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Latent class models have wide applications in social and biological sci-
ences. In many applications, prespecified restrictions are imposed on the
parameter space of latent class models, through a design matrix, to reflect
practitioners’ assumptions about how the observed responses depend on sub-
jects’ latent traits. Though widely used in various fields, such restricted latent
class models suffer from nonidentifiability due to their discreteness nature
and complex structure of restrictions. This work addresses the fundamental
identifiability issue of restricted latent class models by developing a general
framework for strict and partial identifiability of the model parameters. Un-
der correct model specification, the developed identifiability conditions only
depend on the design matrix and are easily checkable, which provide useful
practical guidelines for designing statistically valid diagnostic tests. Further-
more, the new theoretical framework is applied to establish, for the first time,
identifiability of several designs from cognitive diagnosis applications.

1. Introduction and motivation. Latent class models are widely used in social and bi-
ological sciences to model unobserved discrete latent attributes. These models often assume
each latent class represents a configuration of the targeted latent attributes that can explain
the observed responses. In many applications, prespecified restrictions are imposed on the
parameter space of the latent class model, through a design matrix. These restrictions re-
flect practitioners’ understanding about how the responses depend on the underlying latent
attributes. This paper studies such a family of restricted latent class models, which have been
widely employed in various fields. The following are several examples.

(1) Cognitive diagnosis in educational assessment. Restricted latent class models play a
key role in cognitive diagnosis modeling in educational and psychological assessment. Cogni-
tive diagnosis aims to make a classification-based decision on an individual’s latent attributes,
based on his or her observed responses to a set of designed diagnostic items (questions). In
the majority of models, the latent classes are characterized by profiles of the binary states of
mastery/deficiency of the targeted ability attributes, while there are also models that allow
polytomous ordinal attributes [39]. The restricted structure usually comes from the design
matrix that specifies what latent attributes each item measures (e.g., [11, 22, 24, 31]). See
Section 2.2 for several data examples, including the Test of English as a Foreign Language
(TOEFL) (e.g., [39]) and Trends in International Mathematics and Science Study.

(2) Psychiatric evaluation. Restricted latent class models have also been used in psychi-
atric evaluation. Here, the responses are manifested symptoms and the latent classes represent
the profiles of presence/absence of a set of underlying psychological or psychiatric disorders.
The restricted structure results from the fact that each symptom may be shared by multiple
disorders, which are specified by psychiatric diagnosis guidelines. See examples in [23, 36]
and [13].

(3) Disease etiology detection. Another application of restricted latent class models is
the diagnosis of disease etiology in epidemiology [44]. Here, the observed responses are
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imperfect measurements of subjects’ biological samples, and the latent classes are the con-
figurations of existence or nonexistence of a set of pathogens underlying a certain disease.
The restricted structure naturally arises from the fact that each measurement may only target
certain pathogens.

Despite the popularity of the restricted latent class models, the fundamental identifiability
issue is challenging to address. Model identifiability is a prerequisite for making statistical
inferences. The study of identifiability of latent class models dates back to decades ago [18,
30, 34]. For unrestricted latent class models, [21] showed the model is not identifiable in the
sense that, there always exists some set of parameters, such that one can construct a different
set of parameters which lead to the same distribution of the responses. Such nonidentifiablity
has likely impeded statisticians from looking further into this problem [2]. Due to the diffi-
culty of establishing strict identifiability in such scenarios, [16] and [2] studied the generic
identifiability of these models. The idea of generic identifiability is closely related to con-
cepts in algebraic geometry and implies that the model parameters are identifiable almost
everywhere in the parameter space, excluding only a Lebesgue measure zero set. Allman et
al. [2] established generic identifiability results for various latent variable models, including
the unrestricted latent class models.

The complex constraints of the restricted latent class models pose additional challenge to
the study of model identifiability. The existing results of generic identifiability in [2] do not
apply to restricted latent class models, because the restrictions imposed by the design matrix
already constrain the model parameters of a restricted latent class model into a measure-zero
(and hence potentially unidentifiable) subset of the parameter space of an unrestricted latent
class model. To address the identifiability issue under restrictions, [45] proposed a set of
sufficient conditions for identifiability of a family of restricted latent class models. However,
a key assumption in [45] is that the design matrix has to satisfy a certain structural constraint
and that the latent class space has to be saturated (see Section 2.3 for more details), which is
often difficult to meet and may even be unrealistic in practice; see examples in [11, 12, 22, 23,
25] and many others. The same strong assumption is also imposed in [46] for identifiability of
the design matrix. Therefore, the existing theory is hardly applicable to popular designs in the
literature, and the previously proposed conditions may not serve as good guidelines for future
test designing. Moreover, the techniques developed as in [45] for specific presumable design
structure are not applicable to general designs. The fundamental identifiability issues of the
restricted latent class models remain largely underexplored and call for new identifiability
theory.

This paper proposes a general framework of strict and partial identifiability for restricted
latent class models. Practical sufficient conditions for strict and partial identifiability are pro-
posed and their necessity is discussed. In particular, depending on the two different types
of algebraic structures of restricted latent class models, we introduce and study two useful
notions of partial identifiability, respectively (see Sections 3 and 4). The established identifi-
ability results are widely applicable in practice, by relaxing most of the constraints imposed
on the design matrix. Moreover, under correct model specification, all the identifiability con-
ditions only depend on the design matrix and are easily checkable by practitioners. We apply
the new theory to several existing designs and establish identifiability under them for the first
time in the literature.

The rest of the paper is organized as follows. Section 2 introduces the general model setup
of restricted latent class models, including model and data examples in cognitive diagno-
sis applications; and then discusses the limitations of the existing studies. Sections 3 and
4 present our main identifiability results. Section 5 includes extensions of the new theory
to some more complicated models. Section 6 gives a further discussion, and proofs of the
theoretical results are presented in the Supplementary Material [20].
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2. Model setup, examples and identifiability issues. We start with the setup for a la-
tent class model with binary responses. Suppose there are J dichotomous items, denoted
by the item set S = {1, . . . , J }. For any subject, the observed variables are his/her binary
responses to the J items, denoted by R = (R1, . . . ,RJ )� ∈ {0,1}J . To model the distri-
bution of the responses, we assume there are m latent classes existing in the population
denoted by A = {α0, . . . ,αm−1}, where m > 1 is assumed known. For any α ∈ A, we use
pα = P(A = α) to denote the proportion of subjects in the population that belong to class α.
Under this specification, we have pα ∈ (0,1) and

∑
α∈A pα = 1. In the application of cogni-

tive diagnosis, a latent class α usually denotes a knowledge state characterized by a profile
of mastery/deficiency of a set of latent attributes, and is represented by a binary vector (see
Section 2.1).

Assume that a subject’s latent class membership A follows a categorical distribution
with population proportion parameters p = (pα,α ∈ A). Given a subject’s latent class
membership A, the responses R = (R1, . . . ,RJ ) are assumed to be conditionally inde-
pendent and each Rj follows a Bernoulli distribution with the positive response probabil-
ity θj,α = P(Rj = 1 | A = α). This local independence is a common assumption in la-
tent class modeling (e.g., [1, 2]). We call these θj,α’s as the item parameters, and write
� = (θj,α; j ∈ S,α ∈ A), which is a J × m matrix. The rows of � are indexed by the J

items in S , and the columns by the m latent classes in A. The model parameters are then
characterized by p and �.

We focus on a general family of restricted latent class models that are popularly used
in various social and biological applications. Under these restricted latent class models, the
item parameters in � are restricted by certain prespecified structures to reflect experts’ un-
derstanding or hypotheses on how the responses to each diagnostic item depend on the latent
classes. In particular, the restricted latent class models assume that for any item j , there exists
an item-specific set of latent classes Cj ; and the classes in Cj share the same value of positive
response probability, which is higher than those of the other latent classes. We denote such a
set of latent classes by

(2.1) Cj =
{
α ∈ A : θj,α = max

α�∈A θj,α�

}
.

The latent classes in Cj then correspond to those subjects who are “most capable” of giving
a positive response to item j , and for each j ∈ S ,

(2.2) max
α∈Cj

θj,α = min
α∈Cj

θj,α > θj,α′ ∀α′ /∈ Cj .

Additionally, it is assumed that there exists a universal “least capable” class α0 such that
θj,α ≥ θj,α0 for any α ∈ A and j ∈ S . Note that a latent class α′ satisfying α′ /∈ Cj and
θj,α′ > θj,α0 can be viewed as “partially capable.”

Different restricted latent class models specify the � and the constraint sets Cj ’s differently
to respect the underlying scientific assumptions. To illustrate this, we present various model
examples and real data examples in Sections 2.1 and 2.2. In Section 2.3, we discuss the
identifiability issue and limitations of the existing works, which call for the new identifiability
theory.

2.1. Restricted latent class models in cognitive diagnosis. The restricted latent class
models have recently gained great interests in cognitive diagnosis with applications in ed-
ucational assessment, psychiatric evaluation and many other disciplines (e.g., [6, 10, 11, 31,
43]). Cognitive diagnosis is the process of arriving at a classification-based decision about
an individual’s latent attributes, based on the observed surrogate responses. Such diagnostic
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information plays an important role in constructing efficient, focused remedial strategies for
improvement in individual performance.

The restricted latent class models are important statistical tools in cognitive diagnosis to
detect the presence or absence of multiple fine-grained attributes. Cognitive diagnosis models
in the psychometrics literature mostly consist of binary attributes, while general diagnostic
models with categorical attributes were also considered in [39]. In this work, we focus on the
case of binary attributes. Specifically, consider a cognitive diagnosis test with J items de-
signed to measure K binary latent attributes. Under the introduced model setup, a latent class
α is represented by a configuration of the K latent attributes, denoted by a K-dimensional
binary vector α = (α1, . . . , αK), where αk ∈ {0,1} denotes the deficiency or mastery of the
kth attribute. A latent class α is also called an attribute profile. The latent class space A is a
subset of {0,1}K . If A = {0,1}K , we say A is saturated, which means the population contain
subjects with all the possible configurations of attribute profiles. The universal least capable
latent class α0 corresponds to the all-zero attribute profile, that is, α0 = (0, . . . ,0).

The restrictions in cognitive diagnosis models is encoded by the so-called Q-matrix [33].
A Q-matrix Q = (qj,k) is a J × K matrix with binary entries qj,k ∈ {0,1} indicating the
absence or presence of the dependence of the j th item on the kth attribute. Generally, qj,k = 1
means that item j requires the mastery of attribute k to solve and qj,k = 0 means the opposite.
The j th row vector qj of Q, called the q-vector, gives the attribute requirements of item j .
See examples of Q-matrices in Section 2.2.

In the following, we review some popular cognitive diagnosis models and illustrate how
they fall into the family of restricted latent class models. We first introduce some notation.
For two vectors a = (a1, . . . , aK), b = (b1, . . . , bK) of the same dimension K , we write
a � b if ai ≥ bi for all i = 1, . . . ,K ; and a � b if a � b and a �= b. Denote a − b = (a1 −
b1, . . . , aK − bK) and a ∨ b = (max{a1, b1}, . . . ,max{aK,bK}). We also denote the all-zero
and all-one vectors by 0 and 1, respectively.

EXAMPLE 2.1 (Conjunctive DINA and disjunctive DINO). The Deterministic Input
Noisy output “And” gate (DINA) model proposed in [24] and the Deterministic Input Noisy
output “Or” gate (DINO) model proposed in [36] are popular and basic diagnostic models,
which adopt the conjunctive and disjunctive assumptions, respectively. Specifically, under
DINA, a subject needs to master all the required attributes of an item to be “capable” of it,
and mastering the attributes not required by the item will not compensate for the lack of re-
quired ones. That is, the required attributes of an item act “conjunctively” and the positive
response probability is

θDINA
j,α =

{
1 − sj if α � qj ,

gj otherwise,

where sj is the slipping parameter, which denotes the probability that a capable subject slips
the positive response, and gj is the guessing parameter, which denotes the probability that a
noncapable subject coincidentally gives the positive response by guessing. Under DINO, a
subject only needs to master one of the required attributes to be “capable” of an item. That
is, the required attributes of an item act “disjunctively” and

θDINO
j,α =

{
1 − sj if ∃k s.t. αk = qj,k = 1,

gj otherwise,

where sj and gj are the slipping and guessing parameters. Both the DINA and DINO models
assume 1 − sj > gj for all j .
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The DINA and DINO models are restricted latent class models with appropriately defined
constraint sets Cj ’s. Specifically, under the conjunctive DINA model, the Cj defined in (2.1)
takes the form of

(2.3) Cj = {α ∈ A : α � qj }, j ∈ S;
while under the disjunctive DINO model, the Cj defined in (2.1) becomes Cj = {α ∈ A :
if ∃k s.t. αk = qj,k = 1} for j ∈ S .

EXAMPLE 2.2 (Main-effect cognitive diagnosis models). An important family of cog-
nitive diagnosis models assume that the θj,α depends on the main effects of those attributes
required by item j , but not their interactions. This family include the popular reduced Repa-
rameterized Unified Model (reduced-RUM; [15]), Additive Cognitive Diagnosis Models
(ACDM; [11]), the Linear Logistic Model (LLM; [28]) and the General Diagnostic Model
(GDM; [39]). We call them the main-effect cognitive diagnosis models. In particular, under

the reduced-RUM, θRUM
j,α = θ+

j

∏K
k=1r

qj,k(1−αk)

j,k , where θ+
j = P(Rj = 1|α � qj ) represents

the positive response probability of a capable subject of j , and rj,k ∈ (0,1) is the parameter
penalizing not possessing attribute k required by item j . Equivalently, the item parameter
in reduced-RUM can be written as log θRUM

j,α = βj,0 + ∑K
k=1 βj,k(qj,kαk), where βj,k ≥ 0 for

qj,k = 1. Similarly, the ACDM assumes the parameter θj,α can be written as the linear combi-
nation of the main effects of the required attributes: θACDM

j,α = βj,0 + ∑K
k=1βj,k(qj,kαk). The

LLM assumes a logistic link function with logit(θLLM
j,α ) = βj,0 + ∑K

k=1βj,k(qj,kαk). These
main-effect models are restricted latent class models, and under them, the Cj defined in (2.1)
takes the form of Cj = {α ∈A : α � qj }.

EXAMPLE 2.3 (All-effect cognitive diagnosis models). Another popular type of cog-
nitive diagnosis models assume that the positive response probability depends on the main
effects and the interaction effects of the required attributes of the item. We call these models
the all-effect cognitive diagnosis models, of which the GDINA model [11], the log-linear
cognitive diagnosis models (LCDM; [22]) and the general diagnostic model (GDM; [39]) are
examples. It was recently shown in [40] and [41] that the GDINA and LCDM can be rewrit-
ten as GDMs with extended skill space. In particular, given a Q-matrix, denote the set of
attributes required by item j by Kqj

= {1 ≤ k ≤ K : qj,k = 1}, then the item parameter under
GDINA is

(2.4) θGDINA
j,α = ∑

S⊆Kqj

βj,S

∏
k∈S

αk,

where βj,S ≥ 0. Note that the DINA model is a submodel of the GDINA model by set-
ting all the βj,S coefficients in (2.4), other than βj,∅ and βj,Kqj

, to zero. Similar to the

GDINA model, the LCDM adopts the logistic link function and assumes that logit(θLCDM
j,α ) =∑

S⊆Kqj
βj,S

∏
k∈Sαk . The all-effect models are restricted latent class models, and under them

the Cj in (2.1) also takes the form Cj = {α ∈ A : α � qj }.

When the latent class space A is saturated with A = {0,1}K , we have m = |A| = 2K . In
practice, however, this may not always hold. For instance, researchers may assume there ex-
ist additional restrictions on the dependence structure among the latent attributes, such as an
attribute hierarchy with some attributes being the prerequisite for some others [26, 35]. A hi-
erarchical structure among the K attributes would reduce the number of possible attribute
profiles from 2K to m (m < 2K ), by excluding those not respecting the hierarchy. For ex-
ample, consider a diagnostic test with K = 2 attributes. If it is scientifically reasonable to
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assume the first attribute is the prerequisite for the second one, then the latent class space is
reduced to A= {(0,0), (1,0), (1,1)} with m = |A| = 3, since the attribute profile (0,1) does
not respect this hierarchy. Note that as shown in [42], a cognitive diagnosis model with such a
linear hierarchy can equivalently reduce to a located latent class model with m < 2K classes.

In this work, we assume the latent class space A is prespecified. This would be the case
when practitioners have solid scientific reasons or prior knowledge from exploratory data
analysis to assume certain structure among attributes. This work aims to answer the question
that for an arbitrary A ⊆ {0,1}K , what kind of conditions would guarantee identifiability of
� and p = (pα,α ∈ A).

All the cognitive diagnosis models reviewed in Examples 2.1–2.3 are restricted latent class
models. We call them the Q-restricted latent class models, since the Cj ’s and model con-
straints are further determined by the Q-matrix. Moreover, we call the DINA and the DINO
models the two-parameter Q-restricted latent class models, since each item has exactly two
item parameters, and we call the main-effect and all-effect models as multi-parameter Q-
restricted latent class models.

2.2. Real data examples. To further illustrate the constraints induced by the design ma-
trix, we present several applications that utilize restricted latent class models as cognitive
diagnosis modeling tools.

EXAMPLE 2.4 (TOEFL internet-based testing data). TOEFL, short for Test of English
as a Foreign Language, is a standardized test to measure English language ability of nonna-
tive speakers. Restricted latent class models have been used to analyze the TOEFL data by
researchers at Educational Testing Service (ETS; e.g., [38, 39]). For instance, [39] proposed
a general diagnostic model (GDM), which was used to analyze the TOEFL reading section of
two parallel forms, A and B, with their Q-matrices analyzed and specified by content experts.
In particular, the forms A and B contain 39 and 40 items with four latent attributes: α1: Word
meaning, α2: Specific information, α3: Connect information and α4: Synthesize and organize.
Table 1 gives the summary of the two Q-matrices by presenting each q-vector’s frequencies
in them. For instance, the first line in Table 1 reads (1, 0, 0, 0) for the row q-vector and (9, 9)
for the frequencies. This means that there are nine items with q-vector (1, 0, 0, 0) in form
A and nine in form B, respectively. Under the restrictions induced by the Q-matrices, the
diagnostic models used to analyze the TOEFL data fall in the family of restricted latent class
models.

TABLE 1
TOEFL iBT field test Q-matrix entry frequencies, Reading Forms A and B

Q-matrix row q-vectors q-vector frequency

Word Specific Connect Synthesize
meaning information information and organize Form A Form B

1 0 0 0 9 9
0 1 0 0 8 11
1 1 0 0 1 1
0 0 1 0 10 10
1 0 1 0 0 1
0 1 1 0 2 0
0 1 0 1 1 0
0 0 1 1 7 8
1 0 1 1 1 0
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EXAMPLE 2.5 (Trends in international mathematics and science study). Trends in Inter-
national Mathematics and Science Study (TIMSS) is a large scale cross-country assessment,
administered by the International Association for the Evaluation of Educational Achieve-
ment. TIMSS evaluates the mathematics and science abilities of fourth and eighth graders
every 4 years since 1995 and covers more than 40 countries. The TIMSS data allows one to
analyze trends in student progress that can provide feedback for future improvement in areas
needing further instruction [25]. Researchers have used the cognitive diagnosis models to
analyze the TIMSS data (e.g., [9, 25, 48]). For instance, a 43 × 12 Q-matrix constructed by
mathematics educators and researchers was specified for the TIMSS 2003 eighth grade math-
ematics assessment [9]. A total number of 12 fine-grained attributes are identified, which fall
in five big categories of skill domains measured by the eighth grade exam, Number, Algebra,
Geometry, Measurement and Data. The Q-matrix is presented in Table 1 in the Supplemen-
tary Material [20]. Choi et al. [9] used DINA model to fit the dataset containing responses
sampled from 8912 U.S. and 5309 Korean students. Main-effect and all-effect diagnostic
models have also been applied to analyze the TIMSS data (e.g., [48]).

EXAMPLE 2.6 (Fraction subtraction data). The dataset contains 536 middle school stu-
dents’ binary responses to 20 fraction subtraction items that were designed for diagnostic
assessment. The Q-matrix contains eight attributes (the 20 × 8 Q-matrix is presented in Ta-
ble 2 in the Supplementary Material [20]). Many researchers have used various restricted
latent class models models to fit this dataset (e.g., [11, 12, 14, 22]).

2.3. Concept of identifiability and issues with existing works. Though widely used in
various applications, the identifiability issue of restricted latent class models remains largely
unaddressed. We next introduce the concept of identifiability and discuss the limitations of
the exiting theory.

For the introduced restricted latent class models, the probability mass function of the re-
sponse pattern R is

(2.5) P(R = r | �,p) = ∑
α∈A

pα

J∏
j=1

θ
rj
j,α(1 − θj,α)1−rj , r ∈ {0,1}J .

Following the definition of identifiablity in the literature (e.g., [3]), the model parameters
(�,p) of a restricted latent class model are identifiable if for any (�,p) in the parameter
space T , there is no (�̄, p̄) �= (�,p) such that

(2.6) P(R = r | �,p) = P(R = r | �̄, p̄) for all r ∈ {0,1}J .

In the following, we also say that the model parameters are strictly identifiable if the above
condition holds.

To establish model identifiability, a strong and often impractical assumption made by pre-
vious works is that the Q-matrix must contain at least one K × K identity submatrix IK up
to some row permutation, that is, the Q-matrix must contain all K distinct single-attribute
q-vectors [7, 19, 45, 47]. A Q-matrix satisfying this requirement is also said to be complete
under the DINA model [8]. For general Q-restricted latent class models including the multi-
parameter models, [45] requires at least two disjoint K × K identity submatrices in Q to es-
tablish identifiability. However, in practice, in the existence of a large number of fine-grained
attributes and complex cognitive process, a Q-matrix rarely satisfies such requirements. For
the TOEFL data in Example 2.4, in both Q-matrices, there does not exist any item that solely
requires the fourth skill attribute. For the Q-matrix of the TIMSS data in Example 2.5, only
three attributes (1, 7 and 8) out of twelve are measured by some single-attribute items. For
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the Q-matrix in Example 2.6, there are only two attributes (2 and 7) out of eight measured
by some single-attribute items. Many other examples can be found in the literature (e.g., [11,
22, 23, 25]). Moreover, another strong assumption made in existing works [19, 45] is that
A = {0,1}K , that is, pα > 0 for any α ∈ {0,1}K , which fails when some attribute profiles are
deemed impossible to exist.

Such identifiability issues of cognitive diagnosis models have long been recognized [12,
14, 29, 32, 39, 41, 49]. For instance, [39] pointed out in the study of the TOEFL data that
larger numbers of skills (i.e., K) very likely pose problems with identifiability, unless the
number of items per skill is “sufficiently” large. But given the complicated structure of con-
straints, how the number of items and the form of the design matrix influence identifiability
is still an open problem in the literature.

This work addresses this open problem by developing a general theoretical framework
based on a key technical tool, the indicator matrix �. Under an arbitrary restricted latent
class model, we define � to be a J ×m matrix using the sets Cj ’s. The �-matrix has the same
size as the matrix �, with rows indexed by items in S , and columns by latent classes in A.
The (j,α)th entry of � is

(2.7) �j,α = I (α ∈ Cj ), j ∈ S,α ∈ A,

which is a binary indicator of whether α is “most capable” to give a positive response to j .
For α ∈ A, denote the αth column vector of � by �·,α . The �-matrix defined this way turns
out to be a useful tool for developing the identifiability theory, and it helps to relax many of
the existing strong assumptions, as shown later in Sections 3.1 and 4.1. Indeed, most of our
identifiability conditions can be represented as requirements on the structure of �, since the
information of which latent classes achieve the highest level of θj,α of item j is what our
theoretical derivations essentially rely on. Depending on two different algebraic structures of
the restricted parameter spaces, we next consider two types of restricted latent class models
and present their identifiability results in Sections 3 and 4, respectively.

3. Identifiability results for two-parameter models. This section considers two-
parameter restricted latent class models where each item j has two item parameters, that
is, |{θj,α : α ∈ A}| = 2. Specifically, a two-parameter model assumes that for each item j ,
the latent classes in Cj share a same positive response probability, denoted by θ+

j , and the
latent classes in the complement set A \ Cj share another same positive response probability,
denoted by θ−

j . We assume θ+
j > θ−

j . Note that the unique item parameters in � reduce to

(θ+, θ−), where θ+ = (θ+
1 , . . . , θ+

J )� and θ− = (θ−
1 , . . . , θ−

J )�. The motivation for studying
the two-parameter models comes from the popular DINA and DINO models in cognitive
diagnosis, as introduced in Example 2.1. Moreover, the study of the two-parameter mod-
els provides insight into understanding other restricted latent class models, as they serve as
submodels for many multiparameter models.

Under a two-parameter model, the �-matrix fully captures the model structure, in the
sense that θj,α = θ+

j if �j,α = 1 and θj,α = θ−
j if �j,α = 0. So in this scenario, if � contains

two identical columns, then the corresponding latent classes have the same item parameters
across all items. Namely, if �·,α = �·,α′ , then �·,α = �·,α′ . Thus from an identifiability
perspective, these two latent classes are equivalent and cannot be distinguished based on their
observed responses. This implies that in order to distinguish the latent classes, it is necessary
that each latent class in A should correspond to a distinct column vector of �. We shall call
such a �-matrix separable.

DEFINITION 3.1. A �-matrix is said to be separable, if any two column vectors of � are
distinct. Otherwise, we say � is inseparable.
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To see how the separability of the �-matrix influences model identifiability, we start with
an ideal case with all the item parameters (θ+, θ−) known. The following proposition char-
acterizes the importance of �’s separability.

PROPOSITION 3.1. Consider a two-parameter restricted latent class model with known
(θ+, θ−). Then the proportion parameters p are identifiable if and only if the �-matrix is
separable.

We use the following example as an illustration.

EXAMPLE 3.1. Consider the Q-matrix in (3.1) with K = 2 attributes. Under the DINA
model with Cj in the form of (2.3), if A = {0,1}2 = {α0 = (0,0), α1 = (1,0), α2 = (0,1),
α3 = (1,1)}, then �(1) in (3.1) represents the corresponding �-matrix, which is inseparable.
Specifically, we can see that �·,α0 = �·,α2 and the two classes α0 and α2 have the same item
parameters, �·,α0 = �·,α2 = θ−. Thus α0 and α2 are not distinguishable and equivalently,
their proportion parameters pα0 and pα2 are not identifiable.

(3.1) Q =
(

1 0
1 1

)
DINA======⇒

A={0,1}2
�(1) =

α0 α1 α2 α3( )
0 1 0 1
0 0 0 1

;

DINA=========⇒
A={0,1}2\{0,1}

�(2) =
α0 α1 α3( )
0 1 1
0 0 1

.

On the other hand, if prior knowledge shows that the first attribute is the prerequisite for the
second, then A reduces to {0,1}2\{(0,1)} and the �-matrix becomes �(2) in (3.1). The �(2)

is separable, with each α having a distinct column vector in � and �·,α0 �= �·,α1 �= �·,α3 .
Therefore, Proposition 3.1 gives that p is identifiable in the ideal case with known �.

An inseparable �-matrix violates the necessary condition for identifying p under the two-
parameter models. To study the “partial” identifiability of p when � is inseparable, we next
define an equivalence relation “∼” of latent classes induced by the column vectors of �.
Specifically, we define α ∼ α′ if and only if �·,α = �·,α′ . Let C be the number of distinct
column vectors of � and A1, . . . ,AC be the C equivalence classes under ∼. Let αAi

be a
representative of Ai and we write [αAi

] = Ai . We define the grouped population proportion
parameters to be

(3.2) ν[αAi
] := ∑

α:α∈Ai

pα for i = 1, . . . ,C,

and write ν = (ν[αA1
], . . . , ν[αAC

])�. When � is separable, we have C = m, ν = p and each
α represents a unique equivalence class.

The following result shows that under an inseparable �-matrix, though p are not identifi-
able, the parameters ν are identifiable.

PROPOSITION 3.2. Consider a two-parameter model with known (θ+, θ−). When the �-
matrix is inseparable, ν is identifiable. Moreover, the latent classes in the same equivalence
class cannot be distinguished in the sense that for any model parameters p �= p̄, if ν[αAi

] =
ν̄[αAi

], where ν̄[αAi
] = ∑

α:α∈Ai
p̄α for i = 1, . . . ,C, then P(R | �,p) = P(R | �, p̄).



IDENTIFIABILITY OF RESTRICTED LATENT CLASS MODELS 2091

When � is inseparable, Proposition 3.2 implies that even in the ideal case with known
(θ+, θ−), the identification of ν is the strongest identifiability result one can obtain for two-
parameter restricted latent class models. This therefore motivates us to introduce the follow-
ing definition of the p-partial identifiability when both (θ+, θ−) and p are unknown.

DEFINITION 3.2 (p-partial identifiability). For a two-parameter restricted latent class
model with a given �-matrix, the model parameters (θ+, θ−,p) are said to be p-partially
identifiable if (θ+, θ−, ν) are identifiable.

We point out that when the �-matrix is separable, the p-partial identifiability exactly be-
comes the strict identifiability. When � is inseparable, the definition of p-partial identifiabil-
ity here refers to partially identifying the proportion parameters p, and strictly identifying all
the item parameters. Such definition suits for the needs of cognitive diagnosis applications,
by ensuring the identification of the equivalent attribute profiles of interest, and also ensur-
ing the estimability of all item parameters so that the quality of the items can be accurately
evaluated and validated.

In the framework of p-partial identifiability, the following Section 3.1 presents a general
identifiability result, allowing A to be arbitrary and � to be inseparable. Section 3.2 further
focuses on the family of Q-restricted latent class models and discusses the necessity of the
proposed conditions. Section 3.3 includes the applications of the new theory.

REMARK 3.1. For the family of two-parameter Q-restricted latent class models, the �-
induced equivalence classes can be obtained as follows. We define two sets of attribute pro-
files under the conjunctive DINA and disjunctive DINO assumptions, respectively:

(3.3) RQ,conj =
{
α = ∨

h∈S

qh : S ⊆ S
}
,RQ,disj = {

1 − α : α ∈ RQ,conj},
where

∨
h∈S qh = (maxh∈S{qh,1}, . . . ,maxh∈S{qh,K}), and

∨
h∈∅ qh is defined to be the all-

zero vector. We claim that when A = {0,1}K , the RQ,conj or RQ,disj is a complete set of
representatives of the conjunctive or disjunctive equivalence classes, respectively; the proof
of this result is given in Section B of the Supplementary Material [20]. Moreover, for any
latent class space A ⊆ {0,1}K , define a map f (·) : A → RQ,conj (or RQ,disj) which sends
each attribute pattern α ∈ A to the element in RQ,conj (or RQ,disj) equivalent to α. Then
f (A) forms a complete set of conjunctive or disjunctive representatives. A similar group-
ing operation in the saturated and conjunctive case was introduced in [49]. Consider Ex-
ample 3.1 for an illustration. If A = {0,1}2, �(1) is inseparable. The equivalence class rep-
resentatives are RQ,conj = {(0,0), (1,0), (1,1)} by (3.3) and ν = (ν[0,0], ν[1,0], ν[1,1]) with
ν[0,0] = p(0,0) + p(0,1), ν[1,0] = p(1,0), ν[1,1] = p(1,1). On the other hand, �(2) is separable
with latent class space A = RQ,conj. This also illustrates that a separable �-matrix does not
necessarily correspond to a Q-matrix containing an identity submatrix IK . Therefore, com-
pared with existing theory that requires Q to contain at least one IK , the �-matrix provides a
more suitable tool than the Q-matrix for studying identifiability of Q-restricted models.

3.1. Strict and partial identifiability. This subsection presents conditions depending on
the �-matrix that lead to the p-partial identifiability of a two-parameter restricted latent class
model. We first introduce some notation. Based on the constraint sets Cj ’s, we categorize the
entire set of items S = {1, . . . , J } into two subsets, the set of nonbasis items Snon and that of
basis items Sbasis as follows:

(3.4) Snon = {
j : ∃h ∈ S \ {j}, s.t. Ch ⊇ Cj

}
and Sbasis = S \ Snon.
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By this definition, an item j is a nonbasis item if the capability of item j implies capability
of some other item, and a basis item otherwise. With a slight abuse of notation, for any subset
of items S ⊆ S , denote CS = ⋂

j∈S Cj . We introduce the next definition of S-differentiable to
describe the relation between an item and a set of items.

DEFINITION 3.3. For an item j and a set of items S that does not contain j , item j is
said to be S-differentiable if there exist two subsets S+

j , S−
j of S, which are not necessarily

nonempty or disjoint, such that

(3.5) CS+
j
� CS−

j
and CS−

j
\ CS+

j
⊆ A \ Cj .

When j is S-differentiable, the set S is said to be a separator set of item j . An item j is
S-differentiable indicates that the items in the separator set S can differentiate at least one
incapable latent class of j (i.e., one latent class in A \ Cj ) from the universal least capable
class α0.

We need the following two conditions to establish identifiability:

(C1) Repeated measurement condition: For each item j , there exist two disjoint sets of
items S1

j , S2
j ⊂ S\{j} such that Cj ⊇ CS1

j
and Cj ⊇ CS2

j
.

(C2) Sequentially differentiable condition: Start with the set Ssep = Snon. Expand Ssep by
including all items in S \Ssep that are Ssep-differentiable, and repeat the expanding procedure
until no items can be added to Ssep. The sequentially expanding procedure ends up with
Ssep = S .

Before presenting the formal theorem, we first give a simple illustration of how condition
(C2) can be checked.

EXAMPLE 3.2. Consider the following 3 × 4 �-matrix:

� =
α0 α1 α2 α3⎛⎝ ⎞⎠0 0 1 1
0 0 0 1
0 1 0 0

,

then C1 = {α2,α3}, C2 = {α3} and C3 = {α1}. By (3.4), Snon = {2,3} and Sbasis = {1}. To
check condition (C2), we start with the separator set Ssep = Snon = {2,3}. For basis item 1,
we define S+

1 = ∅ and S−
1 = {3}. Then CS+

1
= {α0,α1,α2,α3} and CS−

1
= {α0,α2,α3}, so

CS+
1

\ CS−
1

= {α1} ⊆ Cc
1 = {α0,α1}, which means (3.5) holds for j = 1. Besides, S+

1 ∪ S−
1 ⊆

Snon. So by Definition 3.3, item 1 is Snon-differentiable. Now we can expand the separator
set Ssep to be Snon ∪ {1} = S . So the sequentially expanding procedure described in condition
(C2) ends in one step with Ssep = S , and (C2) is satisfied.

THEOREM 3.1. Under the two-parameter restricted latent class models, condition (C1)
is sufficient for identifiability of (θ+, θ−

non), where θ−
non = (θ−

j , j ∈ Snon). Moreover, con-
ditions (C1) and (C2) are sufficient for p-partial identifiability of the model parameters
(θ+, θ−,p).

Theorem 3.1 presents a general identifiability result with strict identifiability being a spe-
cial case. For instance, in the case of A = {0,1}K , if the J × 2K �-matrix is separable, then
ν = p and the p-partial identifiability in Theorem 3.1 exactly ensures strict identifiability
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of all the parameters (θ+, θ−,p). Similarly, in the case of A ⊂ {0,1}K , if the J × |A| �-
matrix is separable, the p-partial identifiability ensures (θ+, θ−) and (pα,α ∈ A) are strictly
identifiable. Conditions (C1) and (C2) only depend on the structure of the �-matrix and are
easily checkable. Condition (C1) implies that at least one capable class of each item is re-
peatedly measured by other items. Condition (C2) requires that for each basis item, at least
one of its incapable classes should be differentiated from the universal least capable class
through a sequential procedure. From the proof of Theorem 3.1, (C1) suffices for identifi-
ability of (θ+, θ−

non); furthermore, the sequential procedure in condition (C2) ensures that
as Ssep sequentially expands its size, for any item h included in Ssep, the parameter θ−

h is
identifiable. If (C2) holds, that is, the sequential procedure ends up with Ssep = S , we have
the entire θ− identifiable, which further leads to identifiability of ν. The sequential statement
of (C2) accurately characterizes the underlying structure of the �-matrix needed for identi-
fiability. In particular, if there are no basis items, that is, S = Snon, then (C2) automatically
holds with zero expanding step; while if there do exist basis items and each basis item is
Snon-differentiable, then (C2) holds with one expanding step.

The next proposition further extends the result in Theorem 3.1 to the case where the �-
matrix may not satisfy (C1) and (C2). For any subset of items S ⊆ S , define the S-adjusted
�-matrix �(S) as follows, which has the same size as the original �. Its j th row {�(S)}j,·
equals 1�

m − �j,· if j ∈ S, and equals �j,· if j /∈ S. Here, 1�
m denotes an all-one row vector

of length m.

PROPOSITION 3.3. Consider a two-parameter restricted latent class model associated
with a �-matrix. If there exist a subset of items S ⊆ S such that the S-adjusted �-matrix �(S)

satisfies conditions (C1) and (C2), then the two-parameter model is p-partially identifiable.

Proposition 3.3 relaxes the conditions of Theorem 3.1, by only requiring that (C1) and
(C2) can be satisfied after switching the zeros and ones for some rows of in the �. The
identifiability conditions in Theorem 3.1 and Proposition 3.3 allow for a nonsaturated latent
class space A and inseparability of the �-matrix, which relaxes the existing identifiability
conditions in the literature. Moreover, the proposed conditions (C1) and (C2) would become
necessary and sufficient in certain scenarios to be discussed in the following subsection.

3.2. Results for Q-restricted latent class models. To further illustrate the result in Theo-
rem 3.1, we focus on the two-parameter Q-restricted latent class model with a saturated latent
class space A = {0,1}K . This includes the conjunctive DINA and disjunctive DINO models
in Example 2.1 as special cases. Without loss of generality, we next only consider the two-
parameter conjunctive model. Nevertheless, all the p-partial identifiability results presented
in this subsection hold for both the conjunctive and the disjunctive models, due to the duality
between them [7].

We introduce the following definitions adapted from Section 3.1. Under the conjunctive
model assumption with Cj taking the form of (2.3), the non-basis and basis items defined
earlier in (3.4) can be equivalently expressed in terms of the q-vectors as follows:

(3.6) Snon = {
j : ∃h ∈ S \ {j} s.t. qh � qj

}
and Sbasis = S \ Snon.

Moreover, item j is set S-differentiable if there exist S+, S− ⊆ S such that

(3.7) 0 �
∨

h∈S+
qh − ∨

h∈S−
qh � qj .

In addition, conditions (C1) and (C2) are equivalent to:
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(C1∗) Repeated measurement condition: For each j ∈ S , there exist two disjoint item sets
S1

j , S2
j ⊆ S \ {j} such that qj � ∨

h∈S1
j
qh and qj � ∨

h∈S2
j
qh.

(C2∗) Sequentially differentiable condition: The same as condition (C2), but using defini-
tion (3.7) of S-differentiable regarding the q-vectors.

Following Theorem 3.1, the next corollary shows that the derived conditions on the Q-
matrix suffice for the p-partial identifiability of both the conjunctive and disjunctive two-
parameter models.

COROLLARY 3.1. Under the two-parameter Q-restricted latent class models, assum-
ing ν[α] > 0 for any equivalence class [α], (C1∗) and (C2∗) are sufficient for the p-partial
identifiability of (θ+, θ−,p).

We use the following example as an illustration of the identifiability result; see also real
data examples in Section 3.3.

EXAMPLE 3.3. Under the DINA model, consider the following Q-matrix:

(3.8) Q =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
1 1 1
0 1 1
1 0 1

⎞⎟⎟⎟⎟⎟⎠ .

This Q-matrix lacks the single-attribute item (0,0,1), and the corresponding �-matrix un-
der A = {0,1}3 is inseparable. In this case, we have the following 7 equivalence classes
{[0,0,0], [1,0,0], [0,1,0], [1,1,0], [0,1,1], [1,0,1], [1,1,1]}, with the equivalence class
[0,0,0] containing attribute profiles (0,0,0) and (0,0,1), while each of the other equiva-
lence classes contains one attribute profile. Following the definition in (3.6), items 1 and 2
are basis items, and items 3, 4 and 5 are nonbasis items. For all the five items, condition (C1∗)
is satisfied by taking (S1

1 , S2
1) = ({3}, {5}), (S1

2 , S2
2) = ({3}, {4}), (S1

3 , S2
3) = ({1,4}, {2,5}),

(S1
4 , S2

4) = ({3}, {2,5}), and (S1
5 , S2

5) = ({3}, {1,4}). In addition, condition (C2∗) is also sat-
isfied since the basis items 1 and 2 are (S+

1 ∪S−
1 )- and (S+

2 ∪S−
2 )-differentiable, respectively,

where (S+
1 , S−

1 ) = ({3}, {4}) and (S+
2 , S−

2 ) = ({3}, {5}). By Corollary 3.1, the DINA model
parameters are p-partially identifiable.

As shown above, conditions (C1∗) and (C2∗) are sufficient conditions to ensure p-partial
identifiability. In the following, we discuss the necessity of (C1∗) and (C2∗) and further pro-
vide procedures to establish identifiability in certain cases when these conditions fail to hold.

For a general Q-matrix, condition (C1∗) implies that each attribute is required by at least
three items. In the next theorem, we show that it is necessary for each attribute to be re-
quired by at least two items; in particular, if some attribute is required by only two items, the
identifiability conclusion would depend on the structure of the q-vectors of those two items.

THEOREM 3.2 (Discussion of (C1∗)). Consider a two-parameter Q-restricted latent
class model:

(a) If some attribute is required by only one item, then the model is not p-partially iden-
tifiable.
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(b) If some attribute is required by only two items, without loss of generality, suppose the
first attribute is required by the first two items and the Q-matrix takes the following form:

(3.9) Q =
⎛⎜⎝1 v�

1
1 v�

2
0 Q′

⎞⎟⎠
J×K

,

where Q′ is a (J −2)×(K −1) sub-matrix of Q and v1, v2 are (K −1)-dimensional vectors.

(b.1) If v1 = 0 or v2 = 0, the model is not p-partially identifiable.
(b.2) If v1 �= 0 and v2 �= 0, the model is p-partially identifiable if the sub-matrix Q′ sat-

isfies conditions (C1∗) and (C2∗), and either (a) or (b) below holds for i = 1 and 2: (a)
There exists some j ≥ 3 such that qj,2:K � vi ; (b) There does not exist any j ≥ 3 such that
qj,2:K � vi , and among the attributes required by vi , there exists at least one attribute k that
is not required by every item j ∈ {3, . . . , J }.

Theorem 3.2 characterizes the different situations when condition (C1∗) fails to hold for
some attribute, and provides sufficient conditions for identifiability when the Q-matrix falls
in the scenario (B). In addition, the result in Theorem 3.2 can be easily extended to the case
where there are multiple attributes that are required by only two items.

The next theorem discusses the necessity of Condition (C2∗) and states that if there exists
some basis item that does not have any separator set, then the model parameters are not p-
partially identifiable.

THEOREM 3.3 (Discussion of (C2∗)). Under the two-parameter Q-restricted models,
the condition that each basis item j is (S \ {j})-differentiable, is necessary for the p-partial
identifiability.

Furthermore, under the two-parameter Q-restricted models with a separable �-matrix and
a saturated latent class space A, the following theorem shows conditions (C1∗) and (C2∗) are
exactly the minimal requirement for strict identifiability of the model.

THEOREM 3.4 (Result on the necessary and sufficient condition). Under the two-
parameter Q-restricted models, if A is saturated and � is separable, then conditions (C1∗)
and (C2∗) are necessary and sufficient for the strict identifiability of (θ+, θ−,p).

Under the assumptions of Theorem 3.4, conditions (C1∗) and (C2∗) are equivalent to the
following explicit conditions on the structure of the Q-matrix: (C1′) Each attribute is re-
quired by at least three items; (C2′) With Q in the form Q = (I�

K , (Q′)�)�, any two different
columns of the submatrix Q′ are distinct. Please see the proof of Theorem 3.4 for details.

3.3. Applications. One important implication of the established identifiability theory
is the consistent estimability of the model parameters. Consider a sample of size N and
denote the ith subject’s multivariate binary responses by Ri = (Ri,1, . . . ,Ri,J )�. Assume
R1, . . . ,RN identically and independently follow the categorical distribution with the prob-
ability mass function (2.5). The likelihood based on the sample can be written as L(�,p |
R1, . . . ,RN) = ∏N

i=1 P(R = Ri | �,p). We denote the true parameters by (�0,p0) and the
maximum likelihood estimators (MLE) by (�̂, p̂), which may not be unique. We further de-
fine the corresponding parameters ν0 and ν̂ as in (3.2). We have the following conclusion on
the estimability of a two-parameter model.
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PROPOSITION 3.4. If a two-parameter model is p-partially identifiable, then (�̂, ν̂) →
(�0, ν0) almost surely as N → ∞. In addition, if �-matrix is also separable, then (�̂, p̂) →
(�0,p0) almost surely. On the other hand, if �-matrix is inseparable, p can not be consis-
tently estimated.

With the consistency result, we can directly establish the asymptotic normality of (�̂, ν̂)

when the model is p-partially identifiable, following a standard argument of asymptotic
statistics [37].

We next apply the newly developed theory to the data examples introduced in Section 2.2,
and establish the p-partial identifiability of the two-parameter restricted latent class model
under the Q-matrices.

For the TOEFL iBT data introduced in Example 2.4, the two-parameter restricted la-
tent class models associated with the Q-matrices corresponding to reading forms A and
B, denoted by QA and QB , respectively, are both p-partially identifiable. Specifically, un-
der the conjunctive DINA model, the QA and QB specified in Table 1 induce 14 and 12
equivalence classes of attribute profiles, respectively, for which the sets of representatives
are RQA = {0,1}4 \ {(0,0,0,1), (1,0,0,1)} and RQB = {0,1}4 \ {(0,0,0,1), (1,0,0,1),

(0,1,0,1), (1,1,0,1)}. The RQA and RQB are calculated following the procedure intro-
duced in Remark 3.1. It is straightforward to check that for both QA and QB , condition
(C1∗) holds and there is no basis item, which further implies the satisfaction of condition
(C2∗). Therefore, Corollary 3.1 gives the p-partial identifiability of the two-parameter mod-
els associated with both QA and QB . Furthermore, Proposition 3.4 implies the consistent es-
timability of (θ+, θ−, ν). In particular, the proportion parameters of the equivalence classes
ν = (ν[α],α ∈ RQA) can be consistently estimated, while for those attribute profiles in a
same equivalent class, their proportions cannot be consistently estimated. For instance, un-
der QA, attribute patterns α� = (0,0,0,1) and α�� = (0,0,0,0) share the same equivalent
class; so pα� and pα�� are not estimable, and it is only possible and meaningful to estimate
ν[α�] = pα� + pα�� .

Other than the TOEFL data, our new results in Section 3.2 also guarantee the p-partial
identifiability of two-parameter models associated with the Q43×12 for the TIMSS data, and
the Q20×8 for the fraction subtraction data. The details of checking our conditions for Q43×12
and Q20×8 are included in Section A of the Supplementary Material [20].

4. Identifiability results for multiparameter models. This section considers multipa-
rameter restricted latent class models where each item j allows for more than two item param-
eters, that is, |{θj,α : α ∈ A}| ≥ 2. In a multiparameter model, those latent classes in Cj still
have the same level of positive response probability, according to the definition of Cj in (2.1);
however, the classes in A \ Cj can have multiple levels of positive response probabilities,
depending on the extents of their “partial” capability of item j . Examples of multiparameter
models include the main-effect and the all-effect models introduced in Examples 2.2 and 2.3,
respectively.

We would like to point out that the �-matrix defined in (2.7) still provides a useful techni-
cal tool for studying identifiability of multiparameter models, despite the fact that the entry
�j,α only indicates whether α belongs to the most-capable-set Cj and it does not summarize
all the structural assumptions in multiparameter models.

On the one hand, similar to the two-parameter case, under a multi-parameter model, the
separability of the �-matrix is still necessary for the strict identifiability of (�,p). This is
because a two-parameter model, such as DINA, can be viewed as a submodel of a multipa-
rameter model, such as GDINA or GDM, by constraining certain parameters in the multipa-
rameter model to zero. So in order to ensure identifiability of all possible model parameters
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in the parameter space of a multiparameter model, Proposition 3.1 implies the � must be
separable.

On the other hand, when the �-matrix is inseparable and contains identical columns,
the item parameter vectors in the matrix � may still be distinct. This is because under
the general constraints (2.2), when �j,α = 0 under a multiparameter model, α could be
either least capable or partially capable of item j , and hence the latent classes in the set
A \ Cj = {α : �j,α = 0} can still have different positive response probabilities, as shown in
Examples 2.2 and 2.3. Such a difference from the two-parameter models makes the p-partial
identifiability theory developed in Section 3 not applicable to multiparameter models. To
study identifiability of multiparameter models when � is inseparable, we therefore need an
alternative partial identifiability notion and technique. We use the next example to illustrate
this and show how the separable requirement of the �-matrix in Proposition 3.1 could be
relaxed under multiparameter models.

EXAMPLE 4.1. Consider the Q-matrix in (3.1). Under a two-parameter conjunctive re-
stricted latent class model, we have shown attribute profiles α0 = (0,0) and α2 = (0,1)

are not distinguishable. However, a multi-parameter model models the main effect of each
required attribute for an item. Consider the main-effect model with the identity link func-
tion as introduced in Example 2.2 (the ACDM), one has �·,α0 = (β1,0, β2,0)

� and �·,α2 =
(β1,0, β2,0 +β2,2)

�; then �·,α0 �= �·,α2 as long as β2,2 �= 0. When this inequality constraint
β2,2 �= 0 holds, �·,α0 �= �·,α2 despite that �·,α0 = �·,α2 . In such scenarios, the grouping op-
eration of the proportion parameters introduced in Section 3 is not appropriate, and one needs
to treat these two latent classes α0 and α2 separately. Consider any possible � for which the
inequality constraint β2,2 �= 0 does not hold, then all such � indeed fall into a subset of the
parameter space T with smaller dimension than T , characterized by V = {(�,p) : β2,2 = 0}.
This implies that for almost all valid model parameters (�,p) in T , except a Lebesgue
measure zero set V , the � satisfy �·,α0 �= �·,α1 . This observation naturally leads to the
following notion of generic identifiability.

Motivated by Example 4.1, when the �-matrix is inseparable, we shall study the generic
identifiability of the restricted latent class model. Let T denote the restricted parameter space
of (�,p) under the general constraints (2.2), and let d denote the number of free param-
eters in (�,p), so T is of full dimension in Rd . Generic identifiability means that identi-
fiability holds for almost all points except a subset of T that has Lebesgue measure zero.
Generic identifiability is closely related to the concept of algebraic variety in algebraic ge-
ometry. Following the definition in [2], an algebraic variety V is defined as the simultane-
ous zero-set of a finite collection of multivariate polynomials {fi}ni=1 ⊆ R[x1, x2, . . . , xd ],
V = V(f1, . . . , fn) = {x ∈ Rd | fi(x) = 0,1 ≤ i ≤ n}. An algebraic variety V is all of Rd

only when all the polynomials defining it are zero polynomials; otherwise, V is called a
proper subvariety and is of dimension less than d , hence necessarily of Lebesgue measure
zero in Rd . The same argument holds when Rd is replaced by the parameter space T ⊆ Rd

that has full dimension in Rd . We next present the definition of generic identifiability for
restricted latent class models.

DEFINITION 4.1 (Generic identifiability). A restricted latent class model is said to be
generically identifiable on the parameter space T , if (�,p) are strictly identifiable on T \ V
where V is a proper algebraic subvariety of T .

Generic identifiability could be viewed as some “partial” identification of model parame-
ters in the sense that, the nonidentifiable parameters fall in a subset of the parameter space
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that can be characterized as solutions to some nonzero polynomial equations. As can be seen
from the form of (2.2), the constraints on the parameter space introduced by the �-matrix
already force the parameters fall into a proper algebraic subvariety of the unrestricted param-
eter space, so previous results established in [2] for unrestricted latent class models do not
apply to the models considered in this work.

REMARK 4.1. Under multiparameter models, it is still possible that two latent classes
α and α′ always have the same positive response probabilities, that is, �·,α = �·,α′ and α,
α′ are not distinguishable even generically. In this case, one could have p-partial identifi-
ability of the model. However, this happens only when �·,α = �·,α′ = 1; moreover, under
Q-restricted models, this happens only if the Q-matrix contains an all-zero column, which is
a trivial case with a redundant column in Q. Under such a Q-matrix, we can simply remove
these all-zero columns and study the (generic) identifiability under the reduced Q-matrix.
Therefore, without loss of generality, in the following discussion we assume the Q-matrix
does not contain any all-zero column such that �·,α = �·,α′ would not happen.

Based on the above discussions, to study identifiability of multiparameter restricted latent
class models, we consider two situations in Section 4.1: first, when the �-matrix is separable,
we study the strict identifiability of model parameters; second, when the �-matrix is insepa-
rable, we study the generic identifiability of model parameters. Furthermore, in Section 4.2
we present sufficient conditions for generic identifiability of the family of Q-restricted latent
class models, and discuss the necessity of the proposed conditions.

4.1. Strict and generic identifiability. First, consider the case where the �-matrix is
separable. For a subset of items S, denote the corresponding |S| × m indicator matrix by
�S = (�j,α, j ∈ S,α ∈ A), which is a submatrix of the previously defined �-matrix. We say
α succeeds α′ with respect to S and denote it by α �S α′, if �j,α ≥ �j,α′ for any j ∈ S; this
means α is at least as capable as α′ of items in set S. With this definition, any subset of items
S induces a partial order “�S” on the set of latent classes A. When two sets S1 and S2 induce
the same partial order on A, that is, for any α′ and α ∈ A, α′ �S1 α if and only if α′ �S2 α,
we write “ �S1 ” = “ �S2 ”. The following theorem gives conditions that lead to strict identi-
fiability of multiparameter restricted latent class models.

THEOREM 4.1. For a multiparameter restricted latent class model, if the �-matrix sat-
isfies the following conditions, then the parameters (�,p) are strictly identifiable:

(C3) There exist two disjoint item sets S1 and S2, such that �Si is separable for i = 1,2
and “ �S1” = “ �S2”.

(C4) �
(S1∪S2)

c·,α �= �
(S1∪S2)

c·,α′ for any α, α′ such that α′ �Si
α for i = 1 or 2.

Condition (C3) implies the entire �-matrix is separable, and it requires two disjoint sets
of items S1 and S2 to have enough information to distinguish the latent classes, and it serves
as a repeated measurement condition for the identifiability of multiparameter restricted latent
class models. Condition (C4) states that, for those pairs of latent classes α and α′ such that
α is more capable than α′ uniformly on either S1 or S2, the remaining items in (S1 ∪ S2)

c

should differentiate α and α′ by their column vectors in �(S1∪S2)
c
.

Strict identifiability can be achieved with a relaxation of condition (C4) together with a
stronger version of condition (C3). Before presenting this result, we define a latent class α as a
basis latent class under an item set S, if there does not exist α′ ∈ A such that α′ �S α. Denote
the set of all basis latent classes under S by BS . Then “�S1” = “ �S2” implies BS1 = BS2 .
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PROPOSITION 4.1. Under a multiparameter restricted latent class model, if the �-
matrix satisfies the following conditions, then (�,p) are identifiable:

(C3∗) There exist two disjoint item sets S1 and S2, such that �Si is separable for i = 1,2
and “ �S1” = “ �S2”. Moreover, for any j ∈ S1 ∪ S2, there exists α ∈ BS1 such that �j,α = 1.

(C4∗) �
(S1∪S2)

c·,α �= �
(S1∪S2)

c·,α0
for any α ∈ BS1 and α �= α0, where α0 is the universal least

capable class.

REMARK 4.2. Theorem 4.1 and Proposition 4.1 show the trade-off between the con-
ditions on the separable submatrices part of � and on the remaining part. They establish
identifiability for a wide range of restricted latent class models, with the �-matrix ranging
in the spectrum of different extents of inseparability. Specifically, for a Q-restricted latent
class model that lacks many single-attribute items, (C3) is easier to satisfy than (C3∗) and
Theorem 4.1 would be more applicable; while for a Q-restricted model that lacks few single-
attribute items, Proposition 4.1 would become more applicable as (C4∗) imposes a weaker
condition on the set (S1 ∪ S2)

c.

REMARK 4.3. Theorem 4.1 and Proposition 4.1 extend the existing work [45]. Com-
pared with the identifiability result in [45] that requires two copies of the identity submatrix
IK to be included in the Q-matrix, in the special case with A = {0,1}K , the proposed con-
ditions (C3∗) and (C4∗) reduce to the conditions in [45]. Furthermore, in general cases of
an unsaturated latent class space with |A| < 2K , the conditions in Theorem 4.1 and Propo-
sition 4.1 impose much weaker requirements than those in [45], because a Q-matrix lacking
some single-attribute items may suffice for a separable �-matrix and further suffice for strict
identifiability under the conditions in this paper.

Next, we consider the case where the multiparameter restricted latent class model is as-
sociated with an inseparable �-matrix, which violates condition (C3). We study the generic
identifiability of the model parameters.

THEOREM 4.2. Consider a multiparameter restricted latent class model. If there exist
two disjoint item sets S1 and S2, such that altering some entries of zero to one in �S1∪S2 can
yield a �̃S1∪S2 that satisfies condition (C3); and that the �(S1∪S2)

c
satisfies condition (C4),

then the model parameters (�,p) under the original �-matrix are generically identifiable.

Theorem 4.2 is established based on the theoretical development of Theorem 4.1. By relax-
ing the condition (C3) and allowing � to be inseparable, we may not have strict identifiability,
as discussed in Example 4.1. We use the following example to further illustrate the results of
Theorems 4.1–4.2.

EXAMPLE 4.2. For a multiparameter restricted latent class model, if � = ((�sub)�,

(�sub)�, (�sub)�)� contains three copies of the following �sub, then (C3) and (C4) are satis-
fied and (�,p) under � are strictly identifiable:

�sub =
⎛⎝0 1 1 1

0 0 1 1
0 0 0 1

⎞⎠ ; �S1 =
⎛⎝0 0 1 1

0 0 1 1
0 0 0 1

⎞⎠ ,

�S2 =
⎛⎝0 1 1 1

0 0 0 1
0 0 0 1

⎞⎠ .
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Instead, consider �new = ((�S1)�, (�S2)�, (�sub)�)� with two submatrices in the forms of
�S1 and �S2 above, then neither of �Si is separable. But by changing the (1,2)th entry of �S1

and (2,3)th entry of �S2 from zero to one, the resulting �̃S1 and �̃S2 are separable, so the
conditions of Theorem 4.2 are satisfied and (�,p) under �new are generically identifiable.

4.2. Results for Q-restricted latent class models. In this subsection, we characterize how
the Q-matrix impacts the identifiability of multiparameter models. Similar to Section 3.2, we
consider the case A = {0,1}K . For strict identifiability, the result of either Theorem 4.1 or
Proposition 4.1 implies the result of Theorem 1 in [45], as discussed in Remark 4.3. Our next
result gives a flexible structural condition on Q that leads to generic identifiability.

THEOREM 4.3. Under a multiparameter Q-restricted latent class model, if the Q-matrix
satisfies the following conditions, then the model parameters are generically identifiable, up
to label swapping among those latent classes that have identical column vectors in �.

(C5) Q contains two K × K submatrices Q1, Q2, such that for i = 1,2,

(4.1) Q =
⎛⎝Q1

Q2
Q′

⎞⎠
J×K

; Qi =

⎛⎜⎜⎜⎝
1 ∗ . . . ∗
∗ 1 . . . ∗
...

...
. . .

...

∗ ∗ . . . 1

⎞⎟⎟⎟⎠
K×K

, i = 1,2,

where each “∗” can be either zero or one.
(C6) With the Q-matrix taking the form of (4.1), in the submatrix Q′ each attribute is

required by at least one item.

The above identifiability result does not require the Q to contain an identity submatrix IK

and provides a flexible new condition for generic identifiability that are satisfied by various
Q-matrix structures; see examples in Section 4.3. Under a multiparameter restricted latent
class model with all entries of the Q-matrix being ones, conditions (C5) and (C6) in The-
orem 4.3 equivalently reduce to J ≥ 2K + 1, which is consistent with the result in [2] for
unrestricted latent class models.

Next, we discuss the necessity of the proposed sufficient conditions for generic identifia-
bility. Conditions (C5) and (C6) imply that each attribute is required by at least three items.
The next theorem shows that it is necessary for each attribute to be required by at least two
items.

THEOREM 4.4. Consider a multiparameter Q-restricted latent class model:

(a) If some attribute is required by only one item, then the model is not generically iden-
tifiable.

(b) If some attribute is required by only two items, without loss of generality assume Q

takes the following form:

(4.2) Q =
⎛⎜⎝1 v�

1
1 v�

2
0 Q′

⎞⎟⎠ ,

then as long as v1 ∨v2 �= 1K−1 and the submatrix Q′ satisfies conditions (C5) and (C6), then
the model parameters (�,p) are generically identifiable, up to label swapping among those
latent classes that have identical column vectors in �.
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REMARK 4.4. As a notion of partial identification of model parameters, generic identifi-
ability does not imply strict identifiability. For instance, if the Q-matrix is in the form of (4.2)
and vi = 0 for i = 1 and 2, then the model is not strictly identifiable, but generic identifiabil-
ity can still hold as stated in Theorem 4.4. This is also an analogue to the situations discussed
in Theorem 3.2 for two-parameter restricted latent class models. Based on Theorems 4.3 and
4.4, we would recommend practitioners in diagnostic test designs to ensure each attribute is
measured by at least three items.

4.3. Applications. Similar to the discussion in Section 3.3, our results of generic identi-
fiability also lead to the estimability of the model parameters.

PROPOSITION 4.2. Suppose a restricted latent class model is generically identifiable
on the parameter space T with a measure-zero nonidentifiable set V . If the true parameters
(�0,p0) ∈ T \ V , then (�̂, p̂) → (�0,p0) almost surely as N → ∞.

We apply the new theory of generic identifiability to the designs introduced in Section 2.2,
and establish generic identifiability of the multi-parameter restricted latent class models. Con-
sider the TOEFL iBT data. Both Q-matrices corresponding to TOEFL reading forms A and
B can be transformed into the form of (4.1) through some row rearrangements, with the cor-
responding Q′ requiring each attribute at least once. Therefore, both Q-matrices satisfy con-
ditions (C5) and (C6) and any multiparameter Q-restricted models associated with them are
generically identifiable and estimable. Our results in this section also guarantee the generic
identifiability of multiparameter models associated with the Q43×12 for the TIMSS data, and
the Q20×8 for the fraction subtraction data; please see Section A in the Supplementary Ma-
terial [20] for details of checking the conditions.

5. Extensions to more complex models. In this section, we extend our identifiability
theory to some more complicated latent variable models.

5.1. Mixed-items restricted latent class models. Our identifiability theory based on � di-
rectly applies to the case of mixed types of items, where the J items can conform to different
models, including two-parameter conjunctive, two-parameter disjunctive or multiparameter.

First, consider the two-parameter-mixed restricted latent class model, where each item is
either two-parameter conjunctive or disjunctive. Let I (·) denote the binary indicator function.
For any Q-matrix and latent class space A, denote the �-matrix under the two-parameter
conjunctive model by �conj(Q,A) with the (j,α)th entry being I (α � qj ), and denote the
�-matrix under the two-parameter disjunctive model by �disj(Q,A) with the (j,α)th entry
being I (∃k s.t. αk = qj,k = 1). These definitions can be easily deduced from (2.3) and the
sentence after it. The following is a corollary of Theorem 3.1.

COROLLARY 5.1. Consider a two-parameter-mixed restricted latent class model with
Q = (Q�

disj,Q
�
conj)

�, where Qdisj and Qconj correspond to disjunctive and conjunctive items,

respectively. If the following condition (E1) holds, then (θ+, θ−,p) are p-partially identifi-
able.

(E1) The J × |A| matrix � = (�disj(Qdisj,A)�,�conj(Qconj,A)�)� satisfies conditions
(C1) and (C2) in Theorem 3.1.

In particular, if A = {0,1}K and the � defined in (E1) is separable, then (θ+, θ−,p) are
strictly identifiable.
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One implication of Corollary 5.1 is that when a diagnostic test contains both conjunctive
and disjunctive items, the underlying Q-matrix does not need to include a submatrix IK for
(θ+, θ−,p) to be strictly identifiable. This is in contrary to the case of a purely conjunctive
or purely disjunctive two-parameter model, where this requirement is indeed necessary [19,
47]. The following application of Corollary 5.1 illustrates this point.

EXAMPLE 5.1. Consider a diagnostic test with 4 conjunctive items and 2 disjunctive
items with the following Q-matrix:

Q =
(
Q

conj
4×2

Q
disj
2×2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 1
1 1
1 1
1 1
1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⇒ � =

(0,0) (0,1) (1,0) (1,1)⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 1

0 1 1 1
0 1 1 1

.

Then if A = {0,1}2, the corresponding �-matrix as shown above is separable, and con-
ditions (C1∗) and (C2∗) are satisfied. So θ+ = (θ+

1 , . . . , θ+
6 )�, θ− = (θ−

1 , . . . , θ−
6 )� and

p = (p(0,0), p(0,1), p(1,0), p(1,1))
� are strictly identifiable, despite that Q does not contain

a submatrix I2.

If there exist both two-parameter items and multiparameter items in the model, we have
the following identifiability result, the part (a) of which directly results from Theorem 4.1
and Proposition 4.1. Please see Section D in the Supplementary Material [20] for details.

COROLLARY 5.2. Assume Q = (Q�
disj,Q

�
conj,Q

�
mult)

� where Qdisj, Qconj and Qmulti
correspond to the two-parameter disjunctive, two-parameter conjunctive, and multiparameter
items, respectively.

(a) If � = (�disj(Qdisj,A)�,�conj(Qconj,A)�,�conj(Qmult,A)�)� satisfies conditions
(C3) and (C4) in Theorem 4.1; or conditions (C3*) and (C4*) in Proposition 4.1, then (�,p)

are strictly identifiable.
(b) If � satisfies condition (E2) in Section D of the Supplementary Material [20], then

(�,p) are generically identifiable.

5.2. Restricted latent class models with categorical responses. We next study restricted
latent class models with multiple levels of responses per item, that is, categorical responses,
instead of binary responses considered in previous sections. These models have been consid-
ered in [27, 39] and [4]. We consider the setting in [4]. Suppose for each item j out of the
J items in a diagnostic test, there are Lj categories of responses. For each item j and each
category of response l ∈ {0, . . . ,Lj − 1}, there are a set of positive response parameters of

the latent classes θ
(l)
j = {θ(l)

j,α : α ∈ A} with θ
(0)
j = 1 − ∑

l>0 θ
(l)
j . Further, for each item j , the

q-vector qj constrains the vector θ
(l)
j based on (2.2) for each category l ∈ {1, . . . ,Lj − 1}

independently, other than the basic level l = 0. Namely, for any j ∈ S ,

max
α∈Cj

θ
(l)
j,α = min

α∈Cj

θ
(l)
j,α > θ

(l)
j,α′ ∀l ∈ {1, . . . ,Lj − 1} and ∀α′ /∈ Cj .

We collect all the model parameters in (�cat,p) with �cat = {θ (l)
j : j = 1, . . . , J ; l =

0, . . . ,Lj − 1}. Then we have the following identifiability result.
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PROPOSITION 5.1. For a given Q-matrix, consider the following cases:

(a) If for any j ∈ S and l ∈ {1, . . . ,Lj }, item parameters {θ l
j,α,α ∈ A} follow the two-

parameter assumption, and Q satisfies (C1*) and (C2*) in Corollary 3.1, then (�cat,p) are
p-partially identifiable.

(b) If for any j ∈ S and l ∈ {1, . . . ,Lj }, item parameters {θ l
j,α,α ∈ A} follow the mul-

tiparameter assumption, and Q satisfies conditions (C5) and (C6) in Theorem 4.3, then
(�cat,p) are generically identifiable.

5.3. Deep restricted Boltzmann machines. Restricted latent class models share great sim-
ilarities with Restricted Boltzmann Machines (RBM) [17]. We use a simple example to illus-
trate how the RBM architecture can be used as a special restricted latent class model for
cognitive diagnosis. The RBM on the right panel of Figure 1 consists of two latent layers α(1)

and α(2) and one observed layer R. In a diagnostic test, the R represents multivariate binary
responses to test items, the first latent layer α(1) represents the fine-grained binary skill at-
tributes measured by the items, while the second binary latent layer α(2) helps to model the
dependence among α(1) and may be interpreted as more general skill domains. Denote the
lengths of vectors R, α(1) and α(2) by J , K1 and K2. Under RBM assumptions, the probabil-
ity distribution of all the observed and latent variables is

P
(
R,α(1),α(2)) = 1

Z
exp

( − R�WQα(1) − (
α(1))�Uα(2)),(5.1)

where Z is the normalization constant, and WQ, U are parameter matrices, of size J × K1
and K1 × K2, respectively. We drop the bias terms in the above energy function without loss
of generality [17]. We can impose a Q-matrix of size J × K1 to restrict the parameters WQ

in (5.1). Specifically, Q specifies which entries of WQ = (wj,k) are zero, that is, wj,k = 0 if
qj,k = 0. The form of Q underlying the WQ in Figure 1 is on the left panel of the figure.

We call WQ the item parameters of a RBM, since these parameters relate to the observed
responses to items; and call a RBM with a Q-matrix structure an item-parameter-restricted
RBM. Then an item-parameter-restricted RBM can be viewed as a multiparameter main-
effect restricted latent class model, with α(1) belonging to the latent class space {0,1}K1 . The
next proposition establishes identifiability of the item parameters WQ.

PROPOSITION 5.2. For a given Q-matrix, consider the following cases:

(a) If there is no sparsity structure in WQ (i.e., Q = 1J×K ), then as long as J ≥ 2K1 +1,
the item parameters WQ are generically identifiable.

(b) If the Q-matrix satisfies the sufficient conditions for strict or generic identifiability in
Section 4, then WQ are strictly or generically identifiable, respectively.

Proposition 5.2 establishes identifiability of the item parameters WQ, which provides the
theoretical guarantee in the application of item calibration to assess the quality of the items.
It would also be interesting to further investigate identifiability of other parameters besides
the item parameters in a deep restricted Boltzmann machine, which we leave for future study.

Q =

⎛⎜⎜⎜⎜⎜⎝
1 0 1 0
1 1 0 0
0 1 1 0
0 0 1 1
0 1 0 1

⎞⎟⎟⎟⎟⎟⎠;

FIG. 1. (Deep) Restricted Boltzmann machine.
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FIG. 2. Flowchart of the results in Sections 3 and 4.

6. Discussion. This paper proposes a general framework of strict and partial identifia-
bility of restricted latent class models.

We provide a flowchart in Figure 2 to summarize our main theoretical results in Sections 3
and 4. The flowchart illustrates how to apply the new theory in cognitive diagnosis. Specif-
ically, given the specification of the Q-matrix, the latent class space A ⊆ {0,1}K , and the
diagnostic model assumptions, one can construct the corresponding J × |A| �-matrix based
on the Cj ’s defined in (2.1). Then in the case of a separable �-matrix, if the model is two-
parameter, the p-partial identifiability exactly reduces to strict identifiability and one can
use results in Section 3 to establish strict identifiability; and if the model is multiparameter,
one can use results Theorem 4.1 and Proposition 4.1 in Section 4.1 for strict identifiability.
On the other hand, if the �-matrix is inseparable, depending on whether the model is two-
parameter or multiparameter, one can use the results in Section 3.2 or those in Section 4 to
check whether the model is p-partially identifiable or generically identifiable, respectively.
Note that in the special case of A = {0,1}K , the �-matrix with 2K columns is separable if and
only if the Q-matrix contains an identity submatrix IK , a key condition assumed in previous
works (e.g., [45, 46]). Hence, this work not only largely relaxes these existing conditions for
strict identifiability by allowing more flexible attribute structures with an arbitrary A, but also
provides the first study on partial identifiability when the Q-matrix does not include an IK

(the �-matrix is inseparable). We give easily-checkable identifiability conditions to ensure
estimability of the model parameters, and these conditions serve as practical guidelines for
designing statistically valid diagnostic tests.

We point out that the strict identifiability results in Section 4.1 (Theorem 4.1 and Propo-
sition 4.1) apply to the general family of restricted latent class models satisfying constraints
(2.2), including not only multiparameter but also two-parameter models; on the other hand,
since these results are established under the general constraints (2.2), their conditions are
stronger than those in Section 3 under two-parameter models. In contrast, the generic iden-
tifiability results in Sections 4.1 and 4.2 (Theorems 4.2–4.4) only apply to multiparameter
models. This is because under generic identifiability, the nonidentifiable measure-zero sub-
set of a multiparameter model’s parameter space (such as GDINA), could still contain the
parameter space corresponding to a two-parameter submodel (such as DINA), making these
generic identifiability results not applicable to two-parameter models. Nevertheless, generic
identifiability is a general concept not just restricted to the multi-parameter models. An inter-
esting future direction to study is the generic identifiability of two-parameter models under
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the introduced p-partial identifiability framework; that is, one can study what conditions lead
to the generic identifiability of (θ+, θ−, ν). We also point that a multiparameter model can
also be p-partially identifiable, as discussed in Remark 4.1.

For the p-partial identifiability and generic identifiability results in Sections 3–5, we as-
sume that the model specification for each item, the design matrix and latent class space A
are available as prior knowledge. In practice, there can be scenarios where not all of such in-
formation is available. As pointed out by one reviewer, in applications of cognitive diagnostic
modeling, both the advances in modeling capacity and computing flexibility, and the recent
real-data examples provide ground for adopting a model with mixed type of items, which are
determined in a data-driven way. To this end, our strict identifiability results in Section 4.1
and those in Section 5.1 for mixed-items models can be applied to assess identifiability a
posteriori. In practice, when deciding which model to adopt, one can use the response data to
determine the number of latent classes and determine which diagnostic model an item con-
forms to. For instance, one may employ the popular information criteria such as AIC and BIC
to perform model selection; or one may first fit a general cognitive diagnostic model, such
as GDINA or GDM, then use the Wald test to determine which submodel an item follows
[11]. Alternatively, one may use a penalized likelihood method [46] or Bayesian method [5]
to directly estimate the structure of the item parameters for each item; such structure informs
the model specification of the item. For the selected candidate models, we would recommend
further applying our identifiability theory to assess their identifiability and validity. The gen-
eral theoretical framework developed in this paper would be a useful tool to develop the
identifiability and estimability conditions for learning the item-level model structure and the
population-level latent class space A. This is an interesting and important direction that we
plan to pursue in the future.
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