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We investigate the frequentist coverage properties of (certain) Bayesian
credible sets in a general, adaptive, nonparametric framework. It is well
known that the construction of adaptive and honest confidence sets is not
possible in general. To overcome this problem (in context of sieve type of
priors), we introduce an extra assumption on the functional parameters, the
so-called “general polished tail” condition. We then show that under stan-
dard assumptions, both the hierarchical and empirical Bayes methods, result
in honest confidence sets for sieve type of priors in general settings and we
characterize their size. We apply the derived abstract results to various exam-
ples, including the nonparametric regression model, density estimation using
exponential families of priors, density estimation using histogram priors and
the nonparametric classification model, for which we show that their size is
near minimax adaptive with respect to the considered specific pseudometrics.

1. Introduction. Uncertainty quantification is of key importance in statistical sciences.
Estimators without proper uncertainty quantification have only limited practical applicabil-
ity, since they contain only limited amount of information about their accuracy. In statis-
tics, uncertainty about an estimator is described with the help of confidence sets. Confidence
statements are then widely used in statistical practice, for instance, in hypothesis testing. The
construction of confidence sets can be, however, very challenging, especially in complex,
nonparametric problems.

A very popular aspect of the Bayesian approach is the built-in, straightforward way of
quantifying uncertainty, in particular with the help of credible sets, that is, sets with pre-
scribed (typically 95%) posterior probability. By accumulating a large fraction of the poste-
rior mass, these sets describe the remaining uncertainty of the Bayesian procedure. Due to
the existing computational machinery of Bayesian techniques (e.g., MCMC, ABC, etc.) these
sets are widely used in practice for uncertainty quantification. However, only little is known
about their theoretical properties. In parametric models following the celebrated Bernstein–
von Mises theorem, credible sets are asymptotically confidence sets as well, laying the base
of the practical applicability of the Bayesian approach in simple models; see, for instance,
[52].

However, in nonparametric and high-dimensional models the question is still unanswered
about how much we can trust Bayesian credible sets as a measure of confidence in the statis-
tical procedure from a frequentist perspective. The first results in the nonparametric paradigm
were discouraging, showing that the Bernstein–von Mises theorem does not hold in general,
that is, even in the standard Gaussian white noise model using conjugate Gaussian priors the
resulting credible sets have frequentist coverage tending to zero; see [16, 17].

Since then the investigation of frequentist coverage properties of Bayesian credible sets
has attracted a lot of attention in nonparametric problems. Various approaches were proposed
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to solve this problem. In [27, 58], the authors verified that by slightly undersmoothing the
prior one can still achieve credible sets with good frequentist coverage and minimax size in
the same setup as in[16]. Another possibility is to consider weaker, negative Sobolev-norms
and derive the Bernstein–von-Mises theorem in the corresponding Sobolev space; see [11,
12, 28].

The preceding results are all based on the knowledge of the regularity of the true underly-
ing function, which is in practice generally not available. A more challenging problem is the
construction of Bayesian based confidence sets in the adaptive setting where no information
is available on the smoothness of the truth. This, however, turns out to be too much to ask
for. In [5, 6, 29, 39], it was shown that it is impossible to construct adaptive confidence sets
in general.

More precisely, assume that the true (functional) parameter θ0 belongs to some regularity
or sparsity class �β , indexed by some (unknown) hyper-parameter β belonging to some
index set B . When β is unknown, the confidence set Ĉ cannot depend on it and it is said to
be optimal adaptive if first it has uniform coverage:

lim inf
n

inf
θ0∈⋃

β∈B �β
P

(n)
θ0

(θ0 ∈ Ĉ) ≥ 1 − α(1)

and second its size is optimal within each parameter class �β , that is, for some universal
constant K > 0,

lim inf
n

inf
β∈B

inf
θ0∈�β

P
(n)
θ0

(
sup

θ1,θ2∈Ĉ

d(θ1, θ2) ≤ Krn,β

)
≥ 1 − α,(2)

where α is the prescribed significance level (typically α = 0.05), and rn,β is the minimax
estimation rate within the class �β and with respect to the pseudometric d(·, ·).

As mentioned earlier, it is impossible to satisfy both the coverage and the minimax size
requirements on the confidence sets in general. To solve this problem, additional assumptions
were introduced on the parameter value θ0 making the construction of adaptive confidence
sets possible by discarding certain inconvenient parameters θ0. A frequently applied assump-
tion is self-similarity where it is assumed that the true parameter has similar “local” and
“global” behavior; see, for instance, [4, 15, 21, 32, 35, 47]. Another approach is to discard
the parameters which make it impossible to test between the classes �β . This approach was
considered in various models in context of regularity classes in [5, 7, 24] and in sparse high-
dimensional models [8, 33].

It is known that Bayesian credible balls associated to posterior distributions which con-
centrate at the minimax rate verify (2); see [25]. The question is then to understand their
frequentist coverage and in particular to characterize subsets of

⋃
β �β over which (1) is

verified as well.
In [49], the authors have generalized the self-similarity assumption introducing the so-

called polished tail assumption, discussed in this article also in more detail. The polished tail
(and the stronger self-similarity) assumption was then applied in nonparametric regression
with rescaled Brownian motion prior [46] and spline priors [45, 55] and in the context of
the Gaussian white noise model with Gaussian priors constructing L2-, and L∞-credible
sets [23, 48]. Furthermore, an adaptive version of the nonparametric Bernstein–von Mises
theorem was given in context of the Gaussian white noise model using conjugate Gaussian
priors and spike-and-slab prior [36] under the self-similarity assumption. The polished tail
assumption was then slightly extended by the implicit excessive bias assumption introduced
in context of the Gaussian white noise model [2] and applied in sparse high-dimensional
models with empirical Bayes spike and slab type of priors [3, 14] and with hierarchical and
empirical horseshoe prior [51].
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All of the above mentioned papers consider specific choices of the model and the prior
distribution and use explicit, conjugate computations which obviously have their limitations.
Although these papers already shed lights on certain aspects of Bayesian uncertainty quan-
tification, they do not provide a clear understanding of the underlying general phenomena.
A general approach for understanding the coverage of credible sets is still missing. Besides
for many nonparametric models and priors, no conjugate computation is possible and, there-
fore, they cannot be handled directly. In this work, we aim to (partially) fill this gap and
contribute to the fundamental understanding of this rapidly growing field. We derive abstract
results for general choices of models and sieve type of priors, in the spirit of [19, 20, 41].

1.1. Setup and notation. We consider observations Y ∈ Y sampled from P
(n)
θ , θ ∈ �̄,

which are absolutely continuous with respect to a given measure μ with density p
(n)
θ where

n denotes the sample size or signal-to-noise ratio. We denote by �n(θ) = logp
(n)
θ the log-

likelihood and throughout the paper θ0 designates the true value of the parameter. We denote
by E

(n)
θ and V

(n)
θ the expectation and the variance with respect to P

(n)
θ , respectively. For two

positive sequences an and bn, we write an � bn if there exists a constant C > 0 such that
an ≤ Cbn for every n ∈ N. Furthermore, we denote by an � bn that an � bn and bn � an

hold simultaneously. For A,B ∈ R
n×n, the inequality A ≤ B denotes that A − B is positive

semidefinite.
Let us consider a collection of finite dimensional models �(k)

� = ⋃
k∈N

�(k), �(k) ⊂ R
dk , dk ↑ ∞, k ∈ N,(3)

with dk � k. We assume that θ0 ∈ �̄ with � ⊆ �̄. Note that we do not necessarily assume
that θ0 belongs to any of the models �(k), k ∈ N, hence we allow for misspecification. These
models are very popular and frequently used in practice; see, for instance, [22, 50] for a
review.

The parameter k drives the sparsity or the regularity of the model. Finding the model
�(k), which is the most appropriate for recovering θ0, requires additional information about
the true parameter (e.g., regularity, sparsity, etc.) which is usually not available. Therefore,
a natural approach is to let the data decide about the optimal model �(k). In the Bayesian
framework, one can accomplish this by the hierarchical or the empirical Bayes approach. In
the hierarchical (or also referred to as full) Bayes approach, one endows the hyperparameter
k with a prior distribution πk and conditionally on k, considers a prior distribution π|k on
θ ∈ �(k), resulting in a two-level prior distribution π on � defined by

(4) k ∼ πk, θ |k ∼ π|k.

We denote the posterior distribution on � by π(θ |Y) and the conditional distribution of
θ |(Y, k) by π|k(θ |Y).

In contrast to this in the empirical Bayes approach, one constructs a frequentist estimator
k̂n for the hyperparameter k and plugs it in into the conditional posterior distribution given k,
that is,

π|k̂n
(θ |Y) = π|k(θ |Y)|

k=k̂n
,

resulting in the empirical Bayes posterior distribution.
Models in the form of (3) are widely used in the Bayesian literature and under nonre-

strictive assumptions the posterior distribution can optimally recover the true parameter θ0.
In more detail, it is common to assume that the true parameter belongs to some regularity
class θ0 ∈ �β with some unknown regularity hyperparameter β . Then both the hierarchical
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and empirical Bayes approaches achieve (nearly) optimal minimax contraction rate around
the truth, in a large collection of cases, without using any additional information about its
unknown regularity, leading to an adaptive procedure, in the frequentist sense; see [1, 41] and
references therein. In this article, our focus is on the quality of Bayesian uncertainty quantifi-
cation done via credible balls from a frequentist perspective. There are two main properties
of interest in a credible set from a frequentist perspective: the frequentist coverage and the
expectation of its size under P

(n)
θ0

, when θ0 is assumed to be the true value of the parameter. In
the literature, the frequentist coverage properties of Bayesian credible sets constructed from
sieve posteriors were only investigated for specific choices of priors and likelihoods; see, for
instance, [2, 45, 58]. In this article, we present a general approach under which we can si-
multaneously investigate the frequentist properties of credible sets resulting from different
choices of sieve priors and likelihoods.

We introduce some additional notation. Let Bk(θ,u, d) denote the d-ball in �(k) with cen-
ter θ and radius u and Bc

k(θ, u, d) the complement of such a ball. Furthermore, let diam(S, d)

denote the d-diameter of the set S, that is,

diam(S, d) = sup
θ,θ ′∈S

d
(
θ, θ ′).

We define the square distance of the truth from the set �(k) as

b(k) = inf
{
d2(θ0, θ) : θ ∈ �(k)

}
.

For simplicity, we also extend the definition of the function b on [0,+∞) by b(x) = b(k)

for all x ∈ [k, k + 1) and b(0) = +∞. Note that we allow d(·, ·) to depend on n, so that in
this case b(k) also depends on n. This will be the case in particular in the regression and in
the classification examples; see Sections 3.1 and 3.4, respectively. The normalized Kullback–
Leibler divergence and variance of the log-likelihood-ratio are denoted by

KL(θ0, θ) = 1

n
E

(n)
θ0

(
log

(
p

(n)
θ0

p
(n)
θ

))
, V (θ0, θ) = 1

n
V

(n)
θ0

(
log

(
p

(n)
θ0

p
(n)
θ

))
,

respectively. We denote by N(ε,A,d) the entropy, that is, the number of ε-radius d-balls
needed to cover the set A. Throughout the paper, c and C denote global constants whose
value may change one line to another.

2. Main results. In this section, we investigate the frequentist properties of Bayesian
credible sets resulting from the hierarchical and the empirical Bayes procedures. We con-
sider the general setting described in Section 1.1 and introduce general, abstract conditions
under which credible sets have honest frequentist coverage and rate adaptive size. The derived
results will be applied in Section 3 for various choices of sampling and prior models.

Using the posterior distribution π(θ |Y), be it hierarchical or empirical, we construct the
Bayesian credible sets as balls centered around some estimator θ̂ (typically the posterior
mean) Ĉ(α) = {θ : d(θ, θ̂) ≤ rα} where α ∈ (0,1) and rα is the radius of the ball satisfying

rα = arg inf
r>0

{
π
(
θ : d(θ, θ̂) ≤ r|Y) ≥ 1 − α

}
.(5)

In our analysis, we also introduce some additional flexibility to the credible sets by allowing
them to be blown up by a factor L > 0 resulting in

Ĉ(L,α) = {
θ : d(θ, θ̂) ≤ Lrα

}
.

We show that these inflated sets (for sufficiently large blow up factor L) have frequentist
coverage tending to one and at the same time their size is (nearly) optimal in a minimax
sense under some additional restrictions on the parameter θ0.
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In the Gaussian white noise model with Gaussian prior, [49] shows that a key idea to
obtain good coverage is that a trade-off between bias and variance is realized, so that the
correct value of k (or set of values) is selected either under the posterior πk(k|Y) or the
empirical estimator k̂n.

To generalize this idea to non-Gaussian setups, let us consider the index set K ⊆ N and
define for each θ0 ∈ �̄,

(6) ε2
n(k) = b(k) + k logn

n
and kn = inf

{
k ∈ K : b(k) ≤ k(logn)/n

}
,

and Kn(M) = {k ∈ K : εn(k) ≤ Mεn(kn)}. Note that in these notation θ0 is implicit since b(k)

depends on θ0. We would like to note that the εn(k) quantity defined in this paper is related,
but different from the εn(k) quantity defined in the paper [41].

To control the frequentist coverage of Ĉ(L,α), we need to restrict ourselves to a subset
of �̄, in a manner similar to [49], generalizing their idea outside the white noise model with
empirical Gaussian process prior. We introduce below the general polished tail condition
which determines the subclass of functions for which frequentist coverage can be obtained.

DEFINITION 1. Let θ ∈ �̄, we say that θ (or equivalently its associated bias function
b(·)) satisfies the general polished tail condition associated to the pseudometric d(·, ·) if there
exist integers k0,R0 > 1 and a real 0 < τ < 1 such that, for n > 0,

(7) b(kR0) ≤ τb(k) ∀k ∈ {k0, . . . , kn}.
For given k0,R0 and τ , we denote by �0,n(R0, k0, τ ) the class of θ ∈ �̄ satisfying (7).

We note that in the case where d(·, ·) is the �2-norm, for instance in the Gaussian white
noise model, the bias function is b(k) = ∑∞

j=k+1 θ2
0,j . The polished tail condition in [49]

reads as

∞∑
j=N+1

θ2
0,j ≤ L

ρN∑
j=N+1

θ2
0,j ∀N ≥ N0,(8)

for some N0,L,ρ > 0, which is equivalent to our definition of �0,n(R0, k0, τ ) (with k0 = N0,
τ = L/(L + 1) and R0 = ρ). Our new definition, however, extends also to the case where the
pseudometric d(·, ·) is substantially different from the �2-norm.

The generalization of the usual bias and variance trade-off is by obtaining a trade-off
between the bias (or more precisely the approximation error) nb(k) and a prior penaliza-
tion term k logn induced by the prior mass of small neighborhoods: π|k(θ : d(θo[k], θ) ≤ un),
where un = o(1) and θo[k] ∈ �(k) can be viewed as a projection of θ0 onto �(k), typically
with respect to the pseudometric d or the KL-divergence. Then typically if un � n−H for
some H > 0, then logπ|k(θ : d(θo[k], θ) ≤ un) � −k logn, so that the set Kn(M) corresponds
to values of k for which this trade-off is achieved.

LEMMA 1. For any θ0 ∈ �̄ and k ∈ Kn(M), we have that k ≤ 2M2kn. Furthermore, for
any θ0 ∈ �0,n(R0, k0, τ ) let us assume that there exists an A0 > 1 such that

for all k < k0 there exists k′ ∈ {k0, k0 + 1, . . . ,A0k0},
such that b(k) ≥ b

(
k′).(9)

Then for every k ∈ Kn(M) we have k ≥ ckn, with c = R−m
0 (2R0 ∨ k0A0)

−1, where m > 0 is
the smallest integer satisfying τm ≤ (8M2R0)

−1.
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The proof of the lemma is deferred to Section B.4 in the Supplementary Material [42].

REMARK 1. Condition (9) is very mild. It is easy to see that it holds automatically for
nested sets �(k), where the bias function k �→ b(k) is monotone nonincreasing. Further-
more, it can also be verified for models where nestedness occurs only on given geometric
subsequences �(k) ⊂ �(A0k) ⊂ �(A2

0k) ⊂..., for instance, histograms with regular bins;
see Section 3.2.

We will show in Section 2.1 that in the hierarchical Bayes approach the posterior distri-
bution concentrates on Kn(M) for M large enough if the true parameter satisfies the general
polished tail condition (7). A similar phenomenon occurs for the empirical Bayes method,
that is, the maximum marginal likelihood estimator k̂n belongs to the set Kn(M) with high
probability; see Section 2.2.

In the hierarchical prior case, we also consider the following condition on the prior on k:
H The prior on k satisfies

(10) e−c2k log(k) � πk(k) � e−c1k, k ∈ K,

for some positive constants c1, c2 > 0.
In order to bound from below the frequentist coverage of Ĉ(L,α), we restrict ourselves

to a subset of parameters �0,n ⊆ �0,n(R0, k0, τ ) for some positive R0, k0, τ on which we
consider the following assumptions, used both for the empirical Bayes and for the hierarchical
Bayes approaches:

A0 The centering point θ̂ satisfies that for all ε > 0 there exists Mε > 0,

(11) sup
θ0∈�0,n

P
(n)
θ0

(
d(θ0, θ̂ ) ≤ Mεεn(kn)

) ≥ 1 − ε.

A1 There exist c3, c4,C > 0 such that for all θ0 ∈ �0,n,

π|kn

(
KL(θ0, θ) ≤ c3ε

2
n(kn),V (θ0, θ) ≤ Cε2

n(kn)
) ≥ C−1e−c4kn logn.

A2 For given sequence K̄n, assume that there exist constants J0, J1, c5 > 0, c6 ∈ (0,1) such
that the following conditions hold for all k ≤ K̄n:

(i) There exist sets �n(k) ⊂ �(k) satisfying

π|k
(
�n(k)c

) ≤ Ce−(c2+c3+c4+2)nε2
n(kn).

(ii) There exist measurable (in Y) functions ϕn(θ) ∈ [0,1] such that

sup
θ∈�n(k)

E
(n)
θ0

(
ϕn(θ)

) ≤ e−c5nd2(θ0,θ),

sup
θ∈�n(k)

sup
θ ′∈�n(k):

d(θ ′,θ)≤c6 d(θ0,θ)

E
(n)
θ ′

(
1 − ϕn(θ)

) ≤ e−c5nd2(θ0,θ).

(iii) For all u ≥ J (k) := max(J0εn(kn), J1
√

k(logn)/n),

logN
(
c6u,�n(k) ∩ {

u ≤ d(θ0, θ) ≤ 2u
}
, d

) ≤ c5nu2/2.

A3 For all γ > 0, there exists M0 > 0 such that for all M0kn ≤ k ≤ K̄n,

π|k
(
Bk

(
θ0, J1

√
k(logn)/n, d

) ∩ �n(k)
) ≤ e−(c2+c3+c4+γ )nε2

n(kn).

A4 Assume that for all M,ε > 0, there exist c7, c8, c9, c10, δ0,Bε > 0 and r ≥ 2 such that
the following conditions hold for all k ∈ Kn(M):
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(i) There exists a parameter θo[k] ∈ �(k) satisfying

Bk

(
θo[k],

√
k/n, d

) ∩ �n(k) ⊂ Sn(k, c7, c8, r),

where

Sn(k, c7, c8, r)

=
{
θ ∈ �(k) :

E
(n)
θ0

log
p

(n)

θo[k]

p
(n)
θ

≤ c7k,E
(n)
θ0

(
log

p
(n)

θo[k]

p
(n)
θ

− E
(n)
θ0

log
p

(n)

θo[k]

p
(n)
θ

)r

≤ c8k
r/2

}
.

(ii) Let B̄ = �n(k) ∩ Bk(θ0, (Mε + 1)εn(kn), d). Then for every θ0 ∈ �0,n,

Pθ0( max
k∈Kn(M)

sup
θ∈B̄

(
�n(θ) − �n

(
θo[k] − Bεk

) ≤ 0
) ≥ 1 − ε.

(iii) For every δn,k ≤ δ0,

sup
θ∈B̄

π|k(Bk(θ, δn,k

√
k/n, d) ∩ �n(k))

π|k(Bk(θ
o[k],

√
k/n, d))

≤ c10e
c9k log(δn,k).

REMARK 2. The parameter K̄n in Assumptions A2 and A3 is chosen to be Akn logn

(for some large enough constant A > 0) for the hierarchical Bayes method. In case of the
empirical Bayes method, it is the upper bound of the interval where the maximum marginal
likelihood estimator is taken, that is, k̂n ∈ {1,2, . . . , K̄n}; see (16). In this case, K̄n is typically
taken to be nH for some H ∈ (0,1/2).

REMARK 3. One can also handle dimensions dk which do not grow linearly with k. Then
the definition of εn(k) has to be modified to εn(k) = b(k) + dk(logn)/n and the conditions
in A1–A4 have to be given with k replaced by dk .

A brief explanation of the above conditions is in order. Assumptions A1, A2 are the stan-
dard prior small ball probability, remaining mass, testing and entropy conditions, routinely
used in the literature for determining the contraction rates of the posteriors; see, for instance,
[20]. Assumption A3 is commonly considered when upper bounding marginal likelihoods;
see, for instance, [9, 30, 40, 41]. These conditions are used to describe the behavior of the
posterior distribution on the hyperparameter k and derive upper bounds for the posterior con-
traction rates. Proving A3 is quite simple in case the pseudometric d is locally equivalent
to the �2-norm; however, it is quite challenging in the context of mixture models, where the
geometry of the L1 metric is complex.

Assumption A4 gathers three conditions, which are required to hold only over the models
k ∈ Kn(M). This assumption is used to derive lower bounds for the radius of the credible
sets.

Assumption A4(i) requires that locally the (slightly modified) Kullback– Leibler diver-
gence can be bounded by the distance d(·, ·) (up to a multiplicative constant). Note that due
to the model misspecification, that is, typically θ0 /∈ �(k), we consider a projection θo[k] of θ0

onto �(k) for controlling the prior penalization term; see the discussion below (6). This is
a rather mild assumption, the main difficulty here lies in obtaining a sharp upper bound on
KL(θ0, θ) − KL(θ0, θ

o[k]) and not only on KL(θ0, θ). It can be weakened by considering c7
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going to infinity, this would, however, induce a bigger inflation of the radius of the credible
ball Ĉn(L,α).

In Assumption A4(ii), the log-likelihood ratio is uniformly controlled in a neighborhood
of θ0 with high probability. This is not such a stringent condition since the required control is
not sharp at all. Indeed it is required that the log-likelihood ratio �n(θ) − �n(θ

o[k]) is bounded
from above by O(k), but note that under Pθ0 its expectation is equal to −n(KL(θ0, θ) −
KL(θ0, θ

o[k])) ≤ 0, which acts as a pull back force; see the proof of Propositions 4, 5 and 6 in
the Supplementary Material [42].

In condition A4(iii), note that since θ ∈ Bk(θ0, (Mε + 1)εn(kn), d) and since (typically)
θo[k] ∈ Bk(θ0, εn(k), d), d(θ, θo[k]) ≤ (Mε + 1)εn(kn) + εn(k) ≤ (M + Mε + 1)εn(kn) for
k ∈ Kn(M), so that condition A4(iii) requires that in case the ball around any point in the
vicinity of θo[k] has a substantially smaller radius than a

√
k/n ball centered around θo[k] then

the prior mass of the ball is also substantially smaller. This is verified in particular when the
distance d(·, ·) behaves locally like the Euclidean distance and the prior densities are bounded
from below and above, locally. The intuition behind this condition is the following. To achieve
high frequentist coverage for the credible set, the prior cannot put substantially more mass
around the centering point than on a small neighborhood of the truth, else the posterior would
be even more concentrated around the centering point resulting in overly confident uncer-
tainty statements. Since the centering point is random, but living in a close neighborhood of
the truth we require this condition to hold uniformly over the ball Bk(θ0, (Mε + 1)εn(kn), d).
Conditions A3 and A4(iii) are the most demanding assumptions, because they require non-
trivial upper bounds on prior masses of d-balls.

Assumption A0 is on the centering point and is satisfied typically for usual estimates such
as the posterior mean; see the examples in Section 3.

In the literature, different variations were considered of the standard conditions A1 and
A2; see, for instance, [19, 20]. Here, we consider another version of A2(iii) (based on slicing
of the sets �n(k)), which will be applied in the density estimation example with exponential
families of priors. Define J0(k) = J0 ∨ J1

√
k logn/nεn(kn)

−1.

A2 (iiib) There exist a (possibly infinite) cover Bn,j (k), of the set �n(k) ∩ {θ : d(θ, θ0) ≥
J (k)εn(kn)} for k ≤ K̄n, such that for all j there exists c(k, j) ≥ J (k) satisfying

Bn,j (k) ⊂ �n(k) ∩ {
d(θ, θ0) > c(k, j)εn(kn)

}
with(12) ∑

j

exp
(
−c5

2
nc(k, j)2εn(kn)

2
)
� e−(c2+c3+c4+2)nε2

n(kn),(13)

where c2, c3, c4 are defined in Assumptions H and A1 and

(14) logN
(
c6c(k, j)εn(kn),Bn,j (k), d

) ≤ c5c(k, j)2nεn(kn)
2

2
.

In the next subsections, we show that under the above assumptions together with the gen-
eral polished tail restriction the credible sets resulting both from the hierarchical and the
empirical Bayes procedures have optimal size and high frequentist coverage.

2.1. Hierarchical Bayes approach. In this section, we present the results for the hierar-
chical prior defined by (4) satisfying Assumption H. We show that under the general polished
tail condition and the assumptions introduced in the preceding section the inflated credible
set Ĉ(Ln,α) with Ln �

√
logn has good frequentist properties, that is, it has good frequentist

coverage and we can characterize their size on �0,n = �0,n(R0, k0, τ ), R0 > 1, k0 ≥ 1 and
τ < 1.
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THEOREM 1. Assume that conditions H, A0–A4 and (9) hold, with K̄n = Akn logn and
A = c2 + c3 + c4 + 1 in Assumptions A2 and A3, then for every ε > 0 there exists a constant
Lε,α > 0 such that

(15) lim inf
n

inf
θ0∈�0,n

P
(n)
θ0

(
θ0 ∈ Ĉ(Lε,α

√
logn,α)

)
> 1 − ε.

REMARK 4. In Theorem 1 (and also in Theorem 2 below), the inflation of the radius is of
order

√
logn, which is an unpleasant feature of the result. We believe that this is a necessary

inflation, at least for centering points θ̂ leaving in the bulk of the posterior distribution, like the
posterior mean. Indeed as appears in the proof (see also Lemmas 2 and 3), the posterior mass
essentially lives on the sets of k that achieves the balance k logn � nε2

n(k), while an optimal
behavior would be to achieve the balance k � nε2

n(k). This is a typical feature of hierarchical
(or empirical) Bayesian approaches with a hyperprior on the model k and is strongly related
to the logn penalty induced by the marginal likelihood, as expressed in the reknown BIC
approximation. This results in having the posterior distribution concentrate on values of k

that are too small, so that the bias b(k) dominates the statistical error within each model
�(k) which is O(k/n). The necessity of the

√
logn factor is demonstrated in the context of

the nonparametric regression model. In Propositions 2 and 3, it is shown that without a
√

logn

blow up the credible sets have coverage tending to zero for certain representative (typical)
elements of the polished tail class. There are two ways to temper this. One can either follow
[18] using a block prior on the components of θ which groups together models in blocks and
within each block shrinks very strongly the coefficients to 0 to ensure that the selected models
under the posterior have a large enough number of components. An alternative method could
be to find a centering point θ̂ which is rougher than the posterior; see Lemma B.1 in the
Supplementary Material.

The proof of Theorem 1 is deferred to Section 5. A key step in the proof is understanding
the asymptotic behavior of πk(k|Y). In particular, we show that the posterior distribution ac-
cumulates most of its mass on Kn(M), where a trade-off between bias and prior-penalization
or complexity (equivalent to the variance term in the Gaussian setup) is achieved. This is
presented in the following lemma.

LEMMA 2. Take any ε > 0 and assume that conditions H and A1–A3 hold. Then there
exists a large enough constant M̄ε > 0 such that

sup
θ0∈�̄

E
(n)
θ0

(
πk

(
k /∈ Kn(M̄ε)|Y)) ≤ ε.

The proof is presented in Section B.1 of the Supplementary Material. Lemma 2 is similar in
spirit to Theorem 2.1 of [41], however, the definition of εn(k) being different in both papers;
the proofs of both results are significantly different.

The following lemma states that εn(kn) corresponds to the posterior concentration rates,
hence θ̂ can be any random point of the posterior distribution or depending on d(·, ·) the
posterior mean or other posterior summary.

LEMMA 3. Assume that conditions H and A1–A3 hold. Then for every ε > 0 there exists
Cε > 0 such that

sup
θ0∈�̄

E
(n)
θ0

(
π
(
d(θ, θ0) ≥ Cεεn(kn)|Y)) ≤ ε.
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The proof of Lemma 3 is presented in Section B.2 in the Supplementary Material.
Finally, we show that the radius of the credible set is bounded from above by a multiple of

εn(kn).

COROLLARY 1. Under the assumptions of Lemma 3 and A0, there exists Cε > 0 large
enough such that

inf
θ0∈�̄

P
(n)
θ0

(
diam

(
Ĉ(1, α), d

) ≤ Cεεn(kn)
) ≥ 1 − ε.

The lemma is a straightforward consequence of Assumption A0 and Lemma 3.

2.2. Empirical Bayes approach. An alternative approach to endow the hyperparameter k

by a prior is to estimate it from the data directly and plug in this estimator into the posterior
distribution. One of the most commonly used approaches is the maximum marginal likelihood
empirical Bayes method, where one estimates the hyperparameter with the maximizer of the
marginal likelihood function

k̂n = arg max
k≤K̄n

∫
�(k)

e�n(θ)π|k(θ) dθ,(16)

where �n(θ) denotes the log-likelihood function. This empirical Bayes technique is closely
related to the hierarchical Bayes approach [41], however, in certain situations they can have
substantially different behavior [10, 34].

In the empirical Bayes approach, we construct the (inflated) credible set similar to the
hierarchical Bayes case, that is, we consider a d-ball around the centering point θ̂ (typically
the empirical Bayes posterior mean)

Ĉ
k̂n

(L,α) = {
θ ∈ �(k̂n) : d(θ, θ̂) ≤ Lnrα(k̂n)

}
,(17)

where Ln > 0 is a blow up factor and the radius rα(k̂n) is defined as

rα(k̂n) = arg inf
r>0

{
π|k̂n

(
d(θ, θ̂) ≤ rα(k̂n)|Y) ≥ 1 − α

}
,(18)

for a typically small α ∈ (0,1). We show that these sets have similar size as the hierarchical
Bayes credible sets and good frequentist coverage under the general polished tail condition
(7) for appropriately large blow up factor Ln of order

√
logn.

THEOREM 2. Assume that conditions A0--A4 and (9) hold with K̄n ≤ nH for some
H ≥ 0. Then for every ε,α ∈ (0,1) there exists a large enough constant Lε,α such that

lim inf
n

inf
θ0∈�0,n

P
(n)
θ0

(
θ0 ∈ Ĉ

k̂n
(Lε,α

√
logn,α)

) ≥ 1 − ε.

Furthermore, there exists Cε > 0 such that

inf
θ0∈�̄

P
(n)
θ0

(
diam

(
Ĉ

k̂n
(1, α), d

) ≤ Cεεn(kn)
) ≥ 1 − ε.

The proof is deferred to Section B.3 in the Supplementary Material.
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3. Application to various models. In this section, we apply our abstract results (Theo-
rems 1 and 2 and Corollary 1) in four examples: nonparametric regression, density estimation
with histogram priors and with exponential family priors and nonparametric classification. To
prove the contraction rate and coverage results in all of the examples, we have shown that the
considered pseudometrics are locally equivalent to the �2 norm on the parameter space �̄.
These results are of interest on their own right. Besides it also results in (nearly) optimal pos-
terior contraction rates and coverage of the credible sets in terms of the �2 and other related
norms. Condition A4(ii) requires uniform and sharp control on the likelihood ratio. In the
following examples, we give a general strategy to prove such kind of statements, which can
come handy in other nonparametric problems as well.

3.1. Application to nonparametric regression. In this section, we consider the fixed de-
sign regression model and investigate the behavior of Bayesian credible sets based on sieve
priors. Assume that we observe the sequence Y = (Y1, Y2, . . . , Yn) satisfying

Yi = f0(xi) + σZi, xi ∈ [0,1], i = 1,2, . . . , n,(19)

where Zi are i.i.d. standard normal random variables, σ = 1 for simplicity and x1, x2, . . . , xn

are fixed (or random) design points.
Next, we consider the basis φ1(x),φ2(x), . . . in L2[0,1]. Note that every f ∈ L2[0,1]

can be written in the form f (x) = fθ (x) = ∑∞
i=1 θiφi(x) (with the convention θ =

(θ1, . . . , θk,0,0, . . .) for θ ∈ �(k) = R
k) and we assume that the true function fθ0 belongs to

a Sobolev-type smoothness class Sβ(L0), defined as

Sβ(L0) =
{
fθ :

∞∑
i=1

θ2
i i2β ≤ L0

}
, for some β,L0 > 0,(20)

with typically unknown regularity parameter β > 0. Slightly abusing our notation, we also
write θ0 ∈ Sβ(L0) if fθ0 ∈ Sβ(L0). Note that depending on the basis functions φj this may
or may not refer to the classical Sobolev balls; note also that the Fourier basis satisfies the
assumptions below. The minimax estimation rate, which typically coincides with the minimax
size of confidence sets (see, for instance, [39]) over Sβ(L0) with respect to the �2-norm is
n−β/(1+2β).

Let φ̄i = (φi(x1), . . . , φi(xn))
T and for any k ≤ n we introduce the notation �k =

(φ̄1, φ̄2, . . . , φ̄k) ∈ R
n×k . Next, let dn(θ, θ ′)2 = 1

n

∑n
i=1(fθ (xi) − fθ ′(xi))

2 be the empir-
ical L2-norm between the functions fθ , fθ ′ ∈ L2. Furthermore, let us introduce the no-
tation fθ,n = (fθ (x1), . . . , fθ (xn)) and denote by θo[k] the empirical L2-norm projection
of f0,n = (fθ0(x1), . . . , fθ0(xn))

T to the space {�kθ : θ ∈ R
k} or in other words the dn-

projection of θ0 onto R
k . Then defining b(k) in terms of the pseudometric dn(·, ·) leads to

b(k) = dn(θ0, θ
o[k])2 the approximation error of the true function with the k-dimensional pro-

jection. Assume furthermore that there exists a constant C0 ≥ 1 and a sequence Kn going to
infinity such that

C−1
0 IKn ≤ �T

Kn
�Kn

n
≤ C0IKn,(21)

where Ik denotes the identity matrix in Rk .

REMARK 5. The above assumptions on the choice of the basis functions φj (x) ∈
L2[0,1] and the design points x1, x2, . . . , xn are very mild and standard. There are many
suitable choice of bases satisfying these properties. Orthonormal bases in R

n, such as the dis-
crete wavelet basis relative to the design points satisfy (21) with Kn = n; some orthonormal
bases in L2 will satisfy (21) for some finite value Kn. In the case of the Fourier basis for
instance, (21) is valid as soon as Kn = o(n).
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REMARK 6. Let us consider a probability measure ν on [0,1] and take an orthonormal
L2(ν) bases φj . Then in view of Rudelson’s inequality, [43],

(22) Eν

∥∥∥∥�T
k �k

n
− Ik

∥∥∥∥
2
≤ M

√
k logn

n

for all k ≤ k0n/ logn and some k0 small enough. Hence following from Lemma A.6 in the
Supplementary Material [42], if Kn logKn = o(n) assertion (21) is verified with ν-probability
going to 1.

Due to the condition (21), we have to slightly modify the polished tail condition by assum-
ing that the approximation error using the largest model �(Kn) is not too large, that is, we
take

�0,n = �0,n(R0, k0, τ ) ∩ {
θ0 : b(Kn) ≤ δKn(logn)/n

}
,

for some δ < 1 ∧ C0 and consider θ0 ∈ �0,n.

REMARK 7. To understand better the meaning of the restriction θ0 ∈ �0,n, assume that∑∞
j=1 |θ0,j | < +∞ and maxj ‖φj‖∞ < ∞ so that ‖fθ0‖∞ < ∞. If (21) is true for all 1 ≤ k ≤

Cn, C > 0, then ‖�k‖∞ = o(1) as k goes to infinity, with �k = fθ0 − ∑k
j=1 θ0,jφj . Since

b(k) ≤ ‖�k‖2∞, then there exists Kn, with Cn ≥ Kn ≥ 1, such that b(Kn) ≤ δKn(logn)/n

for all n ≥ 2 and δ > 0. Hence for all L > 0, {θ0 : ‖θ0‖1 ≤ L} ∩ �0,n ⊂ �0,n, when n is
large enough, following from the inequality ‖fθ‖∞ ≤ ‖θ‖1 maxj ‖φj‖∞. However, if (21)
is only true for Kn = o(n), then �0,n will typically be more constraint. For instance, for
θ0 ∈ Sβ(L0), β > 1/2, we can bound b(Kn) ≤ ‖�Kn‖2∞ � K

−2(β−1/2)
n (using the Cauchy–

Schwarz inequality) so that b(Kn) ≤ δKn(logn)/n if Kn � (n/ logn)1/(2β). In case Kn �
n/ logn, β > 1/2 is enough. The upper bound K

−2(β−1/2)
n is independent of the design and

the chosen basis and can be improved in particular cases.
For instance in the random design case with distribution ν, bounded orthonormal basis

maxj ‖φj‖∞ < +∞ and writing θ0,[k] = (θ0,1, . . . , θ0,k) ∈ R
k one has

ν
(
d2
n(θ0, θ0,[Kn]) > C‖�Kn‖2

2
) = ν

(
n∑

i=1

( ∞∑
j=Kn+1

θ0,j φj (xi)

)2

> nC‖�Kn‖2
2

)

≤ Eν((
∑∞

j=Kn+1 θ0,j φj (X))2)

C‖�Kn‖2
2

≤ 1

C
.

Therefore, b(Kn) ≤ d2
n(θ0, θ0,[Kn]) ≤ C‖�Kn‖2

2 � K
−2β
n with large probability.

REMARK 8. In the fixed design regression model with Kn ≥ n
1

2(β0−1/2) (where β0 > 0 is
the smallest regularity level we are adapting to), the set �0,n contains the set in {θ0 : b(Kn) ≤
δKn(logn)/n} satisfying the L2 polished tail condition of [49], that is, if

‖θ0,[R0k] − θ0‖2
2 ≤ τ1‖θ0,[k] − θ0‖2

2, τ1 < 1/
(
5C2

0
)

for all k ≥ k0, then θ0 ∈ �0,n. In the random design regression model (with arbitrary sequence
Kn tending to infinity), the above inclusion holds with ν-probability arbitrary close to one.
Therefore, the discussion in [49] on the L2 polished tail condition, in terms of the force of the
restriction induced by this condition applies here, namely that the condition is nonrestrictive
from a statistical complexity, topological and Bayesian perspective.



FREQUENTIST COVERAGE OF CREDIBLE SETS 2167

The proof of the above remark is given in Section B.5 in the Supplementary Material [42].
Then we define the prior distribution on the regression function f by endowing the se-

quence of coefficients θ with the standard sieve prior, that is,

θ = (θ1, . . . , θk)|k ∼
k∏

i=1

g(θi),

k ∼ Geom(p) or Pois(λ),

where Geom(p) and Pois(λ) denote the geometric and Poisson distributions, respectively,
with parameters p ∈ (0,1) and λ > 0, and g(·) satisfies the standard assumption

G1e
−G2|x|q ≤ g(x) ≤ G3e

−G4|x|q ,(23)

for some positive constants G1,G2,G3,G4 and q . Alternatively, we can also estimate k

by the MMLE (16) and plug in the estimator k̂n into the posterior. These type of priors
were considered for instance in [1] and [41], where it was shown that the corresponding
hierarchical and empirical Bayes posterior distributions achieve (up to a logn factor) adaptive
contraction rate around the true function f0. The frequentist behavior of the Bayesian credible
sets in the context of the regression model was investigated only in a few papers [45, 46, 55]
for specific conjugate priors allowing direct computations, which cannot be applied in the
present setting due to the lack of explicit expression for the posterior. Here, we consider both
the inflated hierarchical Bayes credible set

Ĉ(L
√

logn,α) = {
θ : dn(θ, θ̂) ≤ L

√
lognrα

}
,

with π(θ : dn(θ, θ̂) ≤ rα|Y) ≥ 1−α and θ̂ satisfying Assumption A0 and the inflated MMLE
empirical Bayes credible set defined along the same lines. By applying Theorems 1 and 2
together with Corollary 1, we can verify that both credible sets have good frequentist coverage
and (almost) rate adaptive size under the general polished tail assumption.

PROPOSITION 1. Consider the fixed design regression model (19) with fθ0 ∈ Sβ(L0) for

some β ≥ β0 > 1/2 and assume that condition (21) is satisfied with Kn > n
β0

(1+2β0)(β0−1/2) . De-
note both the inflated hierarchical Bayes and empirical Bayes credible sets, centered around
any estimator θ̂ satisfying Assumption A0 by Ĉn(L

√
logn,α). Then Ĉn(L

√
logn,α) has (up

to a logn factor) rate adaptive size and frequentist coverage tending to one under the gen-
eral polished tail assumption (7), that is, for every ε,R0, k0, τ > 0 there exist a large enough
L,C > 0 such that

lim inf
n

inf
θ0∈�0,n(R0,k0,τ )∩Sβ0 (L0)

P
(n)
θ0

(
θ0 ∈ Ĉn(L

√
logn,α)

) ≥ 1 − ε,

lim inf
n

inf
β≥β0

inf
θ0∈Sβ(L0)

P
(n)
θ0

(
diam

(
Ĉn(1, α), dn

) ≤ C

(
n

logn

)− β
1+2β

)
≥ 1 − ε.

The proof of the proposition is given in Section A.1 of the Supplementary Material [42].

REMARK 9. Assumption A0 on the estimator is very mild, for instance, a typical draw
from the posterior distribution satisfies it; see the comment above Lemma 3. Furthermore,
standard estimators like the posterior mean also satisfies this assumption; see, for instance,
[1]. We also note that similar results hold for the random design regression as well.
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REMARK 10. Recall that by assumption (21) the empirical L2 pseudometric dn and
the �2-norm are equivalent over �(k), k ≤ Kn. Furthermore, note that the inequality ‖θ0 −
θ0,[Kn]‖2

2 � K
−2β
n ≤ 1/n holds for Kn > n

β0
(1+2β0)(β0−1/2) , β ≥ β0. Hence we get that the same

contraction rate and coverage statements as in Proposition 1 hold for the metric �2 as well.

The
√

logn blow up factor in the credible set is rather inconvenient and makes the pro-
cedure less appealing. The question naturally arises whether this blow up factor is just an
artefact of the proof and can be removed or whether it is necessary to reach the desired fre-
quentist coverage. We show below that without inflating the credible sets (centered at the
posterior mean) with a multiple of

√
logn one would get coverage tending to zero for a large

class of parameters satisfying the polished tail condition, justifying the presence of the inflat-
ing factor.

In view of [49], let us consider the class of self-similar functions

Hβ
s (L) = {

fθ : L−1i−β−1/2 ≤ |θi | ≤ Li−β−1/2, i = 1,2, . . .
}
,

where it was also shown that the present set is not substantially smaller than the entire hy-
perrectangle (the set without the lower bound assumption on |θi |) from a topological and
statistical complexity point of view. Note also that Hβ

s (L) ⊂ Sβ+ε(C), for arbitrary ε > 0
and some sufficiently large constant C > 0.

PROPOSITION 2. Consider the fixed design regression model (19) with fθ0 ∈ Hβ
s (L) for

some β ≥ β0 > 1/2 and orthogonal basis �T
Kn

�Kn = nIKn (where Kn > n
β0

(1+2β0)(β0−1/2) ).
Furthermore, take the prior g(θ) to be either the normal N(μ,σ) or Laplace Lap(μ, b)

distribution. Then the empirical Bayes credible set centered around the posterior mean θ̂ and
inflated with a factor mn log1/2 n, for arbitrary mn = o(1), has frequentist coverage tending
to zero, that is, for every α > 0,

lim sup
n

sup
fθ0∈Hβ

s (L)

P
(n)
θ0

(
θ0 ∈ {

θ : dn(θ, θ̂) ≤ mn

√
lognrα(k̂n)

}) = 0

The proof of the proposition is given in Section A.2 of the Supplementary Material [42].
It is common or folklore knowledge that empirical Bayes procedures underestimate un-

certainty compared to hierarchical Bayes procedures. However, we prove below that under
(somewhat) more restrictive conditions on θ0 the same blow up factor is required for the hi-
erarchical Bayes credible ball centered at the posterior mean. More precisely, let � :N →R+
be a slowly varying function going to 0 at infinity and set

Hβ
ss(L, �) = {

fθ ∈Hβ
s (L); ∃r∞ ∈ [1/L,L]; ∣∣θ2

i i2β+1 − r2∞
∣∣ ≤ �(i), i ≥ 1

}
.

PROPOSITION 3. Consider the fixed design regression model (19) with fθ0 ∈ Hβ
s (L) for

some β > 1 and orthogonal basis �T
Kn

�Kn = nIKn (where Kn = n/ logn). Furthermore,
assume that the log-prior logg(θ) is continuously differentiable on R. Then the hierarchical
Bayes credible set centered around the posterior mean θ̂ and inflated with a factor mnδ

−1/2
n ,

δn = 1/ logn + �(kn) for arbitrary mn = o(1), has frequentist coverage tending to zero, that
is, for every α > 0,

lim sup
n

sup
fθ0∈Hβ

ss (L,�)

P
(n)
θ0

(
θ0 ∈ {

θ : dn(θ, θ̂) ≤ mnδ
−1/2
n rα

}) = 0.

In particular, if �(i)� 1/ log(i), then δ
−1/2
n � √

logn.
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The proof of the proposition is given in Section A.3 of the Supplementary Material [42].

REMARK 11. From the proofs of Propositions 2 and 3, it appears that the necessity of
the logarithmic blow up follows from (1) the suboptimal behavior of the posterior mean and
(2) the concentration of the posterior (or the empirical Bayes) distribution on values of k

that are too small. We note, however, that other (typical) summary statistics of the posterior
distribution have similar behavior as the bulk of the posterior is located at a suboptimal place.
One can of course choose other centering points, not related to the posterior, to avoid the√

logn blow up factor. For instance, one can consider Lepski’s estimator in the sequence
model (see Lemma B.1 in the Supplementary Material) but this brings us outside of the
Bayesian framework and we are hesitant recommending such a solution. In this case, one
does not need a logarithmic inflation factor, because it is already present in the radius of the
credible ball.

3.2. Application to density estimation using histogram priors. In this section, we con-
sider the density estimation model, that is, we assume to observe Y = {Y1, Y2, . . . , Yn} i.i.d.
samples from a true density function p0 and our goal is to recover this density. We assume
that p0 is continuous, bounded from below by c0 and from above by C0. Furthermore, we
assume that it belongs to a Hölder smoothness class Hβ(L0) for some β ∈ (0,1].

We investigate the Bayesian approach using histogram prior distributions; see, for instance,
[13, 41, 44]. In other words, let �(k) denote the collection of k-bins random histogram where
the bins are regular: [(j − 1)/k, j/k), j = 1, . . . , k,

(24) pθ(x) = k

k∑
j=1

θj 1Ij
(x), θj ≥ 0,

k∑
j=1

θj = 1.

We therefore identify �(k) with the k-dimensional simplex Sk = {x ∈ [0,1]k;∑k
i=1 xi = 1}.

First, we endow the hyperparameter k with either a Poisson Pois(λ) or a geometric Geom(p)

hyperprior with λ > 0 and 0 < p < 1. Given k consider a Dirichlet prior D(α1,k, . . . , αk,k) on
(θ1, . . . , θk), that is, the hierarchical prior π on the densities takes the form

θ = (θ1, . . . , θk)|k ∼ D(α1,k, . . . , αk,k),

c1k
−a ≤ αj,k ≤ C1, k ∼ Geom(p) or Pois(λ),

for some a ≥ 0 and c1,C1 > 0. Alternatively, we apply the MMLE k̂n for the hyperparameter
k and then consider the Dirichlet prior D(α1,k̂n

, . . . , α
k̂n,k̂n

) on (θ1, . . . , θk̂n
).

Then we consider the inflated hierarchical Bayes credible set

Ĉ(L
√

logn,α) = {
pθ : h(pθ ,pθ̂

) ≤ L
√

lognrα
}
,

with h(·, ·) the Hellinger distance, θ̂ satisfying assumption (11) with d(θ, θ ′) = h(pθ ,pθ ′)
and the radius rα satisfies π(θ : h(pθ ,pθ̂

) ≤ rα|Y) ≥ 1 − α. Note that since the Hellinger
metric is bounded and convex, and the posterior distribution contracts around the truth with
the optimal rate εn(kn) the posterior mean satisfies condition (11); see page 507 of [19].
The inflated empirical Bayes credible set Ĉ

k̂n
(L

√
logn,α) is defined along the same lines.

Applying again Theorems 1 and 2 together with Corollary 1, we can verify that both credible
sets have high frequentist coverage and (almost) rate adaptive size under the general polished
tail assumption.

PROPOSITION 4. Consider the density estimation model with histogram priors (24) and
assume that p0 ∈ Hβ(L0) for some β ∈ [β0,1], β0 > 1/2, and it is bounded away from
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zero and infinity. Then both the inflated hierarchical Bayes and empirical Bayes credible
sets with centering point p

θ̂
satisfying A0 have (up to a logn factor) rate adaptive size and

frequentist coverage tending to one under the polished tail assumption (7), that is, for every
ε,R0, k0, τ > 0 there exist L,C > 0 such that

lim inf
n

inf
p0∈�0,n(R0,k0,τ )∩Hβ0 (L0)

P (n)
p0

(
p0 ∈ Ĉn(L

√
logn,α)

) ≥ 1 − ε,

lim inf
n

inf
β∈[β0,1] inf

p0∈Hβ(L0)
P (n)

p0

(
diam

(
Ĉn(1, α), h

) ≤ C

(
n

logn

)− β
1+2β

)
≥ 1 − ε,

where Ĉn(L
√

logn,α) could either denote the hierarchical or the empirical Bayes credible
sets inflated by an L

√
logn multiplier.

The proposition is verified in Section A.4 of the Supplementary Material [42].

REMARK 12. Using Lemma 3 of [42], we have h(p0,pθ ) � ‖p0 − pθ‖2 in a neighbor-
hood of p0 if k is not too large, so that the polished tail condition in the Hellinger distance is
equivalent to the polished tail condition in the L2-norm (associated to different constants). To
understand the latter note that if p0,[k] is the L2 projection of p0 and b2(k) is the L2 bias, then
for any positive integer R0, b2(k) = b2(2R0k) + ‖p0,[k] − p0,[2R0k]‖2

2 so that the L2 polished
tail condition is equivalent to

‖p0,[k] − p0,[2R0k]‖2
2 ≥ (1 − τ)‖p0 − p0,[k]‖2

2,

which has a similar flavor to the polished tail condition of [49].

3.3. Application to density estimation with exponential families of prior. In this subsec-
tion, we consider again the density estimation problem on [0,1], that is, we assume that we
observe independent and identically distributed draws Y = {Y1, Y2, . . . , Yn} from a distribu-
tion with density function f0 (with respect to the Lebesgue measure). Then we assume that
the true density can be written as an infinite dimensional exponential distribution

f0(x) = exp

( ∞∑
j=1

θ0,j φj (x) − c(θ0)

)
, x ∈ [0,1],

with ec(θ0) =
∫ 1

0
exp

( ∞∑
j=1

θ0,j φj (x)

)
dx,

(25)

for some θ0 = (θ0,1, θ0,2, . . .) ∈ �2. For any θ ∈ �2, we define fθ = exp(
∑

θjφj − c(θ)),
and hence f0 = fθ0 . This model is also known as the log-linear model. Furthermore, we also
assume that ‖ logf0‖∞ < +∞, that φj (x), j = 1,2, . . . forms an orthonormal basis (together
with φ0(x) ≡ 1 and, therefore, satisfies

∫ 1
0 φj (x) dx = 0 for all j ≥ 1) and that θ0 ∈ Sβ(L0)

for some β,L0 > 0 as in (20).
Then we define the prior distribution on the densities with hyperparameter k by endowing

the sequence θ in the log-linear model with the standard sieve prior, that is,

θ = (θ1, . . . , θk)|k ∼
k∏

i=1

g(θi),

k ∼ Geom(p) or Pois(λ),
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for some fixed p ∈ (0,1) or λ > 0 and g(·) satisfying (23). Alternatively, one can estimate
k from the data by the MMLE and plug in the estimator k̂n into the posterior distribution.
Similar to Section 3.1, �(k) = R

k .
This type of priors was considered, for instance, in [1, 37, 38, 41, 53, 54], where (nearly)

adaptive posterior contraction rates were derived. However, the reliability of Bayesian uncer-
tainty quantification in this model has not yet been investigated in the literature.

By using the corresponding posterior distribution, we construct the inflated hierarchical
credible set as

Ĉ(L
√

logn,α) = {
fθ : h(fθ , fθ̂

) ≤ L
√

lognrα
}
,

where h(·, ·) denotes the Hellinger distance, the radius rα satisfies π(θ : h(fθ , fθ̂
) ≤ rα|Y) ≥

1 − α and θ̂ is an arbitrary estimator satisfying A0 with d(θ, θ ′) = h(fθ , fθ ′). We note that
similar to the histogram example above the posterior mean satisfies condition (11) hence can
be used as a centering point of the credible set. The construction of the inflated empirical
Bayes credible set Ĉ

k̂n
(L

√
logn,α) goes similarly. Using again Theorems 1 and 2 together

with Corollary 1, we can verify that the preceding credible sets have high frequentist coverage
and (nearly) rate adaptive size under the general polished tail assumption.

PROPOSITION 5. Consider the log-linear model (25). Then both the inflated hierarchical
and empirical Bayes credible sets have (up to a logn factor) rate adaptive size and frequentist
coverage tending to one under the general polished tail assumption (7), that is, for every
β0 > 1/2 and ε,R0, k0, τ > 0 there exist L,C > 0 such that

lim inf
n

inf
θ0∈�0,n(R0,k0,τ )∩Sβ0 (L0)

P
(n)
θ0

(
fθ0 ∈ Ĉn(L

√
logn,α)

) ≥ 1 − ε,

lim inf
n

inf
β≥β0

inf
θ0∈Sβ(L0)

P
(n)
θ0

(
diam

(
Ĉn(1, α), h

) ≤ C

(
n

logn

)− β
1+2β

)
≥ 1 − ε,

where Ĉn(L
√

logn,α) denotes either the inflated hierarchical or empirical Bayes credible
set with a blow up factor L

√
logn.

The proof of the proposition is given in Section A.5 of the Supplementary Material [42].

REMARK 13. In view of Lemma A.5 in the Supplementary Material, we note that the
rate and coverage statements of Proposition 4 also hold for the �2-metric.

REMARK 14. Again, similar to before, if fθ0 ∈ Sβ0(L) with β0 > 1/2 and if k ≤ K̄n then
for all k0 ≤ k ≤ kn we have ‖θ0 − θ0,[k]‖2 ≤ Lk−β0 , where θ0,[k] = (θ0,1, . . . , θ0,k,0,0, . . .),
and if k0 ≥ (L/ε)1/β0 with ε > 0 arbitrarily small, using Lemma 5 in the Supplementary
Material [42],

b(k) � ‖θ0 − θ0,[k]‖2
2 for k ≥ k0.

Therefore, the parameters θ satisfying the L2 polished tail condition of [49] (see also (8)) is
a subset of �0,n(R0, k0, τ ).

3.4. Application to nonparametric classification. In this section, we apply our general
theorem to the nonparametric classification (or also known as binary regression) model. We
assume to observe the sequence Y = (Y1, Y2, . . . , Yn) ∈ {0,1}n satisfying

P(Yi = 1|xi) = q0(xi) for some q0 : [0,1] �→ (0,1),(26)
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with xi ∈ [0,1], i = 1, . . . , n fixed design points. We also take μ(x) = ex/(1 + ex) to be the
logistic link function.

We assume that under the true distribution associated to q0, f0 = μ−1(q0) ∈ Sβ(L0), with
unknown smoothness parameter β > 0. Minimax estimation rates with respect to the L2-
norm, that is, n−β/(1+2β) for Sβ(L0), and an adaptive estimator achieving these rates in the
random design case was derived, for instance, in [56, 57]. Similar to the density estimation
and classification models, it was also shown that with respect to the L2-norm it is impossible
to construct adaptive confidence sets over a full scale of regularity classes

⋃
β≥β0

Sβ(L0), for
any β0 > 0; see [31].

In the Bayesian approach, one endows the nonparametric function f with a prior distribu-
tion resulting in a prior on the binary regression function q . The theoretical properties of the
Bayesian approach in the present model were investigated, for instance, in [20] with linear
function f , in [53] with Gaussian process priors on the nonparametric function f and in [26]
in context of classification of the nodes of large graphs. In the preceding papers, adaptive pos-
terior contraction rates were derived. However, the coverage properties of Bayesian credible
sets remained unknown. Due to the lack of an explicit formula for the posterior distribution
direct computations are not feasible to quantify the reliability of Bayesian uncertainty quan-
tification. Therefore, we tackle this until now unanswered question by applying our general,
abstract theorem.

In our analysis, we consider again the popular sieve prior. For given k, we introduce the
parametrization

fθ (xi) =
k∑

j=1

θjφj (xi) = �k(xi)θ,

with θ = (θ1, . . . , θk)
T ∈ �(k) = R

k and �k(xi) = (φ1(xi), φ2(xi), . . . , φk(xi)), as in Sec-
tion 3.1, satisfying assumption (21). We work with the average (empirical) Hellinger pseudo-
metric

h2
n(q1, q2) = 1

n

n∑
i=1

h2
b

(
q1(xi), q2(xi)

)
, where

hb

(
q1(xi), q2(xi)

) = (√
q1(xi) −

√
q2(xi)

)2

+ (√
1 − q1(xi) −

√
1 − q2(xi)

)2
.

REMARK 15. Since assumption (21) is in a general and weak form, similar to the non-
parametric regression example we have to slightly strengthen our polished tail assumption. To
see this, first note that h2

n(q1, q2) ≤ d2
n(f1, f2) with fj (x) = μ−1(qj (x)), j = 1,2. Similar to

before, to understand the coverage properties of the credible balls, we need to study the bias
function b(k) with respect to the pseudometric hn. Assume θ0 ∈ Sβ(L0) for β ≥ β0 > 1/2
and L0 > 0. Denote by b̃(·) the bias function associated to dn(fθ0, fθ ) and studied in Sec-
tion 3.1. Assume that Kn satisfies b̃(Kn) ≤ δKn(logn)/n for some small enough δ. Then
since b(Kn) ≤ b̃(Kn) we get b(Kn) ≤ δKn(logn)/n. The discussion on the feasibility of the
constraint b̃(Kn) ≤ δKn(logn)/n is similar to that of Section 3.1. As in the case of the regres-
sion model, using (A.27) of the Supplementary Material [42], if fθ0 ∈ Sβ0(L) with β0 > 1/2,
dn(θ, θ0) � hn(θ, θ0) locally. Using the same arguments as in Section 3.1, if θ0 satisfies the
L2 polished tail condition of [49], then it satisfies the general polished tail condition.
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In this example, we consider the prior

θ = (θ1, . . . , θk)|k ∼
k∏

i=1

g(θi),

k ∼ Geom(p)or Pois(λ),

with g(·) satisfying (23), and p ∈ (0,1) or λ > 0, resulting in the two level hierarchical prior
π(·). Alternatively, we estimate k using the MMLE and plug it in into the posterior for θ given
k. Then we consider credible balls in terms of q(x) = μ(f (x)), and the empirical Hellinger
pseudometric hn(·, ·).

The inflated hierarchical Bayes credible balls are defined as

Ĉ(L
√

logn,α) = {
qθ (·) : hn(qθ , q̂n) ≤ L

√
lognrα

}
,

with radius rα given by π(θ : hn(qθ , q̂n) ≤ rα|Y) ≥ 1 −α and taking the posterior mean q̂n =
Eπ(·|Y)(qθ ) as the centering point. Note that by convexity and boundedness of q → h2

n(q, q0),
the posterior mean q̂n satisfies condition (11). Alternatively, we can use any centering point
satisfying condition (11). The inflated empirical Bayes credible ball Ĉ

k̂n
(L

√
logn,α) is de-

fined similarly.
By applying our main Theorems 1 and 2 and Corollary 1, we show that under the general

polished tail assumption (7) both of the inflated credible sets have (nearly) optimal frequentist
behavior.

PROPOSITION 6. Consider the classification model given in (26) with qθ0 = μ(fθ0)

satisfying θ0 ∈ Sβ(L0), β ≥ β0 > 1/2 and Kn � n
1

2(β0−1/2) . Then the inflated credi-
ble set Ĉn(L

√
logn,α)—denoting either Ĉ(L

√
logn,α) in the hierarchical approach or

Ĉ
k̂n

(L
√

logn,α) in the empirical approach—have (up to a logn factor) rate adaptive size
and frequentist coverage arbitrary close to one under the general polished tail assumption,
that is, for every ε,R0, k0, τ > 0, there exist constants L,C > 0 such that

lim inf
n

inf
θ0∈�0,n(R0,k0,τ )∩Sβ0 (L0)

P
(n)
θ0

(
qθ0 ∈ Ĉn(L

√
logn,α)

) ≥ 1 − ε,

lim inf
n

inf
β≥β0

inf
θ0∈Sβ(L0)

P
(n)
θ0

(
diam

(
Ĉn(1, α), hn

) ≤ C

(
n

logn

)− β
1+2β

)
≥ 1 − ε.

The proof of the proposition is deferred to Section A.6 of the Supplementary Material [42].

REMARK 16. We note that the empirical Hellinger pseudometric hn is locally equivalent
to the empirical L2 pseudometric dn(fθ1, fθ2) and the �2-norm ‖θ1 − θ2‖2; see assertions
(A.27) and (A.28) in the Supplementary Material [42]. Therefore, the same coverage and
contraction rate results can be shown for these pseudometrics as well.

3.5. Parametric models and the BIC formula. Interestingly, the lower bound obtained
in Propositions 2 and 3 also holds for simple regular parametric models. Consider the same
structure as model (3) with k ≤ K < +∞, and �(k − 1) ⊂ �(k). In this case, it is common
knowledge that under usual regularity conditions, for a fixed θ0 ∈ �(k0) with k0 ≤ K , the
posterior distribution on k converges to k0 and that the Bernstein–von Mises theorem holds,
that is, the posterior distribution of

√
n(θ − θ̂k0) is asymptotically Gaussian with mean 0

and variance Ik0(θ0) where θ̂k0 is the maximum likelihood estimator within model �(k0)

and Ik0(θ0) is the Fisher information matrix (per observation, in model �(k0)) computed



2174 J. ROUSSEAU AND B. SZABO

at θ0. However, this result does not hold uniformly, due to the logn penalization induced
by integrating over the parameters. We will show below that the posteriors are not so well
behaved under parameter values which are on the boundaries of the sets �(k), in the sense
that they are close to �(k − 1) without belonging to it.

More precisely, define the set �n(K(k0), k1, δ,C, τ) with τ, δ ∈ (0,1), C > 1 and k1 < k0,
as

�n

(
K(k0), k1, δ,C, τ

) =
{
θ0 ∈K(k0); inf

θ∈�(k1−1)
‖θ0 − θ‖2 ≥ C

√
(logn)/n,

τδ
√

(logn)/n ≤ inf
θ∈�(k1)

‖θ0 − θ‖2 ≤ δ
√

(logn)/n
}
,

where K(k0) is a compact subset of �(k0). In other words, these parameters are close to
�(k1) but do not belong to �(k1). For instance, if �(k) = R

k the following parameters
belong to �n(K(k0), k1, δ,C, τ), with K(k0) = {θ ∈ R

k0; |θj | ≤ C′}:

C′ ≥ |θ0,j | ≥ c, j ≤ k1, |θ0,k1+1| ≥ τδ
√

(logn)/n,

k0∑
j=k1+1

θ2
0,j ≤ δ2 logn

n
.

Note in particular that the parameters θ0 ∈ �n(K(k0), k1, δ,C, τ) vary with n. Then under
usual regularity assumptions (see Section B.7 of the Supplementary Material) for any α ∈
(0,1), and any Ln = o(

√
logn),

sup
θ0∈�n(K(k0),k1,δ,C,τ )

∣∣Eθ0π(k = k1|Y) − 1
∣∣ = o(1),

sup
θ0∈�n(K(k0),k1,δ,C,τ )

Pθ0

(
θ0 ∈ Ĉ(Ln,α)

) = o(1),
(27)

where Ĉ(1, α) = {‖θ − θ̂‖2 ≤ rα} is the α credible ball centered at the posterior mean θ̂ .
In other words, because of the logn penalization induced by the integration over the pa-

rameter spaces �(k), signals of order
√

(logn)/n may be estimated at 0 and the posterior
concentrates on a smaller dimensional parameter set, thus underestimating the uncertainty.

4. Discussion. In this paper, we have provided some general tools to study the frequen-
tist properties of inflated credible balls in infinite dimensional models based on sieve priors.
We have also studied three types of models: regression, density estimation and classifica-
tion. As we can see from our results, a key condition for the good behavior of these in-
flated balls is the fact that the posterior distribution concentrates on the values of k for which
b(k) � k(logn)/n and this is verified under the generalized polished tail condition, together
with some other technical conditions. An intriguing feature of our result is the fact that we
had to inflate the credible balls by a factor of order

√
logn. In the case of the regression

model, under both the empirical and hierarchical Bayes posteriors we have shown that this
inflation is necessary, in order to obtain good frequentist coverage. The reason behind it is
that the marginal maximum likelihood estimator k̂n corresponds to a value k such that the
bias b(k) � k(logn)/n, while the estimation error (and thus the radius r2

α) is of order k/n.
We believe that this (negative) result remains valid for the other models (density estimation
and classification).

We believe that this is in fact an important takeaway message from our results, that is,
the model selection priors induce a penalization of order dk logn, where dk is the dimension
of the parameter space reminiscent of the BIC formula, which in turn induce a loss in uni-
form coverage. This is even still true in simple regular parametric models, as discussed in
Section 3.5.
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From a practical perspective, these credible balls can be approximately visualized by
plotting the curves under the posterior distribution which satisfy the constraint d(θ, θ̂) ≤
L

√
lognrα , as was done for instance in [36] and in [49]. In general, visualization of confi-

dence sets outside of the L∞ or the pointwise case is challenging and we are not aware of
any practical solution, for instance, for L2- or Hellinger-confidence balls.

The paper focuses on priors based on the structure (3). This represents a general family
of prior models but of course does not cover every possible prior. In particular, hierarchical
priors based on a continuous hyperparameter, such as hierarchical Gaussian processes, are
not tackled by the present approach. There is so far no general theory for such priors and
the only existing results so far are based of particular models and particular priors for which
explicit computations can be derived, as in [49].

5. Proof of Theorem 1. Theorem 1 is a simple consequence of the following lemma
which allows to control the prior mass of neighborhoods of θ̂ .

LEMMA 4. Under the same assumptions as in Theorem 1 for every ε > 0, there exists a
small enough δε > 0 such that for ρn = δε/

√
logn,

sup
θ0∈�0,n

E
(n)
θ0

(
π
(
d(θ, θ̂) ≤ ρnεn(kn)|Y)) ≤ ε.

The proof of Lemma 4 is presented in Section 5.1. We now give the proof of Theorem 1.

PROOF OF THEOREM 1. Let Ln = Lε,α

√
logn (for some Lε,α > 0 to be specified later)

and εn = εn(kn). Then by assumption (11) and definition (5) we have for every ε > 0 that

P
(n)
θ0

(
θ0 ∈ Ĉ(Ln,α)

)
= P

(n)
θ0

(
d(θ0, θ̂ ) ≤ Lnrα

)
≥ P

(n)
θ0

[
π
(
d(θ, θ̂) ≤ d(θ0, θ̂ )/Ln|Y) ≤ 1 − α

]
≥ P

(n)
θ0

[
π
(
θ : d(θ, θ̂) ≤ Mεεn/Ln|Y) ≤ 1 − α

] − ε.

We show below that the first term on the right-hand side is bounded from below by 1 − ε. In
view of Lemma 4, there exists δε,α > 0 small enough such that

sup
θ0∈�0,n

E
(n)
θ0

(
π
(
d(θ, θ̂) ≤ δε,αεn/

√
logn|Y)) ≤ ε(1 − α),

and, therefore, by taking Lε,α = Mε/δε,α and applying Markov’s inequality

P
(n)
θ0

[
π

(
d(θ, θ̂) ≤ Mεεn

Ln

|Y
)

> 1 − α

]
≤

E
(n)
θ0

(π(d(θ, θ̂) ≤ δε,αεn√
logn

|Y))

1 − α
≤ ε,

completing the proof of our statement. �

5.1. Proof of Lemma 4. For notational convenience, let εn = εn(kn) and �n = ⋃
k �n(k).

Then in view of Lemma 2, for large enough choice of M > 0,

E
(n)
θ0

π
(
d(θ, θ̂) ≤ ρnεn|Y)

≤ E
(n)
θ0

( ∑
k∈Kn(M)

π|k
({

d(θ, θ̂) ≤ ρnεn

} ∩ �n(k)|Y)
πk(k|Y)

)

+ E
(n)
θ0

( ∑
k∈Kn(M)

π|k
(
�n(k)c|Y)

πk(k|Y)

)
+ ε



2176 J. ROUSSEAU AND B. SZABO

for all θ0 ∈ �0,n. Let �n,0 = {mn(kn) > e−(c3+c4+1)nε2
n}, with mn(k) = ∫

�(k) e
�n(θ)−�n(θ0) ×

π|k(dθ). In view of Lemma 10 of [20] (with nε2 = nε2
n(kn) ≤ 2kn logn, k = r and C = 1),

we get following A1 that P
(n)
θ0

(�c
n,0) ≤ (kn logn)−r/2 = o(1). Furthermore, note that for k ∈

Kn(M) we have by Assumption A2(i) that

E
(n)
θ0

[
1�n,0π|k

(
�n(k)c|Y)] = π|k

(
�n(k)c

)
ee(c3+c4+1)nε2

n � e−(c2+1)nε2
n.

By combining the above inequalities and in view of Lemma 1, we get that

E
(n)
θ0

(
1�n,0

∑
k∈Kn(M)

π|k
(
�n(k)c|Y)

πk(k|Y)

)
� kne

−nε2
n = o(1).

Next, we show that with probability at least 1 − C̃ε, for some universal C̃ > 0, we have
for every k ∈ Kn(M),

πn,k := π|k
({

d(θ, θ̂) ≤ ρnεn

} ∩ �n(k)|Y) ≤ ε.(28)

Then the statement of the lemma follows by noting that

E
(n)
θ0

π
(
d(θ, θ̂) ≤ ρnεn|Y) ≤ (

C̃ + 1 + o(1)
)
ε + ∑

k∈Kn(M)

επk(k|Y) ≤ (C̃ + 3)ε.

It remained to prove (28). As a first step, we introduce the notation, for C,B > 0,

�n(C) =
{

max
k∈Kn(M)

eCk

∫
�(k) e

�n(θ)−�n(θo[k])π|k(dθ)

π|k(d(θ, θo[k])2 ≤ k/n)
≥ 1

}
,(29)

�n(B) =
{

max
k∈Kn(M)

sup
�n(k)∩Bk(θ̂ ,ρnεn,d)

(
�n(θ) − �n

(
θo[k]

) − Bk
)
< 0

}
.(30)

Using Assumption A0, we have with probability greater than 1 − ε, d(θ̂ , θ0) ≤ Mεεn, there-
fore, as soon as ρn ≤ 1,

Bk(θ̂ , ρnεn, d) ⊂ Bk

(
θ0, (Mε + 1)εn, d

)
.

Hence in view of Assumption A4(ii), there exists a large enough constant Bε > 0 such
that infθ0∈�0,n

P
(n)
θ0

(�n(Bε)) ≥ 1 − ε. Also note that following from A4(i) and by using the
standard technique for lower bound for the likelihood ratio (e.g., Lemma 10 of [20] with
1+C = c7 +1/

√
ε and nε2 = k) we have, for any k ∈ Kn(M), with P

(n)
θ0

-probability bounded

from below by 1 − (ε/k)r/2 ≥ 1 − ε/k that∫
�(k)

e
�n(θ)−�n(θo[kn])π|k(dθ)

≥ e−(c7+1/
√

ε)kπ|k
(
Sn(k, c7, c8, r)

)
(31)

≥ e−(c7+1/
√

ε)kπ|k
(
Bk

(
θo[k],

√
k/n, d

))
,

hence in view of Lemma 1, P
(n)
θ0

(�c
n(c7 + 1/

√
ε)) ≤ Cε.

Then we have, on �n(c7 + 1/
√

ε) ∩ �n(Bε), that for any k ∈Kn(M),

πn,k ≤ e(c7+Bε+1/
√

ε)k π|k(�n(k) ∩ {d(θ, θ̂) ≤ ρnεn})
π|k(d(θ, θo[k]) ≤ √

k/n)
.
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We recall that Lemma 1 implies that kn ≤ Ck for all k ∈ Kn(M) and by definition of εn(kn),
nε2

n ≤ 2kn logn. Therefore, we have ρnεn ≤ δε

√
2kn/n ≤ (2C)1/2δε

√
k/n for all k ∈ Kn(M).

In view of Assumption A4(iii) (with δn,k = (2C)1/2δε),

πn,k � e(c7+Bε+1/
√

ε+c9 log(
√

2Cδε))k ≤ ε,(32)

for small enough choice of δε > 0 (the choice log(δε) ≤ −c−1
9 (1/

√
ε + c7 + Bε + log ε−1) −

log
√

2C is sufficiently small).
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