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Introduced by Breiman (Mach. Learn. 45 (2001) 5-32), Random Forests
are widely used classification and regression algorithms. While being initially
designed as batch algorithms, several variants have been proposed to handle
online learning. One particular instance of such forests is the Mondrian forest
(In Adv. Neural Inf. Process. Syst. (2014) 3140-3148; In Proceedings of the
19th International Conference on Artificial Intelligence and Statistics (AIS-
TATS) (2016)), whose trees are built using the so-called Mondrian process,
therefore allowing to easily update their construction in a streaming fashion.
In this paper we provide a thorough theoretical study of Mondrian forests
in a batch learning setting, based on new results about Mondrian partitions.
Our results include consistency and convergence rates for Mondrian trees and
forests, that turn out to be minimax optimal on the set of s-Holder function
with s € (0, 1] (for trees and forests) and s € (1, 2] (for forests only), assum-
ing a proper tuning of their complexity parameter in both cases. Furthermore,
we prove that an adaptive procedure (to the unknown s € (0, 2]) can be con-
structed by combining Mondrian forests with a standard model aggregation
algorithm. These results are the first demonstrating that some particular ran-
dom forests achieve minimax rates in arbitrary dimension. Owing to their
remarkably simple distributional properties, which lead to minimax rates,
Mondrian trees are a promising basis for more sophisticated yet theoretically
sound random forests variants.

1. Introduction. Introduced by Breiman [8], Random Forests (RF) are state-of-the-art
classification and regression algorithms that proceed by averaging the forecasts of a number
of randomized decision trees grown in parallel. Many extensions of RF have been proposed
to tackle quantile estimation problems [25], survival analysis [21] and ranking [11]; improve-
ments of original RF are provided in literature, to cite but a few, better sampling strategies
[19], new splitting methods [27] or Bayesian alternatives [10]. Despite their widespread use
and remarkable success in practical applications, the theoretical properties of such algorithms
are still not fully understood (for an overview of theoretical results on RF, see [7]). As a re-
sult of the complexity of the procedure, which combines sampling steps and feature selection,
Breiman’s original algorithm has proved difficult to analyze. A recent line of research [3, 12,
26, 35, 38, 39] has sought to obtain some theoretical guarantees for RF variants that closely
resembled the algorithm used in practice. It should be noted, however, that most of these
theoretical guarantees only offer limited information on the quantitative behavior of the al-
gorithm (guidance for parameter tuning is scarce) or come at the price of conjectures on the
true behavior of the RF algorithm itself, being thus still far from explaining the excellent
empirical performance of it.

In order to achieve a better understanding of the random forest algorithm, another line
of research focuses on modified and stylized versions of RE. Among these methods, Purely
Random Forests (PRF) [2, 5, 6, 9, 18, 22] grow the individual trees independently of the
sample, and are thus particularly amenable to theoretical analysis. The consistency of such
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algorithms (as well as other idealized RF procedures) was first obtained by [6], as a byproduct
of the consistency of individual tree estimates. These results aim at quantifying the perfor-
mance guarantees by analyzing the bias/variance of simplified versions of RF, such as PRF
models [2, 18]. In particular, [18] shows that some PRF variant achieves the minimax rate for
the estimation of a Lipschitz regression function in dimension one. The bias-variance anal-
ysis is extended in [2], showing that PRF can also achieve minimax rates for € regression
functions in dimension one. These results are much more precise than mere consistency and
offer insights on the proper tuning of the procedure. Quite surprisingly, these optimal rates
are only obtained in the one-dimensional case (where decision trees reduce to histograms). In
the multidimensional setting, where trees exhibit an intricate recursive structure, only subop-
timal rates are derived. As shown by lower bounds from [22], this is not merely a limitation
from the analysis; centered forests, a standard variant of PRF, exhibit suboptimal rates under
nonparametric assumptions.

From a more practical perspective, an important limitation of the most commonly used
RF algorithms, such as Breiman’s Random Forests [8] and the Extra-Trees algorithm [19], is
that they are typically trained in a batch manner where the whole dataset, available at once,
is required to build the trees. In order to allow their use in situations where large amounts of
data have to be analyzed in a streaming fashion, several online variants of decision trees and
RF algorithms have been proposed [13, 14, 16, 34, 37].

Of particular interest in this article is the Mondrian forest (MF) algorithm, an efficient and
accurate online random forest classifier introduced by [23]; see also [24]. This algorithm is
based on the Mondrian process [31-33], a natural probability distribution on the set of re-
cursive partitions of the unit cube [0, 1]¢. An appealing property of Mondrian processes is
that they can be updated in an online fashion. In [23] the use of the conditional Mondrian
process enables the authors to design an online algorithm which matches its batch counter-
part. Training the algorithm one data point at a time leads to the same randomized estimator
as training the algorithm on the whole dataset at once. The algorithm proposed in [23] de-
pends on a lifetime parameter A > 0 that guides the complexity of the trees by stopping their
building process. However, a theoretical analysis of MF is lacking, in particular, the tuning
of A is unclear from a theoretical perspective. In this paper we show that, aside from their
appealing computational properties, Mondrian forests are amenable to a precise theoretical
analysis. We study MF in a batch setting and provide theoretical guidance on the tuning of A.

Based on a detailed analysis of Mondrian partitions, we prove consistency and convergence
rates for MF in arbitrary dimension that turn out to be minimax optimal on the set of s-
Holder function with s € (0, 2], assuming that A and the number of trees in the forest (for s €
(1, 2]) are properly tuned. Furthermore, we construct a procedure that adapts to the unknown
smoothness s € (0, 2] by combining Mondrian forests with a standard model aggregation
algorithm. To the best of our knowledge, such results have only been proved for very specific
purely random forests, where the covariate space is of dimension one [2]. Our analysis also
sheds light on the benefits of Mondrian forests compared to single Mondrian trees; the bias
reduction of Mondrian forests allow them to be minimax for s € (1, 2] while a single tree
fails to be minimax in this case.

Agenda. This paper is organized as follows. In Section 2 we describe the considered
setting and set the notation for trees and forests. Section 3 defines the Mondrian process
introduced by [33] and describes the MF algorithm. Section 4 provides new sharp properties
for Mondrian partitions, cells distribution in Proposition 1 and a control of the cells diameter
in Corollary 1 while the expected number of cells is provided in Proposition 2. Building on
these properties, we provide, in Section 5, statistical guarantees for MF. Theorem 1 proves
consistency, while Theorems 2 and 3 provide minimax rates for s € (0, 1] and s € (1, 2],
respectively. Finally, Proposition 4 proves that a combination of MF with a model aggregation
algorithm adapts to the unknown smoothness s € (0, 2].
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2. Setting and notation. We first describe the setting of the paper and set the notations
related to the Mondrian tree structure. For the sake of conciseness, we consider the regression
setting and show how to extend the results to classification in Section 5.5.

Setting. We consider a regression framework, where the dataset &, = {(Xy, Y1), ...,
(X,, Y,)} consists of i.i.d. [0, 114 x R-valued random variables. We assume throughout the
paper that the dataset is distributed as a generic pair (X, Y) such that E[Y?] < oo. This un-
known distribution, characterized by the distribution x of X on [0, 1]¢ and by the conditional
distribution of Y| X, can be written as

2.1 Y =f(X)+e,

where f(X) =E[Y | X] is the conditional expectation of Y given X, and ¢ is a noise sat-
isfying E[e|X] = 0. Our goal is to output a randomized estimate ﬁl(-, Z,2,):[0,119 > R
where Z is a random variable that accounts for the randomization procedure. To simplify
notation, we will denote fn(x, Z)= ﬁ,(x, Z, %,). The quality of a randomized estimate fn
is measured by its quadratic risk

R(F) =E[(fn(X, 2) — £(X))*],

where the expectation is taken with respect to (X, Z, &,). We say that a sequence (ﬁ,)nzl is
consistent whenever R(f,) — 0 as n — oo.

Trees and forests. A regression tree is a particular type of partitioning estimate. First,
a recursive partition IT of [0, 1]¢ is built by performing successive axis-aligned splits (see
Section 3), then the regression tree prediction is computed by averaging the labels Y; of
observations falling in the same cell as the query point x € [0, 1]¢, that s,

- " 1(X;eC
2.2) Hem=>" %

i=1

is

where Crj(x) is the cell of the tree partition containing x and N,(Cr(x)) is the number of
observations falling into Crj(x) with the convention that the estimate returns O if the cell
Cri(x) is empty.

A random forest estimate is obtained by averaging the predictions of M randomized deci-
sion trees; more precisely, we will consider purely random forests, where the randomization
of each tree (denoted above by Z) comes exclusively from the random partition, which is
independent of Z,. Let Iy = @D, Iy where 1™ (for m = 1,..., M) are i.i.d.
random partitions of [0, 1]¢. The random forest estimate is thus defined as

(2.3) Famr ) = — an Ly,

where f;, (x, 1™ is the prediction, at point x, of the tree with random partition [1?" defined
in (2.2).

The Mondrian forest, whose construction is described below, is a particular instance of
(2.3) in which the Mondrian process plays a crucial role by specifying the randomness IT of
tree partitions.



2256 J. MOURTADA, S. GAIFFAS AND E. SCORNET

Algorithm 1 SampleMondrian(C, t, A): samples a Mondrian partition of C, starting from
time T and until time A.
I: Inputs: A cell C =[],<;4laj, bj], starting time 7 and lifetime parameter A.
2: Sample a random variable Ec ~ Exp(|C|)
3. if t + Ec < A then
4 Sample a split dimension J € {1, ...,d}, with P(J = j) = (b; — a;)/|C]|
5:  Sample a split threshold S, uniformly in [a, b]
6
7
8
9

Split C along the split (J, Sy):let Co={x € C:x; < S;}and C; =C\ Cyp
return SampleMondrian(Cy, T + Ec,A) U SampleMondrian(Cyi, T+ Ec, A)
. else
return {C} (i.e., do not split C).
10: end if

3. The Mondrian forest algorithm. Given a rectangular box C = ]—[?:1 laj,b;j]1 < R,

we denote |C| := Z§:1 (bj — aj) its linear dimension. The Mondrian process MP(C) is a
distribution on (infinite) tree partitions of C introduced by [33]; see also [32] for a rigorous
construction. Mondrian partitions are built by iteratively splitting cells at some random time
which depends on the linear dimension of the cell; the splitting probability on each side is
proportional to the side length of the cell, and the position is drawn uniformly.

The Mondrian process distribution MP(X, C) is a distribution on tree partitions of C, re-
sulting from the pruning of partitions drawn from MP(C). The pruning is done by removing
all splits occurring after time A > 0. In this perspective A is called the lifetime parameter and
controls the complexity of the partition; large values of A corresponds to deep trees (complex
partitions).

Sampling from the distribution MP (A, C) can be done efficiently by applying the recursive
procedure SampleMondrian(C, t =0, A) described in Algorithm 1. Figure 1 below shows
a particular instance of Mondrian partition on a square box with lifetime parameter A = 3.4.
In what follows, Exp(}) stands for the exponential distribution with intensity A > 0.

REMARK 1. Using the fact that Exp is memoryless (if £ ~ Exp(A) and u > 0 then E —
u|lE > u ~ Exp()), it is possible to efficiently sample IT;, ~ MP(A’, C) given its pruning
[T, ~MP(A,C) at time A < A,

A Mondrian tree estimator is given by equation (2.2) where the partition IT1" is sampled
from the distribution MP(X, [0, 1]9). The Mondrian forest grows randomized tree partitions

Hil), ey HXM), fits each one with the dataset &, by averaging the labels falling into each
-0
—— 3.2 ——
o —+1.3
1.3 -
—+2.3
— 2.3 — 1oz
3.2
—TA=3.4
time

FI1G. 1. A Mondrian partition (left) with corresponding tree structure (right) which shows the evolution of the
tree over time. The split times are indicated on the vertical axis while the splits are denoted with bullets (o).
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leaf, then combines the resulting Mondrian tree estimates by averaging their predictions. In
accordance with equation (2.3), we let

(3.1 Fronma (x, T ap) = x l'I(’")

||M§

be the Mondrian forest estimate described above where fkm) (x, l'[(m)) denotes the Mondrian
tree based on the random partition Hg ™) and TI AWM= (Hgl), e HgM)). To ease notation,

we will write f;(";) (x) instead of f;(":l) (x, H(km)). Although we use the standard definition of
Mondrian processes, the way we compute the prediction in a Mondrian tree differs from the
original one. Indeed, in [23] prediction is given by the expectation over a posterior distribution
where a hierarchical prior is assumed on the label distribution of each cell of the tree. In this
paper we simply compute the average of the observations falling into a given cell.

4. Local and global properties of the Mondrian process. In this section we show that
the properties of the Mondrian process enable us to compute explicitly some local and global
quantities related to the structure of Mondrian partitions. To do so, we will need the following
two facts, exposed by [33]:

FACT 1 (Dimension 1). For d = 1, the splits from a Mondrian process IT, ~ MP(A,
[0, 1]) form a subset of [0, 1] which is distributed as a Poisson point process of intensity
Adx.

ACT estriction). et I, ~ , 10, ¢ a Mondrian partition, an =
F 2 (Restriction). Let II MP (XA H)IYG b Mondri partiti d C
ﬂ?zl[aj,bj] C [0, 114 be a box. Consider the restriction ITy|c of I, on C, that is, the

partition on C induced by the partition IT; of [0, 11¢. Then, II, lc ~MP(A, C).

Fact 1 deals with the one-dimensional case by making explicit the distribution of splits for
Mondrian process which follows a Poisson point process. The restriction property stated in
Fact 2 is fundamental, and enables one to precisely characterize the behavior of the Mondrian
partitions.

Given any point x € [0, 1]¢, Proposition 1 below is a sharp result giving the exact distri-
bution of the cell C; (x) containing x from the Mondrian partition. Such a characterization
is typically unavailable for other randomized trees partitions involving a complex recursive
structure.

PROPOSITION 1 (Cell distribution). Let x € [0, 11¢ and denote by
G = [T [Lja(), Rjn()]

l<j=d

the cell containing x in a partition T1, ~ MP(A, [0, 119) (this cell corresponds to a leaf).
Then, the distribution of C) (x) is characterized by the following properties:

(1) Li1p(x), Ria(x),.... Lg(x), Rgy(x) are independent
(ii) For each j =1,. d L (x) is distributed as (x — 1Ej,L) V0 and R;j;(x) as
x+27'E;j RN where E, L, Ej g ~Exp(l).

The proof of Proposition 1 is given in Section 7. Figure 2 is a graphical representation of
Proposition 1. A consequence of Proposition 1 is the next Corollary 1 which gives a precise
upper bound on the diameter of the cells. In particular, this result is used in the proofs of the
theoretical guarantees for Mondrian trees and forests from Section 5 below.
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C)\(’I,) ~—

FI1G. 2.  Cell distribution in a Mondrian partition (Proposition 1).

COROLLARY 1 (Cell diameter). Set A > 0 and IT, ~ MP(A, [0, l]d) be a Mondrian par-
tition. Let x € [0, 11 and let D, (x) be the ¢*-diameter of the cell C)(x) containing x in I1,.
For every § > 0, we have

(4.1) P(Dj.(x) > ) §d<1 + %) exp(—%)

and

(4.2) E[Dy(x)*] < .

In order to control the risk of Mondrian trees and forests, we need an upper bound on the
number of cells in a Mondrian partition. Quite surprisingly, the expectation of this quantity
can be computed exactly, as shown in Proposition 2.

PROPOSITION 2 (Number of cells). Set A > 0 and 1, ~ MP(X, [0, 119) be a Mondrian
partition. If K;, denotes the number of cells in I1,, we have E[K;] = (1 + 1.

The proof of Proposition 2 is given in the Supplementary Material [29] while a sketch
of proof is provided in Section 7. Although the proof is technically involved, it relies on a
natural coupling argument, we introduce a recursive modification of the construction of the
Mondrian process which keeps the expected number of leaves unchanged and for which this
quantity can be computed directly using the Mondrian—Poisson equivalence in dimension
one (Fact 1). A much simpler result is E[K;] < (e(1 + 2))? which was previously obtained
in [28]. By contrast, Proposition 2 provides the exact value of this expectation which removes
a superfluous e factor.

REMARK 2. Proposition 2 naturally extends (with the same proof) to the more gen-
eral case of a Mondrian process with finite measures with no atoms vy, ..., vy on the sides
Cl,...,C? of abox C C RY (for a definition of the Mondrian process in this more general
case, see [32]). In this case we have E[K; ] = Hlfjfd(l +v; (C)).

As illustrated in this section, a remarkable fact with the Mondrian forest is that the quanti-
ties of interest for the statistical analysis of the algorithm can be made explicit. In particular,
we have seen in this section that, roughly speaking, a Mondrian partition is balanced enough
so that it contains O (A?) cells of diameter O (1 /A) which is the minimal number of cells to
cover [0, 1]9.
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5. Minimax theory for Mondrian forests. This section gathers several theoretical guar-
antees for Mondrian trees and forests. Section 5.1 states the universal consistency of the
procedure, provided that the lifetime A,, belongs to an appropriate range. We provide con-
vergence rates which turn out to be minimax optimal for s-Holder regression functions with
s € (0, 1] in Section 5.2 and with s € (1, 2] in Section 5.3, provided in both cases that A,
is properly tuned. Note that in particular, we illustrate in Section 5.3 the fact that Mondrian
forests improve over Mondrian trees when s € (1, 2]. In Section 5.4 we prove that a combi-
nation of MF with a model aggregation algorithm adapts to the unknown s € (0, 2]. Finally,
results for classification are given in Section 5.5.

5.1. Consistency of Mondrian forests. The consistency of the Mondrian forest estimator
is established in Theorem 1 below, assuming a proper tuning of the lifetime parameter A,,.

THEOREM 1 (Universal consistency). Let M > 1. Consider Mondrian trees f;&'ﬁl (for

m=1,..., M) and Mondrian forest ﬁ”,n,M given by equation (3.1) for a sequence (Ay)n>1
satisfying A, — 0o and Ag /n — 0. Then, under the setting described in Section 2 above, the

individual trees f}m,)l (for m =1, ..., M) are consistent, and as a consequence, the forest
—~ ns
Jr,.n.Mm s consistent for any M > 1.

The proof of Theorem 1 is given in the Supplementary Material [29]. It uses the properties
of Mondrian partitions established in Section 4 together with general consistency results for
histograms. This result is universal, in the sense that it makes no assumption on the joint
distribution of (X, Y), apart from E[Y 2] < 00, in order to ensure that the quadratic risk is
well defined (see Section 2).

The only tuning parameter of a Mondrian tree is the lifetime A, which encodes the com-
plexity of the trees. Requiring an assumption on this parameter is natural and confirmed by
the well-known fact that the tree depth is an important tuning parameter for Random Forests;
see [7]. However, Theorem 1 leaves open the question of a theoretically optimal tuning of A,
under additional assumptions on the regression function f which we address next.

5.2. Mondrian trees and forests are minimax for s-Holder functions with s € (0, 1].  The
bounds obtained in Corollary 1 and Proposition 2 are explicit and sharp in their dependency
on A. Based on these properties, we now establish a theoretical upper bound on the risk of
Mondrian trees which gives the optimal theoretical tuning of the lifetime parameter A,. To
pursue the analysis, we need the following assumption:

ASSUMPTION 1. Consider (X, Y) from the setting described in Section 2, and assume
also that E[e | X] =0 and Var(e | X) < 02 < 0o almost surely where ¢ is given by equation
(2.1).

Our minimax results hold for a class of s-Holder regression functions defined below.

DEFINITION 1. Let pe N, g€ (0,1] and L > 0. The (p, B)-Holder ball of norm L, de-
noted €P-B (L) =€P-P([0, 114, L), is the set of p times differentiable functions f : [0, 114 —
R such that

VP F@) = VP F() < Llx=x|P and |VEF@)| <L

for every x,x’ € [0, l]d and k € {1,..., p}. Whenever f € ‘gp’ﬂ(L), we say that f is s-
Holder with s = p + .
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Note that in what follows we will assume s € (0, 2], so that p € {0, 1}. Theorem 2 below
states an upper bound on the risk of Mondrian trees and forests which explicitly depends on
the lifetime parameter A. Selecting A that minimizes this bound leads to a convergence rate
which turns out to be minimax optimal over the class of s-Holder functions for s € (0, 1]
(see, for instance, [36], Chapter 1.3 in [30] or Theorem 3.2 in [20]).

THEOREM 2. Grant Assumption 1, and assume that f € 9B (L) where B €(0,1] and
L > 0. Let M > 1. The quadratic risk of the Mondrian forest f5 . ym with lifetime parameter
A > 0 satisfies

. 4)PL? 1+
6O Elfaw0 - ro0)]= SR L T 02 g2

In particular, as n — 00, the choice ) := A, < L?/(@+2B) p1/(d+2B) gy

which corresponds to the minimax rate over the class OB (L).

The proof of Theorem 2 is given in Section 7. It relies on the properties about Mondrian
partitions stated in Section 4. Namely, Corollary 1 allows to control the bias of Mondrian trees
(first term on the right-hand side of equation (5.1)), while Proposition 2 helps in controlling
the variance of Mondrian trees (second term on the right-hand side of equation (5.1)).

To the best of our knowledge, Theorem 2 is the first to prove that a purely random forest
(Mondrian forest in this case) can be minimax optimal in arbitrary dimension. Minimax
optimal upper bounds are obtained for d = 1 in [18] and [2] for models of purely random
forests such as Toy-PRF (where the individual partitions correspond to random shifts of the
regular partition of [0, 1] in & intervals) and Purely Uniformly Random Forests (PURF) where
the partitions are obtained by drawing k random thresholds uniformly in [0, 1]). However, for
d = 1, tree partitions reduce to partitions of [0, 1] in intervals and do not possess the recursive
structure that appears in higher dimensions which makes their analysis challenging. For this
reason the analysis of purely random forests for d > 1 has typically produced suboptimal
results, for example, [5] exhibits an upper bound on the risk of the centered random forests
(a particular instance of PRF) which turns out to be much slower than the minimax rate for
Lipschitz regression functions. A more in-depth analysis of the same random forest model
in [22] exhibits a new upper and lower bound of the risk which is still slower than minimax
rates for Lipschitz functions. A similar result was proved by [2], who studied the Balanced
Purely Random Forests (BPRF) algorithm, where all leaves are split so that the resulting tree
is complete, and obtained suboptimal rates. In our approach the convenient properties of the
Mondrian process enable us to bypass the inherent difficulties met in previous attempts. One
specificity of Mondrian forests compared to other PRF variants is that the largest sides of
cells are more likely to be split. By contrast, variants of PRF (such as centered forests) where
the coordinate of the split is chosen with equal probability, may give rise to unbalanced cells
with large diameter.

Theorem 2 provides theoretical guidance on the choice of the lifetime parameter and sug-
gests to set A := A, =< n'/@*2_ Such an insight cannot be gleaned from an analysis that
focuses on consistency alone. Theorem 2 is valid for Mondrian forests with any number of
trees and, thus, in particular for a Mondrian tree (this is also true for Theorem 1). However, it
is a well-known fact that forests outperform single trees in practice [17]. Section 5.3 proposes
an explanation for this phenomenon by assuming f € €A (L).
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5.3. Improved rates for Mondrian forests compared to a Mondrian tree. The conver-
gence rate stated in Theorem 2 for f € €%#(L) is valid for both trees and forests, and the
risk bound does not depend on the number M of trees that compose the forest. In practice,
however, forests exhibit much better performances than individual trees. In this section we
provide a result that illustrates the benefits of forests over trees by assuming that f € €A (L).
As the counterexample in Proposition 3 below shows, single Mondrian trees do not benefit
from this additional smoothness assumption and achieve the same rate as in the Lipschitz
case. This comes from the fact that the bias of trees is highly suboptimal for such functions.

PROPOSITION 3. Assume that Y = f(X) + e with f(x) =1+ x, where X ~U([O,

and ¢ is independent of X with variance o>. Consider a single Mondrian tree estimate ]ﬁ
Then, there exists a constant Cy > 0 such that

1])
)

1/3 2\ 2/3
nf B[(F100 = £(X0)] 2 Con z(i)

n

for any n > 18.

The proof of Proposition 3 is given in the Supplementary Material [29]. Since the minimax
rate over ¢! in dimension 1 is O (n~*/), Proposition 3 proves that a single Mondrian tree
is not minimax optimal over this set of functions. However, it turns out that large enough
Mondrian forests, which average Mondrian trees, are minimax optimal over € L1 Therefore,
Theorem 3 below highlights the benefits of a forest compared to a single tree.

THEOREM 3. Grant Assumption 1 and assume that [ € ¢V-B(L), with B € (0,1] and
L > 0. In addition, assume that X has a positive and Cp-Lipschitz density p w.r.t. the
Lebesgue measure on [0, 1]%. Let f;L n.M be the Mondrzan forest estimate given by (3.1).
Set e € (0,1/2) and B, =[¢e, 1 — €1%. Then, we have

E[(fonm(X) = £(X))*|X € Be]
_ 20+ 07202 +91£115
- on o po(l—2e)
(5.3) 144L%dp, e  72L%d° ( p1Cp>2
po(l — 2e)d A3 A4 p(%

16L2d"B [ p1\2 8dL?
22(1+8) % M2’

where po = inf, o ¢ p(x) and p1 = sup, (o 1j¢ P(X). In particular, letting s = 1 + B, the
choices

I = LZ/(d+ZS)n1/(d+23) and M, > L4,3/(d+23)n25/(d+2s)
give
(54) E[(ﬁn,n,M”(X) _ f(X))z | X e Bg] — 0(LZd/(d-i-ZS)n—2s/(d+2s))

which corresponds to the minimax risk over the class €#(L).
In the case where ¢ =0, which corresponds to integrating over the whole hypercube, the

bound (5.4) holds if 2s < 3. On the other hand, if 2s > 3, letting
hy = L2/@ED @) g > 1 4/ 43) 2/ +3)
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yields the following upper bound on the integrated risk of the Mondrian forest estimate over
By

(5.5) E[(f, 01, (X) — £(X))?] = O(LX/ @+ =3/ +3))

The proof of Theorem 3 is given in Section 7 below. It relies on an improved control
of the bias, compared to the one used in Theorem 2 in the Lipschitz case. It exploits the
knowledge of the distribution of the cell C; (x) given in Proposition 1 instead of merely the
cell diameter given in Corollary 1 (which was enough for Theorem 2). The improved rate for
Mondrian forests compared to Mondrian trees comes from the fact that large enough forests
have a smaller bias than single trees for smooth regression functions. This corresponds to the
fact that averaging randomized trees tends to smooth the decision function of single trees,
which are discontinuous piecewise constant functions that approximate smooth functions
suboptimally. Such an effect was already noticed by [2] for purely random forests.

REMARK 3. While equation (5.4) gives the minimax rate for %! functions, it suffers
from an unavoidable standard artifact, namely a boundary effect which impacts local averag-
ing estimates, such as kernel estimators [2, 40]. It is however possible to set ¢ =0 in (5.3)
which leads to the sub-optimal rate stated in (5.5).

5.4. Adaptation to the smoothness. The minimax rates of Theorems 2 and 3 for trees and
forests are achieved through a specific tuning of the lifetime parameter A, which depends on
the considered smoothness class 7> (L) through s = p 4+ 8 and L > 0, while, on the other
hand, the number of trees M simply needs to be large enough in the statement of Theorem 3.
Since in practice such smoothness parameters are unknown, it is of interest to obtain a single
method that adapts to them.

In order to achieve this, we adopt a standard approach based on model aggregation [30].
More specifically, we split the dataset into two parts. The first is used to fit Mondrian forest
estimators with A varying in an exponential grid, while the second part is used to fit the
STAR procedure for model aggregation, introduced in [4]. The appeals of this aggregation
procedure are its simplicity, its optimal guarantee and the lack of parameter to tune.

Let ng = [n/2], @no ={(X;,Y;): 1 <i <np} and @no+1:11 ={(X:,Y):no+1=<i=<nj.
Also,let I, ={i e {ng+1,...,n}: X; €e, 1 —s]d} for some € € (0, 1/2). If I, is empty, we
let the estimator be g, = 0. We define A = Llogz(nl/ 4y| and M = [n*/7] and consider the
geometric grid A ={2% : =0, ..., A}. Now, let

1 M
Y, ... T ~MP(!/ [0, 11%)
be i.i.d. Mondrian partitions. For m = 1,..., M, we let H&m) be the pruning of H%/)d in

which only splits occurring before time A have been kept. We consider now the Mondrian
forest estimators

fOl = fza,no,M

for every o = 0,..., A where we recall that these estimators are given by (3.1). The estima-

tors fo, are computed using the sample Z,, and the Mondrian partitions 1'[20,), 1<m=<M.
Let

. .1 ~
@ = argmin Al Z(fa(X,-) — Y,-)2

be a risk minimizer, and let G = Ua[fa, fa ] where [ f, g] = {(1 — t)f +tg:t€[0,1]}. Note
that G is a star domain with origin at the empirical risk minimizer fa, hence the name STAR
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[4]. Then, the adaptive estimator is a convex combination of two Mondrian forests estimates
with different lifetime parameters, given by

(5.6) &= argmjn{i 3 (g(Xi) — Y,-)z}.

8€g I Ze| iel,
PROPOSITION 4. Grant Assumption 1, with |Y| < B almost surely and f € €PP(L)

with p € {0, 1}, B € (0, 1] and L > 0. Also, assume that the density p of X is C,-Lipschitz
and satisfies po < p < p1. Then, the estimator g,, defined by (5.6) satisfies

E[(2:(X) — £(X))* | X € Be]

(5.7) 0,...,

N 600B2(log(1 + log, n) + 1)
cin ’

+ 4BZefc1n/4

where B, =[e,1 —¢]? and ¢; = po(l — 28)d/4. In particular, we have
(5.8) E[(3.(X) — f(X))2 |X € B.]= 0(LZd/(d+25)n—25/(d+2s))’

where s = p + B.

The proof of Proposition 4 is to be found in the Supplementary Material [29]. Proposition 4
proves that the estimator g,, which is a STAR aggregation of Mondrian forests, is adaptive
to the smoothness of f whenever f is s-Holder with s € (0, 2].

5.5. Results for binary classification. We now consider, as a by-product of the analy-
sis conducted for regression estimation, the setting of binary classification. Assume that we
are given a dataset &, = {(X1, Y1), ..., (X, Y;)} of i.i.d. random variables with values in
[0, 1714 x {0, 1}, distributed as a generic pair (X, Y) and define n(x) =P[Y = 1|X = x]. We
define the Mondrian forest classifier g , u as a plug-in estimator of the regression estimator.
Namely, we introduce

G () =1(Ffinm(x) > 1/2)

for all x € [0, 11¢ where ﬁn M 1is the Mondrian forest estimate defined in the regression
setting. The performance of g _, » is assessed by the 0-1 classification error defined as

(5.9 L@rn.m) =P(@rnm(X) #Y),

where the probability is taken with respect to (X, Y, IT; u, &) and where ITj s is the set
sampled Mondrian partitions; see (3.1). Note that (5.9) is larger than the Bayes risk defined
as

L(g") =P(g"(X) #7Y),

where g*(x) = 1(n(x) > 1/2). A general theorem [15], Theorem 6.5, allows us to derive an
upper bound on the distance between the classification risk of g, , » and the Bayes risk,
based on Theorem 2.

COROLLARY 2. Let M > 1 and assume that n € &9 V(L). Then, the Mondrian forest
classifier g, = g, .n.m With parameter X,, < n'/@+2) satisfies

L(g) = L(g") = o(n™/("*?).
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The rate of convergence o(n~'/@*2)) for the error probability with a Lipschitz conditional
probability 1 is optimal [41]. We can also extend in the same way Theorem 3 to the context
of classification. This is done in the next corollary where we only consider the €1 case for
convenience.

COROLLARY 3. Assume that X has a positive and Lipschitz density p w.r.t. the Lebesgue
measure on [0, 11¢ and that ne€ 1\ (L). Let 8n = 8x,.n.M, be the Mondrian forest classifier
composed of My, > n*/ @9 trees, with lifetime A, < n'/ @+ Then, we have

(5.10) P[g.(X) # Y|X € B;] — P[g*(X) # Y |X € B:] = o(n=2/{@+%)
forall ¢ € (0,1/2), where By = [¢, 1 — ¢]“.

This shows that Mondrian forests achieve an improved rate compared to Mondrian trees
for classification.

6. Conclusion. Despite their widespread use in practice, the theoretical understanding
of Random forests is still incomplete. In this work, we show that the Mondrian forest, orig-
inally introduced to provide an efficient online algorithm, leads to an algorithm that is not
only consistent but, in fact, minimax optimal under nonparametric assumptions in arbitrary
dimension. This provides, to the best of our knowledge, the first results of this nature for a ran-
dom forest method in arbitrary dimension. Besides, our analysis allows to illustrate improved
rates for forests compared to individual trees. Mondrian partitions possess nice geometric
properties, which can be controlled in an exact and direct fashion, while previous approaches
[2, 6] require arguments that work conditionally on the structure of the tree. Since random
forests are usually black-box procedures that are hard to analyze, it would be interesting to
see whether the simple properties of the Mondrian process could be leveraged to design more
sophisticated variants of RF that remain amenable to precise analysis.

The minimax rate O (n~2/+4) for a s-Holder regression with s € (0, 2] obtained in
this paper is very slow when the number of features d is large. This comes from the well-
known curse of dimensionality phenomenon, a problem affecting all fully nonparametric
algorithms. A standard approach used in high-dimensional settings is to work under a sparsity
assumption where only s < d features are informative. A direction for future work is to
improve Mondrian forests using a data-driven choice of the features along which the splits
are performed, reminiscent of Extra-Trees [19]. From a theoretical perspective it would be
interesting to see how the minimax rates obtained here can be combined with results on the
ability of forests to select informative variables (see, for instance, [35]).

7. Proofs. This Section gathers the proofs of Proposition 1 and Corollary 1 (cell dis-
tribution and cell diameter). Then, a sketch of the proof of Proposition 2 is described in this
section (the full proof, which involves some technicalities, can be found in the Supplementary
Material [29]). Finally, we provide the proofs of Theorem 2 and Theorem 3.

PROOF OF PROPOSITION 1. LetO <ay,...,ay,by,...,b, <1besuchthata; <x; <
bjforl1<j<d. LetC:= ]_[?Zl[aj,bj]. Note that the event
En(C,x)={L1,(x) <ai, Rix(x) = by, ..., Lg(x) <aq, Ra(x) > by}

coincides—up to the negligible event that one of the splits of I, occurs on coordinate j at
aj or bj—with the event that IT, does not cut C, that is, that the restriction IT;|c of TI;
to C contains no split. Now, by the restriction property of the Mondrian process (Fact 2),
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[T, |c is distributed as MP(X, C); in particular, the probability that [T, |c contains no split is
exp(—A|C]). Hence, we have

(7.1) P(E(C, x)) = e 0@ =Mb1=0) 5 | g=he=aa) g=rbi—)

In particular, setting a; = b; = x in (7.1), except for one a; or b;, and using that L 5 (x) < x
and R; ;(x) > x, we obtain

(7.2) P(Rj;(x) >b;)=e*0i™ and P(L;;(x) <aj)=e 0790,

Since clearly R (x) < 1and L;;(x) > 0, equation (7.2) implies (i1). Additionally, plugging
Equation (7.2) back into equation (7.1) shows that Lj ;(x), R1x(x), ..., Lg(x), Rg 1 (x)
are independent, that is, point (i). This completes the proof. [J

PROOF OF COROLLARY 1. Using Proposition 1, for 1 < j <d, Dj(x) = Rj;(x) —
Xj+x; — Lj;(x) is stochastically upper bounded by L~ Y(E| + E,) with E;, E> two inde-
pendent Exp(1) random variables which is distributed as Gamma(2, A). This implies that

(7.3) P(D; s (x) >8) < (14 18)e ™™

for every § > 0 (with equality if § < x; A (1 —x;))and E[D; ; (x)?] < A"2(E[E}]+E[E3]) =
4/A2. The bound (4.1) for the diameter D; (x) = [Zj?: 1 D 3(x)?1Y/? is obtained by noting
that

_ 8 d 8
P(D;(x) > 8) < P(HJ Dj(x0) > ﬁ) < gp(D,-,ux) > ﬁ),

while (4.2) follows from the identity E[ D, (x)*] = Z;Ll E[D; (x)?. O

SKETCH OF PROOF OF PROPOSITION 2. Let us provide here an outline of the argument;
a fully detailed proof is available in the Supplementary Material [29]. The general idea of the
proof is to modify the construction of Mondrian partitions (and hence their distribution) in a
way that leaves the expected number of cells unchanged, while making this quantity directly
computable.

Consider a Mondrian partition I, ~ MP(A, [0, 11%) and a cell C formed at time 7 in it
(e.g., C = [0, 1]¢ for = 0). By the properties of exponential distributions, the split of C
(if it exists) from Algorithm 1 can be obtained as follows: Sample independent variables
Ej, Uj with Ej ~ Exp(1) and Uj ~U(0,1]) for j=1,...,d. Let Tj = (bj —aj)_lEj and
Si=aj+(bj—a;)Uj, where C = ]_[?Zl[aj, bj],and set J = argminlijsd T;. Ift+T; > A,
then C is not split (and is thus a cell of IT;). On the other hand, if t 4+ T < A, then C is split
along coordinate J at Sy (and attime T + Ty) into C'={x € C:x; < S;}and C"=C\ C'.
This process is then repeated for the cells C’ and C” by using independent random variables
E, U} and E, U7, respectively.

Now, note that the number of cells K, (C) in IT, contained in C is the sum of the number
of cells in C” and C”, namely K, (C’) and K, (C”). Hence, the expectation of K; (C) (con-
ditionally on previous splits) only depends on the distribution of the split (J, Sy, Ty), as well
as on the marginal distributions of K;(C’) and K, (C”) but not on the joint distribution of
(K3.(C"), K;.(C")).

Consider the following change. Instead of splitting C’ and C” based on the independent
random variables E ;, U j/ and E ;/ ,U ]’/ , respectively, we reuse for both C” and C” the variables
E;, U; (and thus §;, T;) for j # J which were not used to split C. It can be seen that, for
both C” and C”, these variables have the same conditional distribution, given J, Sy, Ty, as
the independent ones. One can then form the modified random partition I1; by recursively
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applying this change to the construction of IT,, starting with the root and propagating the
unused variables at each split. By the above outlined argument, its number of cells K, satisfies
E[K;]=E[K;]. ~

On the other hand, one can show that the partition IT) is a “product” of independent one-
dimensional Mondrian partition Hi ~ MP(, [0, 1]) along the coordinates j =1, ..., d (this

means that the cells of [T, are the Cartesian products of cells of the Hi). Since the splits of a
one-dimensional Mondrian partition of [0, 1] form a Poisson point process of intensity A dx
(Fact 1), the expected number of cells of I/ 5 1s 1+ A. Since the I'IJ for j ={1,...,d} are
independent, this implies that E[K;] = (1+A)?. Once again, the full proof is prov1ded in the
Supplementary Material [29]. [

PROOF OF THEOREM 2. Recall that the Mondrian forest estimate at x is given by
Fronm () = Z A @),
By convexity of the function y’ > (y — y’ )2 for any y € R, we have
R(Frnm) <~ Z R(FN) = R(FL).

since the random trees estimators fxrfl) have the same distribution form=1,..., M. Hence,

it suffices to prove Theorem 2 for the tree estimator f . We will denote for short fA = f(l)

all along this proof.

Bias-variance decomposition. We establish a bias-variance decomposition of the risk of
a Mondrian tree, akin to the one stated for purely random forests by [18]. Denote fA (x) :=
E[f(X)|X € C;.(x)] (which depends on IT;) for every x in the support of w. Given IT;, the
function f; is the orthogonal projection of f € L*([0, 114, 11) on the subspace of functions
that are constant on the cells of IT,. Since f,\ belongs to this subspace given Z,, we have
conditionally on (IT;, Z,):

Ex[(f(X) = £.(0)] =Ex[(f(X) = £.00) ]+ Ex[(£.00 — A(%))]
This gives the following decomposition of the risk of ﬁ by taking the expectation over
(H)u @n):

(7.4) R(F) =E[(f(X) = O] +E[(A(X) — (0)].

The first term of the sum, the bias, measures how close f is to its best approximation f;,
that is constant on the leaves of IT; (on average over IT;). The second term, the vartance
measures how well the expected value f; (x) is estimated by the empirical average fA (x) (on
average over %, I1,).

Note that (7.4) holds for the estimation risk integrated over the hypercube [0, 11¢, and not
for the pointwise estimation risk. This is because, in general, we have E, [ﬁ(x)] #+ f,\ (x).
Indeed, the cell C, (x) may contain no data point in Z,, in which case the estimate ﬁ(x)
equals 0. It seems that a similar difficulty occurs for the decomposition in [2, 18] which
should only hold for the integrated risk.

Bias term. For each x € [0, l]d in the support of u, we have

|f(x) = fulo)| = (f) = f(@)u(dz)

‘M(Cx(x)) Ci.(x)
< sup |f(x)— f(@)] < LDy(x)P,

z€Cy(x)
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where D (x) is the ¢2-diameter of Cy (x), since fe OB (L). By concavity of x — xP for
B € (0, 1] and Corollary 1, this implies

i 4d\P
(7.5) E[(f(x) — fi(x))?] < L’E[D5(x)*#] < L’E[ D, (x)?) < Lz(ﬁ) :

Integrating (7.5) with respect to u yields the following bound on the bias:

B2
7.6) E[(f0 - foy] = GO

Variance term. In order to bound the variance term, we use Proposition 2 in [2]. If T1
is a random tree partition of the unit cube in k cells (with k € N* deterministic) formed
independently of the dataset &, then

_ - k
(1.7) E[(f(X) — fu(X))*] < (202 +9111%)-

Note that Proposition 2 in [2], stated in the case where the noise variance is constant, still
holds when the noise variance is just upper bounded, based on Proposition 1 in [1]. For every
k € N*, applying (7.7) to the random partition IT) ~ MP(x, [0, 1]¢) conditionally on the event
{K; =k}, we get

E[(fi(X) = fin(X))] = Y P(K; = DE[(fi(X) — /(X)) | K;. =K]

k=1

00 k ) 2
< Y B =k~ (207 +9111%)

k=1

E[K
== 202 1ol 1R

Using Proposition 2, we obtain an upper bound of the variance term:

(1+1)¢
n

(1.8) E[(f.(X) — /()] < (202 + 9] £11%).

Combining (7.6) and (7.8) leads to (5.1). Finally, the bound (5.2) follows by using A = A, in
(5.1) which concludes the proof of Theorem 2. [J

PROOF OF THEOREM 3. Consider a Mondrian forest
. 1
Frmy =23 F" @,
m=1
where the Mondrian trees ﬁ(m) form =1, ..., M are based on independent partitions Hgm) ~
MP(1, [0, 1]9). Also, for x in the support of u let
A0 =Ex[f0 1 X € ;" ()]

which depends on Hgm). Let ﬁ (x)=E[ f_)f'") (x)], which is deterministic and does not depend
on m. Denoting fi, i (x) = 17 m—, 7 (x), we have

E[(fm(x) — £ )] < 2B[(Fm(x) = frm(x))*]
+2E[(frm(x) — F(0))]:
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In addition, Jensen’s inequality implies that

N < _
E[(fn @) = frn@)’] < - 3 E[(F" @) = £ 0)]
m:l
=E[(" ™)~ £ @),
For every x we have that f;(m)(x) are i.i.d. form =1, ..., M with expectation ﬁ(x), so that

- - Var( 7D
E[(fin () = f@)*] = (fl0) = F )" + W

Since f € 1P (L), we have, in particular, that f is L-Lipschitz, hence
4dL?
A2
for all x € [0, 1], where we used Corollary 1 and where D, (x) stands for the diameter of
C) (x). Consequently, taking the expectation with respect to X, we obtain

Var(£P (x)) <E[(f" () — £ (0))?] < LE[Dy(x)?] <

L2
oy TR X0~ £V 00)]

+2E[(.00 = F(X0))].
The same upper bound holds also conditionally on X € B, := [, 1 — £]¢:

E[(E,M(X) — F(X0))*1X € Be]

E[(fim(X) — f(X))*] <

(7.9) +ﬂﬂG?RX%<ﬂDQwﬂXeBJ

- Alkz
+2E[(fo(X) — £(X))*IX € Be).

Variance term. Recall that the distribution i of X has a positive density p : [0, 1]¢ — R%,
which is C)-Lipschitz, and recall that po = inf . 1« p(x) and p; = SUPye[0, 114 p(x), both
of which are positive and finite since the continuous function p reaches its maximum and
minimum over the compact set [0, 1]7. As shown in the proof of Theorem 2, the variance
term satisfies

(1) (1) a+n? 2
E[(f, " (X) = fin (X))] ——————420 +911fll%)-

Hence, the conditional variance in the decomposition (7.9) satisfies
E[(f"X) - FV(X))’IX € By
(7.10) <P(X e B)T'E[(A" 0 - VX))’

14+
R 00 o2,

Expression of ﬁ It remains to control the bias term in the decomposition (7.9) which is
the most involved part of the proof. Let us recall that C, (x) stands for the cell of IT, which
contains x € [0, 1]¢. We have

filx)=E

<py'—2e

1
- 1 c q
[M(CA(X)) (0,114 f(@)p(2) (Z € A(X)) Z:|

= o 1]df(Z)Fp,)»(-x7Z)dZa

(7.11)
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where we defined

o, 2) = IE[P(Z)l(z € Ck(x))j|

pu(Cy(x))
In particular, f[o’l]d Fp(x,z)dz =1 for any x € [0, 114 (letting f =1 above). Let us also
define the function Fj, which corresponds to the case p =1,
1(ze C; (X))]
vol(Cy.(x)) I
where vol(C) stands for the volume of a box C.

Second order expansion. Assume that f € €'1# ([0, 1]1?) for some 8 € (0, 1]. This implies
that

Fx(x,z)zE[

|f(@) = fx) =V ) (z—x)
1
:‘/0 [Vf(x+t(z—x))—Vf(x)]T(z—x)dt‘
1
N By, o 1+8
s/OL(rnz xI)Pllz = xldt < Ljjlz — x|,

Now, by the triangle inequality,

H/[O,l]d(f(z) — f(x)Fp(x,2)dz

- ] / V@)@ = x)Fps(x.2)dz
[0,114

= '/[0 1]d(f(z) —f@) =V @~ x))Fpa(x,z)dz

<L Iz —xI""PF, 5 (x, 2) dz,
[0,114

so that, using together [ F,  (x,z)dz =1 and (7.11), we obtain

= sl <[V [ G- oRue o

(7.12) =A

FLf el

=B
Hence, it remains to control the two terms A, B from equation (7.12). We will start by ex-
pressing F), , in terms of p, using the distribution of the cell C; (x) given by Proposition 1
above. Next, both terms will be bounded by approximating F), ; by Fj and controlling these
terms for F (this is done in technical Lemma 1 below).

Explicit form of F), . First, we provide an explicit form of F), ; in terms of p. We start
by determining the distribution of the cell C, (x) conditionally on the event z € C) (x). Let
C=C(x,2)= Hlsjsd[xj Nzj,xjVzZ;] <0, 114 be the smallest box containing both x and
zyalso,letaj =xjAzj,bj=xjVzj,a=(aj)i<j<qand b= (bj)1<j<aq. Note that z € C; (x)
if and only if I, does not cut C. Since C = C(x, z) = C(a, b), we have that z € C, (x) if and
only if b € C;(a), and in this case C) (x) = C,(a). In particular, the conditional distribution
of C; (x), given z € Cj (x), equals the conditional distribution of C; (a) given b € C; (a).

Write Cj(a) = ]—[j{:1 [L;.,j(a), Ry, j(a)]; by Proposition 1 we have L; j(a) = (a; —
)»_IEJ',L) v 0, R)hj(a) = (aj + )»_lEij) A 1 where Ej,L’ Ej,R, 1 <j<darei.i.d. Exp(1)
random variables. Note that b € Cy (a) is equivalent to R) j(a) > b; for j =1,...,d, that
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is, to Ej g > A(bj — aj). By the memory-less property of the exponential distribution, the
distribution of E; g — A(b; — a;) conditionally on Ej g > A(b; — aj) is Exp(1). As a result
(using the independence of the variables Ej ., Ej ), we obtain the following statement:

Conditionally on b € Cj(a), the coordinates L; j(a), Ry j(a), 1 < j <d, are distributed
as (aj — )FIE}L) v, (b + )FIE;.,R) A 1 where E;.’L, E}’R are i.i.d. Exp(1) random
variables.

Hence, the distribution of C, (x) conditionally on z € C; (x) has the same distribution as

d
(7.13) Cr(x,2)=[][(xjAzj —A"'E;L) VO, (x; vz + A7 EjR) A L],
j=1
where E 1, E1R,..., Eq.L, Eq g are i.i.d. Exp(1) random variables. In addition, note that

z € () (x) if and only if the restriction of IT to C(x,z) has no split (i.e., its first sampled
split occurs after time A). Since this restriction is distributed as MP (X, C(x, z)) using Fact 2,
this occurs with probability exp(—A|C (x, z)|) = exp(—Al|lx — z||1). Therefore,

p(2)
w(Cy(x))

—1
_ —Anx—znlEH Py } ]
‘ «LA(X,Z) p@

where C, (x, z) is as in (7.13). In addition, applying (7.14) to p = 1 yields
F(x,2)= ad o= HIx—=zlh l_[ E[{rlxj —zjl + EjL AA(xj Azj)
(7.15) I=j=d
+Ej,R A ML —Xj VZJ')}_I].

The following technical lemma, whose proof is given in Supplementary Material [29], will
prove useful in what follows.

vax(x,z)=IP’(z€Ck(x))E[ ‘zeCk(x)]

(7.14)

LEMMA 1. The function F), ; given by (7.15) satisfies

2
H/[O R LOLE

9 ¢

} : —Axin(1—x;)]

< —)\‘2 e J J
=1

and
1 ) d
f 31— PR D0 <
for any x € [0, 114.

Control of the term B in equation (7.12). It follows from (7.14) and from the bound
p()/p(z) = po/pi that

1
(7.16) Fpi(x.2) < %Fk(x, 2),
so that
/ ||z—x||1+ﬂFp,x<x,z>dzsﬂ/ Iz — x| Fy(x, 2) dz
[0,114 po Jio,114

1 ) (1+8)/2
(7.17) 5—<f Iz — x| Fﬂx,z)dz)

Po \J[0,1]¢

p1 [ 2d\(1+P)/2
(7.13) <—|= .

po \ A2
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where (7.17) follows from the concavity of x — x*#)/2 for g € (1, 2] while (7.18) comes
from Lemma 1.

Control of the term A in equation (7.12). It remains to control A = f[o’l]d (z—=x)Fp(x,
z) dz. Again, this quantity is controlled in the case of a uniform density (p = 1) in Lemma 1.
However, this time the crude bound (7.16) is no longer sufficient since we need first-
order terms to compensate in order to obtain the optimal rate. Rather, we will show that
Fpa(x,2) =0+ O(lx —zl) + O(1/2)) Fi(x, 2).

A first upper bound on | F), ; (x, z) — F.(x, z)|. Since p is Cp-Lipschitz and lower bounded
by po, we have

- C c
a2 PO PO By gy < P diamC x,0)
p(2) p(2) 0 Do
for every y € C,(x, z), so that
c c
1= 2 Giam©, . 2) < 222 <1+ €2 diam €, (x. 2.
Po p(2) Po

Integrating over C, (x, z) and using p(y)/p(z) > po/p1 gives

C -1
{1+—pdiamCA(x,z)} vol Gy (x, z) !
0

)4
() }“
7.20 —d
( ) = {/;A(X»Z) p(2) Y
—1
< {(1 — ﬁdiathMx,z)) v @} vol C (x, 2) 1.
Po P1

In addition, since (1 +u)~! > 1 — u for u > 0, we have

Cp .. -1 Cp ..
1+ —+—diamC; (x, 2) >1— —diam Cy (x, z),
po po

so that setting a := (1 — % diam Cy (x, z)) VvV % € (0, 1] gives

al—1=

1—a - (Cp/po)dlamC;\(x,Z) _ plgl’ diam C;, (x, 2).
a po/p1 Py

Now, equation (7.20) implies that

C —1
— =2 diam C) (x, z) vol Cy (x,2) ! < {/ Mdy} —vol Cy.(x,2)"!
Po Cix.2) P(2)

plcp
P

< diam C;.(x, z) vol Cy (x, 2) .

Taking the expectation over C; (x, z) and using (7.14) leads to

C
——pE[diam Cy(x,7) vol Cy (x, Z)_l]

po
< M=zl (vak(x, 2) — F(x, Z))
C
<2 7 E[diam C;.(x, 2) vol Cy.(x, 2) ']

Dy
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so that

piC
|Fp(x,2) — Fu(x,2)| < 217D p=2lx—zlh
(7.21) pO

x E[diam Cy (x, z) vol C;.(x, 2) ]
Control of E[diam C, (x, z) vol C; (x, 2)71]. Let us define the interval
C){(X,Z) = [(xj AZj —kilEj,L) v 0, (x]' Vzj +)\71Ej,R) A 1],

and let [C/(x,2)| = (xj Vz; + A Ej ) Al —(xj Azj — A7 Ej 1) v 0 be its length. We
have diam C; (x, z) < diam,1 C; (x, z) using the triangular inequality, so that

E[diam C;.(x, 2) vol Cy.(x, 2) ]

d .
E[Zw (x,2)| vol Cy (x, z)_l}

j=1

A

I
E

IE|:|CA(x z)|l_[|CA(x 2|~ :|

=1

~.
Il
-

Il
M=~

iy I

j=1 bz

d . .
(1.22) < > B[|c] . alJBlIC . o E| TICk e 2| |

j=1 %]

d _ d

(7.23) =Y E[|C](x,2)]] x E[H{Ci(x,z)rl}

j=1 I=1
(7.24) = E[diam,1 Cy(x, 2)] x exp(Allx — z|l1) Fa(x, 2).

Inequality (7.22)4 relies on the fact that E[X]E[X '] > 1 for any positive random variable
X with X = |C{ (x, z)|. Equality (7.23) comes from the independence of |Ci(x,z)|, e
|Cf (x, z)|. Multiplying both sides of (7.24) by e~*I*=2ll1 Jeads to
.25) e_Allx_lelE[diamCA(x,z) VolC,\(x,Z)_l]

' < E[diam,1 C;.(x, 2)] F.(x, 2).
In addition,

d
E[diam,i Cy(x,2)] < Z [lx; — zjl —i-)»_l(E.,-,R +Ej )]
(7.26) j=1

= (|X .

Finally, combining equations (7.21), (7.25) and (7.26) gives

p1Cp 2d
(727) Rt~ x| = 22 (n —Z||1+T>Fx(x,2)-
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Control of A. From (7.27) we can control f[o,l]d (z — x)Fp (x,z)dz by approximating
Fp ;. by Fj.Indeed, we have

H/[O l]d(z _X)Fp,)\(X, z)dz — /[0 l]d(z —x)F(x,z2)dz

(7.28)
< / Iz — x|l X |Fp1(x.2) — Fi(x, 2)| dz,
[0,114

with

[, 1 =3l o) = B, o) de

pi1C 2d
= zpf Iz —XII[IIX -zl + —}Fx(x,z)dz (by (7.27))
py 0.1 A
C 2d
<P [W_f/ lz = x*Fa(x,2) dz + —/ Iz — x| Fy.(x, 2) dz}
P [0.11 A Jo.1d
e (N
=< — +— z—x||“Fu(x,z)dz ,
2 L 7 U | I Fox, 2)

where we used the inequalities v < ||v]1 < Jd|v| as well as the Cauchy-Schwarz in-
equality. Hence, using Lemma 1, we end up with

/[0 e lz — x|l X |Fpa(x,2) — Fa(x,2)|dz

plcp[d\/f_f 2d /d}
< _— - | —
(7-29) — p(2) A2 + A Va2
_ piCp3dVd
L IREE

Inequalities (7.28) and (7.29) together with Lemma 1 entail that

|

2

[, u &= DFpa .00

2
< 2”/ (z —x)Fy(x,2)dz
[0,1]4

(7.30) 2
+2(/ Iz = x| Fy (6, 2) — B (x, z)\dz)
[0,1]4

d 2
< g 3 e A=) +2<P1Cp 3d~/3) '
j=1

g

Control of the bias. The upper bound (7.12) on the bias writes
(F) = F@) < (VO TA|+ LB)* <2(Vf0)|* x 1Al + L?B?),
so that plugging the bounds (7.18) of B and (7.30) of ||A| gives

(Fr(x) — £(x))?
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d 2 (148)/2
< 2L2B_§ 3 e A1) Jr2(1?71Cp 3d\/3> :| +2L2ﬂ(%)

j=1 pg 2 po\ 22

d
_36L? S A A=l 36L%d° <p1Cp>2 8L2d'*P (E)Z_

PR 2 02 2208 \ o

By integrating over X conditionally on X € B, this implies

36L2%d% [ p1Cp\?
Cad 2

~ 5 36L2
E[(f(X) = f(X)) IXGBS]STWS(?»)Jr p
0

(7.31)
8L2d1+,3 ﬂ 2
A2(1+8) Po ’

where we have, using the fact that pg < p(x) < p; for any x € [0, 1],

d
Ye(A) =Y E[e X I=XDl | x ¢ B, ]
j=1

__ dm fl_g o Hun=w] g
= po(1 =2¢e)4 Js

d 1/2
= % x 2 / e du
po(1 —2¢) e
—\e
¢ 2dp ‘
A po(1—2e)d
Conclusion. The decomposition (7.9), together with the bounds (7.10) on the variance and

(7.31) on the bias lead to inequality (5.3) from the statement of Theorem 3. In particular, if
g€ (0, %) is fixed, inequality (5.3) writes

—~ 2 )\d L2 L2
E[(H.m(X) = F(X))2|X € B, ] = o(7 T W)

One can optimize the right-hand side by setting A = A, =< L%/ @+2),1/(+25) and M =
M, > 22P = [48/(d+29),28/(@+29) with s = | 4+ B € (1,2]. This leads to the minimax rate
O (L24/(d+25)y=25/(d+25)) for f € €1-B (L) as announced in the statement of Theorem 3.

On the other hand, we have e™*¢ = 1 whenever ¢ = 0, so that inequality (5.3) becomes in
this case
]E A X X 2 < 0 )\'d L2 L2
(5O = FOOV] = O+ 53565 T 3572 )-

When 2s < 3 (i.e., § < 1/2), this leads to the same rate as above, with the same choice
of parameters. When 2s > 3, this leads to the suboptimal rate O (L2/@+3),=3/d+3)) with
the choice M, > A, =< L*@+3,1/(@+3) This concludes the proof of all the claims from
Theorem 3. [
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