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The method of moments (Philos. Trans. R. Soc. Lond. Ser. A 185 (1894)
71–110) is one of the most widely used methods in statistics for parame-
ter estimation, by means of solving the system of equations that match the
population and estimated moments. However, in practice and especially for
the important case of mixture models, one frequently needs to contend with
the difficulties of non-existence or nonuniqueness of statistically meaningful
solutions, as well as the high computational cost of solving large polyno-
mial systems. Moreover, theoretical analyses of the method of moments are
mainly confined to asymptotic normality style of results established under
strong assumptions.

This paper considers estimating a k-component Gaussian location mix-
ture with a common (possibly unknown) variance parameter. To overcome
the aforementioned theoretic and algorithmic hurdles, a crucial step is to de-
noise the moment estimates by projecting to the truncated moment space (via
semidefinite programming) before solving the method of moments equations.
Not only does this regularization ensure existence and uniqueness of solu-
tions, it also yields fast solvers by means of Gauss quadrature. Furthermore,
by proving new moment comparison theorems in the Wasserstein distance
via polynomial interpolation and majorization techniques, we establish the
statistical guarantees and adaptive optimality of the proposed procedure, as
well as oracle inequality in misspecified models. These results can also be
viewed as provable algorithms for generalized method of moments (Econo-
metrica 50 (1982) 1029–1054) which involves nonconvex optimization and
lacks theoretical guarantees.

1. Introduction.

1.1. Gaussian mixture model. Consider a k-component Gaussian location mixture
model, where each observation is distributed as

(1) X ∼
k∑

i=1

wiN
(
μi, σ

2).
Here, wi is the mixing weight such that wi ≥ 0 and

∑
i wi = 1, μi is the mean (center) of

the ith component, and σ is the common standard deviation. Equivalently, we can write the
distribution of an observation X as a convolution

(2) X ∼ ν ∗ N
(
0, σ 2),

where ν = ∑k
i=1 wiδμi

denotes the mixing distribution. Thus, we can write X = U + σZ,
where U ∼ ν is referred to as the latent variable, and Z is standard normal and independent
of U .

Generally speaking, there are three formulations of learning mixture models:
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• Parameter estimation: estimate the means μi’s and the weights wi ’s up to a global permu-
tation, and possibly also σ 2.

• Density estimation: estimate the probability density function of the Gaussian mixture under
certain loss such as L2 or Hellinger distance. This task is further divided into the cases
of proper and improper learning, depending on whether the estimator is required to be
a k-Gaussian mixture or not; in the latter case, there is more flexibility in designing the
estimator but less interpretability.

• Clustering: estimate the latent variable of each sample (i.e., Ui , if the ith sample is repre-
sented as Xi = Ui + σZi) with a small misclassification rate.

It is clear that clustering necessarily relies on the separation between the clusters; however, as
far as estimation is concerned, both parametric and nonparametric, no separation condition
should be needed and one can obtain accurate estimates of the parameters even when clus-
tering is impossible. Furthermore, one should be able to learn from the data the order of the
mixture model, that is, the number of components. However, in the present literature, most
of the estimation procedures with finite sample guarantees are either clustering-based, or rely
on separation conditions in the analysis (e.g., [4, 24, 42]). Bridging this conceptual divide is
one of the main motivations of the present paper.

Existing methodologies for mixture models are largely divided into likelihood-based and
moment-based methods; see Section 1.5 for a detailed review. Among likelihood-based meth-
ods, the Maximum Likelihood Estimate (MLE) is not efficiently computable due to the non-
convexity of the likelihood function. The most popular heuristic procedure to approximate
the MLE is the Expectation–Maximization (EM) algorithm [11]; however, absent separation
conditions, no theoretical guarantee is known in general. Moment-based methods include the
classical method of moments [46] and many extensions [2, 21]; however, the usual method
of moments suffers from many issues as elaborated in the next subsection. In the theoretical
computer science literature, [22, 27, 44] proposed moment-based polynomial-time algorithms
with provable guarantees; however, these methods are typically based on grid search and far
from being practical. Finding a theoretically sound, numerically stable and computationally
efficient version of the method of moments is a major objective of this paper.

1.2. Failure of the classical method of moments. The method of moments, commonly
attributed to Pearson [46], produces an estimator by equating the population moments to
the sample moments. While conceptually simple, this method suffers from the following
problems, especially in the context of mixture models:

• Solvability: the method of moments entails solving a multivariate polynomial system, in
which one frequently encounters nonexistence or nonuniqueness of statistically meaning-
ful solutions.

• Computation: solving moment equations can be computationally intensive. For instance,
for k-component Gaussian mixture models, the system of moment equations consist of
2k − 1 polynomial equations with 2k − 1 variables.

• Accuracy: existing statistical literature on the method of moments [21, 54] either shows
mere consistency under weak assumptions, or proves asymptotic normality assuming very
strong regularity conditions (so that the delta method works), which generally do not hold
in mixture models since the convergence rates can be slower than parametric. Some results
on nonparametric rates are known (cf. [54], Theorem 5.52, and [34], Theorem 14.4) but
the conditions are extremely hard to verify.

To explain the failure of the vanilla method of moments in Gaussian mixture models, we
analyze the following simple two-component example.
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EXAMPLE 1. Consider a Gaussian mixture model with two unit variance components:
X ∼ w1N(μ1,1) + w2N(μ2,1). Since there are three parameters μ1, μ2 and w1 = 1 − w2,
we use the first three moments and solve the following system of equations:

(3)

En[X] = E[X] = w1μ1 + w2μ2,

En

[
X2] = E

[
X2] = w1μ

2
1 + w2μ

2
2 + 1,

En

[
X3] = E

[
X3] = w1μ

3
1 + w2μ

3
2 + 3(w1μ1 + w2μ2),

where En[Xi] � 1
n

∑n
j=1 Xi

j denotes the ith moment of the empirical distribution from n i.i.d.
samples. The right-hand sides of (3) are related to the moments of the mixing distribution by
a linear transformation, which allow us to equivalently rewrite the moment equations (3) as

(4)

En[X] = E[U ] = w1μ1 + w2μ2,

En

[
X2 − 1

] = E
[
U2] = w1μ

2
1 + w2μ

2
2,

En

[
X3 − 3X

] = E
[
U3] = w1μ

3
1 + w2μ

3
2,

where U ∼ w1δμ1 + w1δμ2 . It turns out that with finitely many samples, there is always a
nonzero chance that (4) has no solution; even with infinite samples, it is possible that the
solution does not exist with constant probability. To see this, note that, from the first two
equations of (4), the solution does not exist whenever

(5) En

[
X2] − 1 < E

2
n[X],

that is, the Cauchy–Schwarz inequality fails. Consider the case μ1 = μ2 = 0, that is, X ∼
N(0,1). Then (5) is equivalent to

n
(
En

[
X2] −E

2
n[X]) ≤ n,

where the left-hand side follows the χ2-distribution with n− 1 degrees of freedom. Thus, (5)
occurs with probability approaching 1

2 as n diverges, according to the central limit theorem.

In view of the above example, we note that the main issue with the classical method of
moments is the following: although individually each moment estimate is accurate (

√
n-

consistent), jointly they do not correspond to the moments of any distribution. Moment
vectors satisfy many geometric constraints, for example, the Cauchy–Schwarz and Hölder
inequalities, and lie in a convex set known as the moment space. Thus, for any model pa-
rameters, with finitely many samples the method of moments fails with nonzero probability
whenever the noisy estimates escape the moment space; even with infinitely many samples,
it also provably happens with constant probability when the order of the mixture model is
strictly less than k, or equivalently, the population moments lie on the boundary of the mo-
ment space (see Lemma 39 of the Supplementary Material [57] for a justification).

1.3. Main results. In this paper, we propose the denoised method of moments (DMM),
which consists of three main steps: (1) compute noisy estimates of moments, for example,
the unbiased estimates; (2) jointly denoise the moment estimates by projecting them onto the
moment space; (3) execute the usual method of moments. It turns out that the extra step of
projection resolves the three issues of the vanilla version of the method of moments identified
in Section 1.2 simultaneously:

• Solvability: a unique statistically meaningful solution is guaranteed to exist by the classical
theory of moments;
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• Computation: the solution can be found through an efficient algorithm (Gauss quadrature)
instead of invoking generic solvers of polynomial systems;

• Accuracy: the solution provably achieves the optimal rate of convergence, and automati-
cally adaptive to the clustering structure of the population.

We emphasize that the denoising (projection) step is explicitly carried out via a convex op-
timization in Section 4.1, and implicitly used in analyzing Lindsay’s algorithm [40] in Sec-
tion 4.2, when the variance parameter is known and unknown, respectively.

Following the framework proposed in [7, 23], in this paper we consider the estimation of
the mixing distribution, rather than estimating the parameters of each component. The main
benefits of this formulation include the following:

• Assumption-free: to recover individual components it is necessary to impose certain as-
sumptions to ensure identifiability, such as lower bounds on the mixing weights and sep-
arations between components, none of which is needed for estimating the mixing distri-
bution. Furthermore, under the usual assumption such as separation conditions, statistical
guarantees on estimating the mixing distribution can be naturally translated to those for
estimating the individual parameters.

• Inference on the number of components: this formulation allows us to deal with misspeci-
fied models and estimate the order of the mixture model.

Equivalently, estimating the mixing distribution can be viewed as a deconvolution problem,
where the goal is to recover the distribution ν based on observations drawn from the convo-
lution (2).

In this framework, a meaningful and flexible loss function for estimating the mixing dis-
tribution is the 1-Wasserstein distance (see Section 1.4 for a justification in the context of
mixture models), defined by

(6) W1
(
ν, ν′) � inf

{
E
[‖X − Y‖] : X ∼ ν,Y ∼ ν′},

where the infimum is taken over all couplings, that is, joint distributions of X and Y which are
marginally distributed as ν and ν′, respectively. In one dimension, the W1 distance coincides
with the L1-distance between the cumulative distribution functions (CDFs) [55].

Next, we present the theoretical results, which can be classified into two categories:

• To estimate the mixing distribution, our methodology produces moment-based estimators
that are optimal in both worst case (Theorem 1) and adaptive sense (Theorem 2), for both
known and unknown σ .

• To estimate the mixture density, the same procedure produces a proper estimate that attains
the optimal parametric rate (Theorem 3), despite the fact that the mixing distribution can
only be estimated at a nonparametric rate. Moreover, the procedure is robust to model
misspecification (Theorem 4).

Throughout the paper, we assume that the number of components satisfies

(7) k = O

(
logn

log logn

)
.

If the order of mixture is large, namely, k ≥ �(
logn

log logn
), including continuous mixtures, then

one can approximate it by a finite mixture with O(
logn

log logn
) components and estimate the

mixing distribution using the DMM estimator. Furthermore, this method is optimal (see The-
orem 5 at the end of this subsection). Our main result is the following theorem.

THEOREM 1 (Optimal rates). Suppose that |μi | ≤ M for M ≥ 1 and σ is bounded by a
constant, and both k and M are given.
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• If σ is known, then there exists an estimator ν̂ computable in O(kn) time such that, with
probability at least 1 − δ,

(8) W1(ν, ν̂) ≤ O

(
Mk1.5

(
n

log(1/δ)

)− 1
4k−2

)
.

• If σ is unknown, then there exists an estimator (ν̂, σ̂ ) computable in O(kn) time such that,
with probability at least 1 − δ,

(9) W1(ν, ν̂) ≤ O

(
Mk2

(
n

log(1/δ)

)− 1
4k
)
,

and

(10)
∣∣σ 2 − σ̂ 2∣∣ ≤ O

(
M2k

(
n

log(1/δ)

)− 1
2k
)
.

For fixed for constant k, the above convergence rates are minimax optimal as shown in
Section 6 of the Supplementary Material [57]; in the case of known σ , the optimality of (8)
has been previously shown in [23], while the matching lower bounds for (9)–(10) are new.

Note that the results in Theorem 1 are proved under the worst-case scenario where the
centers can be arbitrarily close, for example, components completely overlap. It is reason-
able to expect a faster convergence rate when the components are better separated, and, in
fact, a parametric rate in the best-case scenario where the components are fully separated
and weights are bounded away from zero. To capture the clustering structure of the mixture
model, we introduce the following definition.

DEFINITION 1. The Gaussian mixture (1) has k0 (γ,ω)-separated clusters if there exists
a partition S1, . . . , Sk0 of [k] such that:

• |μi − μi′ | ≥ γ for any i ∈ S	 and i ′ ∈ S	′ such that 	 
= 	′;
• ∑

i∈S	
wi ≥ ω for each 	.

In the absence of the minimal weight condition (i.e., ω = 0), we say the Gaussian mixture
has k0 γ -separated clusters.

The next result shows that the DMM estimators attain the following adaptive rates.

THEOREM 2 (Adaptive rate). Under the conditions of Theorem 1, suppose there are k0
(γ,ω)-separated clusters such that γω ≥ Cε for some absolute constant C > 2, where ε

denotes the right-hand side of (8) and (9) when σ is known and unknown, respectively.

• If σ is known then, with probability at least 1 − δ,1

(11) W1(ν, ν̂) ≤ Ok

(
Mγ

− 2k0−2
2(k−k0)+1

(
n

log(k/δ)

)− 1
4(k−k0)+2

)
.

• If σ is unknown then, with probability at least 1 − δ,2

(12)
√∣∣σ 2 − σ̂ 2

∣∣,W1(ν, ν̂) ≤ Ok

(
Mγ

− k0−1
k−k0+1

(
n

log(k/δ)

)− 1
4(k−k0+1)

)
.

1Here, Ok(·) denotes a constant factor that depends on k only.
2Note that the estimation rate for the mean part ν is the square root of the rate for estimating the variance

parameter σ 2. Intuitively, this phenomenon is due to the infinite divisibility of the Gaussian distribution: note that
for the location mixture model ν ∗ N(0, σ 2) with ν ∼ N(0, ε2) and σ 2 = 1 has the same distribution as that of
ν ∼ δ0 and σ 2 = 1 + ε2.
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For fixed k, k0 and γ , the rate in (11) is minimax optimal in view of the lower bounds
in [23]; we also provide a simple proof in [57], Remark 4, by extending the lower bound
argument in Section 6 of the Supplementary Material [57]. If σ is unknown, we do not have
a matching lower bound for (12). In fact, in the fully-separated case (k0 = k), (12) reduces

to n− 1
4 while the parametric rate is clearly achievable. Let us emphasize that, for known σ ,

the rates (8) and (11) for fixed k, k0 and γ have been previously obtained in [23] by means
of the computationally expensive minimum distance estimator; for unknown σ , the results in
(9), (10) and (12) are new.

Next, we discuss the implication on density estimation (proper learning), where the goal
is to estimate the density function of the Gaussian mixture by another k-Gaussian mixture
density. Given that the estimated mixing distribution ν̂ from Theorem 1, a natural density es-
timate is the convolution f̂ = ν̂ ∗N(0, σ 2). Theorem 3 below shows that the density estimate
f̂ is O( 1√

n
)-close to the true density f in the total variation distance TV(f, g) � 1

2‖f − g‖1.

THEOREM 3 (Density estimation). Under the conditions of Theorem 1, denote the den-
sity of the underlying model by f = ν ∗ N(0, σ 2). If σ is given, then there exists an estimate
f̂ such that

TV(f̂ , f ) ≤ Ok

(√
log(1/δ)/n

)
,

with probability 1 − δ.

So far we have been focusing on well-specified models. In the case of misspecified models,
the data need not be generated from a k-Gaussian mixture. In this case, the DMM procedure
still reports a meaningful estimate that is close to the best k-Gaussian mixture fit of the
unknown distribution. This is made precise by the next result of oracle inequality type. Anal-
ogous results hold for χ2-divergence, Kullback–Leibler divergence and Hellinger distance as
well.

THEOREM 4 (Misspecified model). Assume that X1, . . . ,Xn is independently drawn
from a density f which is 1-sub-Gaussian. Suppose there exists a k-component Gaussian
location mixture g with a given variance σ 2 such that TV(f, g) ≤ ε. Then there exists an
estimate f̂ such that

TV(f̂ , f ) ≤ Ok

(
ε
√

log(1/ε) +
√

log(1/δ)/n
)
,

with probability 1 − δ.

To conclude this subsection, we present a result for estimating mixtures of an arbitrarily
large order, including continuous mixtures, in the case of known variance. In this situation,
we apply the DMM method to produce a mixture of order min{k,O(

logn
log logn

)}. The conver-
gence rate is minimax optimal in view of the matching lower bound in Proposition 9 of the
Supplementary Material [57].

THEOREM 5 (Higher-order mixture). Suppose |μi | ≤ M for M ≥ 1 and σ is a bounded
constant, where M , σ are given. Then there exists an estimate ν̂ such that, with probability
at least 1 − δ,

W1(ν, ν̂) ≤ O

(
M

(
log logn

logn
+

√
log(1/δ)

n1−c

))
,

for some constant c < 1.
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1.4. Why Wasserstein distance? Throughout the paper, we consider estimating the mix-
ing distribution ν with respect to the Wasserstein distance. This is a natural criterion, which
is not too stringent to yield trivial result (such as the Kolmogorov–Smirnov (KS) distance3)
and, at the same time, strong enough to provide meaningful guarantees on the means and
weights. In fact, the commonly used criterion min�

∑
i |μi − μ̂�(i)| over all permutations �

is precisely (k times) the Wasserstein distance between two equally weighted distributions
[55].

Furthermore, we can obtain statistical guarantees on the support sets and weights of the
estimated mixing distribution under the usual assumptions in literature [8, 22, 27] that include
separation between the means and lower bound on the weights. See Section 2.2 for a detailed
discussion. We highlight the following result, phrased in terms of the parameter estimation
error up to a permutation.

LEMMA 1. Let ν = ∑k
i=1 wiδμi

and ν̂ = ∑k
i=1 ŵiδμ̂i

. Suppose that W1(ν, ν̂) < ε. Let
ε1 = min{|μi − μj |, |μ̂i − μ̂j | : 1 ≤ i < j ≤ k} and ε2 = min{wi, ŵi : i ∈ [k]}. If ε < ε1ε2/4,
then there exists a permutation � such that

‖μ − �μ̂‖∞ < ε/ε2, ‖w − �ŵ‖∞ < 2ε/ε1,

where μ = (μ1, . . . ,μk), w = (w1, . . . ,wk) denote the atoms and weights of ν, respectively,
and μ̂, ŵ denote those of ν̂,

1.5. Related work. There exist a vast literature on mixture models, in particular Gaussian
mixtures, and the method of moments. For a comprehensive review, see [15, 41]. Below we
highlight a few existing results that are related to the present paper.

Likelihood-based methods. Maximum likelihood estimation (MLE) is one of the most
useful methods for parameter estimation. Under strong separation assumptions, MLE is con-
sistent and asymptotically normal [48]; however, those assumptions are difficult to verify,
and it is computationally hard to obtain the global maximizer due to the nonconvexity of the
likelihood function in the location parameters.

Expectation-Maximization (EM) [11] is an iterative algorithm that aims to approximate
the MLE. It has been widely applied in Gaussian mixture models [48, 59] and more recently
in high-dimensional settings [4]. In general, this method is only guaranteed to converge to a
local maximizer of the likelihood function rather than the global MLE. In practice, we need
to employ heuristic choices of the initialization [29] and stopping criteria [50], as well as pos-
sibly data augmentation techniques [43, 47]. Furthermore, its slow convergence rate is widely
observed in practice [29, 48]. Global convergence of the EM algorithm was recently analyzed
by [9, 58] but only in the special case of two equally weighted components. Additionally, the
EM algorithm accesses the entire data set in each iteration, which is particularly expensive
for large sample size and high dimensions.

Lastly, we mention the nonparametric maximum likelihood estimation (NPMLE) in mix-
ture models proposed by [30], where the maximization is taken over all mixing distributions
which need not be k-atomic. This is an infinite-dimensional convex optimization problem,
which has been studied in [36, 39, 41] and more recently in [32] on its computation based
on discretization. One of the drawbacks of NPMLE is its lack of interpretability since the
solution is a discrete distribution with at most n atoms; cf. [32], Theorem 2. Furthermore,
few statistical guarantees in terms of convergence rate are available.

3Consider two mixing distributions δ0 and δε with arbitrarily small ε, whose KS distance is always one.



1988 Y. WU AND P. YANG

Moment-based methods. The simplest moment-based method is the method of moments
(MM) introduced by Pearson [46]. The failure of the vanilla MM described in Section 1.2
has motivated various modifications including, notably, the Generalized Method of Moments
(GMM) introduced by Hansen [21]. GMM is a widely used methodology for analyzing eco-
nomic and financial data (cf. [20] for a thorough review). Instead of exactly solving the MM
equations, GMM aims to minimize the sum of squared differences between the sample mo-
ments and the fitted moments. Despite its nice asymptotic properties [21], GMM involves a
nonconvex optimization problem which is computationally challenging to solve. In practice,
heuristics such as gradient descent are used [6] which converge slowly and lack theoretical
guarantees.

For Gaussian mixture models (and more generally finite mixture models), our results can
be viewed as a solver for GMM which is provably exact and computationally efficient, im-
proving over existing heuristic methods in terms of both speed and accuracy significantly;
this is another algorithmic contribution of the present paper. The key is to switch the view
from optimizing over k-atomic mixing distributions (which is nonconvex) to moment space
(which is convex and efficiently optimizable via SDP). We also note that minimizing the sum
of squares in GMM is not crucial and minimizing any distance yields the same theoretical
guarantee. We discuss the connections to GMM in details in Section 4.1.

There are a number of recent works in the theoretical computer science literature on prov-
able results for moment-based estimators in Gaussian location-scale mixture models; see,
for example, [5, 22, 27, 38, 44]. For instance, the algorithm [44] is based on exhaustive
search over the discretized parameter space such that the population moments is close to the
empirical moments. In addition to being computationally expensive, this method achieves
the estimation accuracy n−C/k for some constant C, which is suboptimal in view of Theo-
rem 1. By carefully analyzing Pearson’s method of moments equations [46], [22] showed that
the optimal rate for two-component location-scale mixtures is �(n−1/12); however, this ap-
proach is difficult to generalize to higher order mixtures. Finally, for moment-based methods
in multiple dimensions, such as spectral and tensor decomposition, we defer the discussion
to Section 9.2 of the Supplementary Material [57].

Minimum distance estimators. In the case of known variance, the minimum distance es-
timator is studied by [7, 10, 23]. Specifically, the estimator is a k-atomic distribution ν̂ such
that ν̂ ∗ N(0, σ 2) is the closest to the empirical distribution of the samples in certain dis-

tance. The minimax optimal rate O(n− 1
4k−2 ) for estimating the mixing distribution under the

Wasserstein distance is shown in [23] (which corrects the previous result in [7]), by bounding
the W1 distance between the mixing distributions in terms of the KS distance of the Gaussian
mixtures [23], Lemma 4.5. However, the minimum distance estimator is in general compu-
tationally expensive and suffers from the same nonconvexity issue of the MLE. In contrast,
the denoised method of moments is efficiently computable and adaptively achieves the opti-
mal rate of accuracy as given in Theorem 2. For arbitrary Gaussian location mixtures in one
dimension, the minimum distance estimator was considered in [14] in the context of empiri-
cal Bayes. Under the assumptions of bounded first moment, it is shown in [14], Corollary 2,
that the mixing distribution can be estimated at rate O((logn)−1/4) under the L2-distance be-
tween the CDFs; this loss is, however, weaker than the W1-distance (i.e., L1 distance between
the CDFs).

Density estimation. If the estimator is allowed to be any density (improper learning), it
is known that as long as the mixing distribution has a bounded support, the rate of conver-
gence is close to parametric regardless of the number of components. Specifically, the optimal
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squared L2-risk is found to be �(
√

logn
n

) [31], achieved by the kernel density estimator de-
signed for analytic densities [26]. As mentioned before, proper density estimate (which is
required to be a k-Gaussian mixture) is more desirable for the sake of interpretability; how-
ever, finding the k-Gaussian mixture that best approximates a given function such as a kernel
density estimate can be computationally challenging due to, again, the nonconvexity in the
location parameters. In this regard, another contribution of Theorems 3 and 4 is the obser-
vation that proper and near optimal estimates/approximates can be found efficiently via the
method of moments. Finally, we note that MLE for estimating the density of general Gaussian
mixtures has been studied in [17, 18].

1.6. Notation. A discrete distribution supported on k atoms is called a k-atomic distri-
bution. The expectation of a given function f under a distribution μ is denoted by Eμf =
Eμ[f (X)] = ∫

f (x)μ(dx), and the subscript μ may be omitted if it is specified from the
context. The empirical mean of f from n samples is denoted as En[f (X)] = 1

n

∑n
i=1 f (Xi),

where X1, . . . ,Xn are i.i.d. copies of X. The rth moment of a distribution μ is denoted by
mr(μ) � EμXr . The moment matrix associated with m0,m1, . . . ,m2r is a Hankel matrix of
order r + 1:

(13) Mr =

⎡
⎢⎢⎢⎣
m0 m1 · · · mr

m1 m2 · · · mr+1
...

...
. . .

...

mr mr+1 · · · m2r

⎤
⎥⎥⎥⎦ .

For matrices A � B stands for A − B being positive semidefinite. The interval [x − a, x + a]
is abbreviated as [x ±a]. For any x, y ∈ R, x ∧y � min{x, y} and (x)+ � max{x, y}. For two
vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), let 〈x, y〉 � ∑

i xiyi . A distribution π is called
σ -sub-Gaussian if Eπ [etX] ≤ exp(t2σ 2/2) for all t ∈ R. We use standard big-O notation, for
example, for two positive sequence {an} and {bn}, an = O(bn) if an ≤ Cbn for some constant
C > 0; an = �(bn) if bn = O(an); an = �(bn) if an = O(bn) and an = �(bn). We write
an = Oβ(bn) if C depends on another parameter β .

1.7. Organization. The paper is organized as follows. In Section 2, we provide some ba-
sic results of the theory of moments and the Wasserstein distance. In Section 3, we introduce
the moment comparison theorems, which bound the Wasserstein distance between two dis-
crete distributions in terms of the discrepancy of their moments. These are key results to prove
the main theorems. In Section 4, we propose estimation algorithms and provide their statis-
tical guarantees. We provide a proof of the moment comparison theorems in Section 5 (with
two alternative proofs given in [57], Section 10); in particular, Section 5.1 contains a brief dis-
cussion on polynomial interpolation and majorization, which play a crucial role in the proof.
Matching minimax lower bounds, numerical experiments and comparison with other meth-
ods such as the EM algorithm, and extensions and open problems including location-scale
mixtures, the multivariate case and general finite mixtures are given in the Supplementary
Material [57]. Auxiliary results are collected in [57], Appendix B.

2. Preliminaries.

2.1. Moment space, SDP characterization and Gauss quadrature. The theory of mo-
ments plays a key role in the developments of analysis, probability, statistics and optimiza-
tion. See the classics [28, 51] and the recent monographs [37, 49] for a detailed treatment.
Below, we briefly review a few basic facts that are related to this paper.
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The rth moment vector of a distribution π is a r-tuple mr (π) = (m1(π), . . . ,mr(π)). The
rth moment space on K ⊆ R is defined as

Mr (K) = {
mr (π) : π is supported on K

}
,

which is the convex hull of {(x, x2, . . . , xr) : x ∈ K}. A valid moment vector satisfies many
geometric constraints such as the Cauchy–Schwarz and Hölder inequalities. When K = [a, b]
is a compact interval, Mr ([a, b]) is completely described by (see [51], Theorem 3.1, and also
[28, 37]) the following condition:

(14)

{
M0,r � 0, (a + b)M1,r−1 � abM0,r−2 + M2,r , r even,

bM0,r−1 � M1,r � aM0,r−1, r odd,

where Mi,j denotes the Hankel matrix with entries mi,mi+1, . . . ,mj :

Mi,j =

⎡
⎢⎢⎢⎢⎢⎣

mi mi+1 · · · mi+j
2

mi+1 mi+2 · · · mi+j
2 +1

...
...

. . .
...

mi+j
2

mi+j
2 +1 · · · mj

⎤
⎥⎥⎥⎥⎥⎦ .

EXAMPLE 2 (Moment spaces on [0,1]). For the first two moments, M2([0,1]) is sim-
ply described by m1 ≥ m2 ≥ 0 and m2 ≥ m2

1. For r = 3, according to (14), M3([0,1]) is
described by [

1 m1
m1 m2

]
�

[
m1 m2
m2 m3

]
� 0.

Using Sylvester’s criterion (see [25], Theorem 7.2.5), they are equivalent to

0 ≤ m1 ≤ 1, m2 ≥ m3 ≥ 0,

m1m3 ≥ m2
2, (1 − m1)(m2 − m3) ≥ (m1 − m2)

2.

The necessity of the above inequalities is apparent: the first two follow from the support being
[0,1], and the last two follow from the Cauchy–Schwarz inequality. It turns out that they are
also sufficient.

Moment matrices of discrete distributions satisfy more structural properties. For instances,
the moment matrix of a k-atomic distribution of any order is of rank at most k, and is a deter-
ministic function of m2k−1; the number of atoms can be characterized using the determinants
of moment matrices (see [53], page 362 or [40], Theorem 2A) as follows.

THEOREM 6. (m1, . . . ,m2r ) are the first 2r moments of a distribution with exactly r

points of support if and only if det(Mr−1) > 0 and det(Mr ) = 0.

Next, we discuss the closely related notion of Gauss quadrature, which is a discrete ap-
proximation for a given distribution in the sense of moments and plays an important role in
the execution of the DMM estimator. Given π supported on an interval [a, b] ⊆ R, a k-point
Gauss quadrature is a k-atomic distribution πk = ∑k

i=1 wiδxi
, also supported on [a, b], such

that, for any polynomial P of degree at most 2k − 1,

(15) EπP = Eπk
P =

k∑
i=1

wiP (xi).
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Algorithm 1 Quadrature rule
Input: a valid moment vector (m1, . . . ,m2k−1).
Output: nodes x = (x1, . . . , xk) and weights w = (w1, . . . ,wk).

Define the following degree-k polynomial P :

P(x) = det

⎡
⎢⎢⎢⎢⎣

1 m1 · · · mk

...
...

. . .
...

mk−1 mk · · · m2k−1

1 x · · · xk

⎤
⎥⎥⎥⎥⎦ .

Let the nodes (x1, . . . , xk) be the roots of the polynomial P .
Let the weights w = (w1, . . . ,wk) be

w =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
x1 x2 · · · xk

...
...

. . .
...

xk−1
1 xk−1

2 · · · xk−1
k

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣

1
m1
...

mk−1

⎤
⎥⎥⎥⎦ .

Gauss quadrature is known to always exist and is uniquely determined by m2k−1(π) (cf., e.g.,
[52], Section 3.6), which shows that any valid moment vector of order 2k − 1 can be realized
by a unique k-atomic distribution. A basic algorithm to compute Gauss quadrature is Al-
gorithm 1 [19] and many algorithms with improved computational efficiency and numerical
stability have been proposed; cf. [16], Chapter 3.

2.2. Wasserstein distance. A central quantity in the theory of optimal transportation, the
Wasserstein distance is the minimum cost of mapping one distribution to another. In this
paper, we will be mainly concerned with the 1-Wasserstein distance defined in (6), which can
be equivalently expressed, through the Kantorovich duality [55], as

(16) W1
(
ν, ν′) = sup

{
Eν[ϕ] −Eν′ [ϕ] : ϕ is 1-Lipschitz

}
.

The optimal coupling in (6) has many equivalent characterization [55] but is often difficult to
compute analytically in general. Nevertheless, the situation is especially simple for distribu-
tions on the real line, where the quantile coupling is known to be optimal, and hence

(17) W1
(
ν, ν′) =

∫ ∣∣Fν(t) − Fν′(t)
∣∣dt,

where Fν and Fν′ denote the CDFs of ν and ν′, respectively. Both (16) and (17) provide
convenient characterizations to bound the Wasserstein distance in Section 3.

As previously mentioned in Section 1.4, two discrete distributions close in the Wasserstein
distance have similar support sets and weights. This is made precise by Lemmas 2 and 3 next.

LEMMA 2. Suppose ν and ν′ are discrete distributions supported on S and S′, respec-
tively. Let ε = min{ν(x) : x ∈ S} ∧ min{ν′(x) : x ∈ S′}. Then

dH

(
S,S′) ≤ W1

(
ν, ν′)/ε,

where dH denotes the Hausdorff distance defined as

(18) dH

(
S,S′) = max

{
sup
x∈S

inf
x′∈S′

∣∣x − x′∣∣, sup
x′∈S′

inf
x∈S

∣∣x − x′∣∣}.
LEMMA 3. For any δ > 0,

ν(x) − ν′([x ± δ]) ≤ W1
(
ν, ν′)/δ, ν′(x) − ν

([x ± δ]) ≤ W1
(
ν, ν′)/δ.
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3. Optimal transport and moment comparison theorems. A discrete distribution with
k atoms has 2k−1 free parameters. Therefore, it is reasonable to expect that it can be uniquely
determined by its first 2k − 1 moments. Indeed, we have the following simple identifiability
results for discrete distributions.

LEMMA 4. Let ν and ν′ be distributions on the real line.

1. If ν and ν′ are both k-atomic, then ν = ν′ if and only if m2k−1(ν) = m2k−1(ν
′).

2. If ν is k-atomic, then ν = ν′ if and only if m2k(ν) = m2k(ν
′).

In the context of statistical estimation, we only have access to samples and noisy estimates
of moments. To solve the inverse problems from moments to distributions, our theory relies
on the following stable version of the identifiability in Lemma 4, which show that closeness
of moments implies closeness of distributions in Wasserstein distance. In the sequel, we refer
to Propositions 1 and 2 as moment comparison theorems.

PROPOSITION 1. Let ν and ν′ be k-atomic distributions supported on [−1,1]. If
|mi(ν) − mi(ν

′)| ≤ δ for i = 1, . . . ,2k − 1, then

W1
(
ν, ν′) ≤ O

(
kδ

1
2k−1

)
.

PROPOSITION 2. Let ν be a k-atomic distribution supported on [−1,1]. If |mi(ν) −
mi(ν

′)| ≤ δ for i = 1, . . . ,2k, then

W1
(
ν, ν′) ≤ O

(
kδ

1
2k
)
.

REMARK 1. The exponents in Proposition 1 and 2 are optimal. To see this, we first note
that the number of moments needed for identifiability in Lemma 4 cannot be reduced:

1. Given any 2k distinct points, there exist two k-atomic distributions with disjoint support
sets but identical first 2k − 2 moments (see Lemma 30 of the Supplementary Material [57]).

2. Given any continuous distribution, its k-point Gauss quadrature is k-atomic and have
identical first 2k − 1 moments (see Section 2.1).

By the first observation, there exist two k-atomic distributions ν and ν′ such that

mi(ν) = mi

(
ν′), i = 1, . . . ,2k − 2,∣∣m2k−1(ν) − m2k−1

(
ν′)∣∣ = ck, W1

(
ν, ν′) = dk,

where ck and dk are strictly positive constants that depend on k. Let ν̃ and ν̃′ denote the
distributions of εX and εX′ such that X ∼ ν and X′ ∼ ν′, respectively. Then we have

max
i∈[2k−1]

∣∣mi(ν̃) − mi(ν̃)
∣∣ = ε2k−1ck, W1

(
ν̃, ν̃′) = εdk.

This concludes the tightness of the exponent in Proposition 1. Similarly, the exponent in
Proposition 2 is also tight using the second observation.

REMARK 2. Classical moments comparison theorems aim to show convergence of dis-
tributions by comparing a growing number of moments. For example, Chebyshev’s theorem
(see [12], Theorem 2) states if mr (π) = mr (N(0,1)), then

sup
x∈R

∣∣Fπ(x) − �(x)
∣∣ ≤ √

π

2r
,
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where Fπ and � denote the CDFs of π and N(0,1), respectively. For two compactly sup-
ported distributions, the above estimate can be sharpened to O(

log r
r

) [35]. In contrast, in
the context of estimating finite mixtures we are dealing with discrete mixing distributions,
which can be identified by a fixed number of moments. However, with finitely many sam-
ples, it is impossible to exactly determine the moments, and measuring the error in the KS
distance leads to triviality (see Section 1.4). It turns out that W1-distance is a suitable metric
for this purpose, and the closeness of moments does imply the closeness of distribution in
the W1 distance, which is the integrated difference (L1-distance) between CDFs as opposed
the uniform error (L∞-distance). An upper bound on the W1 distance is obtained in [33] (see
also Lemma 24 of the Supplementary Material [57]) involving the differences of the first k

moments and a �(1
k
) term that does not vanish for fixed k. The discrepancy between param-

eters of two Gaussian mixtures is obtained by comparing moments in [27, 44], which is not
applicable for estimating the mixing distribution.

4. Estimators and statistical guarantees. In this section, we introduce the DMM es-
timators and prove the statistical bounds announced in Section 1. To keep the presentation
simple, we focus on estimators with expected risk guarantees. To obtain a high-probability
bound, one can employ the usual technique of dividing the samples into batches, applying
the unbiased moment estimator to each batch and taking the median, then finally executing
the DMM method to estimate the mixing distribution.

The estimators considered in this section4 are evaluated by numerical experiments in com-
parison with the EM algorithm and a popular implementation of GMM [6]. Overall the per-
formance of moment-based estimators is on par with that of EM, but the running time of
significantly shorter especially when the components are poorly separated. Compared to the
existing heuristic solver of GMM [6], the DMM estimator (which exactly solves the GMM) is
more accurate and achieves a speedup by orders of magnitude. Furthermore, consistent with
the theory in Theorem 2, better estimation accuracy is achieved when the components are
more separated. Due to page limit, the details are reported in Section 8 of the Supplementary
Material [57].

4.1. Known variance. The denoised method of moments for estimating Gaussian loca-
tion mixture models (2) with known variance parameter σ 2 consists of three main steps:

1. estimate m2k−1(ν) by m̃ = (m̃1, . . . , m̃2k−1) (using Hermite polynomials);
2. denoise m̃ by its projection m̂ onto the moment space (semidefinite programming);
3. find a k-atomic distribution ν̂ such that m2k−1(ν̂) = m̂ (Gauss quadrature).

The complete algorithm is summarized in Algorithm 2.
We estimate the moments of the mixing distribution in lines 1 to 4. The unique unbiased

estimators for the polynomials of the mean parameter in a Gaussian location model are Her-
mite polynomials

(20) Hr(x) = r!
�r/2�∑
j=0

(−1/2)j

j !(r − 2j)!x
r−2j ,

such that EHr(X) = μr when X ∼ N(μ,1). Thus, if we define

(21) γr(x, σ ) = σ rHr(x/σ) = r!
�r/2�∑
j=0

(−1/2)j

j !(r − 2j)!σ
2j xr−2j ,

4The implementations are available at https://github.com/Albuso0/mixture.

https://github.com/Albuso0/mixture
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Algorithm 2 Denoised method of moments (DMM) with known variance

Input: n independent samples X1, . . . ,Xn, order k, variance σ 2, interval I = [a, b].
Output: estimated mixing distribution.

1: for r = 1 to 2k − 1 do
2: γ̂r = 1

n

∑
i X

r
i

3: m̃r = r!∑�r/2�
i=0

(−1/2)i

i!(r−2i)! γ̂r−2iσ
2i

4: end for
5: Let m̂ be the optimal solution of the following:

(19) min
{‖m̃ − m̂‖ : m̂ satisfies (14)

}
,

where m̃ = (m̃1, . . . , m̃2k−1).
6: Report the outcome of the Gauss quadrature (Algorithm 1) with input m̂.

then Eγr(X,σ) = μr when X ∼ N(μ,σ 2). Hence, by linearity, m̃r is an unbiased estimate
of mr(ν). The variance of m̃r is bounded by the following lemma.

LEMMA 5. If X1, . . . ,Xn
i.i.d.∼ ν ∗ N(0, σ 2) and ν is supported on [−M,M], then

var[m̃r ] ≤ 1

n

(
O(M + σ

√
r)

)2r
.

As observed in Section 1.2, the major reason for the failure of the usual method of moments
is that the unbiased estimate m̃ needs not constitute a legitimate moment sequence, despite the
consistency of each individual m̃i . To resolve this issue, we project m̃ to the moment space
using (19). As explained in Section 2.1, (14) consists of positive semidefinite constraints,
and thus the optimal solution of (19) can be obtained by semidefinite programming (SDP).5

In fact, it suffices to solve a feasibility program and find any valid moment vector m̂ that is
within the desired 1√

n
statistical accuracy.

Now that m̂ is indeed a valid moment sequence, we use the Gauss quadrature introduced
in Section 2.1 (see Algorithm 1 in Section 2.1) to find the unique k-atomic distribution ν̂

such that m2k−1(ν̂) = m̂. Using Algorithm 2, m̃ is computed in O(kn) time, the semidefinite
programming is solvable in O(k6.5) time using the interior-point method (see [56]), and the
Gauss quadrature can be evaluated in O(k3) time [19]. In view of the global assumption (7),
Algorithm 2 can be executed in O(kn) time.

We now prove the statistical guarantee (8) for the DMM estimator previously announced
in Theorem 1.

PROOF. By scaling it suffices consider M = 1. We use Algorithm 2 with Euclidean norm
in (19). Using the variance of m̃ in Lemma 5 and Chebyshev inequality yield that, for each
r = 1, . . . ,2k − 1, with probability 1 − 1

8k
,

(22)
∣∣m̃r − mr(ν)

∣∣ ≤ √
k/n(c

√
r)r ,

for some absolute constant c. By the union bound, with probability 3/4, (22) holds simulta-
neously for every r = 1, . . . ,2k − 1, and thus

∥∥m̃ − m2k−1(ν)
∥∥

2 ≤ ε, ε � (
√

ck)2k+1
√

n
.

5The formulation (19) with Euclidean norm can already be implemented in popular modeling languages for
convex optimization problem such as CVXPY [13]. A standard form of SDP is given in Appendix A of the Sup-
plementary Material [57].
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Since m2k−1(ν) satisfies (14), and thus is one feasible solution for (19), we have ‖m̃ − m̂‖2 ≤
ε. Note that m̂ = m2k−1(ν̂). Hence, by triangle inequality, we obtain the following statistical
accuracy:

(23)
∥∥m2k−1(ν̂) − m2k−1(ν)

∥∥
2 ≤ ε.

Applying Proposition 1 yields that, with probability 3/4,

W1(ν̂, ν) ≤ O
(
k1.5n− 1

4k−2
)
.

The confidence 1 − δ in (8) can be obtained by the usual “median trick”: divide the samples
into T = log 2k

δ
batches, apply Algorithm 2 to each batch of n/T samples, and take m̃r to be

the median of these estimates. Then Hoeffding’s inequality and the union bound imply that,
with probability 1 − δ,

(24)
∣∣m̃r − mr(ν)

∣∣ ≤
√

log(2k/δ)

n
(c

√
r)r ∀r = 1, . . . ,2k − 1,

and the desired (8) follows. �

To conclude this subsection, we discuss the connection to the Generalized Method of Mo-
ments (GMM). Instead of solving the moment equations, GMM aims to minimize the differ-
ence between estimated and fitted moments:

(25) Q(θ) = (
m̂ − m(θ)

)�
W

(
m̂ − m(θ)

)
,

where m̂ is the estimated moment, θ is the model parameter, and W is a positive semidefinite
weighting matrix. The minimizer of Q(θ) serves as the GMM estimate for the unknown
model parameter θ0. In general, the objective function Q is nonconvex in θ , notably under
the Gaussian mixture model with θ corresponding to the unknown means and weights, which
is hard to optimize. Note that (19) with the Euclidean norm is equivalent to GMM with the
identity weighting matrix. Therefore, Algorithm 2 is an exact solver for GMM in the Gaussian
location mixture model.

In theory, the optimal weighting matrix W ∗ that minimizes the asymptotic variance is the
inverse of limn→∞ cov[√n(m̂ − m(θ0))], which depends the unknown model parameters θ0.
Thus, a popular approach is a two-step estimator [20]:

1. a suboptimal weighting matrix, for example, identify matrix is used in the GMM to
obtain a consistent estimate of θ0, and hence a consistent estimate Ŵ for W ∗;

2. θ0 is reestimated using the weighting matrix Ŵ .

The above two-step approach can be similarly implemented in the denoised method of mo-
ments.

4.2. Unknown variance. When the variance parameter σ 2 is unknown, unbiased estima-
tor for the moments of the mixing distribution no longer exists (see Lemma 31 of the Supple-
mentary Material [57]). It is not difficult to consistently estimate the variance,6 then plug into
the DMM estimator in Section 4.1 to obtain a consistent estimate of the mixing distribution
ν; however, the convergence rate is far from optimal. In fact, to achieve the optimal rate in
Theorem 1, it is crucial to simultaneously estimate both the means and the variance param-
eters. To this end, again we take a moment-based approach. The following result provides a
guarantee for any joint estimate of both the mixing distribution and the variance parameter in
terms of the moments accuracy.

6For instance, the simple estimator σ̂ = maxi Xi√
2 logn

satisfies |σ − σ̂ | = OP (logn)− 1
2 .
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PROPOSITION 3. Let

π = ν ∗ N
(
0, σ 2), π̂ = ν̂ ∗ N

(
0, σ̂ 2),

where ν, ν̂ are k-atomic distributions supported on [−M,M], and σ , σ̂ are bounded by a
constant. If |mr(π) − mr(π̂)| ≤ ε for r = 1, . . . ,2k, then∣∣σ 2 − σ̂ 2∣∣ ≤ O

(
M2ε

1
k
)
, W1(ν, ν̂) ≤ O

(
Mk1.5ε

1
2k
)
.

To apply Proposition 3, we can solve the method of moments equations, namely, find a
k-atomic distribution ν̂ and σ̂ 2 such that

(26) En

[
Xr ] = Eπ̂

[
Xr], r = 1, . . . ,2k,

where π̂ = μ̂ ∗ N(0, σ̂ 2) is the fitted Gaussian mixture. Here, both the number of equations
and the number of variables are equal to 2k. Suppose (26) has a solution (μ̂, σ̂ ). Then ap-
plying Proposition 3 with δ = Ok(

1√
n
) achieves the rate Ok(n

−1/(4k)) in Theorem 1, which
is minimax optimal (see Section 6 of the Supplementary Material [57]). In sharp contrast to
the case of known σ , where we have shown in Section 1.2 that the vanilla method of mo-
ments equation can have no solution unless we denoise by projection to the moment space,
here with one extra scale parameter σ , one can show that (26) has a solution with probability
one.7 Furthermore, an efficient method of finding a solution to (26) is due to Lindsay [40] and
summarized in Algorithm 3. Here, the sample moments can be computed in O(kn) time, and
the smallest nonnegative root of the polynomial of degree k(k + 1) can be found in O(k2)

time using Newton’s method (see [3]). So overall Lindsay’s estimator can be evaluated in
O(kn) time.

In [40], the consistency of this estimator was proved under the extra condition that σ̂

(which is a random variable) as a root of dk has multiplicity one. It is unclear whether this
condition is guaranteed to hold. We will show that, unconditionally, Lindsay’s estimator is

Algorithm 3 Lindsay’s estimator for normal mixtures with an unknown common variance
Input: n samples X1, . . . ,Xn.
Output: estimated mixing distribution ν̂, and estimated variance σ̂ 2.

1: for r = 1 to 2k do
2: γ̂r = 1

n

∑
i X

r
i

3: m̂r (σ ) = r!∑�r/2�
i=0

(−1/2)i

i!(r−2i)! γ̂r−2iσ
2i

4: end for
5: Let d̂k(σ ) be the determinant of the matrix {m̂i+j (σ )}ki,j=0.

6: Let σ̂ be the smallest positive root of d̂k(σ ) = 0.
7: for r = 1 to 2k do
8: m̂r = m̂r(σ̂ )

9: end for
10: Let ν̂ be the outcome of the Gauss quadrature (Algorithm 1) with input m̂1, . . . , m̂2k−1
11: Report ν̂ and σ̂ 2.

7It is possible that the equation (26) has no solution, for instance, when k = 2, n = 7 and the empirical distribu-

tion is π7 = 1
7 δ−√

7 + 1
7 δ√7 + 5

7 δ0. The first four empirical moments are m4(π7) = (0,2,0,14), which cannot be

realized by any two-component Gaussian mixture (1). Indeed, suppose π̂ = w1N(μ1, σ 2) + (1 − w1)N(μ2, σ 2)

is a solution to (26). Eliminating variables leads to the contradiction that 2μ4
1 + 2 = 0. Assuringly, as we will

show later in Lemma 7, such cases occur with probability zero.



OPTIMAL ESTIMATION OF GAUSSIAN MIXTURES 1997

not only consistent, but in fact achieves the minimax optimal rate (9) and (10) previously an-
nounced in Theorem 1. We start by proving that Lindsay’s algorithm produces an estimator
σ̂ so that the corresponding the moment estimates lie in the moment space with probability
one. In this sense, although no explicit projection is involved, the noisy estimates are implic-
itly denoised.

We first describe the intuition of the choice of σ̂ in Lindsay’s algorithm, that is, line 6 of
Algorithm 3. Let X ∼ ν ∗ N(0, σ 2). For any σ ′ ≤ σ , we have

E
[
γj

(
X,σ ′)] = mj

(
ν ∗ N

(
0, σ 2 − σ ′2)).

Let dk(σ
′) denote the determinant of the moment matrix {E[γi+j (X,σ ′)]}ki,j=0, which is

an even polynomial in σ ′ of degree k(k + 1). According to Theorem 6, dk(σ
′) > 0 when

0 ≤ σ ′ < σ and becomes zero at σ ′ = σ , and thus σ is characterized by the smallest positive
zero of dk . In lines 5–6, dk is estimated by d̂k using the empirical moments, and σ is estimated
by the smallest positive zero of d̂k . We first note that d̂k indeed has a positive zero.

LEMMA 6. Assume n > k and the mixture distribution has a density. Then, almost surely,
d̂k has a positive root within (0, s], where s2 � 1

n

∑n
i=1(Xi − En[X])2 denotes the sample

variance.

The next result shows that, with the above choice of σ̂ , the moment estimates m̂j =
En[γj (X, σ̂ )] for j = 1, . . . ,2k given in line 8 are implicitly denoised and lie in the moment
space with probability one. Thus, (26) has a solution, and the estimated mixing distribution
ν̂ can be found by the Gauss quadrature. This result was previously shown in [40] assuming
that σ̂ is of multiplicity one. In contrast, Lemma 7 only requires that n ≥ 2k − 1 and the
mixture distribution has a density.

LEMMA 7. Assume n ≥ 2k − 1 and the mixture distribution has a density. Then, almost
surely, there exists a k-atomic distribution ν̂ such that mj(ν̂) = m̂j for j ≤ 2k, where m̂j is
from Algorithm 3.

With the above analysis, we now prove the statistical guarantee (9) and (10) for Lindsay’s
algorithm announced in Theorem 1.

PROOF. It suffices to consider M = 1. Let π̂ = ν̂ ∗N(0, σ̂ 2) and π = ν ∗N(0, σ 2) denote
the estimated mixture distribution and the ground truth, respectively. Let m̂r = En[Xr ] and
mr = mr(π). The variance of m̂r is upper bounded by

var[m̂r ] = 1

n
var

[
Xr

1
] ≤ 1

n
E
[
X2r ] ≤ (

√
cr)2r

n
,

for some absolute constant c. Using Chebyshev inequality, for each r = 1, . . . ,2k, with prob-
ability 1 − 1

8k
, we have

(27) |m̂r − mr | ≤ (
√

cr)r
√

k/n.

By the union bound, with probability 3/4, the above holds holds simultaneously for every r =
1, . . . ,2k. It follows from Lemmas 6 and 7 that (26) holds with probability one. Therefore,∣∣mr(π̂) − mr(π)

∣∣ ≤ (
√

cr)r
√

k/n, r = 1, . . . ,2k,

for some absolute constant c. In the following, the error of variance estimate is denoted by
τ 2 = |σ 2 − σ̂ 2|:
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• If σ ≤ σ̂ , let ν′ = ν̂ ∗ N(0, τ 2). Using Eπ [γr(X,σ)] = mr(ν) and Eπ̂ [γr(X,σ)] = mr(ν
′),

where γr is the Hermite polynomial (21), we obtain that (see Lemma 27 of the Supple-
mentary Material [57])

(28)
∣∣mr

(
ν′) − mr(ν)

∣∣ ≤ (√
c′k

)2k√
k/n, r = 1, . . . ,2k,

for an absolute constant c′. Applying Proposition 3 yields that∣∣σ 2 − σ̂ 2∣∣ ≤ O
(
kn− 1

2k
)
, W1(ν, ν̂) ≤ O

(
k2n− 1

4k
)
.

• If σ ≥ σ̂ , let ν ′ = ν ∗ N(0, τ 2). Similar to (28), we have∣∣mr(ν̂) − mr

(
ν′)∣∣ ≤ (√

c′k
)2k√

k/n � ε, r = 1, . . . ,2k.

To apply Proposition 3, we also need to ensure that ν̂ has a bounded support, which is not
obvious. To circumvent this issue, we apply a truncation argument thanks to the following
tail probability bound for ν̂ (see Lemma 16 of the Supplementary Material [57]):

(29) P
[|Û | ≥ √

c0k
] ≤ ε(

√
c1k/t)2k, Û ∼ ν̂,

for absolute constants c and c′. To this end, consider Ũ = Û1{|Û |≤√
c0k} ∼ ν̃. Note that Ũ is

k-atomic supported on [−√
c0k,

√
c0k], we have W1(ν, ν̂) ≤ εeO(k) and |mr(ν̃)−mr(ν̂)| ≤

kε(c1k)k for r = 1, . . . ,2k. Using the triangle inequality yields that∣∣mr(ν̃) − mr

(
ν′)∣∣ ≤ ε + kε(c1k)k.

Now we apply Proposition 3 with ν̃ and ν ∗N(0, τ 2) where both ν̃ and ν are k-atomic sup-
ported on [−√

c0k,
√

c0k]. In the case ν̃ is discrete, the dependence on k in Proposition 3
can be improved (by improving [57], (64), in the proof) and we obtain that∣∣σ 2 − σ̂ 2∣∣ ≤ O

(
kn− 1

2k
)
, W1(ν, ν̃) ≤ O

(
k2n− 1

4k
)
.

Using k ≤ O(
logn

log logn
), we also obtain W1(ν, ν̂) ≤ O(k2n− 1

2k ) by the triangle inequality.

To obtain a confidence 1 − δ in (9) and (10), we can replace the empirical moments m̂r by
the median of T = log 2k

δ
independent estimates similar to (24). �

4.3. Adaptive rates. In Sections 4.1 and 4.2, we proved the statistical guarantees of our
estimators under the worst-case scenario where the means can be arbitrarily close. Under
separation conditions on the means (see Definition 1), our estimators automatically achieve
a strictly better accuracy than the one claimed in Theorem 1. The goal in this subsection
is to show those adaptive results. The key is the following adaptive version of the moment
comparison theorems (cf. Propositions 1 and 2).

PROPOSITION 4. Suppose both ν and ν ′ are supported on a set of 	 atoms in [−1,1], and
each atom is at least γ away from all but at most 	′ other atoms. Let δ = maxi∈[	−1] |mi(ν)−
mi(ν

′)|. Then

W1
(
ν, ν′) ≤ 	

(
	4	−1δ

γ 	−	′−1

) 1
	′
.

PROPOSITION 5. Suppose ν is supported on k atoms in [−1,1] and any t ∈R is at least
γ away from all but k′ atoms. Let δ = maxi∈[2k] |mi(ν) − mi(ν

′)|. Then

W1
(
ν, ν′) ≤ 8k

(
k42kδ

γ 2(k−k′)

) 1
2k′

.
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The adaptive result (11) in the known variance parameter case is obtained using Propo-
sition 4 in place of Proposition 1. To deal with unknown variance parameter case, using
Proposition 5, we first show the following adaptive version of Proposition 3.

PROPOSITION 6. Under the conditions of Proposition 3, if both Gaussian mixtures both
have k0 γ -separated clusters in the sense of Definition 1, then

√∣∣σ 2 − σ̂ 2
∣∣,W1(ν, ν̂) ≤ Ok

((
ε

γ 2(k0−1)

) 1
2(k−k0+1)

)
.

Using these propositions, we now prove the adaptive rate of the denoised method of mo-
ments previously announced in Theorem 2:

PROOF OF THEOREM 2. By scaling, it suffices to consider M = 1. Recall that the Gaus-
sian mixture is assumed to have k0 (γ,ω)-separated clusters in the sense of Definition 1, that
is, there exists a partition S1, . . . , Sk0 of [k] such that |μi −μi′ | ≥ γ for any i ∈ S	 and i′ ∈ S	′
such that 	 
= 	′, and

∑
i∈S	

wi ≥ ω for each 	.
Let ν̂ be the estimated mixing distribution which satisfies W1(ν, ν̂) ≤ ε by Theorem 1.

Since γω ≥ Cε by assumption, for each S	, there exists i ∈ S	 such that μi is within distance
cγ , where c = 1/C, to some atom of ν̂. Therefore, the estimated mixing distribution ν̂ has k0
(1 − 2c)γ -separated clusters. Denote the union of the support sets of ν and ν̂ by S .

• When σ is known, each atom in S is �(γ ) away from at least 2(k0 − 1) other atoms. Then
(11) follows from Proposition 4 with 	 = 2k and 	′ = (2k − 1) − 2(k0 − 1).

• When σ is unknown, (12) follows from a similar proof of (9) and (10) with Proposition 3
replaced by Proposition 6. �

5. Proof of moments comparison theorems. We begin by briefly reviewing some back-
ground on polynomial interpolation, which plays a key role in the proofs.

5.1. Polynomial interpolation, majorization and the Neville diagram. Given a function
f and a set of distinct points (commonly referred to as nodes) {x0, . . . , xk}, there exists a
unique polynomial P of degree k that coincides with f on every node. The interpolating
polynomial P can be expressed in the Lagrange form as

(30) P(x) =
k∑

i=0

f (xi)

∏
j 
=i(x − xj )∏
j 
=i (xi − xj )

,

and, alternatively, in the Newton form as

(31) P(x) = a0 + a1(x − x0) + · · · + ak(x − x0) · · · (x − xk−1).

Let us pause to emphasize that, in numerical analysis, typically the Newton form is introduced
for computational considerations so that one does not need to recompute all coefficients when
an extra node is introduce [52]. Here, for our theoretical analysis the Newton form turns out
to be crucial, which offers better bound on the coefficients of the interpolating polynomials.

The coefficients in (31) can be successively calculated using a0 = f (x0), a0 + a1(x1 −
x0) = f (x1), etc. In general, they coincide with the divided differences ar = f [x0, . . . , xr ]
that are recursively defined as

(32)

f [xi] = f (xi),

f [xi, . . . , xi+r ] = f [xi+1, . . . , xi+r ] − f [xi, . . . , xi+r−1]
xi+r − xi

.
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The above recursion can be calculated by the following Neville’s diagram (cf. [52], Sec-
tion 2.1.2):

x0

f [x0]

...

x1

f [x1]

...
x2

f [x2]

...

f [x0, x1]

f [x1, x2]

f [x0, x1, x2]

f [x0, . . . , xk]

xk

...

f [xk]

r = 0 1 2 . . . k

In Neville’s diagram, the rth order divided differences are computed in the rth column, and
are determined by the previous column and the nodes. The coefficients in (31) are found in
the top diagonal. In this paper, Neville’s diagram will be used to bound the coefficients in
Newton formula (31); cf. Lemma 25 of the Supplementary Material [57].

Interpolating polynomials are the main tool to prove moment comparison theorems in
Section 3. Specifically, we will interpolate step functions by polynomials in order to bound
the difference of two CDFs via their moment difference. Therefore, it is crucial to have a
good control over the coefficients of the interpolating polynomial. To this end, it turns out the
Newton form is more convenient to use than the Lagrange form because the former takes into
account the cancellation between each term in the polynomial. Indeed, in the Lagrange form
(30), if two nodes are very close, then the individual terms can be arbitrarily large, even if f

itself is a smooth function. In contrast, each term of (31) is stable when f is smooth since
divided differences are closely related to derivatives. The following example illustrates this
point.

EXAMPLE 3 (Lagrange versus Newton form). Given three points x1 = 0, x2 = ε, x3 = 1
with f (x1) = 1, f (x2) = 1 + ε, f (x3) = 2, the interpolating polynomial is P(x) = x +
1. The next equation gives the interpolating polynomial in Lagrange’s and Newton’s form,
respectively:

Lagrange: P(x) = (x − ε)(x − 1)

ε
+ (1 + ε)

x(x − 1)

ε(ε − 1)
+ 2

x(x − ε)

1 − ε
;

Newton: P(x) = 1 + x + 0.

The coefficients in the Newton form are bounded, while those in the Lagrange form blow up
as ε → 0.

Polynomial interpolation can be generalized to interpolate the value of derivatives, known
as the Hermite interpolation. Formally, given a function f and distinct nodes x0 < x1 < · · · <
xm, there exists a unique polynomial P of degree k satisfying P (j)(xi) = f (j)(xi) for i =
0, . . . ,m and j = 0, . . . , ki − 1, where k + 1 = ∑m

i=0 ki . Analogous to the Lagrange formula
(30), P can be explicitly constructed with the help of the generalized Lagrange polynomials,
and an explicit formula is given in [52], pages 52–53. The Newton form (31) can also be
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extended by using generalized divided differences, which for repeated nodes, is defined as
the value of the derivative:

(33) f [xi, . . . , xi+r ] � f (r)(x0)

r! , xi = xi+1 = · · · = xi+r .

To this end, we define an expanded set of nodes by repeating each xi for ki times:

(34) x0 = · · · = x0︸ ︷︷ ︸
k0

< x1 = · · · = x1︸ ︷︷ ︸
k1

< · · · < xm = · · · = xm︸ ︷︷ ︸
km

.

The Hermite interpolating polynomial is obtained by (31) using this new set of nodes and
generalized divided differences, which can also be calculated from the Neville’s diagram ver-
batim by replacing divided differences by derivatives whenever encountering repeated nodes.
Below we give an example using Hermite interpolation to construct polynomial majorant,
which will be used to prove moment comparison theorems in Section 3.

EXAMPLE 4 (Hermite interpolation and polynomial majorization). Let f (x) = 1{x≤0}.
We want to find a polynomial majorant P ≥ f such that P(x) = f (x) on x = ±1. To this
end, we interpolate the values of f on {−1,0,1} with the following constraints:

x −1 0 1
P(x) 1 1 0
P ′(x) 0 any 0

The resulting polynomial P has degree four and majorizes f [1], page 65. To see this, we
note that P ′(ξ) = 0 for some ξ ∈ (−1,0) by Rolle’s theorem. Since P ′(−1) = P ′(1) = 0,
P has no other stationary point than −1, ξ , 1, and thus decreases monotonically in (ξ,1).
Hence, −1, 1 are the only local minimum points of P , and thus P ≥ f everywhere. The
polynomial P is shown in Figure 1(b).

To explicitly construct the polynomial, we expand the set of nodes to −1, −1, 0, 1, 1
according to (34). Applying Newton formula (31) with generalized divided differences from
the Neville’s diagram Figure 1(a), we obtain that P(x) = 1− 1

4x(x +1)2 + 1
2x(x +1)2(x −1).

FIG. 1. Neville’s diagram and Hermite interpolation. In (a), values are recursively calculated from left to right.
For example, the thick line shows that f [−1,−1,0,1] is obtained by −1/2−0

1−(−1)
= −1/4.
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5.2. Proofs of Propositions 1 and 2. In this subsection, we prove Propositions 1 and 2.
As a warm-up, we start by proving Lemma 4, with the purpose of introducing the apparatus
of interpolating polynomials. Throughout this section, we use

Fπ(x) � π
(
(−∞, x]),

to denote the CDF of a distribution π .

PROOF OF LEMMA 4. We only need to prove the “if” part.

1. Denote the union of the support sets of ν and ν′ by S. Here, S is of size at most 2k. For
any t ∈R, there exists a polynomial P of degree at most 2k − 1 to interpolate x �→ 1{x≤t} on
S. Since mi(ν) = mi(ν

′) for i = 1, . . . ,2k − 1, we have

Fν(t) = Eν[1{X≤t}] = Eν

[
P(X)

] = Eν′
[
P(X)

] = Eν′ [1{X≤t}] = Fν′(t).

2. Denote the support set of ν by S′ = {x1, . . . , xk}. Let Q(x) = ∏
i (x − xi)

2, a nonnega-
tive polynomial of degree 2k. Since mi(ν) = mi(ν

′) for i = 1, . . . ,2k, we have

Eν′
[
Q(X)

] = Eν

[
Q(X)

] = 0.

Therefore, ν′ is also supported on S′, and thus is k-atomic. The conclusion follows from the
first case of Lemma 4. �

Next, we prove Proposition 7, which is slightly stronger than Proposition 1. We provide
three proofs: the first two are based on the primal (coupling) formulation of W1 distance (17),
and the third proof uses the dual formulation (16). Specifically:

• The first proof uses polynomials to interpolate step functions, whose expected values are
the CDFs. The closeness of moments imply the closeness of distribution functions, and
thus, by (17), a small Wasserstein distance. A similar idea applies to the proof of Proposi-
tion 2 later.

• The second proof finds a polynomial that preserves the sign of the difference between two
CDFs, and then relate the Wasserstein distance to the integral of that polynomial. A related
idea has been used in [44], Lemma 20, which finds a polynomial that preserves the sign of
the difference between two Gaussian mixture densities.

• The third proof uses polynomials to approximate 1-Lipschitz functions, whose expected
values are related to the Wasserstein distance via the dual formulation (16).

The first proof is presented below, and the other two proofs are given in Section 10.1 of the
Supplementary Material [57].

PROPOSITION 7. Let ν and ν′ be discrete distributions supported on a total of 	 atoms
in [−1,1]. If

(35)
∣∣mi(ν) − mi

(
ν′)∣∣ ≤ δ, i = 1, . . . , 	 − 1,

then

W1
(
ν, ν′) ≤ O

(
	δ

1
	−1

)
.

FIRST PROOF OF PROPOSITION 7. Suppose ν and ν′ are supported on

(36) S = {t1, . . . , t	}, t1 < t2 < · · · < t	.

Then, using the integral representation (17), the W1 distance reduces to

(37) W1
(
ν, ν′) =

	−1∑
r=1

∣∣Fν(tr ) − Fν′(tr )
∣∣ · |tr+1 − tr |.
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For each r , let fr(x) = 1{x≤tr }, and Pr be the unique polynomial of degree 	−1 to interpolate
fr on S. In this way, we have fr = Pr almost surely under both ν and ν′, and thus

(38)
∣∣Fν(tr ) − Fν′(tr )

∣∣ = |Eνfr −Eν′fr | = |EνPr −Eν′Pr |.
Pr can expressed using Newton formula (31) as

(39) Pr(x) = 1 +
	∑

i=r+1

fr [t1, . . . , ti]gi−1(x),

where gr(x) = ∏r
j=1(x − tj ) and we used fr [t1, . . . , ti] = 0 for i = 1, . . . , r . In (39), the ab-

solute values of divided differences are obtained in Lemma 25 of the Supplementary Material
[57]:

(40)
∣∣fr [t1, . . . , ti]

∣∣ ≤
(i−2
r−1

)
(tr+1 − tr )i−1 .

In the summation of (39), let gi−1(x) = ∑i−1
j=0 ajx

j . Since |tj | ≤ 1 for every j , we have∑i−1
j=0 |aj | ≤ 2i−1 (see Lemma 26 of the Supplementary Material [57]). Applying (35) yields

that

(41)
∣∣Eν[gi−1] −Eν′ [gi−1]

∣∣ ≤ i−1∑
j=1

|aj |δ ≤ 2i−1δ.

Then we obtain from (38) and (39) that

(42)
∣∣Fν(tr ) − Fν′(tr )

∣∣ ≤ 	∑
i=r+1

(i−2
r−1

)
2i−1δ

(tr+1 − tr )i−1 ≤ 	4	−1δ

(tr+1 − tr )	−1 .

Also, |Fν(tr ) − Fν′(tr )| ≤ 1 trivially. Therefore,

(43) W1
(
ν, ν′) ≤

	−1∑
r=1

(
	4	−1δ

(tr+1 − tr )	−1 ∧ 1
)

· |tr+1 − tr | ≤ 4e(	 − 1)δ
1

	−1 ,

where we used max{ α
x	−2 ∧ x : x > 0} = α

1
	−1 and x

1
x−1 ≤ e for x ≥ 1. �

The proof of Proposition 2 uses a similar idea as the first proof of Proposition 7 to approx-
imate step functions for all values of ν and ν′; however, this is clearly impossible for nondis-
crete ν′. For this reason, we turn from interpolation to majorization. A classical method to
bound a distribution function by moments is to construct two polynomials that majorizes and
minorizes a step function, respectively. Then the expectations of these two polynomials pro-
vide a sandwich bound for the distribution function. This idea is used, for example, in the
proof of Chebyshev–Markov–Stieltjes inequality (cf. [1], Theorem 2.5.4).

PROOF OF PROPOSITION 2. Suppose ν is supported on x1 < x2 < · · · < xk . Fix t ∈
R and let ft (x) = 1{x≤t}. Suppose xm < t < xm+1. We construct polynomial majorant and
minorant using Hermite interpolation. To this end, let Pt and Qt be the unique degree-2k

polynomials to interpolate ft with the following:

x1 . . . xm t xm+1 . . . xk

P 1 . . . 1 1 0 . . . 0
P ′ 0 . . . 0 any 0 . . . 0
Q 1 . . . 1 0 0 . . . 0
Q′ 0 . . . 0 any 0 . . . 0
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FIG. 2. Polynomial majorant Pt and minorant Qt that coincide with the step function on 6 red points. The
polynomials are of degree 12, obtained by Hermite interpolation.

As a consequence of Rolle’s theorem, Pt ≥ ft ≥ Qt (cf. [1], page 65, and an illustration in
Figure 2): Using Lagrange formula of Hermite interpolation ([52], pages 52–53), Pt and Qt

differ by

Pt(x) − Qt(x) = Rt(x) �
∏
i

(
x − xi

t − xi

)2
.

The sandwich bound for ft yields a sandwich bound for the CDFs:

Eν′ [Qt ] ≤ Fν′(t) ≤ Eν′ [Pt ] = Eν′ [Qt ] +Eν′ [Rt ],
Eν[Qt ] ≤ Fν(t) ≤ Eν[Pt ] = Eν[Qt ].

Then the CDFs differ by

(44)

∣∣Fν(t) − Fν′(t)
∣∣ ≤ (

f (t) + g(t)
) ∧ 1 ≤ f (t) ∧ 1 + g(t) ∧ 1,

f (t) �
∣∣Eν′ [Qt ] −Eν[Qt ]

∣∣, g(t) � Eν′ [Rt ].
The conclusion will be obtained from the integral of CDF difference using (17). Since Rt

is almost surely zero under ν, we also have g(t) = |Eν′ [Rt ] − Eν[Rt ]|. Similar to (41), we
obtain that

g(t) = ∣∣Eν′ [Rt ] −Eν[Rt ]
∣∣ ≤ 22kδ∏k

i=1(t − xi)2
.

Hence,

(45)
∫ (

g(t) ∧ 1
)

dt ≤
∫ (

22kδ∏k
i=1(t − xi)2

∧ 1
)

dt ≤ 16kδ
1

2k ,

where the last inequality is proved in Lemma 29 of the Supplementary Material [57].
Next, we analyze f (t). The polynomial Qt (and also Pt ) can be expressed using the New-

ton formula (31) as

(46) Qt(x) = 1 +
2k+1∑

i=2m+1

ft [t1, . . . , ti]gi−1(x),

where t1, . . . , t2k+1 denotes the expanded sequence

x1, x1, . . . , xm, xm, t, xm+1, xm+1, . . . , xk, xk

obtained by (34), gr(x) = ∏r
j=1(x − tj ), and we used ft [t1, . . . , ti] = 0 for i = 1, . . . ,2m. In

(46), the absolute values of divided differences are obtained in Lemma 25 of the Supplemen-
tary Material [57]:

ft [t1, . . . , ti] ≤
( i−2
2m−1

)
(t − xm)i−1 .
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Using (46), and applying the upper bound for |Eν[gi−1] −Eν′ [gi−1]| in (41), we obtain that,
for xm < t < xm+1, m ≥ 1,

f (t) = ∣∣Eν′ [Qt ] −Eν[Qt ]
∣∣ ≤ 2k+1∑

i=2m+1

( i−2
2m−1

)
2i−1δ

(t − xm)i−1 ≤ k42kδ

(t − xm)2k
.

If t < x1, then Qt = 0, and thus f (t) = 0. Then, analogous to (45), we obtain that

(47)
∫ (

f (t) ∧ 1
)

dt ≤ 16kδ
1

2k .

Using (45) and (47), the conclusion follows by applying (44) to the integral representation of
Wasserstein distance (17). �
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ditional results are given in the supplementary document [57], which contains minimax lower
bounds, extensions to unbounded means, multiple dimensions and Gaussian scale mixtures,
numerical experiments, discussion on open problems and all proofs and technical results
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