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This work introduces a novel estimation method, called LOVE, of the en-
tries and structure of a loading matrix A in a latent factor model X = AZ+E,
for an observable random vector X ∈ R

p , with correlated unobservable fac-
tors Z ∈ R

K , with K unknown, and uncorrelated noise E. Each row of A is
scaled, and allowed to be sparse. In order to identify the loading matrix A, we
require the existence of pure variables, which are components of X that are
associated, via A, with one and only one latent factor. Despite the fact that
the number of factors K , the number of the pure variables and their location
are all unknown, we only require a mild condition on the covariance matrix
of Z, and a minimum of only two pure variables per latent factor to show
that A is uniquely defined, up to signed permutations. Our proofs for model
identifiability are constructive, and lead to our novel estimation method of
the number of factors and of the set of pure variables, from a sample of size
n of observations on X. This is the first step of our LOVE algorithm, which
is optimization-free, and has low computational complexity of order p2. The
second step of LOVE is an easily implementable linear program that esti-
mates A. We prove that the resulting estimator is near minimax rate optimal
for A, with respect to the ‖ ‖∞,q loss, for q ≥ 1, up to logarithmic factors in
p, and that it can be minimax-rate optimal in many cases of interest.

The model structure is motivated by the problem of overlapping variable
clustering, ubiquitous in data science. We define the population level clus-
ters as groups of those components of X that are associated, via the matrix
A, with the same unobservable latent factor, and multifactor association is
allowed. Clusters are respectively anchored by the pure variables, and form
overlapping subgroups of the p-dimensional random vector X. The Latent
model approach to OVErlapping clustering is reflected in the name of our
algorithm, LOVE.

The third step of LOVE estimates the clusters from the support of the
columns of the estimated A. We guarantee cluster recovery with zero false
positive proportion, and with false negative proportion control. The practi-
cal relevance of LOVE is illustrated through the analysis of a RNA-seq data
set, devoted to determining the functional annotation of genes with unknown
function.

1. Introduction. In this work, we consider the problem of estimating the p × K , pos-
sibly sparse, loading matrix A that parametrizes the factorization of a zero-mean observable
random vector, X ∈ R

p as

(1.1) X = AZ + E

from n i.i.d. realizations of X. The zero mean random vector Z ∈ R
K is unobservable, and

can be viewed as a latent factor vector. E ∈ R
p is a zero-mean, unobservable random noise
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vector, with uncorrelated entries. We assume E and Z are independent. The number of fac-
tors K is not known, and both p and K are allowed to grow, and be larger than n. Factor
models have been used as dimension reduction devices in virtually any scientific discipline
for nearly a century, and generated an enormous amount of literature. We refer to the classical
monographs of Bollen (1989) and Anderson (2003) for earlier work, and to Izenman (2008)
for a more recent survey and applications.

In this work, we revisit some of the open problems in factor model definition and estima-
tion, and also consider one of their much less explored applications, to overlapping clustering.
For the latter, we deem two components Xi and Xj of X similar if they have nonzero asso-
ciation, via the matrix A, with the same latent factor Za . Similar variables are placed in the
same cluster, Ga :

(1.2) Ga := {
j ∈ {1, . . . , p} : Aja �= 0

}
for each a ∈ {1, . . . ,K}.

Since each Xj can be associated with multiple latent factors, the clusters will overlap. The
problem of overlapping clustering is of wide-spread interest in virtually any scientific area, for
instance, in neuroscience (Craddock et al. (2012, 2013)) and genetics (Jiang, Tang and Zhang
(2004), Wiwie, Baumbach and Röttger (2015)), to give a very limited number of examples.
The solutions are typically algorithmic in nature, and their quality is assessed against a ground
scientific truth or via extensive simulation studies, for instance, Bezdek (1981), Krishnapuram
et al. (2001), among many others. These problems have not received a systematic analysis in
the statistical literature and, in particular, the problem of estimating overlapping clusters of
variables, with theoretical guarantees, remains largely unexplored.

In this work, we propose model-based clustering via A. However, A cannot be uniquely
defined in (1.1), without further restrictions, a phenomenon well understood over six decades
ago. Most notably, Anderson and Rubin (1956) provided an in-depth analysis of this problem,
and proved that in the absence of conditions on A and C := Cov(Z), A is not identifiable in
model (1.1). We revisit some of these conditions here, with a view toward our application to
overlapping clustering. We defer a detailed literature review of related identifiability condi-
tions for model (1.1) to Section 4.4.

Using overlapping clustering as motivation, we formalize our first modeling assumption
on A. We consider models (1.1) in which each row of A is scaled, to avoid scale ambiguities.
Specifically, we assume that:

(i)
∑K

a=1 |Aja| ≤ 1.

The inequality in (i) allows for
∑

a |Aja| = 0, which renders more flexibility to model (1.1),
relative to the more commonly used equality conditions. If

∑
a |Aja| = 0, then Xj = Ej , and

Xj is not associated with any of the latent factors, via this model. The interpretation to clus-
tering is that the corresponding Xj = Ej does not belong to any cluster given by this model,
which is a desired feature in many practical applications, including the one presented in this
paper in Section 6. Furthermore, in order to use the model for clustering, we need to avoid
the trivial situation in which each component Xj is associated with all latent factors. From
this perspective, we allow the rows Aj · := (Aj1, . . . ,AjK) to be sparse, for j ∈ {1, . . . , p},
but this property is not required for the identifiability of A.

Condition (i) alone cannot ensure that A in model (1.1) is uniquely defined, as one can still
construct an invertible matrix Q such that AZ = AQQ−1Z, with both A and AQ satisfying
(i). Moreover, when A is sparse, A and AQ may not have the same sparsity pattern, creat-
ing ambiguity in the cluster definition. We introduce below two additional requirements that
allow us to show, in Section 2 below, that A is identifiable.

We call (ii) given below the pure variable assumption. Informally, it postulates the exis-
tence of at least two pure variables Xj , which are components of X associated with one and
only one latent factor. In Section 2, we provide examples that show that if pure variables do
no exist, A in (1.1) is not uniquely defined.
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(ii) For every a ∈ {1, . . . ,K}, there exist at least two indices j ∈ {1, . . . , p} such that
|Aja| = 1 and Ajb = 0 for all b �= a.

In Remark 2 of Section 4 we discuss relaxations of this condition that allow each pure variable
have a different scaling, possibly different than 1. We note that in the very particular case of
known � := Cov(E), only one pure variable per group is required for identifiability, which
follows from the proof of Theorem 2 in Section A.1. The pure variable assumption has an
immediate practical implication to variable clustering. Since clusters Ga given by (1.2) are
defined relative to the unobservable factor Za , a pure variable Xj is an observable proxy of
Za , and that helps explain the otherwise unclear nature of Ga .

For future reference, we let I denote the index set corresponding to pure variables. In
psychology, these variables are called factorially simple items (McDonald (1999)). A sim-
ilar condition can be traced back to the econometrics literature, and an early reference is
Koopmans and Reiersøl (1950), further discussed in Anderson and Rubin (1956), who called
it “zero elements in specified positions.” These works prove that (ii) corresponding to a known
set I is a sufficient condition for identifying A, for latent factors with arbitrary correlations.
However, full generality on the positive definite covariance matrix C of the latent factors
comes at the steep price of knowing I a priori, which is often unrealistic in practice. Appro-
priate conditions on C that guarantee identifiability of I in (ii), in the general case when I

is not known and, moreover, K is unknown, and have not been investigated for the general
model (1.1), to the best of our knowledge. To this end, we introduce the following condition
on the covariance matrix C:

(iii) �(C) := mina �=b(Caa ∧ Cbb − |Cab|) > 0 and C positive definite,

where a ∧ b := min(a, b). If (iii) holds, then Cov(Za ± Zb) = Var(Za) + Var(Zb) ± 2 ·
Cov(Za,Zb) ≥ Caa + Cbb − 2|Cab| > 0, which implies that the latent factors are different,
up to signs, that is, |Za| �= |Zb| a.s. for any a �= b.

Condition (iii) holds trivially under the much stronger assumption that the latent factors
are independent, or have a slight departure from independence, corresponding to diagonal
dominance in C. These types of assumptions are commonly made in latent factor models, but
may often be unrealistic; see, for instance, Anderson (2003), Anderson and Rubin (1956),
Bollen (1989), Everitt (1984), Izenman (2008) and our discussion in Section 4.4. Condition
(iii) therefore relaxes the independent factor assumption, and we comment further on it below.

Condition (iii) is a companion of our conditions (i) and (ii). When the last two are being
made, condition (iii) admits relaxations, which have been established only in special set-ups.

Under the pure variable assumption (ii), if I is known in advance, the arguments employed
in the proof of our Theorem 2 of Section 2 show that (iii) is not required, and the assumption
that C is a positive definite covariance matrix suffices. This is consistent with the classical
literature on general latent models; see, for instance, Anderson and Rubin (1956).

Identifiability results corresponding to the realistic situation when I is not known are
scarce, and correspond to particular instances of the model we consider in this work. In
the limit case of our model, when all p variables are pure variables, which corresponds to
nonoverlapping clustering, Bunea et al. (2018) showed that, once again, C being positive
definite suffices for identifiability.

The problem of identifying A under (ii), with I unknown, has been revived more recently,
in the particular case of modeling random vectors X with only nonnegative values, when A

and Z also have only nonnegative entries. This set-up corresponds to the area known as non-
negative matrix factorization (NMF), in which one studies positive matrix factorizations of
the type X = AZ+E, where the observed data X is a p×n matrix, Z is the K ×n unobserv-
able matrix of the latent vectors and E is the p×n noise matrix. In this context, when E = 0,
and conditioning on Z, Donoho and Stodden (2004) was among the first works to propose a
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condition similar to (ii), with I unknown, coupled with appropriate conditions on Z, leading
to an NMF decomposition with unique factors. Moreover, the unique determination of I un-
der (ii), for E �= 0, but with very small componentwise variances, was solved in Bittorf et al.
(2012), for known K , and for scaled NMF models, in which the columns of X, Z and A sum
up to 1. These results were proved under the assumption that no row of a scaled version of
Z is a convex combination of the other rows. Conditioning on Z, this requirement is weaker
than our condition (iii), should we impose it on n−1ZZT , but it is not readily generalizable
outside the NMF framework.

In light of this discussion, our condition (iii) on C is a key ingredient in the identification
of I , in the context of the more general model (1.1), when E is not negligible, and K is
not known. The details are given in Section 2 below. If all the latent variables have the same
variance, then condition (iii) becomes the very mild requirement that the correlations between
pairs of latent variables are strictly less than 1, Cor(Zi,Zj ) < 1, for 1 ≤ i < j ≤ K . When
the factors have unequal variances, condition (iii) may still hold, but it becomes stronger. We
view this as the price to pay for the identifiability of I , and consequently of A in the general
model (1.1).

Summarizing, this work is devoted to estimation in model (1.1) with A, C satisfying (i)–
(iii). The number of factors K is not known, and both K and p are allowed to grow and be
larger than n. In Section 1.1 below, we present our contributions and the structure of this
paper. A detailed contrast with existing literature is presented in Section 4.4.

1.1. Our contributions.

1.1.1. Identifiability of the allocation matrix A in sparse latent models with pure variables.
We show, in Proposition 2 of Section 2, that the allocation matrix A, which is allowed to have
entries of arbitrary signs, is uniquely defined, up to trivial orthogonal transformations, namely
signed permutation matrices. This is a consequence of one of our main results, Theorem 1
of Section 2. In this result, we highlight and resolve the main difficulty in this problem,
that of distinguishing between the pure variables and the nonpure variables. Both proofs are
constructive, and show that the pure variable set I and allocation matrix A can be determined
uniquely from � := Cov(X). Moreover, the number of factors K is not assumed to be known,
and its determination is also a consequence of Theorem 1. To the best of our knowledge,
these are new results in both the latent factors literature and other related matrix factorization
literature. We comment on connections to related results in Section 4.4.

1.1.2. Estimation of the allocation matrix A and of the overlapping clusters. The LOVE
algorithm. We provide an estimator Â of the sparse and structured matrix A that is tailored
to our model specifications. Our approach follows the constructive techniques used in our
identifiability proofs. We first construct Î , an estimator of the pure variable set I , and K̂ , an
estimator of the number of clusters, K . These are used to estimate the rows in A correspond-
ing to pure variables. The remaining rows of A are estimated via an easily implementable
linear program that is tailored to this problem. As part of our procedure, we also develop
a novel estimator (3.7) and (3.8) of a precision matrix, C−1. Our procedure is presented in
Sections 3.1, 3.2 and 3.3, respectively. To the best of our knowledge, our estimation strategy
is new, and complements the large body of literature in factor models. In particular, we do not
resort to optimizing a complicated quasi likelihood function via computationally demanding
EM algorithms. These algorithms require, in addition, a notoriously delicate initialization,
especially in high dimensions, and typically only convergence to a stationary point can be
guaranteed; see Rubin and Thayer (1982). Moreover, as our procedure is not Bayesian, we
do not employ distributional assumptions to construct our estimator. In Section 3.4, we build
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a collection of overlapping clusters Ĝ, using the estimated allocation matrix Â. The combined
procedure is summarized in a new algorithm, LOVE, highlighting our Latent model approach
to OVErlapping clustering.

1.1.3. Statistical guarantees. Our estimation procedure does not depend on distribu-
tional assumptions, but for the purpose of our statistical analysis, and in particular our min-
imax analysis, we assume that X ∈ R

p has a sub-Gaussian distribution with logp = o(n) as
n → ∞. LOVE, for appropriate choices of tuning parameters, recovers the population level
clusters with a zero false positive proportion and generally low false negative proportion,
with high probability, and under a mild condition on the cluster separation as measured by
the quantity �(C). This is a direct consequence of a number of results regarding estimation
of identifiable loading matrices in factor models satisfying (i)–(iii) and, to the best of our
knowledge, they are all new:

(1) Consistent estimation of the number of factors K ;
(2) Control of the relationship between Î and I for A with entries of arbitrary strength. In

particular, we show I ⊆ Î ⊆ I ∪ J1, where we carefully define and characterize J1 as the set
of quasi-pure variables.

(3) Minimax lower bounds on the norms Lq(Â,A), defined below, for all q ≥ 1, in par-
ticular for q = +∞, for A given by model (1.1) under (i)–(iii).

(4) Attainment of these bounds, showing that our procedure is minimax optimal and adap-
tive.

(5) Control of the relationship between the support of A and the support of Â.
(6) Control of cluster recovery.

The details are given in Sections 4.2 and 4.3. In particular, we emphasize that (2) above,
proved in Theorem 3 of Section 4.1, guarantees recovery of I with minimal mistakes. This
result does not require the necessary, yet unpleasant, signal strength restrictions encountered
in the typical exact support recovery literature. However, under such restrictions, we also
obtain Î = I , with high probability, in Remark 3 of Section 4.1. Since placing restrictions on
the entries in A reduces the number of configurations of interest, the more general result (2)
is a new and practically relevant result for pure variable recovery.

Results (3) and (4) are given in Theorems 4, 5 and 6 of Section 4.2. We consider the loss
function

Lq(Â,A) := min
P

‖ÂP − A‖∞,q , 1 ≤ q ≤ ∞,

with the minimum taken over all K × K signed permutation matrices P and

‖A‖∞,q := max
1≤i≤p

‖Ai·‖q = max
1≤i≤p

(
K∑

j=1

|Aij |q
)1/q

,

is the maximum �q norm of the rows of A. We let s = maxi∈[p] ‖Ai·‖0 be the row-sparsity
index.

We show that the error of estimation with respect to the Lq loss function, for each q , is
proportional to s1/qn−1/2, multiplied by ‖C−1‖∞,1. This is consistent with the most recent
results regarding error rates expressed in terms of the �q -sensitivity of C in Gautier and
Tsybakov (2011) and Belloni, Rosenbaum and Tsybakov (2017), as discussed in Section 4.2.
The results hold up to logarithmic factors in p and s.

Results (5) and (6) are presented in Theorem 7 of Section 4.3. Moreover, we can further
partition the variables in each cluster into two signed sub-groups consistently. In our model
formulation, A is allowed to have positive and negative entries. Since A can only be identi-
fied up to signed permutations, one cannot expect sign consistency for Â. However, we can
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TABLE 1
Comparisons

Model (1.1)
under (i)–(iii)

Our results Existing results in comparable factor
models

Identifiability
conditions

Existence of I with I and K unknown. Existence of known I and K .
C is positive definite and satisfies (iii). C is positive definite.

Estimation: I Runs in O(p2) time; optimization-free. ×

Estimation: A

Not MLE-based approach. MLE-based approach.
Unique solution. Multiple solutions.
Linear program; runs in O(p2 + pK). EM algorithm; computationally involved.

Guarantees: I Recovered ×

Guarantees: A

Finite sample ‖ ‖∞,q lower bounds. Row-wise asymptotic normality of MLE.
Adaptive finite sample upper bounds. Only p can grow with n and K is fixed.
Both p and K can grow with n.

Cluster recovery Guaranteed ×

identify consistently the two subgroups of each cluster that contain variables that are associ-
ated with the common latent factor in the same direction, although the direction itself is not
identifiable. These results are presented in Section 4.3.

We conduct an extensive simulation study in Section 5 to assess the numerical performance
of our proposed strategy. The study confirms our theoretical findings. We conclude the vali-
dation of our approach with a data analysis, devoted to determining the functional annotation
of genes with unknown function. Our analysis confirms existing biological ground truths, as
our procedure tends to cluster together genes with the same Gene Ontology (GO) biological
process, molecular function or cellular component terms.

We summarize our contributions in Table 1, restricting attention to estimation in general
latent models (1.1) under (i)–(iii), without any further restrictions on the signs or scales of X

and Z.
In Section 4.4, we discuss our results further, and provide a detailed comparison between

our work and related contributions. All proofs are deferred to Section A of the Supplementary
Material (Bing et al. (2019)).

1.2. Notation. We use the following notation throughout this paper. For the n consec-
utive integer set starting from 1, we write [n] = {1, . . . , n}. The sign of any generic num-
ber N is denoted by sign(N). For any m × d matrix M and index sets I ⊆ {1, . . . ,m}
and J ⊆ {1, . . . , d}, we write MI to denote the |I | × d submatrix (Mij )i∈I,1≤j≤d of M

consisting of the rows in the index set I , while we denote by MIJ the |I | × |J | sub-
matrix with entries Mij , i ∈ I and j ∈ J . The ith row of M is denoted by Mi·, and
the j th column of M is denoted by M·j . Let ‖M‖∞ = max1≤j≤m,1≤k≤d |Mjk|, ‖M‖1 =∑

1≤j≤m,1≤k≤d |Mjk|, ‖M‖F = (
∑m

j=1
∑d

k=1 M2
jk)

1/2, ‖M‖∞,1 = max1≤j≤m

∑d
k=1 |Mjk|

and ‖M‖1,∞ = max1≤k≤d

∑m
j=1 |Mjk| denote the matrix max norm, matrix �1 norm, ma-

trix Frobenius norm, matrix 1 norm and matrix ∞ norm. We denote by 〈·〉 the Frobe-
nius scalar product. For a vector v ∈ R

d , define ‖v‖q = (
∑d

i=1 |vj |q)1/q for 1 ≤ q < ∞,
‖v‖∞ = max1≤j≤d |vj | and ‖v‖0 = | supp(v)|, where supp(v) = {j : vj �= 0} and |S| is the
cardinality of the set S. For a vector v ∈ R

d , we denote by vS the vector w ∈ R
d that has the

same coordinates wi = vi as v on the index set S ⊆ {1, . . . , d} and zero coordinates otherwise
(wi = 0 for all i ∈ S̄ := [d] \ S). We write MT for the transpose of M and diag(m1, . . . ,md)
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for the d × d diagonal matrix with elements m1, . . . ,md on its diagonal, while diag(M) is
the diagonal matrix obtained from the diagonal elements of a square matrix M . The identity
matrix in R

d×d is denoted by I d , the vector in R
d with all entries equal to one is denoted by

1d and a vector/matrix with all zero entries is denoted by 0 whose dimension might vary line
by line. We use c0, c1, . . . to denote generic constants. Finally, a signed permutation matrix is
an orthogonal matrix that permutes the index and switches the sign within each column. We
write HK as the hyperoctahedral group of K × K signed permutation matrices.

2. Identifiability. In this section, we show that the allocation matrix A given by Model
(1.1) and (i)–(iii) is identifiable, up to multiplication with a signed permutation matrix.

For any A ∈ R
p×K which satisfies model (1.1), we can partition the set [p] = {1, . . . , p}

into two disjoint parts: I and its complement J := [p] \ I such that for each row Ai· of AI ,
there exists only one a ∈ [K] such that |Aia| = 1. We name I the pure variable set and J the
nonpure variable set. Specifically, for any given A, the pure variable set I is defined as

(2.1) I (A) :=
K⋃

a=1

Ia, Ia := {
i ∈ [p] : |Aia| = 1,Aib = 0, for any b �= a

}
.

We write I (A) in (2.1) to emphasize that the pure variable set is defined relative to A. In the
following, we will not write this explicitly when there is no confusion. We also note that the
sets {Ia}1≤a≤K form a partition of I .

To show the identifiability of A, it suffices to show that AI and AJ are identifiable, respec-
tively, up to signed permutation matrices. By the definition of AI , this matrix is identifiable
provided the partition of the pure variable set I is. The identifiability of I , and thus the prob-
lem of distinguishing between the sets I and J , on the basis of the distribution of X alone,
is the central challenge in this problem. We meet this challenge in Theorem 1 below: part (a)
offers a necessary and sufficient characterization of I ; part (b) shows that, as a consequence,
I and its partition I := {Ia}1≤a≤K are identifiable. Let

(2.2) Mi := max
j∈[p]\{i} |�ij |

be the largest absolute value of the entries of row i of � excluding |�ii |. Let Si be the set of
indices for which Mi is attained:

(2.3) Si := {
j ∈ [p] \ {i} : |�ij | = Mi

}
.

THEOREM 1. Assume that model (1.1) and (i)–(iii) hold. Then:

(a) i ∈ I ⇐⇒ Mi = Mj for all j ∈ Si .
(b) The pure variable set I can be determined uniquely from � := Cov(X). Moreover, its

partition I := {Ia}1≤a≤K is unique and can be determined from � up to label permutations.

The identifiability of the allocation matrix A and that of the collection of clusters G =
{G1, . . . ,Gk} in (1.2) use the results from Theorem 1 in crucial ways. We state the result in
Theorem 2 below.

THEOREM 2. Assume that Model (1.1) with (i)–(iii) holds. Then there exists a unique
matrix A, up to a signed permutation, such that X = AZ+E. This implies that the associated
overlapping clusters Ga , for 1 ≤ a ≤ K , are identifiable, up to label switching.

REMARK 1. We show below that the pure variable assumption (ii) is needed for the
identifiability of A, up to a signed permutation. Assume that X = AZ + E satisfies (i) and
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(iii), but not (ii). We construct an example in which X can also be written as X = ÃZ̃ + E,
where Ã and Z̃ satisfy the same conditions (i) and (iii), respectively, but Ã �= AP for any
K × K signed permutation matrix P and Ã may have a sparsity pattern different from A. To
this end, we construct Ã and Z̃ such that ÃZ̃ = AZ. Let Ã = AQ and Z̃ = Q−1Z, for some
K × K invertible matrix Q to be chosen such that Cov(Z̃) = Q−1C(Q−1)T satisfies (iii). In
addition, we need to guarantee that Ã = AQ satisfies (i). For simplicity, we set K = 3. The
following example satisfies all our requirements:

C =
⎡⎣1 0 0

0 2 0
0 0 3

⎤⎦ , Q =
⎡⎣ 1 1/3 0

1/3 2 1/2
0 1/2 2

⎤⎦ .

It is easy to verify that Cov(Z̃) = Q−1C(Q−1)T satisfies (iii). For any 1 ≤ j ≤ p, consider

AT
j · = (1/8,−3/8,0)

then

ÃT
j · = AT

j ·Q = (0,−17/24,−3/16)

which also satisfies condition (i). However, Aj · and Ãj · have different sparsity patterns. Thus,
if the matrix A does not satisfy (ii), A is generally not identifiable.

3. Estimation. We develop estimators from the observed data, which is assumed to be
a sample of n i.i.d. copies X(1), . . . ,X(n) of X ∈ R

p , where p is allowed to be larger than n.
Our estimation procedure consists of the following four steps:

(1) Estimate the pure variable set I , the number of clusters K and the partition I;
(2) Estimate AI , the submatrix of A with rows Ai. that correspond to i ∈ I ;
(3) Estimate AJ , the submatrix of A with rows Aj. that correspond to j ∈ J ;
(4) Estimate the overlapping clusters G = {G1, . . . ,GK}.

3.1. Estimation of I and I . Given the different nature of their entries, we estimate the
submatrices AI and AJ separately. For the former, we first estimate I and its partition I =
{I1, . . . , IK}, which can be both uniquely constructed from �, as shown by Theorem 1. We
use the constructive proof of Theorem 1 for this step, replacing the unknown � by the sample
covariance matrix

�̂ = 1

n

n∑
i=1

X(i)(X(i))T .

Specifically, we iterate through the index set {1,2, . . . , p}, and use the sample version of
part (a) of Theorem 1 to decide whether an index i is pure. If it is not deemed to be pure,
we add it to the set that estimates J . Otherwise, we retain the estimated index set Ŝi of Si

defined in (2.3), which corresponds to an estimator of Mi given by (2.2). We then use the
constructive proof of part (b) of Theorem 1 to declare Ŝi ∪ {i} := Î (i) as an estimator of one
of the partition sets of I . The resulting procedure has complexity O(p2), and we give all the
specifics in Algorithm 1 of Section 3.5. The algorithm requires the specification of a tuning
parameter δ, which will be discussed in Section 5.1.

3.2. Estimation of the allocation submatrix AI . Given the estimators Î , K̂ and Î =
{Î1, . . . , ÎK̂} from Algorithm 1, we estimate the matrix AI by a |Î | × K̂ matrix with rows
i ∈ Î consisting of K̂ − 1 zeros and one entry equal to either +1 or −1 as follows. For each
a ∈ [K̂],
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(1) Pick an element i ∈ Îa at random, and set Âia = 1. Note that Âia can only be +1 or
−1 by the definition of a pure variable.

(2) For the remaining j ∈ Îa \ {i}, we set Âja = sign(�̂ij ).

This procedure induces a partition of Îa = Î 1
a ∪ Î 2

a , where Î 1
a and Î 2

a are defined below:

(3.1)

{
Âka = Âla, for k, l ∈ Î 1

a or k, l ∈ Î 2
a ,

Âka �= Âla, for k ∈ Î 1
a and l ∈ Î 2

a ,

3.3. Estimation of the allocation submatrix AJ . We continue by estimating the matrix
AJ , row by row. To motivate our procedure, we begin by highlighting the structure of each
row Aj · of AJ , for j ∈ J . We recall that Aj · is sparse, with ‖Aj ·‖1 ≤ 1, for each j ∈ J , as
specified by assumption (i). In addition, model (1.1) subsumes a further constraint on each
row Aj · of A, as explained below. To facilitate notation, we rearrange �, A and � as follows:

� =
[
�II �IJ

�JI �JJ

]
, A =

[
AI

AJ

]
and � =

[
�II 0
0 �JJ

]
.

Model (1.1) implies the following decomposition of the covariance matrix � of X:

� =
[
�II �IJ

�JI �JJ

]
=
[
AICAT

I AICAT
J

AJ CAT
I AJ CAT

J

]
+
[
�II 0

0 �JJ

]
.

In particular, �IJ = AICAT
J . Thus, for each i ∈ Ia with some a ∈ [K] and j ∈ J , we have

(3.2) Aia�ij = A2
ia

K∑
b=1

AjbCab =
K∑

b=1

AjbCab = CT
a·Aj ·.

Averaging display (3.2) over all i ∈ Ia yields

(3.3)
1

|Ia|
∑
i∈Ia

Aia�ij = CT
a·Aj · for each a ∈ [K].

For each j ∈ J , we let

βj := Aj ·
and

(3.4) θj =
(

1

|I1|
∑
i∈I1

Ai1�ij , . . . ,
1

|IK |
∑
i∈IK

AiK�ij

)T

.

Since Aia ∈ {−1,1}, for each i ∈ Ia and a ∈ [K], the entries of θj are respective averages
of the sign corrected entries of � corresponding to the partition of the pure variable set.
Summarizing, modeling assumption (i) and equation (3.3) above show that the estimation of
AJ reduces to estimating, for each j ∈ J , a K-dimensional vector βj that is sparse, with
norm ‖βj‖1 ≤ 1, and that satisfies the equation

θj = Cβj .

Both C and θj , for each j ∈ J , can be estimated directly from the data as follows. For each
j ∈ Ĵ , we estimate the ath entry of θj by

(3.5) θ̂ j
a = 1

|Îa|
∑
i∈Îa

Âia�̂ij , a ∈ [K̂],
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and compute

(3.6)

Ĉaa = 1

|Îa|(|Îa| − 1)

∑
i,j∈Îa ,i �=j

|�̂ij |,

Ĉab = 1

|Îa||Îb|
∑

i∈Îa,j∈Îb

ÂiaÂib�̂ij ,

for each a ∈ [K̂] and b ∈ [K̂] \ {a} to form the estimator Ĉ of C. The estimates (3.5) and
(3.6) rely crucially on having first estimated the pure variables and their partition, according
to the steps described in Sections 3.1 and 3.2 above.

We have developed a computationally efficient method to estimate βj . We exploit the fact
that the square matrix C is invertible and take the equation βj = C−1θj as our starting point.
The idea is to first construct a pre-estimator β̄j = 	̂θ̂ j , based on an appropriate estimator 	̂

of the precision matrix 	 := C−1, followed by a sparse projection of β̄j . Alternatively, and
recommended to speed up the computation, we could use a simple hard threshold operation
in the second step as described in Remark 5, item 4. We first motivate our proposed estimator
of 	. From the decomposition,

(3.7)
β̄j − βj = 	̂

(
θ̂ j − θj )+ (	̂ − 	)θj

= 	̂
(
θ̂ j − θj )+ (	̂C − I )βj ,

we immediately have

(3.8)
∥∥β̄j − βj

∥∥∞ ≤ ‖	̂‖∞,1
∥∥θ̂ j − θj

∥∥∞ + ‖	̂C − I‖∞
∥∥βj

∥∥
1.

Since we can show in Lemma 12 of the Supplementary Material that ‖θ̂ j −θj‖∞ has optimal
convergence rate, and since ‖βj‖1 ≤ 1 under our model, our estimator 	̂ should ideally
render values for ‖	̂‖∞,1 and ‖	̂C − I‖∞ that are as small as possible. With this in mind,
we propose the linear program

(3.9) (	̂, t̂) = arg min
t∈R+,	∈RK̂×K̂

t

subject to

(3.10) 	 = 	T , ‖	Ĉ − I‖∞ ≤ λt, ‖	‖∞,1 ≤ t,

with tuning parameter λ. This linear programming problem is clearly tailored to our purpose,
and its optimal solution 	̂ adds a novel estimator for C−1 to the rich literature on precision
matrix estimation (Cai, Liu and Luo (2011), Cai, Liu and Zhou (2016), Friedman, Hastie and
Tibshirani (2008), Meinshausen and Bühlmann (2006), Yuan and Lin (2007), to name a few).
Its novelty consists in (a) the usage of the matrix ‖ ·‖∞,1 norm, instead of the commonly used
matrix ‖ ·‖1 norm, and (b) the fact that this norm appears in the upper bound of the restriction
(3.10). After we compute β̄j = 	̂θ̂ j , for each j ∈ Ĵ , we solve the following optimization
problem:

(3.11) β̂j = arg min
β∈RK̂

‖β‖1

subject to

(3.12)
∥∥β − β̄j

∥∥∞ ≤ μ,

for some tuning parameter μ that is proportional to ‖C−1‖∞,1 to obtain our final estimate
β̂j as the optimal solution of this linear program. This solution is also sparse and properly
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scaled, in accordance to our model specification (i). Then ÂĴ is the matrix with rows β̂j ,
for j ∈ Ĵ . Our final estimator Â of A is obtained by concatenating ÂÎ and ÂĴ . Its statistical
property is analyzed in Section 4, along with precise forms of the tuning parameters needed
for its construction.

An alternative way to estimate βj is by the following Dantzig-type estimator. Starting with
the equation θj = Cβj , we can consider, for each j ∈ Ĵ , the linear program

(3.13) min
β∈RK̂

‖β‖1

subject to

(3.14)
∥∥Ĉβ − θ̂ j

∥∥∞ ≤ λ′,
with tuning parameter λ′. The solution is sparse and properly scaled, in accordance to our
model specification (i). Our final goal of support recovery of βj still requires an additional
hard thresholding step of the solution of this linear program. In this case, the appropriate
threshold μ is proportional to the �∞-sensitivity of the matrix C, introduced by Gautier and
Tsybakov (2011). The latter quantity depends on the unknown support of the different rows
θj , but can be upper bounded by ‖C−1‖∞,1. The statistical properties of this procedure are
analyzed in Section 4 as well.

Both procedures require, in practice, the estimation of the quantity ‖C−1‖∞,1. The proce-
dure in (3.11)–(3.12) recovers the support of β automatically while the procedure in (3.13)–
(3.14), even though it renders a sparse solution, requires a further hard-thresholding step for
the support recovery.

3.4. Estimation of the overlapping groups. Recalling the definition of groups in (1.2),
the overlapping groups are estimated by

(3.15) Ĝ = {Ĝ1, . . . , ĜK̂}, Ĝa = {
i ∈ [p] : Âia �= 0

}
, for each a ∈ [K̂].

Variables Xi that are associated (via Â) with the same latent factor Za are therefore placed
in the same group Ĝa . To accommodate potential pure noise variables, we further define

(3.16) G0 := {
j ∈ {1, . . . , p} : Aja = 0, for all a ∈ {1, . . . ,K}}

as the pure noise cluster. We can estimate G0 in (3.16) by

(3.17) Ĝ0 = {
i ∈ [p] : Âia = 0, for all a ∈ [K̂]}.

However, our main focus is on G because it completely determines G0.
In many applications, it may be of interest to identify the subgroups of variables that are all

either positively or negatively associated with the same latent factor. To this end, we define

Gs := {
Gs

1, . . . ,G
s
K

}
,

Gs
a := {

G1
a,G

2
a

} := {{i ∈ Ga : Aia > 0}, {i ∈ Ga : Aia < 0}},(3.18)

for each a ∈ [K], and they are estimated by

Ĝs = {
Ĝs

1, . . . , Ĝ
s
K̂

}
,

Ĝs
a = {{i ∈ Ĝa : Âia > 0}, {i ∈ Ĝa : Âia < 0}},(3.19)

for each a ∈ [K̂]. The fact that A is only identifiable up to a signed permutation matrix has the
repercussion that the labels of the two subgroups in Gs

a are not identifiable. Thus, variables
placed in the subgroups G1

a and G2
a are respectively associated with Za in the same direction.

The directions between two subgroups, henceforth called direction subgroups, are opposite.
This can be identified, although the direction itself cannot. We show in Section 4 that the
direction subgroups can be identified, and well estimated.
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Algorithm 1 Estimate the partition of the pure variables I by Î
1: procedure PUREVAR(�̂, δ)
2: Î ←∅.
3: for all i ∈ [p] do
4: Î (i) ← {l ∈ [p] \ {i} : maxj∈[p]\{i} |�̂ij | ≤ |�̂il| + 2δ}
5: Pure(i) ← True.
6: for all j ∈ Î (i) do
7: if ||�̂ij | − maxk∈[p]\{j} |�̂jk|| > 2δ then
8: Pure(i) ← False,
9: break

10: if Pure(i) then
11: Î (i) ← Î (i) ∪ {i}
12: Î ← MERGE(Î (i), Î )
13: return Î and K̂ as the number of sets in Î

14: function MERGE(Î (i), Î)
15: for all G ∈ Î do � Î is a collection of sets
16: if G ∩ Î (i) �= ∅ then
17: G ← G ∩ Î (i) � Replace G ∈ Î by G ∩ Î (i)

18: return Î
19: Î (i) ∈ Î � add Î (i) in Î
20: return Î

3.5. LOVE: A Latent variable model approach for OVErlapping clustering. We give be-
low the specifics of Algorithm 1, motivated in Section 3.1, and summarize our final algorithm,
LOVE in Algorithm 2.

4. Statistical guarantees. We provide in this section statistical guarantees for:

(1a) The estimated number of clusters K̂ ;
(1b) The estimated pure variable set Î and its estimated partition Î;
(2) The estimated allocation matrix Â and its adaptation to the unknown row sparsity

of A.
(3) The individual Group False Positive Proportion (GFPP), the individual Group False

Negative Proportion(GFNP), the Total False Positive Proportion (TFPP) and the Total False
Negative Proportion (TFNP) for the estimated overlapping groups.

Algorithm 2 The LOVE procedure for overlapping clustering

Require: �̂ from I.I.D. data (X(1), . . . ,X(n)), the tuning parameters δ, λ and μ.
1: Apply Algorithm 1 to obtain the number of clusters K̂ , the estimated set of pure variables

Î and its partition of Î .
2: Estimate AI by ÂÎ from (3.1).
3: Estimate C−1 by 	̂ from (3.9) and β̄j for each j ∈ Ĵ .
4: Estimate AJ by ÂĴ from (3.11). Combine ÂÎ with ÂĴ to obtain Â.
5: Estimate overlapping groups Ĝ = {Ĝ1, . . . , ĜK̂

} and its direction subgroups Ĝs =
{Ĝs

1, . . . , Ĝ
s

K̂
} from (3.15)–(3.19) by using Â.

6: Output Â, Ĝ and Ĝs .
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We make the blanket assumption for the remainder of this paper that X is sub-Gaussian,
that is, the Orlicz norm ‖Xj‖ψ2 of each Xj is bounded by a common constant σ∗.1 The
sub-Gaussian condition implies maxj∈[p] �jj ≤ 2σ 2∗ and ‖C‖∞ ≤ 2σ 2∗ . Let

(4.1) E = E(δ) :=
{

max
1≤i<j≤p

|�̂ij − �ij | ≤ δ
}
.

We assume throughout that δ = c0‖�‖∞
√

log(p ∨ n)/n, for some absolute constant c0, and
logp = o(n), so that δ = o(1), for n large enough, where a ∨ b = max(a, b). Taking c0 > 0
large enough, Lemma 2 in Bien, Bunea and Xiao (2016) guarantees that E holds with high
probability:

(4.2) P(E) ≥ 1 − c1(p ∨ n)−c2

for some positive, finite constants c1 and c2. Apart from δ, the quantity

(4.3) �(C) := ν > 0,

plays an important role in our analysis. Indeed, assumption (iii) requires that ν > 0 in order
to guarantee that the latent factors are distinguishable from one another. We can view ν as a
measure of their separation, and naturally therefore, the size of ν impacts the quality of all
our estimators, in addition to the magnitude of δ.

REMARK 2. It is common practice to standardize the data in a pre-processing step, and
perform statistical analyses on the standardized data. Our model can be easily adapted to
this case by assuming that the latent variable model holds for a standardized version of X,
specifically for X̃ := (diag(�))−1/2(X −E(X)), leading to

(4.4) X̃ = AZ + E

with A, Z and E satisfying the same conditions (i), (ii) and (iii). Recall that in model (1.1) we
have already assumed that X has mean zero. Transforming model (4.4) back to the original
scale, we have X − E[X] = [(diag(�))1/2A]Z + [(diag(�))1/2E]. We note that the new
allocation matrix Ã := [(diag(�))1/2A] has the same support as A. Moreover, a pure variable
j in cluster a satisfies |Ãja| = �

1/2
jj . Therefore, pure variables are given different weights,

proportional to their respective standard deviations, which relaxes the equal weight restriction
in Condition (ii). The caveat is that under (4.4), we have 1 = Cov(X̃j ) = AT

j ·CAj · + �jj

for any 1 ≤ j ≤ p. This further implies that �jj = �j ′j ′ for any j, j ′ ∈ Ia , that is, model
(4.4) subsumes that the random noise has the same variance for all pure variables in each
cluster. Depending on what modeling assumptions best fit a particular problem, either (1.1)
or (4.4) can be considered. The identifiability of model (4.4) follows directly from the proof
of Theorem 2. The LOVE algorithm, presented in the next subsection, is also applicable,
provided we replace the sample covariance matrix �̂ with the sample correlation matrix R̂

with entries

R̂jk = 1

n

n∑
i=1

(
X

(i)
j − X̄j

)(
X

(i)
k − X̄k

)
/
(
sd(Xj ) sd(Xk)

)
,

with X̄j = n−1∑n
i=1 X

(i)
j and sd(Xj ) = {n−1∑n

i=1(X
(i)
j − X̄j )

2}1/2. Then all our theoretical
guarantees hold unchanged on the new event

E = E(δ) :=
{

max
1≤i<j≤p

|R̂ij − Rij | ≤ δ
}
.

1The Orlicz norm of Xj is defined as ‖Xj‖ψ2 = inf{c > 0 : E[ψ2(|Xj |/c)] < 1}, based on the Young function

ψ2(x) = exp(x2) − 1.
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Since Bunea, Giraud and Luo (2016) showed that E holds with high probability by choosing
δ = c0

√
log(p ∨ n)/n, for some constant c0, we can obtain the same statistical guarantees

under the model (4.4).

4.1. Statistical guarantees for K̂ , Î and Î . We first analyze the performance of our es-
timator Î of I , and its corresponding partition. This problem belongs to the general class of
pattern recovery problems, and it is well understood that under strong enough signal condi-
tions one can expect Î = I , with high probability. This turns out to be indeed the case for our
problem, but we obtain this as a corollary of a more general result. We set out to quantify
when our estimated set contains the least taxing type of errors, under minimal assumptions.
To make this precise, we introduce the concept of quasi-pure variables. A quasi-pure vari-
able Xi has very strong association with only one latent factor, say Za , in that |Aia| ≈ 1, and
very low association with the rest: |Aib| ≈ 0, for all b �= a. Formally, we define the set of
quasi-pure variables as

(4.5) J1 := {
j ∈ J : there exists a ∈ [K], such that |Aja| ≥ 1 − 4δ/ν

}
.

For each a ∈ [K], we further define the set of quasi-pure variables associated with the same
factor:

(4.6) J a
1 := {

j ∈ J1 : |Aja| ≥ 1 − 4δ/ν
}
.

When ν is a strictly positive constant, ε := 4δ/ν = o(1). The lower bound |Aja| ≥ 1 − ε in
(4.6) implies, under condition (ii), that |Ajb| ≤ ε, for any b �= a and j ∈ J a

1 , justifying the
name quasi-pure variables for those components of X with indices in J1. We observe, for
future reference, that {J 1

1 , . . . , JK
1 } forms a partition of J1.

We show in Theorem 3 that, with very high probability, the estimated Î contains the pure
variable set I , and is in turn contained in a set that includes all pure variables and quasi-pure
variables. Importantly, Î will not include indices of variables Xj that are associated with
multiple latent factors at a level higher than ε. Equally importantly, if a quasi-pure variable
Xi is included in Î , then this variable will have the corresponding |Aia| ≈ 1, and it will be
placed together with the pure variables associated with the same factor Za , for some a, and
not in a new cluster. This is crucial for ensuring that the number of clusters K is consistently
estimated, and also for establishing the cluster misclassification proportion in Section 4.3
below.

THEOREM 3. Assume Model (1.1) with (i)–(iii), and

(4.7) ν > 2 max
(
2δ,

√
2‖C‖∞δ

)
.

Then:

(a) K̂ = K ;
(b) I ⊆ Î ⊆ I ∪ J1.

Moreover, there exists a label permutation π of the set {1, . . . ,K}, such that the output Î =
{Îa}a∈[K] from Algorithm 1 satisfies:

(c) Iπ(a) ⊆ Îa ⊆ Iπ(a) ∪ J
π(a)
1 .

All results hold with probability larger than 1 − c1(n ∨ p)−c2 , for c1, c2 positive constants
defined in (4.2).
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The conclusion of Theorem 3 holds only under condition (4.7), which stipulates that the
separation between the latent factors, as measured by ν, is not only strictly positive, which
was needed for identifiability, but slightly above a quantity that depends on the estimation er-
ror δ, and which becomes o(1) for n large enough. From the inspection of the proof, condition
(4.7) can be relaxed to ν > 4δ when J1 =∅.

REMARK 3. Let e1 = (1,0, . . . ,0)T and HK be the hyperoctahedral group of signed
permutation matrices. If AI and AJ are well separated in the sense that

min
j∈J,P∈HK

‖Aj · − Pe1‖1 > 8δ/ν,

then J1 = ∅, and Theorem 3 yields exact recovery of the pure variable set and of its partition:
Î = I and Î = I , with high probability. However, we expect J1 �= ∅, as we expect quasi-
pure variables to be present in a high-dimensional model, which is the context for which
Theorem 3 has been established.

4.2. Statistical guarantee for Â. In this section, we state and comment on the sta-
tistical properties of the estimate Â obtained in Sections 3.2 and 3.3. Recall that δ =
O(

√
log(p ∨ n)/n) was given in (4.1) above, and the estimation of AJ made use of two

tuning parameters: λ, in (3.10) and μ, in (3.12). Theorem 4 establishes the properties of our
estimates relative to the theoretically optimal values of these tuning parameters, both of which
are functions of δ, while their data adaptive calibration is discussed in Section 5.1 below. We
let λ = 2δ′ and μ = 5‖C−1‖∞,1δ

′, with

(4.8) δ′ =
(

8

ν
‖C‖∞ − 3

)
δ,

for ν defined in (4.3) above. When ν and ‖C‖∞ are strictly positive constants, we thus have
λ = O(

√
log(p ∨ n)/n) and μ = O(‖C−1‖∞,1

√
log(p ∨ n)/n). We consider the loss func-

tion for two p × K matrices A, A′ as

(4.9) Lq

(
A,A′) := min

P∈HK

∥∥AP − A′∥∥∞,q , 1 ≤ q ≤ ∞.

Here, HK is the hyperoctahedral group of all K × K signed permutation matrices and

‖A‖∞,q := max
1≤i≤p

‖Ai·‖q = max
1≤i≤p

(
K∑

j=1

|Aij |q
)1/q

,

for a generic matrix A ∈ R
p×K .

THEOREM 4. Assume the conditions in Theorem 3 hold. Let λ and μ be as defined above,
and set s = maxi∈[p] ‖Ai·‖0. Then

Lq(Â,A) ≤ 10s1/q
∥∥C−1∥∥∞,1δ

′, 1 ≤ q ≤ ∞,

with probability larger than 1 − c1(n ∨ p)−c2 , for c1, c2 positive constants defined in (4.2),
provided that (2μ + 4δ/ν) < 1. We use the convention that s1/q = 1 for q = +∞.

REMARK 4.

1. In fact, we prove the stronger result

min
P∈HK

∥∥Âi· − (AP )i·
∥∥
q ≤ 10(si)

1/q
∥∥C−1∥∥∞,1δ

′, 1 ≤ q ≤ ∞,

with sparsity index si = ‖Ai·‖0 for each row Ai·, i ∈ [p] of A. The signed permutation matrix
P that achieves the minimum is determined by the alignment of the pure variables and is the
same for each i ∈ [p].
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2. Inspection of the proof of this result quickly reveals that ‖Âi·‖1 ≤ 1, for each i ∈ [p],
with high probability, in accordance with our model requirement (i).

3. The size of ‖C−1‖∞,1 ranges from the constant ‖C−1‖∞, when all latent factors are
independent, to the fully general case of ‖C−1‖∞,1 = O(K). In the latter case, the bounds
become meaningful when K < O(

√
n/ logp). However, if C−1 is sparse, then ‖C−1‖∞,1

may be considerably smaller than K . In particular, if Z has a multivariate normal distribution
and many factors Zi are conditionally independent, then ‖C−1‖∞,1 is small. We do not make
any of these assumptions here, and regardless of the situation, Theorem 4 shows that our
estimation procedure adapts automatically to it.

Our primary focus is the bound for q = +∞, as this leads to inference on support recovery
of A. More generally, for any q ≥ 1, it is well understood that the quality of estimating a
sparse vector in high-dimensional regression-type models depends on the interplay between
its sparsity and the behavior of the appropriate Gram matrix associated with the model, which
reduces to C = E[ZZT ] in our case. The concept of �q -sensitivity, introduced by Gautier and
Tsybakov (2011), is the most general characterization of this interplay to date. It offers a link
between the �q -norm of sparse vectors β and the �∞-norm of the product between the Gram
matrix and β , uniformly over vectors β of sparsity s, ranging over a collection of cones.
Formally, the �q -sensitivity of the matrix C is defined as

(4.10) κq(C, s) := inf|S|≤s
inf

v∈CS

‖Cv‖∞
‖v‖q

,

with CS := {v ∈ R
K : ‖vS̄‖1 ≤ ‖vS‖1} and S ⊆ [K] with |S| ≤ s. In our context, that of a

square, invertible matrix C, the reciprocal of the �∞-sensitivity κ∞(C, s) becomes essentially
‖C−1‖∞,1 with [κ∞(C,K)]−1 = ‖C−1‖∞,1, which indeed links ‖β‖∞ to ‖Cβ‖∞. Similarly,
the quantities (2s)1/q‖C−1‖∞,1 provide concrete substitutes of the reciprocals of the �q -
sensitivities of C, and all of our rates in Theorem 4 match the lower bounds in Theorem 6,
up to a logarithmic factor, and the quantities ‖C−1‖∞,1 and λ1(C).

Another possible estimation procedure is the linear program (3.13)–(3.14) with tuning
parameter λ′ = 3δ′. We denote its solution by ÂD .

THEOREM 5. Assume the conditions in Theorem 3 hold. Let λ′ = 3δ′ and set s =
maxi∈[p] ‖Ai·‖0. Then

Lq(ÂD,A) ≤ 6
[
κq(C, s)

]−1
δ′,(4.11)

≤ 6
∥∥C−1∥∥∞,1(2s)1/qδ′, 1 ≤ q ≤ ∞,(4.12)

with probability larger than 1 − c1(n ∨ p)−c2 , for c1, c2 positive constants defined in (4.2).
We use the convention that s1/q = 1 for q = +∞.

As discussed in Section 3.3, we would need to further threshold ÂD in order to build
the desired clusters. The thresholding level is proportional to ‖ÂD − A‖∞, and its practical
implementation would require an estimator of [κ∞(C, s)]−1, which cannot be computed. One
can however bound [κ∞(C, s)]−1 by ‖C−1‖∞,1 as in (4.12), leading to an estimate with the
same rate of convergence as that of Â, given in Theorem 4.

We now show that the rates of convergence in Theorems 4 and 5 are optimal (up to a
logarithmic factor in p) in a minimax sense for all estimators over the parameter space

As :=
{
A ∈ [−1,1]p×K : A satisfies (i) and (ii) and max

1≤i≤p
‖Ai·‖0 ≤ s

}
.
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For our purpose of establishing a minimax lower bound, it suffices to consider a particular
sub-Gaussian distribution of X and a particular covariance matrix C. We choose to take the
multivariate Gaussian Np(0,ACAT + σ 2Ip) with A ∈As , any positive definite C and some
constant σ 2 > 0, satisfying (4.13) below.

THEOREM 6. Assume X ∼ Np(0,ACAT + σ 2Ip). Let K ≥ 2, p ≥ 2K + 1, 1 ≤ s ≤
4K/5 and

(4.13) s

√
σ 2

λ1(C)

√
log(K/s)

n
≤ c1,

for some constant c1 > 0. Then, for all 1 ≤ q ≤ ∞,

(4.14) inf
Â

sup
A∈As

PA

{
Lq(Â,A) ≥ c2s

1/q

√
σ 2

λ1(C)

√
log(K/s)

n

}
≥ c3,

for some positive constants c2, c3 depending solely on c1. The infimum is taken over all
estimators Â of A and we use the convention s1/q = 1 for q = +∞.

We attain this bound, up to logarithmic factors, even when I and its partition are not
known, for suitable covariance matrices C. Indeed, Theorems 4, 5 and 6 immediately imply
that our procedures are not only adaptive in s, but minimax optimal over A ∈ As , up to a
logarithmic log(K/s) and log(p ∨ n), for any covariance matrix C with bounded (constant)
ν, λ1(C) and ‖C−1‖∞,1. We note that if Z were observed, then an �0 penalized least squares
estimator of A would have an error upper bound containing the factor log(K/s). From this
perspective, the factor log(K/s) in the lower bound (4.14), derived for unobservable Z, is
sharp. The log(p)-term in the upper bound of our estimator stems directly from our choice of
δ in (4.1) that controls ‖�̂ − �‖∞, for sub-Gaussian distributions, and cannot be dispensed
with in our estimation procedure of I and A. Finally, our bounds are established over large
classes As , without additional assumptions on A, at the expense of placing conditions on
C. Even in the classical linear regression model, there is a mismatch—for instance, in terms
of largest and smallest eigenvalues of the Gram matrix—between minimax lower bounds
for estimating the vector of regression coefficients and achievable upper bounds. Our rates
coincide with the minimax rates obtained by Belloni, Rosenbaum and Tsybakov (2017) in
the errors in variables context, where just like in our case, the design is not observed.

4.3. Statistical guarantee for Ĝ and Ĝs . For easy of presentation, and without loss of
generality, throughout this section, we continue to write A for its orthonormal transformation
AP that uses the optimal signed permutation matrix P ∈ HK from Theorem 4 to align the
columns and signs of A with that of Â.

We define two criteria to evaluate the estimated clusters Ĝ on the event K̂ = K . The latter
holds with high probability by Theorem 3. We first define the individual Group False Positive
Proportion (GFPP) and the individual Group False Negative Proportion (GFNP) as

(4.15) GFPP(Ĝa) := |(Ga)
c ∩ Ĝa|

|(Ga)c| , GFNP(Ĝa) := |Ga ∩ (Ĝa)
c|

|Ga| ,

for each a ∈ [K], where (Ga)
c := [p] \ Ga and (Ĝa)

c := [p] \ Ĝa , with the convention
GFPP(Ĝa) = 0 if |(Ga)

c| = ∅. GFPP and GFNP quantify the misclassification proportion
within each group Ĝa . Furthermore, with the same convention, we can define the Total False
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Positive Proportion (TFPP) and Total False Negative Proportion (TFNP) to quantify the over-
all misclassification proportion of Ĝ:

(4.16) TFPP(Ĝ) :=
∑K

a=1 |(Ga)
c ∩ Ĝa|∑K

a=1 |(Ga)c|
, TFNP(Ĝ) :=

∑K
a=1 |Ga ∩ (Ĝa)

c|∑K
a=1 |Ga|

.

Finally, given μ = 5‖	‖∞,1δ
′ with δ′ specified in (4.8), we define

(4.17) J2 := {
i ∈ J : for any a with Aia �= 0, |Aia| > (2μ) ∨ (4δ/ν)

}
and J3 := J \ (J1 ∪ J2). J2 can be viewed as the set where every nonzero entry of Aj · is
separated away from 0 for each j ∈ J2. The following theorem shows that J2 plays a critical
role in quantifying both the support recovery of Â and the misclassification proportion of Ĝ.
Let Ŝ := supp(Â).

THEOREM 7. Under the conditions of Theorem 4, with probability greater than 1 −
c1(n ∨ p)−c2 for some positive constant c1 and c2 defined in (4.2), we have:

(a) supp(AJ2) ⊆ supp(Â) ⊆ supp(A), sign(ÂŜ) = sign(AŜ).
(b) Let sa

j = 1{|Aja| �= 0} and taj = 1{|Aja| ≤ (2μ)∨(4δ/ν)}, for each j ∈ J and a ∈ [K].

(4.18) GFPP(Ĝa) = 0; GFNP(Ĝa) ≤
∑

j∈J1∪J3\J a
1
taj∑

j∈J sa
j + |Ia| .

(c) Let sj =∑K
a=1 1{|Aja| �= 0} and tj =∑K

a=1 1{|Aja| ≤ (2μ)∨ (4δ/ν)}, for each j ∈ J .

(4.19) TFPP(Ĝ) = 0; TFNP(Ĝ) ≤
∑

j∈J1∪J3
tj∑

j∈J sj + |I | .

REMARK 5.

1. From our proof of Theorem 7, it is easy to verify that the expression of TFNP in (4.19) con-
tinues to hold for the Direction False Positive Proportion (DFPP) and the Direction False
Negative Proportion (DFNP) defined in (5.2) below with sj replaced by

∑K
a=1 1{Aja < 0}

or
∑K

a=1 1{Aja > 0}, tj replaced by
∑K

a=1 1{−(2μ) ∨ (4δ/ν) ≤ Aja < 0} or
∑K

a=1 1{0 <

Aja ≤ (2μ) ∨ (4δ/ν)} and I replaced by I+ or I−, where I± := ⋃
a∈[K]{i ∈ Ia : Aia =

±1}.
2. According to display (4.18), it is easy to see that GFNP(Ĝa) will be small if either taj is

small for j ∈ J1 ∪J3 or |J1|+ |J3|− |J a
1 | is dominated by |Ia|+∑

j∈J sa
j . Moreover, from

display (4.19), TFNP will be small in the following two cases:

- |J1| + |J3| is dominated by |I | + |J2|;
- tj is small relative to sj , for j ∈ J1 ∪ J3.

To illustrate this, consider tj ≡ t and sj ≡ s, for each j ∈ J , to simplify the expressions a
bit, and assume |J1|+|J3| = α(|I |+|J2|), for some α ≥ 0. We show in the Supplementary
Material that

TFNP(Ĝ) ≤ t
/{

s + 1

α

(
1 + (s − 1)|J2|

|I | + |J2|
)}

,

Thus, when either t or α is small, that is, when |J1| + |J3| is dominated by |I | + |J2|,
then TFNP will be small. Note that even when t itself is large but bounded by some
constant, TFNP might also be small since s can be close to K which is allowed to grow
as O(

√
n/ logp).
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3. If J2 = J with μ = 3‖C−1‖∞,1δ, from noting that J2 ⊆ J \ J1, Remark 3 in Section 4.1
yields Î = I . We can choose λ = δ in (3.10) and μ = 3‖C−1‖∞,1δ in (3.12), and follow
the proof of Theorems 4 and 7 to arrive at the following conclusions:

supp(Â) = supp(A), sign(Â) = sign(A).

Moreover, we get exact cluster recovery:

(a) GFPP(Ĝa) = GFNP(Ĝa) = 0, for each a ∈ [K].
(b) TFPP(Ĝ) = TFNP(Ĝ) = 0.

This immediately yields Ĝ0 = G0. Again, all statements hold with probability greater than
1 − c1(n ∨ p)−c2 .

4. We prove that Theorem 7 also holds for the hard threshold estimator Ã in which we com-
bine ÂÎ with ÃĴ . Each row of ÃĴ is estimated by β̃

j
a = β̄

j
a 1{|β̄j

a | > μ} of β
j
a = Aja ,

a ∈ [K̂], using the same μ = 5‖C−1‖∞,1δ
′ as before for the threshold μ. However, we

cannot guarantee that the scaling restriction of condition (i) holds for this estimator.
5. Theorem 7 holds for the Dantzig-type procedure ÂD , followed by the hard-threshold pro-

cedure described in the above item, using this time the threshold μ = 6‖C−1‖∞,1δ
′. In

this case, the scaling restriction of condition (i) continues to hold as it holds for ÂD , with
high probability.

4.4. Discussion and related work. To the best of our knowledge, optimal estimation of
identifiable sparse loading matrices A in model (1.1) satisfying (i)–(iii), when both I and K

are unknown, and when the entries in X, Z and A are allowed to have arbitrary signs, has not
been considered elsewhere and our results bridge this gap. There exists, however, a very large
body of literature on related problems. We review the most closely related results below, and
explain the differences with our work.

Results regarding the identifiability of A in general latent models, typically not sparse, are
scattered throughout over more than six decades of literature. They all involve conditions on
both A and C, and there is typically a trade-off between the restrictions on A versus those on
C, as first summarized and proved in Anderson and Rubin (1956), reviewed in Lawley and
Maxwell (1971) and later in Anderson and Amemiya (1988). We recall them briefly here for
the convenience of the reader.

By far, the most commonly used assumption is that the latent factors are uncorrelated, so
that C is either the identity or a diagonal matrix. In this case, it is typically further assumed
that the scaled columns of A are orthogonal; see, for instance, the literature review in Izenman
(2008). An alternative requirement is that A contain a K × K lower diagonal matrix (see,
e.g., Geweke and Zhou (1996)) and, moreover, that the placement of this matrix within A is
known, which requires careful justification (Carvalho et al. (2008)), and may be problematic
from a practical perspective (Bhattacharya and Dunson (2011)).

In general, latent factors are correlated, which is our point of view in this work. Then,
starting with Anderson and Rubin (1956), one places on the structure of A constraints that
are different than those made when C is diagonal. The most common of those assumptions
involves the existence of a pure variable set I , similar to our assumption (ii). If I is known,
classical results in Anderson and Rubin (1956) and the proof of our Theorem 2 show that
C can be an arbitrary positive definite matrix. When I is unknown, conditions on the latent
factors also need to be imposed. Sufficient conditions on Z, with provable guarantees for the
identification of I , are only known, to the best of our knowledge, in the NMF literature: the
uniqueness of I follows from the uniqueness of the solution of an appropriate linear program,
applied to population quantities, and tailored to matrices with nonnegative entries; see Bittorf
et al. (2012). In contrast, the arguments of Section 2 above are optimization-free and can be
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used for matrices that have entries of arbitrary sign. Therefore, we provide a new addition to
the literature on pure-variable and loading matrix identification in general latent models, and
also in the particular case of NMF. We continue this line of reasoning in Bing, Bunea and
Wegkamp (2018) that adapts the LOVE procedure to search for the anchor words in the topic
model.

A related, but different, identifiability question regards the covariance matrix � of X

which, under (1.1), can be written as the sum between a rank K matrix and a diagonal matrix:

(4.20) � = ACAT + �,

and � = Cov(E) is a diagonal matrix with possibly different entries. In these models, the
identifiability question is whether � can be decomposed uniquely as the sum between ACAT

and �. Answers to this question generated a large amount of literature. We refer the reader
to Anderson and Rubin (1956), Bekker and ten Berge (1997), Ledermann (1937), Shapiro
(1982), Shapiro (1985) for earlier results, and to Bai and Ng (2002), Candès et al. (2011),
Chandrasekaran, Parrilo and Willsky (2012), Chandrasekaran et al. (2011), Hsu, Kakade and
Zhang (2011), Fan, Liao and Mincheva (2013), Wegkamp and Zhao (2016) for more recent
works that also address the problems of rank estimation and optimal estimation of high-
dimensional covariance matrices. It is noteworthy that these works, relative to one another,
give different types of sufficient conditions under which one can separate the low rank matrix
ACAT from �. However, since we always have ACAT = (AQ)(QT CQ)(QT AT ), for any
orthonormal Q, they do not guarantee the identifiability of A itself. Conversely, we show in
Theorem 2 in Section 2 that under conditions (i)–(iii), C and � are identified, and A is identi-
fied up to signed permutations. Therefore, we also identify uniquely the decomposition of �.
Our conditions are not always comparable to those employed for the unique decomposition
of �, but in special cases they imply them. Although the uniqueness of the decomposition of
� is a by-product of our results, we do not pursue the covariance estimation problem in this
work, but we included the above discussion for completeness.

Furthermore, we do not view the problem of estimating the number of factors K as that of
estimating the rank of a matrix. This approach is taken in Bai and Ng (2002), via penalized
least squares, but provided that either C = I or AAT = I and that K is bounded by a fixed
integer. Alternatively, we could adapt the criteria in Bing and Wegkamp (2018), Bunea, She
and Wegkamp (2011), Wegkamp and Zhao (2016) to (1.1) to allow for K → ∞ in the rank
estimation problem. However, proving that such an estimator is consistent would ultimately
require an unnecessary lower bound restriction on the K th largest eigenvalue of ACAT . In
contrast, our Theorem 3 shows that such conditions can indeed be avoided. We estimate
directly the set I and its partition via LOVE, and as a byproduct K , at a low computational
cost of order p2.

Estimation of A in identifiable factor models is typically based on iterative alternating
least squares procedures or the EM algorithm; see, for instance, Bai and Li (2012), Rubin
and Thayer (1982) and the references therein. As discussed in these works, the resulting
algorithms are not suitable for large data sets due to their notoriously slow convergence to
a solution that is typically not the global optimum. Bayesian estimation (see, e.g., Carvalho
et al. (2008) and the references therein) offers an alternative approach which may become
computationally very demanding in high dimensions, requires a likelihood framework and
careful prior specification. Moreover, existing procedures do not estimate A under our model
specifications (i)–(iii), and any adaptation would still require the challenging estimation of I .
Our procedure offers a solution to the computational problem, as LOVE does not require a
likelihood or other prior distributional specifications, is tailored to our model with unknown
I , and has provable low computational complexity.
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The statistical properties of estimators of A in model (1.1) (i)–(iii) have not been studied,
and even particular cases of the model have received a very limited amount of attention, from
a theoretical perspective. When I is known and K is fixed, Bai and Li (2012) established
the asymptotic normality of the MLE in a model similar to ours, although the estimator they
ultimately construct is not necessarily the MLE under this model, but rather an appropriate
transformation of the stationary point of a quasi-likelihood for a different factor model. We
give the specific details of their construction in Section C.1 of the Supplementary Material. If
I is unknown, but K is known, and moreover, the columns of X, A and Z have nonnegative
entries that sum up to 1, Arora et al. (2013) provide a practical algorithm for the estimation
of A and offer bounds on the �1 matrix norm loss of their estimator. The extra restrictions
on this model are motivated by a specific model, the topic model, appropriate for vectors
with discrete distributions, for instance multinomial. The construction and analysis of these
estimates are not transferable to our general framework, as they depend heavily on these
restrictions. Our results of Section 4.2 bridge this gap in the literature and offer lower and
upper bounds for the performance of estimators of A in model (1.1)(i)–(iii).

Finally, to the best of our knowledge, overlapping clustering based on model (1.1) has
not been analyzed. A particular case of this model, corresponding to a matrix A with bi-
nary entries, has been considered in Bunea, Giraud and Luo (2016), Bunea et al. (2016) for
nonoverlapping clustering. According to their model, all p variables are pure variables, as
the model assume that Xj = Zk + Ej , for all j ∈ Gk and k ∈ {1, . . . ,K}, {Gk}1≤k≤K form
a partition of {1, . . . , p}. When C is positive definite, the nonoverlapping clusters are shown
to be identifiable, and the work of Bunea, Giraud and Luo (2016), Bunea et al. (2016) is de-
voted to exact recovery of clusters with minimax optimal cluster separation, a very different
problem than the one considered here.

5. Simulation studies. In this section, we first discuss our procedure for selecting the
tuning parameters, then evaluate the performance of LOVE based on estimation error and
overall clustering misclassification proportion. In the Supplementary Material, we compare
LOVE with existing overlapping clustering algorithms and study the performance of LOVE
for the non-overlapping clustering problem.

5.1. Data driven choice of the tuning parameters.

5.1.1. Tuning parameter δ. Proposition 3 specifies the theoretical rate of δ, but only up
to constants that depend on the underlying data generating mechanism. We propose below
a data-dependent way to select δ, based on data splitting. Specifically, we split the data set
into two independent parts, of equal sizes. On the first set, we calculate the sample covari-
ance matrix �̂(1). On the second set, we choose a fine grid of values δ� = c�

√
logp/n, with

1 ≤ � ≤ M , for δ, by varying the proportionality constants c�. For each δ�, we obtain the
estimated number of clusters K̂(�) and the pure variable set Î (�) with its partition Î(�). Then
we construct the |Î (�)| × K̂(�) submatrix ÂÎ (�) of Â, and estimate Ĉ(�) via formula (3.6).
Finally, we calculate the |Î (�)| × |Î (�)| matrix W� = ÂÎ (�)Ĉ(�)ÂT

Î (�)
. In the end, we have

constructed a family F = {W1, . . . ,WM} of the fitted matrices W�, each corresponding to
different Î(�) that depend in turn on δ�, for � ∈ {1, . . . ,M}. Define

(5.1) CV
(
Î(�)

) := 1√
|Î (�)|(|Î (�)| − 1)

∥∥�̂(1)

Î (�)Î (�)
− W�

∥∥
F-off,

where ‖B‖F-off := ‖B − diag(B)‖F denotes the Frobenius norm over the off-diagonal ele-
ments of a square matrix B . We choose δcv as the value δ� that minimizes CV(Î(�)) over
the grid � ∈ [M]. To illustrate how the selection procedure works, we provide an example in
Section B of the Supplementary Material.
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5.1.2. Tuning parameters λ and μ. The tuning parameter λ in the linear program (3.10)
for estimating 	 = C−1 is specified by λ = 2δ′ with δ′ defined in (4.8). Since δ′ is pro-
portional to δ, we use λ = c0δ

cv where c0 is some constant and could be tuned by a cross-
validation strategy used in the related work on the precision matrix estimation, for instance,
Cai, Liu and Luo (2011). More precisely, we randomly split the data into two parts. For a
given grid of λ, we compute 	̂ on the first dataset for each value in the grid. Then we choose
the one which gives the smallest likelihood loss from the second dataset, where the likelihood
loss is defined by

L(	,C) = 〈	,C〉 − log det(	).

From Remark 5 (3) in Section 4.3, when J2 = J , we can choose λ = δ which is the smallest λ

we should consider. Therefore, we set the grid of λ equal to [δcv,3δcv]. From our simulation,
the selected λ is δcv in most cases. Hence we recommend to use λ = δcv and our simulations
are based on this choice.

Recall that μ = c1‖C−1‖∞,1δ for some constant c1, and that 	̂ estimates C−1. Our exten-
sive simulations show that the choice of μ = ‖	̂‖∞,1δ

cv yields stable performance, with 	̂

solved from (3.9) and δcv selected via cross-validation.

5.2. Estimation error and cluster recovery with LOVE. In this section, we study the nu-
merical performance of LOVE in terms of clustering and estimation accuracy. To the best of
our knowledge, there is no comparable algorithm with provable guarantees developed for our
framework, especially if the set I is unknown, as explained in detail in Section 4.4 above,
and further revisited in Section C.1 of the Supplementary Material.

We generate the data in the following way. We set the number of clusters K to be 20
and simulate the latent variables Z = (Z1, . . . ,ZK) from N(0,C). The diagonal elements
of C is given by Cii = 2 + (i − 1)/19 for i = 1, . . . ,20, and the off-diagonal elements are
generated as Cij = (−1)(i+j)0.3|i−j |(Cii ∧ Cjj ) for any i �= j . In addition, the error terms
E1, . . . ,Ep are independently sampled from N(0, σ 2

p), where σ 2
p itself is sampled from a

uniform distribution on [1,3]. Since the rows of A corresponding to pure variables in the
same cluster are allowed to have different signs, we consider the following configuration
of signs for pure variables in each cluster: (3,2), (4,1), (2,3), (1,4) and (5,0), with the
convention that the first number denotes the number of positive pure variables in that group
and the second one denotes the number of negative pure variables. Among the 20 groups,
each sign pattern is repeated 4 times. To generate AJ , for any j ∈ J , we randomly assign the
cardinality sj of the support of Aj · to a number in {2,3,4,5}, with equal probability. Then we
randomly select the support from {1,2, . . . ,K} with cardinality equal to sj . For Ajk which
is nonzero, we set it as Ajk = sign ·(1/sj ) with sign randomly sampled from {−1,1}. Thus,
we can generate X according to the model X = AZ + E. In the simulation studies, we vary
p from 200 to 1000 and n from 300 to 1000. Each simulation is repeated 50 times.

Recall that the true allocation matrix A and our estimator Â are not directly comparable,
since they may differ by a permutation matrix. To evaluate the performance of our method, we
consider the following mapping approach (Wiwie, Baumbach and Röttger (2015)). If A and
Â have the same dimension, we first find the mapping (i.e., the signed permutation matrix P ∈
HK ) such that ‖A− ÂP‖F is minimized. Thus, we can compare the permuted estimator Ã =
ÂP with A to evaluate the estimation and recovery error. Under this mapping approach, we
can evaluate TFPP and TFNP defined in (4.16). Moreover, in order to account for the direction
subgroups defined in (3.18), we can define Direction False Positive Proportion (DFPP) and
Direction False Negative Proportion (DFNP) as follows:

(5.2) DFPP =
∑K

a=1 |G1
a ∩ Ĝ2

a|∑K
a=1 |G1

a|
, DFNP =

∑K
a=1 |G2

a ∩ Ĝ1
a|∑K

a=1 |G2
a|

.



ADAPTIVE ESTIMATION IN STRUCTURED FACTOR MODELS 2077

FIG. 1. Percentage of exact recovery of number of clusters K (cluster), total false positive proportion (TFPP),
total false negative proportion (TFNP), direction false positive proportion (DFPP) and direction false negative
proportion (DFNP) for LOVE.

Figure 1 shows the percentage of exact recovery of number of clusters K , TFPP, TFNP,
DFPP and DFNP of LOVE. Since the last four measures are well-defined only if rank(Â) =
K , we can compute them when the number of clusters is correctly identified. We can see that
the proposed method correctly selects K and as long as the number of clusters is correctly
selected, TFPP, TFNP, DFPP and DFNP of our method are very close to 0, which implies
that the sign and sparsity pattern of A can be correctly recovered. We present the estimation
error of Â as measured by the matrix �1 norm scaled by pK and the Frobenius norm scaled
by

√
pK in Table 2.

As expected, the estimation error decreases when the sample size increases from 300 to
1000, which is in line with our theoretical results. The simulations are conducted on a macOS
Sierra system version 10.12.6 with 2.2 GHz Intel Core i7 CPU and 16 GB memory. Even with
p = 1000 and n = 1000, the computing time of our method for each simulation is around 1
minute.

Moreover, we evaluated the performance of the LOVE procedure for K varying in a wide
range, from 3 to 30, and when AJ contains many very small entries. The results are consistent
with what we observed in this section and deliver the same message. The GFPP and GFNP
are similar as TFPP and TFNP and the performance of the hard thresholding estimator Ã,

TABLE 2
The average estimation error of Â as measured by the matrix �1 norm (�1) (divided by pK) and the Frobenius

norm (�2) (divided by
√

pK). Numbers in parentheses are the simulation standard errors

n = 300 n = 500 n = 700 n = 1000

p �1 �2 �1 �2 �1 �2 �1 �2

200 0.018 0.062 0.015 0.053 0.013 0.048 0.012 0.041
(0.001) (0.005) (0.001) (0.003) (0.001) (0.008) (0.001) (0.002)

400 0.026 0.075 0.023 0.064 0.021 0.059 0.018 0.051
(0.002) (0.007) (0.001) (0.003) (0.001) (0.006) (0.001) (0.003)

600 0.029 0.079 0.025 0.067 0.023 0.063 0.020 0.055
(0.002) (0.006) (0.001) (0.003) (0.001) (0.003) (0.001) (0.003)

800 0.031 0.083 0.026 0.068 0.024 0.064 0.022 0.057
(0.002) (0.006) (0.001) (0.004) (0.001) (0.004) (0.001) (0.004)

1000 0.032 0.083 0.027 0.069 0.025 0.065 0.022 0.057
(0.002) (0.006) (0.001) (0.003) (0.001) (0.004) (0.001) (0.004)
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TABLE 3
Number of pure genes and total number of genes in each group

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Number of pure genes 2 2 2 4 2 10 2 2 2 4 2 15
Total number of genes 58 35 67 105 80 104 28 43 44 74 94 108

defined in Remark 5 of Section 4.3, is similar to Â. To save space, we have omitted those
results.

We also compared the performance of LOVE with other off-the-shelf algorithms for over-
lapping clustering, and tested LOVE for nonoverlapping clustering. We included these results
in Sections C.2 and C.3 of the Supplementary Material.

6. Application. To benchmark LOVE, we used a publicly available RNA-seq dataset
of 285 blood platelet samples from patients with different malignant tumors (Best et al.
(2015)). We extracted a small subset of 500 Ensembl genes to test the method. The goal
of the benchmarking was to test whether (i) clusters corresponded to biological knowledge,
specifically Gene Ontology (GO) functional annotation of the genes (Ashburner et al. (2000)),
(ii) overlapping clusters corresponded to pleiotropic gene function. LOVE produced twelve
overlapping clusters (Table 3) which aligned well with a priori expectation. Table 3 lists the
number of pure genes and the total number of genes in twelve overlapping clusters. Fig-
ure 2 shows that each cluster overlaps with the other and also gives us a clear picture on
how two clusters possibly overlap. For example, 18 genes belong to both cluster 3 and clus-
ter 11, whereas cluster 2 and cluster 3 have only one common gene. The genes with the
same GO biological process, molecular function or cellular component terms tended to be
assigned to the same cluster. For example, ENSG00000273906 and ENSG00000273328 are
both RNA genes. They were both assigned to the same cluster (cluster 6, Figure 2). However,
they were also assigned to other clusters, suggesting they have pleiotropic functions. This
suggests that the latent variables used for clustering are likely to have biological significance
and can potentially be used for functional discovery for genes with underexplored functions.

FIG. 2. Left panel: Number of genes overlapped in different groups. The nodes represent 12 groups with the
same labels and sizes as those in Table 3. The number shown on the edge between two nodes represents the
number of genes shared by the two groups, which corresponds to the width of that edge. Right panel: Illustration of
three genes ENSG00000273906, ENSG00000273328 and ENSG00000273113 and their allocation matrix relative
to 12 groups. For instance, the j th gene ENSG00000273906 belongs to groups 6, 9 and 11 with Âj6 = 0.04,
Âj9 = 0.37, Âj11 = −0.02.
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We found 308 genes with zero expression across all samples. None of them were assigned
to any of the 12 estimated clusters, as desired. Indeed, our model not only allows for the
existence of pure noise variables Xj = Ej , but variables with structural zero values as well,
as �jj = Var(Ej ) = 0 is permitted. Formally, we place them in the pure noise cluster G0, for
further scientific scrutiny.
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