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A dynamical model consists of a continuous self-map T : X → X of
a compact state space X and a continuous observation function f : X → R.
This paper considers the fitting of a parametrized family of dynamical models
to an observed real-valued stochastic process using empirical risk minimiza-
tion. The limiting behavior of the minimum risk parameters is studied in a
general setting. We establish a general convergence theorem for minimum
risk estimators and ergodic observations. We then study conditions under
which empirical risk minimization can effectively separate signal from noise
in an additive observational noise model. The key condition in the latter re-
sults is that the family of dynamical models has limited complexity, which is
quantified through a notion of entropy for families of infinite sequences that
connects covering number based entropies with topological entropy studied
in dynamical systems. We establish close connections between entropy and
limiting average mean widths for stationary processes, and discuss several
examples of dynamical models.

1. Introduction. Empirical risk minimization is a common approach to model fitting
and estimation in a variety of parametric and nonparametric problems. In this paper, we in-
vestigate the use of empirical risk minimization to fit a family of dynamical models to an
observed stochastic process. Formally, a dynamical model consists of a continuous transfor-
mation T : X → X on a compact metric space X , and a continuous observation function
f : X →R. Let T k denote the k-fold composition of T with itself, and let T 0 be the identity
map on X . From each initial state x ∈ X , the dynamical model (T , f ) yields a real-valued
sequence (f (T kx))k≥0 obtained by applying the observation function f to the deterministic
sequence of states (trajectory) generated by repeated application of the transformation T to
the initial state x. In general, f need not be injective, so one cannot necessarily recover the
underlying state sequence from the values of (f (T kx))k≥0.

In what follows, we consider an indexed family D = {(Tθ , fθ ) : θ ∈ �} of dynamical mod-
els defined on a common compact metric space X , and satisfying the following conditions:

(D1) the index set � is a compact metric space;
(D2) the map (θ, x) �→ Tθ (x) from � ×X to X is continuous;
(D3) the map (θ, x) �→ fθ (x) from � ×X to R is continuous.

Condition (D2) ensures that each transformation Tθ is continuous and that the action of Tθ is
continuous in θ . Condition (D3) ensures that each observation function fθ is continuous and
that observations vary continuously with θ . In particular, there exists a constant KD > 0 such
that |fθ (x)| ≤ KD for every x ∈ X and θ ∈ �. Examples of families of systems satisfying
these conditions are given in Section 3.

By definition, dynamical models are deterministic: the real-valued sequence (f (T kx))k≥0
generated by a model (T , f ) is fully determined once the initial condition x ∈ X is given. In
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this paper, our primary interest is in dynamical models that represent low complexity regular-
ities of potential interest, such as periodicity, multiperiodicity, constrained growth behavior
and hierarchical structure. Fitting a family of dynamical models to an observed stochastic pro-
cess is a means of identifying and quantifying the corresponding low complexity regularities
in the observed process. Examples of model families and references to existing applications
are given in Section 3 below.

Due to the nature of the underlying dynamics and the possible presence of dynamic or
observational noise, the observed process is likely to be complex, and one cannot expect
a low-complexity model to capture all features of the observed process. Accordingly, our
results do not assume that the observed process is generated from a model in the family D
under study. The complexity of model families is quantified through a combinatorial notion
of entropy with connections to empirical process theory and ergodic theory that is defined in
Section 2 below.

1.1. Minimum risk fitting of dynamical models. Let D be a family of dynamical models
that capture some behavior of interest, and let Y = Y0, Y1, . . . ∈ R be an observed stationary
ergodic process. Suppose that we wish to identify regularities in Y by fitting the observed
values of the process with models in D. We do not assume that the observed process Y
is generated by a process in D. Let � : R × R → [0,∞) be a nonnegative loss function
that is jointly lower semicontinuous in its arguments. We require the following integrability
condition:

(C1) E

[
sup

|u|≤KD
�(u,Y0)

]
< ∞,

where KD is an upper bound on {|fθ (x)| : x ∈ X , θ ∈ �}. If the supremum in (C1) is not
measurable, then one may replace the expectation by an outer expectation. For each n ≥ 0,
θ ∈ �, and x ∈ X define

Rn(θ : x) = 1

n

n−1∑
k=0

�
(
fθ ◦ T k

θ (x), Yk

)
,

which is the empirical risk of the model (Tθ , fθ ) with initial state x relative to the first n

observations of Y. We formalize empirical risk minimization as follows.

DEFINITION 1.1. A sequence of measurable functions θn : Rn → �, n ≥ 1, will be
called (empirical) minimum risk estimates for D if there exists a corresponding sequence
of measurable functions xn :Rn → �, n ≥ 1, such that

(1.1) lim
n

Rn(θ̂n, x̂n) = lim
n

inf
θ,x

Rn(θ, x) w.p.1,

where θ̂n = θn(Y0, . . . , Yn−1) and x̂n = xn(Y0, . . . , Yn−1) depend only on the first n obser-
vations. We note that the existence of the limit on the right-hand side of (1.1) follows from
Kingman’s subadditive ergodic theorem (under (C1)), whereas the existence of the limit on
the left-hand side of (1.1) is part of the definition.

REMARK 1.2. The notion of minimum risk estimates formalizes empirical risk mini-
mization when fitting dynamical models. The key difference between the definition above
and minimum risk estimates in standard, nondynamic settings, is the presence of the initial
state x ∈ X in (1.1). Given observations Y0, . . . , Yn−1, one selects a parameter θ̂n ∈ � and an
initial state x̂n ∈ X so that (θ̂n, x̂n) is an approximate minimizer of Rn(θ : x). Our assump-
tions on �, X and � ensure that an exact minimizer (θ∗

n , x∗
n) of Rn(θ : x) exists, and further

that the pair (θ∗
n , x∗

n) may be chosen to depend measurably on the observations Y0, . . . , Yn−1
([7], Proposition 7.33, p. 153).
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The definition of minimum risk estimates does not require that (θ̂n, x̂n) be an exact mini-
mizer of Rn(θ : x) for each n; it requires only that the average loss is minimized asymptot-
ically. Our results apply to any sequence (θ̂n, x̂n) of approximate minimizers. This general-
ization is important, as exact minimization of Rn(θ : x) will typically be difficult in practice.
Similar computational difficulties arise even in simple nondynamical settings, for example, in
the problem of classification where finding the best (minimum error) hyperplane separating
a set of labeled vectors in Euclidean space is known to be NP hard.

In practice, it is natural to obtain minimum risk estimates (θ̂n, x̂n) by minimizing over
finite εn-coverings of the joint parameter-state space � × X , where the radius εn tends to
zero with increasing n. The following proposition shows that this approach is possible (in
principle) under mild continuity conditions on the loss �. However, the size of the covering
sets may grow rapidly (e.g., exponentially) as a function of n and, therefore, this approach
may still be limited by computational power.

In more detail, for each n ≥ 1 define a pseudometric on the compact space � ×X by

ρn

(
(θ, x),

(
θ ′, x′)) = max

0≤k<n

∣∣fθ ◦ T k
θ (x) − fθ ′ ◦ T k

θ ′
(
x′)∣∣.

Let (εn)n≥1 be a sequence of positive real numbers tending to zero, and for each n, let Cn ⊂
� × X be a finite εn-cover of � × X with respect to ρn. Compactness of � × X ensures
that such a finite cover exists. A proof of the following result appears in the Supplementary
Material [47], Appendix B.

PROPOSITION 1.3. If the loss function � is uniformly continuous and for each n ≥ 1,

(θ̂n, x̂n) ∈ argmin
(θ,x)∈Cn

Rn(θ : x),

then (θ̂n)n≥1 is a sequence of minimum risk estimates.

REMARK 1.4. Minimum risk estimation involves the identification of an optimal, or near
optimal, parameter-state pair (θ̂n, x̂n). In what follows, we focus on the parameter estimates
θ̂n rather than the initial states x̂n. As the results here show, under suitable conditions the
parameter estimates exhibit regular limiting behavior. The same cannot be said about the
initial states. For example, the negative results of [32, 33] give general conditions under
which estimation of the initial state of a dynamical system is not possible.

The principal goal of this paper is to understand and characterize the limiting behavior
of minimum risk estimates θ̂n. Our analysis hinges on the observation that every dynamical
model, and every family of such models, is associated with a family of stationary processes.
We focus on the misspecified case in which the observed process is not necessarily generated
by a model in the family D under study. Two main results are presented. The first main result
(Theorem 5.2) provides a variational characterization of the limiting behavior of minimum
risk estimates. In particular, we establish that minimum risk estimates converge to a param-
eter set determined by the projection of the observed process onto the family of processes
associated with the models in D, where the projection is with respect to a divergence mea-
sure that depends on the loss. Identifiability of parameters is addressed automatically through
consideration of their associated processes.

The second main result (Theorem 5.3) provides conditions under which minimum risk
estimation can effectively separate signal from noise in a simple signal plus noise setting
when the model family D has limited complexity. Complementing the second, positive result,
we establish a negative result (Proposition 5.9) showing that minimum risk estimation can be
strongly inconsistent for complex families of dynamical models.
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In establishing the results mentioned above, we study a notion of entropy that measures
the complexity of a family of dynamical models. The entropy measure is based on the growth
rate of �p-covering numbers of finite length sequences, and we show that it is closely related
to the notion of topological entropy studied in dynamical systems. Furthermore, we show
that the entropy measure is independent of the exponent p, and we establish a qualitative
connection between entropy and stochastic mean widths studied in empirical process theory.

Both the statements and proofs of our results rely on the concept of joinings, which are
stationary couplings of stochastic processes. Joinings, introduced by Furstenberg [17], have
been well studied in ergodic theory but have not been widely applied to problems of statistical
inference. Our results show that joinings are intimately connected with minimum risk fitting
of dynamical models. Several tools from the theory of joinings, including disjointness and
relatively independent joinings, play an important role in our analysis of complexity and
separation of signal and noise.

2. Complexity of dynamical models. Quantifying the complexity of a family of mod-
els is a key issue in nonparametric inference. Indeed, model complexity is a key factor in
establishing consistency, convergence rates and optimality conditions for a variety of com-
mon inference procedures. Although fitting nonlinear dynamical models differs from model
fitting for classification or regression, complexity still plays a central role in the analysis of
minimum risk estimation. In particular, as we demonstrate in Section 5, model complexity
has a close connection with the ability of minimum risk estimators to separate signal from
noise.

We begin this section by reviewing and discussing the notion of topological entropy for
a topological dynamical system. Subsequently, we define and discuss two related notions of
complexity for families of dynamical models that are used in our principal results. The first is
a combinatorial entropy measure that captures the exponential growth rate of the real-valued
sequences generated by the model family, and is closely related to topological entropy. The
second is a limiting mean width, which arises when using the squared loss. In establishing
consistency or rates of convergence for classification or regression methods, it is common,
and typically necessary, to constrain the family of models under study by requiring the subex-
ponential growth of its complexity, for example, by assuming that the VC dimension of the
model class is finite, or by imposing conditions on its covering/bracketing numbers [73].
The complexity conditions used in this paper serve as analogous constraints for families of
dynamical models.

2.1. Topological entropy of a topological dynamical system. Before introducing our no-
tion of entropy for a family of dynamical models, we discuss the notion of topological en-
tropy for dynamical systems, originally introduced in [2]. Topological entropy has served
as the central notion of complexity for dynamical systems for at least 50 years. The theory
of topological entropy is developed in detail in many books, including [27] and [75]. For a
thorough historical account, see [26].

DEFINITION 2.1. Let (X , d) be a compact metric space, and let T : X → X be contin-
uous. For n ≥ 1, let dn be the metric on X given by

dn(x, y) = max
{
d
(
T kx,T ky

) : 0 ≤ k ≤ n − 1
}
.

For ε > 0, let B(x,n, ε) denote the ball of radius ε around the point x with respect to the
metric dn. Then let C(n, ε) denote the ε-covering number of X with respect to the metric dn,
which is the least natural number M such that there exist points x1, . . . , xM ∈ X for which

X ⊂
M⋃
i=1

B(xi, n, ε).



RISK MINIMIZATION AND COMPLEXITY OF DYNAMICAL MODELS 2035

Finally, the topological entropy of the system (X , T ) can be defined as

htop(X , T ) = lim
ε↘0

lim sup
n→∞

1

n
log C(n, ε).

The topological entropy serves as a quantitative measure of the exponential growth rate of
the number of orbits within the system. A positive value of entropy is typically taken as an
indicator of “chaos.” In smooth systems, positive entropy is closely related to the existence
of positive Lyapunov exponents (see [6]). Examples of systems with positive entropy include
Axiom A attractors [9] and the classical Lorenz system [50]. There are also many interesting
examples of systems with zero entropy, which have received substantial recent attention in
the dynamics literature, including toral rotations (see [27]), interval exchange transformations
(see [27]), and rational billiards (see [42]). In Section 3, we discuss some additional examples.

2.2. Entropy of a family of dynamical models. Let us now define the entropy of a family
of dynamical models D, which is assessed through the covering numbers of the real-valued
sequences generated by its constituent models. Let u = (uk)k≥0 and v = (vk)k≥0 denote infi-
nite sequences in R

N. For each n ≥ 1 and 1 ≤ p ≤ ∞, define pseudometrics dn,p(·, ·) on R
N

as follows:

dn,p(u,v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n−1

n−1∑
k=0

|uk − vk|p
)1/p

if 1 ≤ p < ∞,

max
0≤k≤n−1

|uk − vk| if p = ∞.

Let U ⊆ R
N be a bounded family of infinite sequences, meaning that there is a K > 0 such

that U ⊂ [−K,K]N. For a fixed length n and radius r > 0, we can assess the effective number
of initial n-sequences in U at radius r by the covering number N(U, r, dn,p), which is the
minimal number of balls of radius r under the pseudometric dn,p(·, ·) that are required to
cover the set U . In what follows, we will be interested in the exponential growth rate of these
covering numbers with increasing n, which is captured by the quantity

hp(U, r) = lim sup
n→∞

1

n
logN(U, r, dn,p).

The �p entropy of the family U is defined to be the supremum of these growth rates over r ,
obtained by letting r tend to zero,

hp(U) = lim
r↘0

hp(U, r).

The definition of hp(U) raises questions about an appropriate choice of p. From a statis-
tical point of view, it is natural (and common) to consider empirical �2 covering numbers
when assessing complexity. On the other hand, from a dynamical systems point of view, it is
common to consider empirical �∞ covering numbers, as is done with topological entropy. In
fact, as the next proposition shows, all the �p entropies coincide. As we were unable to find
this fact in the literature, a proof is given in the Supplementary Material [47], Appendix C.

PROPOSITION 2.2. The �p entropies hp(U) for 1 ≤ p ≤ ∞ are all equal.

REMARK 2.3. Although it is not needed here, we note that Proposition 2.2 holds more
generally for sets of sequences U ⊆ AN, where (A,ρ) is any compact metric space such that

lim
r↘0

r logN(A, r, ρ) = 0,

and the pseudometrics dn,p(·, ·) are defined in terms of ρ.
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DEFINITION 2.4 (Entropy of a model family). The entropy h(D) of a family D of dy-
namical models is the common value of hp(UD), where

(2.1) UD = {(
fθ ◦ T k

θ (x)
)
k≥0 : x ∈ X , θ ∈ �

} ⊆R
N

is the set of infinite sequences generated by models in D.

In Lemma 4.2, we establish an equivalent expression for h(D) in terms of the entropy rates
of the processes associated with the model family D.

REMARK 2.5. The entropy of a family of dynamical models has close connections with
the notion of topological entropy. Indeed, under our hypotheses (conditions (D1)–(D3)), it is
straightforward to show that the family of sequences UD is a compact subset of RN in the
product topology. Moreover, if τ : RN → R

N is the left-shift map defined by τ(u)k = uk+1
for k ≥ 0, then it is easy to see that τ is continuous and that τ(UD) ⊆ UD . Thus (UD, τ ) is a
topological dynamical system that captures the dynamics of the family of dynamical models
D, and one may show that the entropy h(D) defined above is equal to the topological entropy
htop(UD, τ ).

The following proposition provides a connection between the entropy of a family D =
{(Tθ , fθ ) : θ ∈ �} and the topological entropies of the systems (X , Tθ ) in the family. A proof
of this result appears in the Supplementary Material [47], Appendix E.3.

PROPOSITION 2.6. Let D be a family of dynamical models satisfying (D1)-(D3), and
suppose that for each θ ∈ �, the topological entropy of (X , Tθ ) is zero. Then h(D) = 0.

2.3. Mean width. Our analysis of minimum risk estimation under the squared loss
�(x, y) = (x − y)2 leads naturally to another measure of complexity for the family D that
is based on the standard notion of mean width.

DEFINITION 2.7. Let D be a family of dynamical models, and let ε = (εk)k≥0 be an
i.i.d. process with mean zero and finite variance. The n-sample mean width of D relative to
ε is

(2.2) κn(D : ε) = E

[
sup
x,θ

n−1∑
k=0

fθ ◦ T k
θ (x) · εk

]
.

Define the mean width of D relative to ε to be the limiting linear growth rate of the finite
sample mean widths,

(2.3) κ(D : ε) = lim
n

1

n
κn(D : ε),

which exists by subadditivity (see Remark C.2). When εi ∼ N(0,1), we denote κ(D : ε) by
κG(D) and refer to this quantity as the Gaussian mean width of the family D.

Finite sample mean widths have been widely studied in machine learning and empirical
process theory, with an emphasis on Rademacher and Gaussian noise processes [8, 34]. As
the next result shows, the mean width of D has connections with the entropy of D. A proof
of this result appears in the Supplementary Material [47], Appendix C.

THEOREM 2.8. Let ε = (εk)k≥0 be an i.i.d. sequence with mean zero and finite variance.
If h(D) = 0, then κ(D : ε) = 0. Moreover, the Gaussian mean width κG(D) = 0 if and only if
h(D) = 0.
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REMARK 2.9. Theorem 2.8 establishes a qualitative relationship between asymptotic
mean width and entropy: for a given family of dynamical models, they are either both zero or
both positive. In general, one cannot expect a more quantitative relationship between asymp-
totic mean width and entropy. While it is possible to provide upper and lower bounds on
κn(D : ε) in terms of �2 covering numbers (as in the proof of Theorem 2.8), additional care
must be taken when passing to the limits to obtain the mean width and the entropy. As it turns
out, the presence of these limits in the definitions precludes any more quantitative dependence
between these quantities.

3. Examples of dynamical models. In this section, we discuss several families of dy-
namical models. These families capture different regularities that may be of interest when
studying an observed dynamical system. These and related families have been fit to data by
applied scientists (e.g., [10, 35, 48, 71]), without any theoretical guarantees of consistency.
Each family described below satisfies assumptions (D1)–(D3) and, under suitable assump-
tions, has entropy zero. Thus the results of the next section apply to minimum risk estimates
based on these families.

EXAMPLE 3.1 (Gene regulatory networks). Inference of gene regulatory networks from
observed data is considered an important problem in systems biology [41]. In recent years, it
has become increasingly feasible for experimentalists to assay the abundance of all the genes
in a given system with regular frequency over time. In such cases, one would like to infer the
structure of the underlying network from the observed gene expression dynamics. Here, we
present a family of dynamical models studied in [48].

Suppose one would like to investigate the gene regulatory network for genes g1, . . . , gN .
Let xi(t) denote the abundance of mRNA associated with gene gi at time t . We are interested
in modeling the feedback effects of genes on other genes. When the presence of proteins
associated with gene gi positively affects the rate of production of mRNA for gj , we say that
gi promotes gj . When the presence of proteins associated with gi negatively affects the rate
of production of gene gj , we say that gi inhibits gj . If either of these relationships holds,
then we say that gi controls gj . In order to constrain the complexity of the model class, we
assume that for each gene gj , there is at most one gene gi that controls gj .

To make the model precise, we parametrize it as follows. If gi activates gj , we assume that
the functions xi , xj satisfy a differential equation of the following form:

dxj

dt
= Aα

(
xi(t)

) − γ xj ,

where γ > 0 is a degradation rate and Aα(x) is a parametrized nonlinear “activation” function
with parameter α. Similarly, if gi inhibits gj , then we assume that the functions xi , xj satisfy
a differential equation of the following form:

dxj

dt
= Iα

(
xi(t)

) − γ xj ,

where γ > 0 is a degradation rate and Iα(x) is a parameterized nonlinear “inhibition” func-
tion with parameter α. We also assume that all parameters (α, γ ) are constrained to lie
in a compact set K ⊂ R

p . Note that the entire system of differential equations governing
(xi(t))

N
i=1 can be specified by a compact parameter space �, consisting of the discrete vari-

ables indicating the type of control (activation or inhibition) of each gene, along with all the
associated continuous parameters (α, γ ). Let (xθ

i (t))Ni=1 denote the solution of the system of
equations with parameter θ at time t .

Observations of the system are assumed to have the following structure: there is a time step
� > 0 such that at times tk = k�, for k = 0, . . . , T , the abundance of mRNA associated with
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each gene gi is observed to be yi,k . The parameters in the system of differential equations
are then fit to such observations by attempting to minimize the sum of squared differences
between the observations and the integrated solutions of the equations at the associated time
points.

We can place this model class in the general framework of dynamical models as fol-
lows. Under appropriate conditions on the activation and inhibition functions (boundedness,
smoothness and monotonicity in x), there will exist a compact set X ⊂ R

N such that for all
θ ∈ �, if (xθ

1 (0), . . . , xθ
N(0)) ∈ X , then (xθ

1 (t), . . . , xθ
N(t)) ∈ X for all time. Let Tθ : X → X

be the time-� map, defined as follows: given a point x ∈ X , let Tθ(x) be the solution
(xθ

1 (�), . . . , xθ
N(�)) at time � of the system of equations with parameter θ and initial con-

dition (xθ
1 (0), . . . , xθ

N(0)) = x.
We remark that the sparsity constraint on the model class (that each gene be controlled by

at most one other gene) ensures that any corresponding family of dynamical models will have
zero entropy [13]. A full proof of this fact is beyond the scope of the present paper, but an
outline can be stated as follows. First, any directed network with maximal in-degree equal to
one can be decomposed into a collection of disjoint directed cycles, along with disjoint paths
out from the cycles. Then the Poincaré–Bendixon theorem for monotone cyclic feedback
systems [40] implies that the dynamics of any such system must be severely constrained, and
in particular, it must have zero topological entropy. Finally, by Proposition 2.6, the entire
family of dynamical models must have zero entropy.

EXAMPLE 3.2 (Subcritical logistic family and ecology). Since at least the early work of
May [43], simple parametric families of dynamical systems have been used by ecologists as
models of the population dynamics of many species [37]. In many instances, various types of
deterministic models have been fit to ecological data (e.g., [71]).

The prototypical family in this context is the logistic family, which may be parametrized
as follows. Consider the state space X = [0,1] and the family of maps Ta : [0,1] → [0,1],
where Ta(x) = ax(1 − x) for a ∈ [0,4]. If we restrict a to the region [0, amax], where
amax = 1 + √

5, then each system in the family has zero topological entropy [24] and, there-
fore, any associated family of dynamical models will have zero entropy by Proposition 2.6.
This situation is thought to occur in many naturally occurring populations (see results and
discussion from [23]). In examples such as these, the state variable x typically represents the
(rescaled) population size. The overall structure of the logistic family captures the idea that
the reproductive rate depends on the density of the population, taking into account effects
such as competition for limited resources. Given observations of population size over time,
researchers are interested in fitting logistic dynamical models to the observations in order to
identify the parameter a. For examples that involve fitting this family or similar families, see
[23, 71].

EXAMPLE 3.3 (Symbolic dynamics and quasicrystals). Symbolic dynamical systems,
also known as subshifts, are a useful family of models that arise in the study of dynamical
systems through discretization of the state space. Informally, if T : X → X is a dynami-
cal system and {A1, . . . ,AN } is a finite partition of X, then the associated symbolic sys-
tem consists of the label sequences {(π(T kx))k≥0 : x ∈ X} under the left-shift map, where
π : X → {1, . . . ,N} is defined by the relation x ∈ Aπ(x). Symbolic systems have been widely
studied for their own sake [38], for the purpose of understanding other dynamical systems [9],
and for their connections to other disciplines, for example, physics [65]. Due to their combi-
natorial nature, they can be used to model a variety of regularities in physical systems. For
example, they have been used in communications, coding and information theory to capture
the rules by which binary strings should be encoded on magnetic tapes and compact discs in
order to minimize errors [38].
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As another example, symbolic dynamical systems have recently been used by several re-
searchers [12, 64, 68] as a mathematical model of crystallographic structures known as qua-
sicrystals, which were discovered by Shechtman [67]. Quasicrystals are characterized by the
presence of long-range aperiodic order, in contrast to crystals, which are characterized by
long-range periodic order. Substitution systems [61] are special cases of symbolic dynamical
systems that are constructed by enforcing a rigid hierarchical structure at all scales, and they
have been shown to possess long-range aperiodic order similar to that observed in quasicrys-
tals. As such, substitution systems have been studied as theoretical models for quasicrystals.

Let us now present detailed definitions of symbolic dynamical systems and substitution
systems. Let A be a finite set, known as the alphabet. The set AZ is known as the full-shift
on A. We endow A with the discrete topology and AZ with the product topology, making it
a compact completely metrizable space. We let τ : AZ → AZ be the left shift: if a = (ak)k∈Z,
then τ(a)k = ak+1. Note that τ is continuous. A subshift on alphabet A is a subset X ⊂ AZ

such that X is closed and invariant, that is, τ(X ) = X . Note that if X is a subshift and
F ⊂ C(X ) is any compact set of continuous functions from X to R with respect to the
uniform metric on C(X ), then D = {(τ, f ) : f ∈ F} is a continuous family of dynamical
models satisfying (D1)–(D3).

Substitution systems provide interesting examples of subshifts with entropy zero. Let m ≥
1 and let s :A → Am. The map s is called the substitution map. We extend s to words of any
length � by concatenation, s(a1 . . . an) = s(a�) . . . s(a�). In this way, we may refer to iterates
sk : A → Akm, defined by induction sk+1(a) = s(sk(a)). To a substitution map s, one may
associate a subshift X as follows: a sequence a = (ak)k∈Z ∈ AZ is in X if for each i < j in
Z, there exists a symbol b ∈ A and a power k ≥ 1 such that ai . . . aj appears as a subword
of sk(b). Under some mild conditions on the substitution map s (see [61]), any sequence
a = (ak)k∈Z in X can be uniquely decomposed as . . . s(b−2)s(b−1)s(b0)s(b1)s(b2) . . . for
some sequence b = (bk)k∈Z in X . Here, the sequence b is interpreted as giving the structure
of a at a larger scale (blocks of length m). As this decomposition may be repeated with b in
the role of a and continued in this way, one may interpret substitution systems as having a
rigid hierarchical structure. This rigid hierarchical structure leads to low complexity: if X is
a substitution system, then it can be shown that X has zero topological entropy (see [11]).
Consequently, any continuous family D of dynamical models on X will have h(D) = 0 by
Proposition 2.6. Such models could then be fit to a observations of quasicrystals in an effort
to identify particular hierarchical structure. Although this type of fitting has not yet been
used in statistical studies of quasicrystals, our results provide some theoretical grounding for
potential work in that direction.

EXAMPLE 3.4 (Toral rotations and almost periodicity). Let the state space X be the d-
dimensional torus T

d , which is the direct product of d circles, Td = S1 × · · · × S1. For a
vector α ∈ T

d , define the transformation Rα : Td → T
d to be the rotation of Td by the angle

vector α, that is, Rα(x) = x + α (addition in T
d ). Then let F ⊂ C(Td) be a compact set of

continuous functions from T
d to R (with respect to the topology induced by the supremum

norm). Let � = T
d ×F , and define the family of dynamical models D = {(Rα,f ) : (α,f ) ∈

�}.
With these definitions, D is a continuous family of dynamical models satisfying (D1)–

(D3). Furthermore, it is well known that any toral rotation has zero topological entropy (see,
e.g., [27]) and, therefore, h(D) = 0 by Proposition 2.6.

Fitting this family to an observed process amounts to looking for periodic or “almost peri-
odic” (also known as “quasi-periodic”) structure in the observations. Intuitively, one is look-
ing for up to d independent “periods” in a process. A process would have d independent
“periods” if there were d periodic processes with incommensurate periods and the observed
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process is a function of all d of these periodic processes. For example, consider the classical
situation in celestial mechanics in which two planets orbit a star and do not interact with each
other. As each planet’s trajectory will form an ellipse, the natural state space for the combined
system is a two-dimensional torus, and the dynamics may be naturally described as a rotation
of the torus, with the vector α being related to the periods of the two planets.

4. Background concepts and notation. This section introduces several key concepts,
along with associated notation, that will be used in what follows. We begin by detailing
the important connection between dynamical models and stationary processes, and then we
establish a relationship between the entropy of a family and the entropy rates of its associated
processes. We conclude by defining the joining of two stationary processes and a related, loss-
based measure of divergence that will play a key role in characterizing the limiting behavior
of minimum risk estimates.

4.1. Processes associated with dynamical models. Let (T , f ) be a dynamical model on
a compact metrizable state space X . Recall that a Borel probability measure μ on X is said
to be invariant under T if μ(T −1A) = μ(A) for all Borel sets A ⊆ X . Let M(X , T ) be the
set of Borel measures on X that are invariant under T , which is nonempty (see [75], p. 152).
To each measure μ ∈ M(X , T ), there is an associated real-valued process

U = f (X),f (T X),f
(
T 2X

)
, . . . ,

where X ∈ X has distribution μ. The invariance of μ under T ensures that U is stationary.
Here and in what follows, we will regard real-valued processes as measures on the infinite
product space R

N equipped with its Borel sigma-field in the standard product topology.

DEFINITION 4.1. Let D = {(Tθ , fθ ) : θ ∈ �} be a family of dynamical models. For each
θ ∈ �, let

Qθ = {
U = (

fθ ◦ T k
θ (X)

)
k≥0 : X ∼ μ for some μ ∈M(X , Tθ )

}
,

the set of stationary processes associated with (Tθ , fθ ). Further, let QD = ⋃
θ∈�Qθ , the set

of processes associated with the entire family of models D.

4.2. Connection between the family of processes QD and the entropy h(D). The def-
inition of the entropy h(D) of a family of dynamical models is combinatorial in na-
ture, and it does not involve measures. Nevertheless, h(D) may also be characterized in
a measure-theoretic way, using the entropy rates of the stationary processes U ∈ QD . Let
π = {A1, . . . ,Ak} be a finite Borel partition of R with k cells, and define π(x) to be the in-
dex j of the cell Aj that contains x. Let U be any stationary process taking values in R. For
notation, let [k] = {1, . . . , k}. Then for n ≥ 1 and b1, . . . , bn ∈ [k] define

p(b1, . . . , bn) = P
(
π(U1) = b1, . . . , π(Un) ∈ bn

)
.

Further, define the associated Shannon entropy of the sequence π(U1), . . . , π(Un),

Hn(U : π) = − ∑
b1,...,bn

p(b1, . . . , bn) logp(b1, . . . , bn).

The entropy rate of the process (π(Ui))i≥0 is H(U : π) = limn n−1Hn(U, π), where the ex-
istence of the limit holds as a result of subadditivity. The entropy rate of the process U is then
given by

H(U) = sup
π

H(U, π),
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where the supremum is over all finite Borel partitions of R. The following lemma, which
mirrors and makes use of the standard variational formula relating topological and measure
theoretic entropy for dynamical systems (see [75], p. 190), is established in the Supplemen-
tary Material [47], Appendix E.1.

LEMMA 4.2. If D is any family of dynamical models satisfying (D1)–(D3), then

h(D) = sup
U∈QD

H(U).

4.3. Joinings and divergence for stationary processes. The statements and proofs of our
principal results rely critically on stationary couplings of stationary processes, which are
known as joinings.

DEFINITION 4.3. A joining of two stationary processes U = (Uk)k≥0 and V = (Vk)k≥0

is a stationary process W = ((Ũk, Ṽk))k≥0 such that Ũ = (Ũk)k≥0 has the same distribution
as U, and Ṽ = (Ṽk)k≥0 has the same distribution as V. Let J (U,V) denote the family of all
joinings of U and V.

By definition, a joining of two stationary processes is a coupling of the processes that is
itself stationary. Note that the family J (U,V) always contains the the so-called independent
joining under which Ũ and Ṽ are independent copies of U and V, respectively, defined on the
same probability space. Joinings were introduced by Furstenberg [17] in a general measure
theoretic setting, and they have been widely studied in ergodic theory [14, 18]. For notational
convenience, we use [U,V] to denote a joining of U with V. The joining of three or more
stationary processes may be defined analogously. Several simple, but nontrivial, examples of
joinings are given in the Supplementary Material [47], Appendix A.

DEFINITION 4.4. Let � : R × R → [0,∞) be a nonnegative loss function. The �-
divergence between two stationary processes U and V is the minimum expected loss of
(Ũ0, Ṽ0) over all joinings of U and V,

γ�(U,V) = inf
J (U,V)

E
[
�(Ũ0, Ṽ0)

]
.

REMARK 4.5. The �-divergence γ�(U,V) is nonnegative, and it is symmetric whenever
� is symmetric. Furthermore, it also satisfies the triangle inequality whenever � does. In the
special case that �(u, v) = (u − v)2 is the standard squared loss, γ�(U,V)1/2 is a metric on
the space of R-valued stationary stochastic processes.

REMARK 4.6. Joinings were used in an analogous manner by Ornstein [56–58] to define
the d-distance between finite alphabet stationary processes based on the Hamming metric
I(u0 �= v0). The d-distance was then extended by Gray et al. [19] to stationary processes
with general alphabets and to arbitrary metrics ρ(U0,V0). The divergence γ�(·, ·) is simply
the generalization of these distances to nonnegative loss functions �(·, ·) that need not be
metrics.

REMARK 4.7. The fact that the infimum defining γ�(·, ·) runs over the set of joinings,
rather than the set of couplings, is critical. A minimizing joining makes the average loss
between elements of the process as small as possible over the entire future of the process.
By contrast, a minimizing coupling would make the processes as close as possible at time
zero, without regard to their behavior in the future. The stationarity assumption constrains
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the set of possible joinings: in some cases (arising in the arguments below) the only joining
of two processes U and V is the independent joining, and the processes U and V are then
said to be disjoint. This phenomenon appears even in the simple example presented in the
Supplementary Material [47], Appendix A.

5. Convergence of minimum risk estimates. This section is devoted to the asymptotic
behavior of minimum risk estimates. The analysis relies on the joining based divergence de-
fined in the previous section. We begin with a general theorem concerning the convergence of
minimum risk estimators and then specialize, first to the case where the observed process has
a signal plus noise structure, and then further to the case of squared loss. A key requirement
in the signal plus noise setting is that the family D have entropy zero. In the final subsection,
we give a counterexample showing that the zero entropy conditions cannot be dropped.

5.1. General convergence result. As detailed in the previous section, a family D of dy-
namical models corresponds to a family QD = ⋃

θ∈�Qθ of stationary processes. With this
correspondence in mind, the problem of fitting models in D to an observed ergodic sequence
Y = Y0, Y1, . . . using the empirical risk Rn(θ : x) has a population analog in which one seeks
processes U ∈ QD that minimize the divergence γ�(U,Y) with the observed process Y. The
solution set of the population problem is the γ�-projection of Y onto QD , and the corre-
sponding set of parameters is a natural limit set for empirical risk estimators. This leads to
the following definition.

DEFINITION 5.1. Let D be a family of dynamical models parametrized by θ ∈ �, and
let � : R×R → [0,∞) be a loss function. For any stationary ergodic process Y, define

��(Y) = argmin
θ∈�

min
U∈Qθ

γ�(U,Y),

the set of parameters θ such that some process in Qθ minimizes the divergence with Y.

The following theorem shows that the limiting behavior of minimum risk estimators is
fully characterized by the set ��(Y). The proof, which relies on results of McGoff and Nobel
[46], is presented in Section 7.

THEOREM 5.2. Let D be a family of dynamical models satisfying (D1)–(D3), and let �

be a lower semicontinuous loss function. If Y is a stationary ergodic process satisfying (C1),
then ��(Y) is nonempty and compact. Moreover:

(a) Any sequence {θ̂n = θn(Y0, . . . , Yn−1)} of minimum risk estimates converges almost
surely to ��(Y);

(b) For each θ ∈ ��(Y), there exists a sequence of minimum risk estimates that converges
almost surely to θ .

Theorem 5.2 reduces the asymptotic analysis of empirical risk minimization to the analysis
of the parameter set ��(Y), which may not be a singleton. The conditions of the theorem
place no restrictions on the relationship between the observation process Y and the family D.
The identifiability of optimal parameters is determined by the divergence γ� and the process
families Qθ . We show below how analysis of the limit set ��(Y) yields both positive results
(e.g., consistency) and negative results (inconsistency) in a signal plus noise setting.
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5.2. Signal plus noise. In many situations, it is natural to assume that the observed pro-
cess Y is the componentwise sum of an underlying signal process V and an i.i.d. noise process
ε, neither of which is known. In this setting, one would like to know that the limiting behav-
ior of minimum risk estimation is determined solely by the structure of the signal process V
and is unaffected by the presence of the noise process ε. In this subsection and the next, we
establish sufficient conditions for decoupling of signal and noise.

Assume that for each k ≥ 0 the observation Yk takes the form Yk = Vk + εk where V =
{Vk : k ≥ 0} is a stationary ergodic process and ε = {εk : k ≥ 0} is an i.i.d. zero-mean noise
process that is independent of V. As a shorthand, we will write Y = V + ε. It is not assumed
that V belongs to the family QD of processes generated by the model family D. We require
the following integrability conditions:

E

[
sup

|x|≤KD
�(x,Y0)

]
< ∞;(C1)

E

[
sup

|x|≤KD
�(x,V0)

]
< ∞;(C2)

E�(u, v + ε0) < ∞ for all u, v ∈R.(C3)

Condition (C1) is the same condition that we require in the general setting, whereas (C2) and
(C3) involve only the processes V and ε, respectively. These conditions ensure integrability
of the loss with respect to the three processes Y, V and ε. If � is the squared loss and V and
ε have finite second moments, then conditions (C1)–(C3) are satisfied.

Let D = {(Tθ , fθ ) : θ ∈ �} be a family of dynamical models. Theorem 5.2 ensures that
any sequence of minimum risk estimators for D based on observations of Y = V + ε will
converge to the set ��(Y) of optimal parameters for Y. In this setting, it is reasonable to
ask if minimum risk estimation can recover optimal parameters for the underlying signal
process V rather than the observed process Y. The following result answers this question in
the affirmative in two different cases. In the first case, the signal process V is general, but
we assume that the loss �(u, v) = DF (v,u) is the Bregman divergence of a continuously
differentiable convex function F : R → R, that is, �(u, v) = F(v) − F(u) − (v − u)F ′(u).
In this case, we establish that minimum risk estimators converge to the optimal parameter set
��(V) for the process V. In the second case, we assume that the signal process V is generated
by a dynamical model in the family D and impose a condition on the joint behavior of the
loss function and the noise. In this case, we establish that minimum risk estimators converge
to the set of parameters θ such that the set of processes Qθ contains V.

THEOREM 5.3. Let D be a family of dynamical models satisfying (D1)–(D3) with en-
tropy h(D) = 0. Let {θ̂n : n ≥ 1} be any sequence of �-minimum risk estimates for D based
on an observed ergodic process Y = V + ε satisfying (C1)–(C3).

(a) If �(u, v) = DF (v,u) is the Bregman divergence of a continuously differentiable con-
vex function then θ̂n converges almost surely to ��(V).

(b) Suppose that V is an ergodic process in QD and E�(u, v + ε0) ≥ E�(0, ε0) for all u,
v, with equality if and only if u = v. Then θ̂n converges almost surely to {θ ∈ � : V ∈Qθ }.

REMARK 5.4. The loss condition in part (b) of the theorem holds, for example, if
�(u, v) = |u − v| is the absolute loss and the distribution of the noise has a unique median at
zero.

REMARK 5.5. Recall that dynamical models include arbitrary (e.g., nonlinear) continu-
ous observation functions fθ : X →R. In the signal plus noise setting of the present section,
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these functions allow one to consider observation models of the form Y = f (X) + ε, where
X is the underlying state and ε is independent noise. In short, the setting includes general
observation functions, but the function must be applied before noise is added. Nonetheless,
we note that Theorem 5.3 remains true if the observation model has the form Y = F(V + ε)

where F is linear. Indeed, in this case F(V+ε) = F(V)+F(ε) = V′ +ε′, and V′ and ε′ can
be seen to satisfy the hypotheses of the theorem. Investigation of more general noise models
is interesting but beyond the scope of the present paper.

EXAMPLE 5.6. Consider the estimation of a rotational period, as in Example 3.4. For
concreteness, consider the case d = 1, and consider a set of angles � = [0, π]. Suppose that
there is a single vector h ∈ R

2 such that the observation function fθ is given by f (x) =
〈x,h〉 for all θ . Now suppose that ε is a random variable in R

2 with zero mean and finite
variance, and suppose that ε is an i.i.d. process whose marginals have the same distribution
as ε. Finally, suppose that the observation process is given by Y = (Yk)k≥0, where

Yk = f
(
Rk

θ0
(X) + εk

)
,

θ0 ∈ [0, π] is irrational, and X is uniformly distributed on the circle S1 ⊂ R
2. Since f is

linear, the previous remark applies, and we conclude that the hypotheses of Theorem 5.3
(both parts) are satisfied with the squared loss �(u, v) = (u − v)2. Additionally, one may
check that θ0 is identifiable within � (i.e., it is the only parameter θ such that the signal
process is contained in Qθ ). Then we conclude that any sequence (θn)n≥1 of minimum risk
estimates converges almost surely to θ0.

As the squared loss �2(u, v) = (u−v)2 is a Bregman divergence, minimum risk fitting of a
zero entropy family will converge to the optimal parameter set for the signal by Theorem 5.3.
The next result extends this result to the more general case in which the mean width of the
family is zero.

THEOREM 5.7. Let Y = V + ε, where V is ergodic and ε is an i.i.d. process with mean
zero and finite variance. If the mean width κ(D : ε) = 0, then any sequence of least squares
estimates converges almost surely to ��2(V).

In our final result of this section, we establish the consistency of least squares estima-
tion for a family of transformations on a compact state space in R

d where each observation
function is the identity. Suppose X ⊂ R

d is compact and {Tθ : θ ∈ �} is a family of trans-
formations on X such that � is a compact metric space and (θ, x) �→ Tθ(x) is continuous.
Further, suppose that Yk = T k

θ∗(X) + εk where X is distributed according to an ergodic mea-
sure μ ∈ M(X , Tθ∗), and ε = (εk)k≥0 is i.i.d. with mean zero and finite variance and is
independent of X.

COROLLARY 5.8. If the topological entropy of Tθ is zero for all θ ∈ �, then any se-
quence of least squares estimates converges almost surely to the set {θ ∈ � : μ(Tθ = Tθ∗) =
1}.

The limit set in Corollary 5.8 contains the true parameter θ∗, and serves as the natural
identifiability class of θ∗ in this context.
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5.3. A negative result. It is assumed above that the model family D has zero entropy.
The next proposition shows that the zero entropy assumption is, in general, necessary for
consistent estimation. In particular, if h(D) is positive then least squares estimation can fail to
identify the optimal parameters of the signal process V, even if the signal process is generated
by a dynamical model in the family. The underlying idea is that a family D with positive
entropy is capable of tracking the noise, and consequently least squares estimates will overfit
the observed sequence.

Let us say that a family D is inseparable from Gaussian noise if there exists an ergodic
process V in QD and σ0 > 0 such that for every σ > σ0 the limiting parameter set ��2(Y) of
least squares estimates derived from Y = V + ε with εi ∼ N(0, σ 2) does not capture V in the
sense that V /∈ Qθ for each θ ∈ ��2(Y).

PROPOSITION 5.9. Let D be a family of dynamical models with entropy h(D) > 0. If
there exists θ0 ∈ � such that h({(Tθ0, fθ0)}) = 0 and Qθ0 \ ⋃

θ �=θ0
Qθ contains an ergodic

process, then D is inseparable from Gaussian noise.

REMARK 5.10. It is relatively easy to construct families D satisfying the conditions of
Proposition 5.9. See the Supplementary Material [47], Example D.1. Informally, the incon-
sistency phenomenon illustrated by this example can be shown to occur for any family in
which there is a parameter θ0 with zero entropy, there is a parameter with positive entropy
and the processes associated to θ0 are distinct from the processes associated to all parameter
values with positive entropy.

6. Discussion of related work. The results of this paper have points of overlap with re-
cent work in the statistics and machine learning literature concerning estimation, forecasting
and prediction from dependent observations. While some of this work, for example, Morvai
and Weiss [53, 54], Nobel [55] and Adams and Nobel [1], is focused on asymptotics for gen-
eral ergodic observations, a number of papers provide rates of convergence or finite sample
bounds under more stringent assumptions.

A complete survey of all recent work on learning from dependent data is beyond the scope
of the present paper, but we nonetheless mention several recent directions of research in this
area. In representative early work, Arcones and Yu [5] prove central limit theorems for em-
pirical and U -processes of stationary mixing processes. More recently, Modha and Masry
[51], Meir [49] and Alquier and Wintenberger [4] establish oracle inequalities and finite sam-
ple bounds for predicting the next value of a stationary process. Agarwal and Duchi [3],
Kuznetsov and Mohri [29–31] and Zimin and Lampert [78] establish finite sample perfor-
mance bounds on the conditional risk of online learning algorithms for predicting dependent
time series. Each of the papers cited above imposes mixing conditions (as in [77]) on the
observations, as well as regularity conditions on the loss function and model family of inter-
est. Shalizi and Kontorovich [66] consider learning mixtures of stationary processes, while
Kontorovich [28] studies statistical estimation using finite automata with bounded memory.
Mohri and Rostamizadeh [52] provide stability-based generalization bounds from φ-mixing
and β-mixing processes. Hang and Steinwart [20] and Steinwart and Christmann [69] ob-
tain rates of convergence for empirical risk minimization from α-mixing observations, while
Wong et al. [25] establish finite sample bounds for Lasso-based inference under β-mixing
conditions. In another direction, Rakhlin et al. [63] and Rakhlin and Sridharan [62] have es-
tablished exponential inequalities for suprema of martingale difference sequences by using
and extending ideas from machine learning, including Rademacher complexity and determin-
istic regret inequalities. Finally, let us mention that both Dean et al. [15] and Tu et al. [70]
provide finite sample bounds for system estimation in the context of certain control problems.
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As noted in the Introduction, the problem of fitting dynamical models differs from the
inference problems above as both the observations and the models under study can exhibit
dynamical behavior and long-range dependence. Moreover, our principal results make no
assumptions concerning mixing properties of the observed process Y, mixing properties or
stationary distributions of the dynamical models D, smoothness of the loss �(·, ·) (beyond
lower semicontinuity) or the relationship between the observed process and the family of
models being fit. This general setting enables us to study the asymptotic behavior of mini-
mum risk estimation for dynamical models in a variational framework where the roles of the
observed process, the loss and (most critically) the model family are clearly delineated.

The results here provide a framework for, and initial progress toward, the detailed analyses
of specific problems and model families that might lead to rates of convergence or finite sam-
ple performance bounds. It is evident from the papers above that stronger results, for exam-
ple, rates of convergence, will require substantially stronger assumptions, including mixing
conditions (with geometric or polynomial rates) on the observed process, smoothness (possi-
bly with convexity) of the loss function and stronger, covering-based complexity constraints
on the family of dynamical models. If mixing type conditions are required for the dynam-
ical models themselves, then these conditions would require even stronger assumptions, as
mixing conditions typically hold only for distinguished invariant measures and observation
functions.

A number of the papers cited above make use of exponential probability bounds, typically
Azuma–Hoeffding-type inequalities, to control error terms that are sums of martingale dif-
ferences. Martingale differences do not arise in the theoretical analysis of this paper, but we
note that there are some uses of reverse martingale methods in the dynamics literature [39].
Investigating martingale approaches to the problems considered here represent an interesting
direction for future research.

Our work is also related to a line of research concerning least squares estimation of individ-
ual sequences from noisy observations; see, for example, [60, 72, 76]. Pollard and Radchenko
[60] use empirical process theory to establish consistency and asymptotic normality of least
squares estimation for individual sequences from signal plus noise. In the present work, we
consider sets of individual sequences that arise from a continuous family of dynamical mod-
els, as in (2.1), and we are interested in estimation of a dynamical invariant parameter (i.e.,
θ ), rather than the signal sequence itself.

Ornstein and Weiss [59] studied the estimation of a stochastic process from its samples.
They proposed an inference procedure, based on matching k-block frequencies, and charac-
terize when it produces consistent estimates of the observed stochastic process in the d-bar
metric.

Furstenberg’s original work on joinings [17] includes an application of joinings to a non-
linear filtering problem. Beyond this application, we are not aware of other uses of joinings
in the literature on statistical inference.

Some of Furstenberg’s original results are extended in recent work of Lev, Peled and Peres
[36]. Given an infinite sequence equal to a target signal plus noise, they consider the problem
of detecting whether the signal is nonzero, and the problem of recovering the signal from
the given sequence. Target sequences are assumed to belong to a known family (as in [60]),
and their analysis places no restrictions (beyond measurability) on the detection and filtering
procedures, which can be functions of the entire sequence of observations.

Finally, we mention that statistical inference in the context of dynamical systems has been
considered in a variety of subject areas; see the survey [45] for a broad overview and ref-
erences. Dynamical systems in the observational noise setting have been studied in [32, 33,
44], and statistical prediction in the context of dynamical systems has been considered in [21,
22, 69, 74].
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6.1. Generalizations and future work. Generalization of all of the definitions and results
of the paper to R

d -valued models and processes is straightforward, requiring only minor
changes of notation. We omit the details. In a different direction, one could analyze families of
dynamical models defined on a noncompact state space X with uniformly bounded observa-
tion functions, requiring only measurability of the maps (θ, x) �→ Tθ(x) and (θ, x) �→ fθ (x).
For families D of this more general type, the set UD of associated sequences would not nec-
essarily be a closed (hence compact) subset of RN, and in this case one needs to consider
the closure of UD in R

N, along with all the stationary processes supported on this set. The
analysis here can be carried out in this more general setting, but the corresponding results are
difficult to interpret in the context of the original problem.

7. Optimal tracking and proof of Theorem 5.2. In this section, we detail connections
between fitting dynamical models and the optimal tracking problem studied in [46]. In partic-
ular, we construct a single dynamical system that captures the family D of dynamical models,
and we analyze this system using optimal tracking.

7.1. Optimal tracking. The tracking problem for dynamical systems concerns two sys-
tems: a model system consisting of a compact metric space Z and a continuous map T : Z →
Z , and an observed system consisting of a complete separable metric space Y and a Borel
measurable map S : Y → Y . Given the initial segment of a trajectory y,S(y), . . . , Sn−1(y) of
the observed system, one seeks a corresponding initial condition zn ∈ Z such that the trajec-
tory zn, T (zn), . . . , T

n−1(zn) from the model system “tracks” the given trajectory from the
observed system. An optimal tracking trajectory is chosen by minimizing an additive cost
functional

n−1∑
k=0

c
(
Sky,T kz

)
,

where c : Y ×Z →R is a fixed lower semicontinuous cost function.
We will appeal to results from [46] for optimal tracking, which we summarize here for

completeness. Suppose that the initial condition y of the observed trajectory is drawn from
an ergodic measure ν ∈ M(Y, S), and that supz |c(y, z)| is bounded above by a function in
L1(ν). Let � be a compact metrizable space, and let ϕ : Z → � be a continuous map that is
invariant with respect under the transformation T , that is, ϕ ◦ T = ϕ, so that ϕ is invariant on
trajectories of T . Let V = (Sk(V0))k≥0, where V0 ∼ ν. Also, for θ ∈ �, let Mθ (Z, T ) denote
the set of measures μ ∈ M(Z, T ) such that μ(ϕ−1{θ}) = 1, that is, μ is invariant under T

and supported on the (closed) set of z in Z for which ϕ(z) = θ . Finally, let J (V : θ) denote
the set of all joinings of the process V with a process U = (T k(U0))k≥0, where U0 ∼ μ for
some μ ∈ Mθ (Z, T ).

THEOREM A ([46]). Let zn : Yn → Z , n ≥ 1, be Borel measurable functions. If for ν

almost every y ∈ Y the sequence ẑn = zn(y, . . . , Sn−1y) optimally tracks y,Sy, . . . in the
sense that

(7.1) lim
n

1

n

n−1∑
k=0

c
(
Sky,T kẑn

) = lim
n

inf
z∈Z

1

n

n−1∑
k=0

c
(
Sky,T kz

)
,

then θ̂n = ϕ(ẑn) converges ν almost surely to the nonempty, compact set

(7.2) �min = argmin
θ∈�

min
J (V:θ)

E
[
c(Ṽ0, Ũ0)

]
.

Furthermore, for any θ ∈ �min, there exists ẑn such that (7.1) holds and θ̂n = ϕ(ẑn) converges
to θ .
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7.2. Proof of Theorem 5.2. To begin, we describe how fitting a family of dynamical mod-
els to an observed stochastic process can be cast as a tracking problem. As a first step, we
define a single dynamical system that encapsulates the family of dynamical models. Consider
the state space

Z = {(
θ,

(
fθ ◦ T k

θ (x)
)
k≥0

) : θ ∈ �,x ∈ X
} ⊆ � ×R

N,

and define the transformation T : Z → Z by T (θ, (uk)k≥0) = (θ, (uk+1)k≥0). The next
lemma establishes some basic properties of the dynamical system (Z, T ). Here and in what
follows, RN is equipped with the usual product topology.

LEMMA 7.1. The set Z is a compact subset of � ×R
N, and the map T is continuous. If

μ is an ergodic element of M(Z, T ), then there exists θ ∈ � and an ergodic process U ∈ Qθ

with distribution ξ such that μ = δθ ⊗ ξ .

PROOF. Continuity of the map T follows from continuity of the left shift τ : RN → R
N.

As both the parameter space � and the state space X are compact by assumption, the product
� ×X is compact. Define a map π : � ×X → � ×R

N by

π(θ, x) = (
θ,

(
fθ ◦ T k

θ (x)
)
k≥0

)
.

It is easy to see that Z is the image of � × X under π . To establish that Z is compact, it
therefore suffices to show that π is continuous.

Let {(θn, xn)}n≥1 be a sequence converging to (θ, x) in � ×X , and let K ≥ 1. The conti-
nuity conditions (D2) and (D3) imply that for 0 ≤ k ≤ K ,

lim
n

fθn ◦ T k
θn

(xn) = fθ ◦ T k
θ (x).

As K was arbitrary, it follows that {π(θn, xn)}n≥1 converges to π(θ, x) in � × R
N with the

product topology, and therefore π is continuous.
For the last statement of the lemma, define the map R : � × X → � × X by the rule

R(θ, x) = (θ, Tθ (x)), which is known as the skew-product over the identity in the dynamics
literature. By construction, we have π ◦ R = T ◦ π . In the dynamics literature, π is called a
factor map from (� ×X ,R) onto (Z, T ). It is a standard fact [16], p. 19, that the associated
map from M(� ×X ,R) to M(Z, T ) defined by η �→ η ◦ π−1 is a surjection.

Now let μ ∈ M(Z, T ) be ergodic. Since the map from M(� ×X ,R) to M(Z, T ) given
by η �→ η ◦ π−1 is a surjection, there exists η ∈ M(� × X ,R) such that η ◦ π−1 = μ. As
proj� ◦T = proj�, the induced measure η◦(proj� ◦π)−1 = μ◦proj−1

� on � must be invariant
under the identity map. Also, it must be ergodic, since μ is ergodic. As the only ergodic
measures for the identity map are the point masses, we see that there exists θ ∈ � such that
η ◦ (proj� ◦π)−1 = δθ . Then η = δθ ⊗ ξ ′ for some invariant measure ξ ′ ∈ M(X , Tθ ), and
therefore μ = η ◦ π−1 = δθ ⊗ ξ , where ξ is the distribution of a stationary process in Qθ . To
see that ξ is ergodic, note that ξ = μ ◦ (projRN)−1 and μ is ergodic. �

We now proceed with the proof of Theorem 5.2. The observed process Y gives rise to an
observed dynamical system in the tracking problem, where Y = R

N, S : Y → Y is the left
shift S((uk)k≥0) = (uk+1)k≥0, and ν is the distribution of Y on R

N. Define the cost function
c : Y ×Z →R by

c
(
v, (θ,u)

) = �(u0, v0).

By Lemma 7.1, the hypotheses of Theorem A are satisfied. Then an application of Theorem A
shows that any sequence of minimum �-risk parameters (θ̂n)n≥1 converges almost surely to
the set �min. Additionally, using the second sentence of Lemma 7.1 and the variational char-
acterizations of �min and ��(Y), we see that �min = ��(Y). Furthermore, the conclusions
of Theorem A give that the projection ��(Y) is nonempty and compact, and the (“converse”)
statement in Theorem 5.2 (b) holds. We have thus proved Theorem 5.2.
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8. Proofs for signal plus noise. This section contains the proofs of Theorems 5.3 and
5.7, and Proposition 5.9 concerning the behavior of minimum risk estimation in the signal
plus noise setting. In addition, we state and establish several auxiliary results that may be of
independent interest. We begin with a straightforward extension of Theorem A. A proof is
included in the Supplementary Material [47], Appendix E.2, for completeness.

THEOREM 8.1. Let U, V and W be real valued stationary processes such that H(U) = 0,
V is ergodic, and W is i.i.d. If [U,V,W] is any joining of these three processes such that V
and W are independent, then the joint process [U,V] is independent of W.

The proofs below require the concept of a relatively independent joining, which is a stan-
dard construction in ergodic theory (see [18], p. 126, or [14]). Let U and W be stationary
processes taking values in complete separable metric spaces U and W , respectively. A mea-
surable map f : U → W is said to map U onto W if the process f (U) := (f (Uk))k≥0 has the
same distribution as W.

THEOREM B (Relatively independent joining). Suppose U, V and W are stationary pro-
cesses taking values in (possibly distinct) complete separable metric spaces. If there are Borel
measurable maps f and g such that f (U) and g(V) each have the same distribution as W,
then there is a joining [U,V] of U and V such that f (U) = g(V) almost surely.

The joining [U,V] in Theorem B is called the relatively independent joining of U and V
(relative to W).

The following general result establishes the ability of minimum risk estimation to separate
signal from noise for zero entropy model families. Separation is relative to an auxiliary loss
function L that depends on both the given loss function � and the noise process.

PROPOSITION 8.2. Let Y = V + ε satisfy (C1)–(C3), and let D satisfy (D1)–(D3). If
h(D) = 0, then any sequence of minimum �-risk estimates converges almost surely to �L(V),
where L(u, v) := E�(u, v + ε0).

REMARK 8.3. Since �(·, ·) is nonnegative and lower semicontinuous, the auxiliary loss
function L(·, ·) has the same properties (using Fatou’s lemma for the lower semicontinuity).
If a given process Y can be expressed in two different ways as Y = V + ε and Y = V′ + ε′,
then the proof of Proposition 8.2 shows that �L(V) = �L′(V′), where L′ is defined using ε′
in place of ε.

PROOF. By Theorem 5.2, any sequence of minimal �-risk estimates converges almost
surely to ��(Y). It therefore suffices to show that ��(Y) = �L(V). To this end, let U be
any process in QD , and let [U,Y] be a joining of U and Y that is optimal in the sense that
E[�(U0, Y0)] = γ�(U,Y). It follows from Lemma 4.2 and the assumption that h(D) = 0 that
the entropy rate H(U) = 0. Let [V,ε] be the independent joining of V and ε. As Y and V + ε

have the same distribution, Theorem B ensures the existence of a joining [U,Y,V,ε] such
that Y = V + ε almost surely. Projecting this joining onto its first, third and fourth coordi-
nates, we obtain a joining [U,V,ε] satisfying the conditions of Theorem 8.1. In particular,
[U,V] is independent of ε. By conditioning on [U,V], we find that

E
[
�(U0, Y0)

] = E
[
�(U0,V0 + ε0)

] = E
[
E

[
�(u, v + ε0) | U0 = u,V0 = v

]]
= E

[
L(U0,V0)

] ≥ γL(U,V),

from which it follows that γ�(U,Y) ≥ γL(U,V).
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Now let [U,V] be a joining such that E[L(U0,V0)] = γL(U,V). Let [U,V,ε] be the inde-
pendent joining of [U,V] with ε, and let Y = V + ε. Then

E
[
L(U0,V0)

] = E
[
E

[
�(u, v + ε0) | U0 = u,V0 = v

]]
= E

[
�(U0,V0 + ε0)

] = E
[
�(U0, Y0)

] ≥ γ�(U,Y).

Thus γL(U,V) ≥ γ�(U,Y), and we conclude that γL(U,V) = γ�(U,Y). As U ∈ QD was
arbitrary, it follows that ��(Y) = �L(V), and the proof is complete. �

PROOF OF THEOREM 5.3. By Proposition 8.2, any sequence of minimum risk parame-
ters converges almost surely to �L(V), so it suffices to examine this set under the conditions
of parts (a) and (b) the theorem.

Part (a): Based on the assumption that E(ε0) = 0 and �(u, v) = DF (v,u), we have

L(u, v) = E�(u, v + ε0) = EF(v + ε0) − F(u) − (v − u)F ′(u)

= �(u, v) + G(v),

where G(v) = EF(v + ε0) − F(v) depends only on v and the distribution of ε0, and is
nonnegative since F is convex. Thus, for any θ ∈ � and any U ∈ Qθ ,

γL(U,V) = inf
J (U,V)

EL(U0,V0) = inf
J (U,V)

{
E�(U0,V0) +EG(V0)

}
= γ�(U,V) +EG(V0).

It follows that �L(V) = ��(V), which establishes Part (a).
Part (b): Suppose that Y = V + ε where V ∈ Qθ0 is ergodic. Let U ∈ QD and let [U,V]

be a joining of U and V. The assumption that E�(x, y + ε0) ≥ E�(0, ε0) with equality if and
only if x = y ensures that

E
[
L(U0,V0)

] = E
[
E

[
�(u, v + ε0) | U0 = u,V0 = v

]]
≥ E

[
�(0, ε0)

]
,

with equality if and only if U0 = V0 almost surely. As [U,V] is a joining, and is there-
fore stationary, U0 = V0 almost surely if and only if U = V almost surely. Thus, we have
shown that γL(U,V) ≥ E[�(0, ε0)], with equality if and only if U = V. Therefore, the set of
θ minimizing the quantity minU∈Qθ

γL(U,V) is exactly the set of θ such that V ∈ Qθ . Hence
�L(V) = {θ ∈ � : V ∈ Qθ }, which completes the proof of Part (b). �

8.1. Least squares estimation. Here, we provide proofs of Theorem 5.7 and Corollary 5.8
concerning least squares estimation. It is possible to give more direct proofs of these results
that avoid a direct appeal to Theorem 5.2, at the expense of greater length, but we make use
of this general result in the arguments below.

PROOF OF THEOREM 5.7. By Theorem 5.2, any sequence of least squares parameters
converges almost surely to ��2(Y), so it suffices to show that ��2(Y) = ��2(V).

Fix a parameter θ ∈ � and a process U ∈ Qθ . Let [U,Y] be any joining of U with the ob-
served process Y, and let [V,ε] be the independent joining of the signal and noise processes.
Using Theorem B, let [U,Y,V,ε] be the relatively independent joining of [U,Y] with [V,ε]
such that Y = V + ε almost surely. Then under this joining

E
[|U0 − Y0|2] = E

[∣∣U0 − (V0 + ε0)
∣∣2]

= E
[|U0 − V0|2] − 2E

[
(U0 − V0) · ε0

] +E
[
ε2

0
]
.
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As the mean width κ(D : ε) = 0 by assumption, Proposition C.3 ensures that E[U0 · ε0] = 0.
Moreover, since V0 is independent of ε0 and ε0 has zero mean, E[V0 · ε0] = 0. It follows from
the previous display that

(8.1) E
[|U0 − Y0|2] = E

[|U0 − V0|2] +E
[
ε2

0
]
.

Since E[ε2
0] is a constant that depends only on ε0 (and not on the joining), and since U ∈ Qθ

was arbitrary, we conclude that

(8.2) min
U∈Qθ

γ�2(U,Y) ≥ min
U∈Qθ

γ�2(U,V) +E
[
ε2

0
]
.

Now let U′ be any process in Qθ that minimizes the divergence γ�2(U,V), and let [U′,V]
be a joining that achieves the divergence. Let ε be a copy of the noise process that is indepen-
dent of [U′,V], and define Y = V + ε. One may readily show that the paired process (U′,Y)

is in fact a joining. Moreover, the choices above ensure that

(8.3) E
[∣∣U ′

0 − Y0
∣∣2] = E

[∣∣U ′
0 − V0

∣∣2] +E
[
ε2

0
] = min

U∈Qθ

γ�2(U,V) +E
[
ε2

0
]
.

Combining displays (8.2) and (8.3), we find that

min
U∈Qθ

γ�2(U,Y) = min
U∈Qθ

γ�2(U,V) +E
[
ε2

0
]
.

Minimizing over θ , we find that ��2(Y) = argminθ minU∈Qθ
γ�2(U,V), as was to be shown.

�

PROOF OF COROLLARY 5.8. By Proposition 2.6, the hypothesis that the topological
entropy htop(X , Tθ ) = 0, for each θ ∈ �, gives that h(D) = 0. Then by Theorem 5.3 any
sequence of least squares parameters converges almost surely to the set {θ ∈ � : V ∈ Qθ }.
Now suppose V ∈ Qθ . Then there exists a measure μ0 ∈ M(X , Tθ ) such that the process U =
(T k

θ (X))k≥0 with X ∼ μ0 has the same distribution as V. Hence X has the same distribution
as V0, which is given by μ and, therefore, μ = μ0. Furthermore, (X,Tθ (X)) must have the
same distribution as (V0,V1), which implies that Tθ(x) = Tθ∗(x) for μ almost every x. We
have thus shown that {θ ∈ � : V ∈ Qθ } ⊂ {θ : μ(Tθ = Tθ∗) = 0}. The reverse inclusion is
obvious. �
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