22
(3.18)

+ |||T1(C, (T2(C,�)))|||22
|||T2(ĈN ,�)|||22|||T2(C,�)|||22

∣∣∣∣∣∣T2(ĈN − C,�)
∣∣∣∣∣∣2

2,

A2,N = 2〈ĈN − C,C〉HS

− 2〈T1(ĈN − C,T2(ĈN ,�)), T1(C,T2(ĈN ,�))〉
|||T2(ĈN ,�)|||22

(3.19)
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− 2〈T1(C,T2(ĈN − C,�)), T1(C,T2(C,�))〉S2(H2)

|||T2(ĈN ,�)|||22
+ 2|||T1(C, (T2(C,�)))|||22

|||T2(ĈN ,�)|||22|||T2(C,�)|||22
〈
T2(ĈN − C,�),T2(C,�)

〉
S2(H1)

,

respectively. If the true underlying covariance operator C is separable, then A2,N = 0 and,
hence, only the first term contributes to the limiting null distribution. Now, note that a similar
decomposition for the bootstrap statistic gives

D∗
N − D̂N = A∗

1,N + A∗
2,N ,

where A∗
1,N and A∗

2,N are defined similarly as in (3.18) and (3.19) replacing ĈN by its boot-
strap analogue Ĉ∗

N and C by ĈN , respectively. The first term NA∗
1,N can be shown to ap-

proximate the limiting distribution of NA1,N which is the desired null limiting distribution.
However, the estimate ĈN is in general not separable. As consequence NA∗

2,N is not zero,

and a simple bootstrap using the quantile of the distribution of N(D̂∗
N − D̂N) will result in a

test with very low power.
To avoid this problem, instead of using the quantile of N(D̂∗

N − D̂N) we propose to use
the quantile of the distribution of NA∗

1,N . This quantile can be estimated by the empirical

quantile from the bootstrap sample NA1∗
1,N , . . . ,NAB∗

1,N (here, NAb∗
1,N is the corresponding

statistic calculated from the bth bootstrap sample, for b = 1, . . . ,B).

4. Finite sample properties. In this section we study the finite sample properties of a
family of tests for the hypothesis of separability described in Section 3.3 by means of a small
simulation study. We also compare the new tests with the tests proposed by [1] and [4] and
illustrate potential applications in a data example. For this purpose we have implemented
the asymptotic test (3.10) based on simulated quantiles of the random variable appearing
in (3.4), the new bootstrap test as described in Section 3.3, the asymptotic and studentized
empirical bootstrap test described in [1] and the weighted χ2 test based on the test statistic
T̂F as described in Theorem 3 of [4]. The new tests depend on the choice of the operator
� , and we will demonstrate that they are not very sensitive with respect to this choice. Both
tests proposed by [1] require the specification of the eigensubspace, which was chosen to
be Ik = {(i, j) : i = 1, . . . , k; j = 1, . . . , k} for k = 2,3,4, and p-values are obtained by the
asymptotic distribution based test and empirical studentized bootstrap. We use the R package
“covsep” (see [22] for details) to implement their method. For the tests proposed by [4], we
choose the procedure based on the statistic T̂F as in a simulation study it turned out to be the
most powerful procedure among the four methods proposed in this paper. The test requires the
specifications of the number of spatial and temporal principal components which are taken to
be equal and the number is chosen to be 2, 3 and 4.

4.1. Simulation studies. The data are generated from a zero-mean Gaussian and a t-
distribution with five degrees of freedom with the spatiotemporal covariance kernel

(4.1) c
(
s, t, s′, t ′

) = σ 2

(a|t − t ′|2α + 1)τ
exp

(
− c‖s − s′‖2γ

(a|t − t ′|2α + 1)βγ

)
,

introduced by [10]. In this covariance function a and c are nonnegative scaling parameters
of time and space, respectively; α and γ are smoothness parameters which take values in the
interval (0,1]; β is the separability parameter which varies in the interval [0,1]; σ 2 > 0 is the
point-wise variance; and τ ≥ βd/2, where d is the spatial dimension. If β = 0, the covariance
is separable, and the space-time interaction becomes stronger with increasing values of β . We
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FIG. 1. The histogram of simulated values of ND̂N under H0 along with the simulated density of the limiting
random variable in (3.4). The left panel shows the distribution for N = 100, and the right panel is for N = 1000
observations.

fix γ = 1, α = 1/2, σ 2 = 1, a = 1, c = 1 and τ = 1 in the following discussion and choose
different values for the parameter β specifying the level of separability. Further simulation
results for a different covariance kernel can be found in Section A of the Supplementary
Material.

We generate data at 100 equally spaced time points in [0,1] and 11 space points on the grid
[0,1] × [0,1]. The integrals are approximated by an average of the function values at grid
points. The nominal significance level is taken to be 5%, and empirical rejection region are
computed by 1000 Monte-Carlo replications and 1000 bootstrap samples. In order to estimate
the quantiles, the asymptotic test (3.10) we use 1000 simulation runs.

Figure 1 illustrates the convergence of the test statistic under the null hypothesis (see Theo-
rem 3.1) for sample size N = 100 and N = 1000. We have plotted an histogram of simulated
values of the statistic ND̂N , where the data has been generated from a t-distribution with
f ive degrees of freedom and covariance kernel given in (4.1) with β = 0. The simulated
density of the limiting random variable defined in (3.4) is overlayed in the same figure. To
simulate the limit distribution, we used a plug-in-estimator of the covariance operator � based
on a sample of size 1000. The kernel in the statistic D̂N is taken to be constant. We observe
a rather good approximation by the bootstrap procedure.

In Figure 2 we investigate the effect of different choices of the operator � on the per-
formance of the methods proposed in this paper. For this purpose we consider three integral
operators with the following kernels

ψ1
(
t, t ′

) ≡ 1, ψ2
(
t, t ′

) = ∣∣t − t ′
∣∣, ψ3

(
t, t ′

) = exp
(−π

(
t2 + t ′2

))
.

The plots show the empirical rejection probabilities for the tests at 5% level (indicated by a
horizontal line in the figure), where the sample size is N = 100. We observe that both tests
are very robust with respect to the choice of the kernel ψ and that the level is well approx-
imated. Further simulation results which are not presented for the sake of brevity show a
similar picture. The power increases consistently as we move away from separability in all
cases under consideration. The empirical power is approximately 1 for β = 1 which corre-
sponds to the case of extreme nonseparability. The asymptotic test (M2) performs better than
the bootstrap test (M1). However, the bootstrap test is computationally more efficient and sig-
nificantly faster than the asymptotic test. For a more detailed discussion of the computational
issues, we refer to the Supplementary Material.

In Figure 3 and Figure 4 we compare the power of the new procedures with the tests pro-
posed by [1] and [4]. We observe that the test of [1] based on the asymptotic distribution does
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FIG. 2. Empirical rejection probabilities of the bootstrap test (M1) and the asymptotic test (3.10) (M2) pro-
posed in this paper for different choices of kernels ψ (level 5%, indicated by the horizontal line). The data are
generated from a zero mean Gaussian distribution (left part) and zero-mean t-distribution with f ive degrees of
freedom (right part). The covariance kernel is given by (4.1), and the sample sizes are N = 100. The case β = 0
corresponds to the null hypothesis of separability.

not keep the nominal level and its performance deteriorates with an increasing values of num-
ber of eigensubspaces. It performs better for the Gaussian case with N = 500 observations,
but it still does not provide an accurate approximation of the nominal level.

All other procedures yield rather similar results under the null hypothesis, and in general
the nominal level is very well approximated by all tests under consideration. On the other
hand, under the alternative we observe more differences. The asymptotic test (3.10) proposed
in this paper yields the best power. The power of the bootstrap test of [1] is increasing with
the number k of eigensubspaces used in the procedure. This improvement is achieved at
the expense of the computing time. A similar observation can be made for the test of [4]
with respect to the number of spatial and temporal principal components (see Table 3 in
the Supplementary Material for a more detailed discussion of the computation time of the
different tests).

The results of the bootstrap test proposed in this paper and the test of [1] are similar if
the latter is used with k = 2 subspaces, but the test of [1] is more powerful for k = 4. The
bootstrap test proposed in this paper has more power than the test of [4] with L = J = 2
spatial and temporal principal components. For the choice L = J = 4 the test [4] shows a
slightly better performance.

In general, an improvement in power is always achieved at a cost of computational time,
and we refer to the Supplementary Material for a more detailed discussion.

4.2. Application to real data. We apply our new methods to the acoustic phonetic data
discussed in [1]. This data set has been compiled in the Phonetics Laboratory of the Univer-
sity of Oxford between 2012–2013. It consists of natural speech recordings of five languages:
French, Italian, Portuguese, American Spanish and Castilian Spanish. The speakers utter the
numbers one to 10 in their native language. The data set consists of a sample of 219 record-
ings by 23 speakers. More information about this data and related project can be found on the
website http://www.phon.ox.ac.uk/ancient_sounds. We use the preprocessed data used in [1].
In that paper the data was transformed to a smoothed log-spectogram through a short-time
Fourier transformation using a Gaussian window function with window-size 10 milliseconds.
The log-spectograms were demeaned separately for each language. We employed the boot-
strap test with B = 1000 (M1), and the test based on the simulated quantiles of the asymp-
totic distribution of ND̂N as appeared in Theorem 3.1 (M2) on the dataset for three choices

http://www.phon.ox.ac.uk/ancient_sounds
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FIG. 3. Empirical rejection probabilities of different methods for testing the hypothesis of separability (level
5%, indicated by the horizontal line). M1: the bootstrap test proposed in this paper using kernel ψ1, M2: the
asymptotic test (3.10) proposed in this paper using the kernel ψ1, M3: the empirical bootstrap test (studentized)
proposed by [1] M4: the asymptotic test proposed by [1], M5: the test proposed in [4]. The data are generated
from a Gaussian distribution with zero mean and covariance kernel (4.1). The case β = 0 corresponds to the null
hypothesis of separability. Upper part: N = 100; lower part: N = 500.

of kernels as mentioned in Section 4.1. The results are presented in Table 1. The hypothesis
of separability is clearly rejected.
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SUPPLEMENTARY MATERIAL

Supplement to “A test for separability in covariance operators of random surfaces”
(DOI: 10.1214/19-AOS1888SUPP; .pdf). We provide additional simulation results and tech-
nical details for Sections 2 and 3 in the supplement.

https://doi.org/10.1214/19-AOS1888SUPP
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FIG. 4. Empirical rejection probabilities of different methods for testing the hypothesis of separability (level
5%, indicated by the horizontal line). M1: the bootstrap test proposed in this paper using kernel ψ1, M2: the
asymptotic test (3.10) proposed in this paper using the kernel ψ1, M3: the empirical bootstrap test (studentized)
proposed by [1] M4: the asymptotic test proposed by [1], M5: the test proposed in [4]. The data are generated
from a t-distribution with f ive degrees of freedom and covariance kernel (4.1). The case β = 0 corresponds to
the null hypothesis of separability. Upper part: N = 100; lower part: N = 500.

TABLE 1
P -values of the tests (with different kernels) for the phonetic acoustic data

Languages N M1 (ψ1) M1 (ψ2) M1 (ψ3) M2 (ψ1) M2 (ψ2) M2 (ψ3)

French 60 0.003 0.005 0.002 0.002 <0.001 <0.001
Italian 50 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Portuguese 25 <0.001 0.002 <0.001 <0.001 <0.001 <0.001
American Spanish 46 0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Castilian Spanish 38 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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