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We investigate the prediction capability of the orthogonal greedy algo-
rithm (OGA) in high-dimensional regression models with dependent obser-
vations. The rates of convergence of the prediction error of OGA are obtained
under a variety of sparsity conditions. To prevent OGA from overfitting, we
introduce a high-dimensional Akaike’s information criterion (HDAIC) to de-
termine the number of OGA iterations. A key contribution of this work is
to show that OGA, used in conjunction with HDAIC, can achieve the opti-
mal convergence rate without knowledge of how sparse the underlying high-
dimensional model is.

1. Introduction. Model selection for high-dimensional regression models has been one
of the most vibrant topics in statistics over the past decade. It also has broad applications in
a variety of important fields such as bioinformatics, quantitative finance, image processing
and advanced manufacturing; see Negahban et al. (2012) and Ing et al. (2017) for further
discussion. A typical high-dimensional regression model takes the following form:

(1.1) yt =
p∑

j=1

βjxtj + εt , t = 1, . . . , n,

where n is the sample size, xt1, . . . , xtp are predictor variables, εt are mean-zero random dis-
turbance terms and p = pn is allowed to be much larger than n. There are computational and
statistical difficulties in estimating the regression function by standard regression methods
owing to p � n. However, by assuming sparsity conditions on βj , eigenvalue conditions on
the covariance (correlation) matrix of the predictor variables, and distributional conditions on
εt or xtj , it has been shown that consistent estimation of the regression function or optimal
prediction is still possible either through penalized least squares methods (see Zhao and Yu
(2006), Candes and Tao (2007), Bickel, Ritov and Tsybakov (2009) and Zhang (2010)) or
through greedy forward selection algorithms (see Bühlmann (2006), Chen and Chen (2008),
Wang (2009), Fan and Lv (2008) and Ing and Lai (2011)).

The vast majority of studies on model (1.1), however, have focused on situations where
xt = (xt1, . . . , xtp)� are nonrandom and εt are independently and identically distributed
(i.i.d.) or (xt , εt ) are i.i.d., which regrettably preclude most serially correlated data. In fact,
(1.1) can encompass a broad array of time series models if these restrictions are relaxed. For
example, it becomes the well-known autoregressive (AR) model when xtj = yt−j . Since the
predictor variables in AR models have a natural ordering, a commonly used sparsity condition
is

(1.2) C1j
−γ ≤ |βj | ≤ C2j

−γ , 0 < C1 ≤ C2 < ∞, γ > 1,

in which |βj | decay polynomially, or

C3 exp(−βj) ≤ |βj | ≤ C4 exp(−βj), 0 < C3 ≤ C4 < ∞, β > 0,(1.3)
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in which |βj | decay exponentially (see Shibata (1980) and Ing (2007)). Moreover, the model
selection problem in the AR case is simplified to an order selection one, which has been well
explored in the literature (see Shibata (1980)). When xtj , j = 1, . . . , p, do not have a natural
ordering, for example, the autoregressive exogenous (ARX) model, (1.2) and (1.3) can be
generalized as

Lj−γ ≤ ∣∣β∗
(j)

∣∣ ≤ Uj−γ(1.4)

and

L1 exp(−βj) ≤ ∣∣β∗
(j)

∣∣ ≤ U1 exp(−βj),(1.5)

respectively, where 0 < L ≤ U < ∞, 0 < L1 ≤ U1 < ∞, and |β∗
(1)| ≥ |β∗

(2)| ≥ · · · ≥ |β∗
(p)| is

a rearrangement of {|β∗
j |} in decreasing order with β∗

j = σjβj and σ 2
j = E(x2

tj ). However,
unlike the order selection problem, the model selection problem in (1.1) with dependent
observations and with coefficients satisfying (1.4) or (1.5) seems to be seldom investigated.
The problem becomes more challenging when βj may obey either one of (1.4), (1.5) or
k0 � n, but it is unclear which of the three is true. Here, k0 denotes the number of nonzero
coefficients in model (1.1), and k0 � n is referred to as the strong sparsity condition.

In this paper, we assume that the (xt , εt ) in model (1.1) is a time series obeying concen-
tration inequalities (2.2) and (2.3). We also assume that the βj in model (1.1) follow one of
the following sparsity conditions: (i) (A3), (ii) (A4), or (iii) k0 � n, where (A3) and (A4) are
defined in Section 2.1. Note that (A3) includes (1.4) and

(1.6)
p∑

j=1

∣∣β∗
j

∣∣1/γ
< M4 for some γ ≥ 1,0 < M4 < ∞,

as special cases, whereas (A4) contains (1.5). We use the orthogonal greedy algorithm
(OGA) (Temlyakov (2000)) to sequentially include candidate variables and introduce a high-
dimensional Akaike’s information criterion (HDAIC) to determine the number of OGA it-
erations. This model selection procedure is denoted by OGA+HDAIC. A key contribution
of this paper is to show that OGA+HDAIC achieves the optimal convergence rate without
knowing which sparsity condition among (i), (ii) and (iii) would follow, thereby alleviating
the dilemma mentioned in the previous paragraph.

Following this Introduction, the rest of the paper is organized as follows. In Section 2.1, we
introduce OGA and the assumptions required for our asymptotic analysis of the algorithm.
Section 2.2 derives an error bound for OGA, which is the sum of an approximation error and
a term accounting for the sampling variability. Since the approximation error decreases as the
number m of iterations increases and the sampling variability increases with m, the optimal
m can be determined by equating the two terms in the error bound for OGA. This approach,
however, is infeasible because not only does the solution involve the unknown parameters in
(A3) or (A4), but it is unknown which kind of sparsity among (i), (ii) and (iii) holds true.
To overcome this difficulty, Theorem 3.1 in Section 3.1 proposes using HDIC to determine
the number of iterations, and shows that OGA+HDAIC is rate optimal regardless of which
sparsity condition is true. In Section 3.2, we offer a comprehensive comparison of our results
with those in Negahban et al. (2012) and Ing and Lai (2011), in which the statistical proper-
ties of Lasso (Tibshirani (1996)) and OGA, respectively, are explored under model (1.1) with
independent observations. In this connection, Section 3.2 also discusses the papers by Basu
and Michailidis (2015) and Wu and Wu (2016), which investigate the performance of Lasso
under sparse high-dimensional time series models. The proof of Theorem 3.1 is given in Sec-
tion 3.3. We conclude in Section 4. An Appendix consisting of some technical results is given
at the end of the paper. A simulation study to illustrate the performance of OGA+HDAIC,
along with further technical details, is deferred to the Supplementary Material (Ing (2020)).
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2. Asymptotic theory of OGA in weakly sparse models. This section aims at estab-
lishing the convergence rate of OGA under sparse high-dimensional regression models with
dependent observations. The definition of OGA and the assumptions required for our analy-
sis of OGA are given in Section 2.1. The main result of this section is stated and proved in
Section 2.2.

2.1. Models and assumptions. We assume that {(xt , εt )} in model (1.1) is a zero-mean
stationary time series satisfying E(xt εt ) = 0. The OGA is a recursive procedure that se-
lects variables from the set of predictor variables in (1.1) one at a time. Define Xi =
(x1i , . . . , xni)

�, Zi = (z1i , . . . , zni)
� = Xi/σi , and Y = (y1, . . . , yn)

�. The algorithm is ini-
tialized by setting Ĵ0 = ∅, where Ĵm denotes the index set of the variables chosen by OGA
at the mth iteration. For m ≥ 1, Ĵm is recursively updated by

Ĵm = Ĵm−1 ∪ {ĵm},(2.1)

where

ĵm = arg max
1≤j≤p,j /∈Ĵm−1

|μ̂
Ĵm−1,j

|,

with μ̂J,i = Z�
i (I − HJ )Y/(n1/2‖Zi‖), ‖a‖ denoting the L2-norm of vector a, and HJ , J ⊆

P ≡ {1, . . . , p}, being the orthogonal projection matrix onto the linear span of {Zi , i ∈ J }
(H∅ = 0).

To investigate the performance of OGA, we make the following distributional assump-
tions:

(A1) There exists c∗
1 > 0 such that

P

(
max

1≤j≤p

∣∣∣∣∣n−1
n∑

i=1

zij εi

∣∣∣∣∣ ≥ c∗
1(logp)1/2/n1/2

)
= o(1).(2.2)

(A2) There exists c∗
2 > 0 such that

P

(
max

1≤k,l≤p

∣∣∣∣∣n−1
n∑

i=1

zikzil − ρkl

∣∣∣∣∣ ≥ c∗
2(logp)1/2/n1/2

)
= o(1),(2.3)

where ρkl = E(z1kz1l).

The following examples help illustrate (A1) and (A2). Let λmin(A) (λmax(A)) denote the
minimum (maximum) eigenvalue of matrix A and ‖a‖1, the L1-norm of vector a.

EXAMPLE 1 (Gaussian linear processes). Let

(2.4) xtl =
∞∑

j=0

w�
j (l)δt−j , εt =

∞∑
j=0

w�
j (0)δt−j ,

where δt = (δt1, . . . , δtq)
� are i.i.d. Gaussian random vectors satisfying

E(δt ) = 0, max
1≤i≤q

E
(
δ2
t i

)
< c̄ < ∞, λmin

(
E

(
δtδ

�
t

))
> c0 > 0,(2.5)

and wj (l) obey

max
0≤l≤p

∞∑
j=0

∥∥wj (l)
∥∥

1 < M2 < ∞, min
0≤l≤p

∥∥w0(l)
∥∥ > c1 > 0.(2.6)
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Then, by making use of the Hanson–Wright inequality (see Theorem 1.1 of Rudelson and
Vershynin (2013)), it is shown in Section S1 of the Supplementary Material that

(A1) and (A2) hold true under (2.4)–(2.6) and (2.8),(2.7)

where (2.8) is given by

(2.8) p → ∞ as n → ∞,
logp

n
= o(1).

As an application, we consider a high-dimensional ARX model,

(2.9) yt =
q0∑

j=1

ajyt−j +
p1∑
l=1

rl∑
j=1

β
(l)
j x

(l)
t−j+1 + εt ,

in which p = q0 + ∑p1
l=1 rl satisfies (2.8), 1 − ∑q0

j=1 aj z
j �= 0 for all |z| ≤ 1 + ι with

ι being some positive constant,
∑q0

j=1 |aj | + ∑p1
l=1

∑rl
j=1 |β(l)

j | < M5 < ∞, x
(l)
t = ε

(l)
t +∑∞

j=1 b
(l)
j ε

(l)
t−j , with

∑∞
j=1 |b(l)

j | < M6 < ∞ for all 1 ≤ l ≤ p, and δt = (ε
(1)
t , . . . , ε

(p)
t , εt )

�
are i.i.d. (p + 1)-dimensional Gaussian random vectors obeying (2.5) with q = p + 1. It is
not difficult to see that (2.4) and (2.6) are fulfilled by the regressor variables and the error
term in (2.9). Hence (A1) and (A2) are applicable to model (2.9).

EXAMPLE 2 (Linear processes with sub-Gaussian innovations). Suppose that (2.4)–(2.6)
and (2.8) are satisfied except that the Gaussianity of δt is replaced by

(2.10) ‖δtk‖ψ2 ≤ L, k = 1, . . . , q,

where ‖·‖ψ2 denotes the ψ2 Orlicz norm and L is some positive number. We note that (2.10)
is fulfilled by sub-Gaussian random variables. Assume q = ps for some 0 ≤ s < ∞. Then
by making use of the concentration inequality given in Theorem 1.4 of Adamczak and Wolff
(2015), it can be shown that (A1) and (A2) hold for some large c∗

1 and c∗
2. For more details,

see Huang and Ing (2019). In addition, the regressor variables and the error term in (2.9) still
obey (A1) and (A2), provided assumption (2.10) is used in place of the Gaussian assumption
in Example 1.

We also need a sparsity condition on regression coefficients:

(A3) There is 0 < M̄0 < ∞ such that
∑p

j=1 β∗2

j ≤ M̄0. In addition, there exist γ ≥ 1 and
0 < Cγ < ∞ such that for any J ⊆ P ,

(2.11)
∑
j∈J

∣∣β∗
j

∣∣ ≤ Cγ

(∑
j∈J

β∗2

j

)(γ−1)/(2γ−1)

.

When γ = 1, (2.11) and (1.6) are equivalent. However, (2.11) is weaker than (1.6) for γ > 1.
To see this, note that if (1.6) is true for some γ > 1, then by Hölder’s inequality,

∑
j∈J

∣∣β∗
j

∣∣ ≤
(∑

j∈J

∣∣β∗
j

∣∣1/γ
)γ /(2γ−1)(∑

j∈J

β∗2

j

)(γ−1)/(2γ−1)

≤ M
γ/(2γ−1)
4

(∑
j∈J

β∗2

j

)(γ−1)/(2γ−1)

,

implying that (2.11) holds for Cγ = M
γ/(2γ−1)
4 . In view of the connection between (2.11)

and (1.6), the parameter γ in (2.11) can be understood as an index to describe the de-
gree of sparseness in the underlying high-dimensional models. The larger the γ is, the
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sparser the model is. Although assumptions similar to (1.6) are quite popular for high-
dimensional regression analysis (see, e.g., Wang et al. (2014)), there is a subtle difference
between (2.11) and (1.6). To see this, assume that (1.4) holds for some γ > 1. Then (2.11)
holds for the same γ (see Lemma A.2 in the Appendix), whereas (1.6) is violated due to
L(1 + logp) ≤ ∑p

j=1 |β∗
j |1/γ ≤ U(1 + logp). It is worth mentioning that (1.4) not only

plays an important role in time series modeling, it also allows us to demonstrate that the ap-
proximation error of the population counterpart of OGA (which is defined at the beginning
of Appendix A and is referred to as the population OGA) is almost as small as that of the
best m-term approximation (see (3.24) and Lemma A.3 in the Appendix). In the sequel, we
refer to (2.11) as the “polynomial decay” case, owing to its connection with (1.4). To broaden
OGA’s applications, we also consider a coefficient condition sparser than (2.11):

(A4) There exists 0 < M0 < ∞ such that max1≤j≤p |β∗
j | ≤ M0. Moreover, there exists

M1 > 1 such that for any J ⊆P ,

(2.12)
∑
j∈J

∣∣β∗
j

∣∣ ≤ M1 max
j∈J

∣∣β∗
j

∣∣.
Assumption (A4) is referred to as the “exponential decay” case because (1.5) is included by
(2.12).

The following assumption on the covariance structure of zt = (z1, . . . , zp)� is frequently
used throughout the paper. Define �(J ) = E{zt (J )z�

t (J )} and gi (J ) = E(ztizt (J )), where
J ⊆ P and zt (J ) = (zti, i ∈ J )�.

(A5) For some positive numbers D̄ and M ,

max
1≤�(J )≤D̄(n/ logp)1/2,i /∈J

∥∥�−1(J )gi (J )
∥∥

1 < M,(2.13)

where �(J ) denotes the cardinality of J .

Since �−1(J )gi (J ) = arg minc∈R�(J ) E(zti − c�zt (J ))2, (2.13) essentially says that the re-
gression coefficients for zti on zt (J ) with all i /∈ J and �(J ) ≤ D̄(n/ logp) are L1
bounded. This condition holds even when zt1, . . . , ztp are highly correlated; see Section
S3 of the supplementary document. Let gy(J ) = E(ytzt (J )) and β∗(J ) = �−1(J )gy(J )=
arg minc∈R�(J ) E(yt − c�zt (J ))2, which is the regression coefficients for yt on zt (J ). By mak-
ing use of (2.13), we will show later that for any J ⊆ P with �(J ) ≤ D̄(n/ logp)1/2, there
exists 0 < C < ∞ such that

(2.14)
∥∥β∗ − β∗(J )

∥∥
1 ≤ C

∑
j /∈J

∣∣β∗
j

∣∣,
where β∗ = (β∗

1 , . . . , β∗
p)� and β∗(J ) here is regarded as a p-dimensional vector with un-

defined entries set to 0. Inequality (2.14) is referred to as the uniform Baxter’s inequality.
(For more details on Baxter’s inequality in autoregressive modeling, see Baxter (1962), Berk
(1974) and Pourahmadi (1989).) This inequality can be used together with (2.11) to yield, for
all �(J ) ≤ D̄(n/ logp)1/2,

(2.15)
∥∥β∗ − β∗(J )

∥∥
1 ≤ CCγ

(∑
j /∈J

β∗2

j

)(γ−1)/(2γ−1)

,

which is one of the key ingredients in our asymptotic analysis of OGA+HDAIC.
To derive (2.14) from (2.13), we may assume without loss of generality that J =

{j1, . . . , jq} for some 1 ≤ q ≤ D̄(n/ logp)1/2, where ji, i = 1, . . . , q , are distinct elements
in P . Note first that

(2.16)
∥∥β∗ − β∗(J )

∥∥
1 ≤ ∥∥β∗(J ) − β∗

J

∥∥
1 + ∑

j /∈J

∣∣β∗
j

∣∣,
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where β∗
J = (β∗

j1
, . . . , β∗

jq
)�. Denote gy(J ) by (γy,j1, . . . , γy,jq )

�. Then it follows that

γy,ji
= ∑p

l=1 ρji lβ
∗
l , i = 1, . . . , q , and hence

�(J )−1�(J )
(
β∗(J ) − β∗

J

) = �(J )−1
(∑

l /∈J

ρj1lβ
∗
l , . . . ,

∑
l /∈J

ρjq lβ
∗
l

)�

= ∑
l /∈J

β∗
l �(J )−1gl(J ).

Taking the L1-norm on both sides, (2.14) (with C = M + 1) follows from (2.16) and (2.13).
Before closing this section, we remark that (2.12) can be viewed as a limiting case

of (2.11). To see this, note that (2.12) implies that for any J ⊆ P ,
∑

j∈J |β∗
j | ≤ M1 ×

(
∑

j∈J β∗2

j )limγ→∞(γ−1)/(2γ−1). In addition, the strong sparsity condition,

(2.17) k0 = �(Nn) < M7,

where Nn = {j : β∗
j �= 0,1 ≤ j ≤ p} and M7 is some positive integer, is also a limiting

case of (2.11) because (2.17) yields that for any J ⊆ P ,
∑

j∈J |β∗
j | ≤ M

1/2
7 ×

(
∑

j∈J β∗2

j )limγ→∞(γ−1)/(2γ−1).

2.2. Rates of convergence of the OGA. Let x = (x1, . . . , xp)� be independent of and have
the same covariance structure as {xt } and y(x) = ∑p

j=1 βjxj . Then y(x) can be predicted

by ŷm(x) = x�(Ĵm)β̂(Ĵm), where x(J ) = (xi, i ∈ J ) and β̂(J ) = (
∑n

t=1 xt (J )x�
t (J ))−1 ×∑n

t=1 xt (J )yt . Note also that ŷm(x) = z�(Ĵm)β̂
∗
(Ĵm), where z(J ) = (zi, i ∈ J ) with zi =

xi/σi , and β̂
∗
(Ĵm) = (

∑n
t=1 zt (J )z�

t (J ))−1 ∑n
t=1 zt (J )yt . One of the most natural perfor-

mance measures for ŷm(x) is the conditional mean squared prediction error (CMSPE),

(2.18) En

{
y(x) − ŷm(x)

}2 = En

{
y(x) − y

Ĵm
(x)

}2 + En

{
y
Ĵm

(x) − ŷm(x)
}2

,

where En(·) = E(·|y1,x1, . . . , yn,xn), and yJ (x)= β∗�
(J )z(J ). A convergence rate of the

left-hand side of (2.18) is established in the next theorem.

THEOREM 2.1. Suppose that (1.1), (A1)–(A3), (A5),

λmin(�) ≥ λ1 > 0(2.19)

and

(2.20) logp = o(n), Kn = δ̄

(
n

logp

)1/2

hold, where � = E(zz�) and 0 < δ̄ < min{τ̄ , D̄}, with D̄ defined in assumption (A5) and

τ̄ = supτ

≡ sup
{
τ : τ > 0, lim sup

n→∞
τc∗

2

min�(J )≤τ(n/ logp)1/2λmin(�(J ))
≤ 1

}
.

(2.21)

Then

(2.22) max
1≤m≤Kn

(
En{y(x) − ŷm(x)}2

m−2γ+1 + n−1m logp

)
= Op(1).

Moreover, if (A4) holds instead of (A3), then

max
1≤m≤Kn

(
En{y(x) − ŷm(x)}2

exp(−G3m) + n−1m logp

)
= Op(1),(2.23)

where G3 is some positive constant given in (A.2) in the Appendix.
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PROOF. We first prove (2.22). Recall Ĵk = {ĵ1, . . . , ĵk} and define

μ̂J,i = n−1 ∑n
t=1(yt − ŷt;J )xti

(n−1 ∑n
t=1 x2

t i )
1/2

= n−1 ∑n
t=1(yt − ŷt;J )zti

(n−1 ∑n
t=1 z2

t i )
1/2

,

where (ŷ1;J , . . . , ŷn;J )� = HJ Y. Moreover, let

An(m)=
{

max
(J,i):�(J )≤m−1,i /∈J

|μ̂J,i − μJ,i | ≤ s(logp/n)1/2
}

and

Bn(m) =
{

min
0≤i≤m−1

max
1≤j≤p

|μ
Ĵi,j

| > ξ̃s(logp/n)1/2
}
,

where μJ,i = E[(y(x) − yJ (x))zi], s > 0 is some large constant, and ξ̃ = 2/(1 − ξ) with
0 < ξ < 1 being arbitrarily given.

By an argument similar to that of (3.10) in Ing and Lai (2011), it follows that for all
1 ≤ q ≤ m,

|μ
Ĵq−1,ĵq

| ≥ ξ max
1≤i≤p

|μ
Ĵq−1,i

| on An(m) ∩ Bn(m).

This and (A.1) in the Appendix, which gives an error bound for the population OGA under
(A3), lead to

En

(
y(x) − y

Ĵm
(x)

)2 ≤ G1m
−2γ+1 on An(m) ∩ Bn(m).(2.24)

Moreover, (A3) and (2.19) imply that for any 0 ≤ i ≤ m − 1,

En

(
y(x) − y

Ĵi
(x)

)2

≤ max
1≤j≤p

|μ
Ĵi,j

|
p∑

l=1,l /∈Ĵi

∣∣β∗
l

∣∣

≤ Cγ max
1≤j≤p

|μ
Ĵi,j

|
( p∑

l=1,l /∈Ĵi

β∗2

l

)(γ−1)/(2γ−1)

≤ Cγ max
1≤j≤p

|μ
Ĵi,j

|λ−(γ−1)/(2γ−1)
1

(
En

(
y(x) − y

Ĵi
(x)

)2)(γ−1)/(2γ−1)
,

and hence

En

(
y(x) − y

Ĵi
(x)

)2 ≤
(
Cγ max

1≤j≤p
|μ

Ĵi,j
|
)2−γ −1

λ
−1+γ −1

1 .(2.25)

By (2.25),

En

(
y(x) − y

Ĵm
(x)

)2

≤ min
0≤i≤m−1

En

(
y(x) − y

Ĵi
(x)

)2

≤ C2−γ −1

γ λ
−1+γ −1

1

(
min

0≤i≤m−1
max

1≤j≤p
|μ

Ĵi,j
|
)2−γ −1

≤ C2−γ −1

γ λ
−1+γ −1

1 (ξ̃ s)2−γ −1(
n−1 logp

)1−(2γ )−1
on Bc

n(m).

(2.26)

Since An(m) decreases as m increases, (2.24) and (2.26) yield that for all 1 ≤ m ≤ Kn and
some C2 > 0,

(2.27) En

(
y(x) − y

Ĵm
(x)

)2
IAn(Kn) ≤ C2 max

{
m−2γ+1,

{
n−1 logp

}1−(2γ )−1}
.
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We show in Section S1 of the Supplementary Material that

(2.28) P
(∥∥�̂−1

(ĴKn)
∥∥ ≤ B̄

) = 1 + o(1),

where �̂(J ) = n−1 ∑n
t=1 zt (J )z�

t (J ) and

B̄ >
1

lim inf
n→∞ min

�(J )≤Kn

λmin(�(J )) − c∗
2 δ̄

,(2.29)

noting that the positiveness of the denominator is ensured by (2.20) and (2.21). With the help
of (2.28), (A1), (A2) and (A5), it is shown in the same section that there exists a sufficiently
large s such that

(2.30) lim
n→∞P

(
An(Kn)

) = 1,

which, together with (2.27), yields

max
1≤m≤Kn

En(y(x) − y
Ĵm

(x))2

max{m−2γ+1, (n−1 logp)1−(2γ )−1} = Op(1).(2.31)

Moreover, we have

(2.32) max
1≤m≤Kn

nEn[{ŷm(x) − y
Ĵm

(x)}2]
m logp

= Op(1),

which is also proved in Section S1 of the Supplementary Material. In view of (2.31),
(2.32) and the fact that (logp/n)1−(2γ )−1 ≤ m−2γ+1 if m ≤ (n/ logp)(2γ )−1

and (logp/

n)1−(2γ )−1 ≤ n−1m logp if m ≥ (n/ logp)(2γ )−1
, the desired conclusion (2.22) follows.

Equation (2.23) follows from (A.2) in the Appendix (which gives an error bound for the
population OGA under (A4)) and an argument similar to that used to prove (2.22). We skip
the details in order to save space. �

REMARK 1. It is easy to see that the τ defined in (2.21) is nonempty. In particular, x ∈ τ
for any x ∈ (0, λ1/c

∗
2]. It is also not difficult to see that τ̄ < a/c∗

2 for any a > 1.

In view of (2.22), to strike a suitable balance between squared bias and variance, one
should choose m ≈ (n/ logp)1/2γ in the polynomial decay case, which yields a rate of con-
vergence, (n−1 logp)1−(2γ )−1

. Similarly, (2.23) suggests that the best convergence rate one
can expect in the exponential decay case is n−1 logn logp, which is ensured by selecting
m ≈ logn/G3. The optimality of the rates, (n−1 logp)1−(2γ )−1

and n−1 logn logp, will be
discussed further in Section 3.2. In most practical situations, however, not only do we not
know what γ or G3 is, we do not even know which of (A3) and (A4) is true. To attain the
aforementioned optimal convergence rates without knowing the degree of sparseness, a data-
driven method to determine the number of OGA iterations is called for. In the next section,
we show that HDAIC (see (3.1)) can fulfill this need.

Finally, we note that if (2.2) and (2.3) are weakened to

P

(
max

1≤j≤p

∣∣∣∣∣n−1
n∑

i=1

zij εj

∣∣∣∣∣ ≥ c∗
1(logp)(1+c̄1)/2/n1/2

)
= o(1)(2.33)

and

P

(
max

1≤k,l≤p

∣∣∣∣∣n−1
n∑

i=1

zikzil − ρkl

∣∣∣∣∣ ≥ c∗
2(logp)(1+c̄2)/2/n1/2

)
= o(1),(2.34)
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respectively, where 0 ≤ c̄1, c̄2 < ∞ are some constants, and (2.20) is strengthened to

(2.35) (logp)1+c̄ = o(n) and Kn = δ
n1/2

(logp)(1+c̄)/2 ,

where c̄ = max{c̄1, c̄2} and δ is some positive constant, then (2.22) and (2.23) become

(2.36) max
1≤m≤Kn

(
En{y(x) − ŷm(x)}2

m−2γ+1 + n−1m(logp)1+c̄

)
= Op(1)

and

max
1≤m≤Kn

(
En{y(x) − ŷm(x)}2

exp(−G3m) + n−1m(logp)1+c̄

)
= Op(1),(2.37)

respectively. While (2.33) and (2.34) are satisfied by a broader class of time series models
(see Wu and Wu (2016) for a detailed discussion), to determine the optimal m in (2.36) or
(2.37), the HDAIC must also be corrected according to the value of c̄. This kind of correction,
however, is hardly implemented in practice because c̄ is in general unknown.

3. Analysis of OGA+HDAIC. In Section 3.1, the rate of convergence of OGA+HDAIC
is established under various sparsity conditions; see Theorem 3.1. Comparisons of Theorem
3.1 and related existing results are given in Section 3.2. The proof of Theorem 3.1 is provided
in Section 3.3.

3.1. Error bounds for OGA+HDAIC. Define

(3.1) HDAIC(J ) =
(

1 + sa�(J ) logp

n

)
σ̂ 2

J ,

where σ̂ 2
J = n−1Y�(I − HJ )Y and sa is some positive constant, and define

k̂n = arg min
1≤k≤Kn

HDAIC(Ĵk),

noting that Ĵk is defined in (2.1).

THEOREM 3.1. Suppose that (1.1), (A1), (A2), (A5), (2.19), (2.20) and

(3.2) n−1
n∑

t=1

ε2
t = σ 2 + op(1)

hold. Then, for

(3.3) sa > V̄0 ≡ 2B̄(c∗2

1 + c∗2

2 )

σ 2 ,

where B̄ is defined in (2.29), we have:

(i)

(3.4)
En(y(x) − ŷ

k̂n
(x))2

(
logp

n
)1−1/2γ

= Op(1),

provided (A3) is true;



1968 C.-K. ING

(ii)

(3.5)
En(y(x) − ŷ

k̂n
(x))2

logn logp
n

= Op(1),

provided (A4) is true and logp = o(n/(logn)2);
(iii)

(3.6)
En(y(x) − ŷ

k̂n
(x))2

k0 logp
n

= Op(1),

provided E(y2
t ) is bounded above by a finite constant and

min
j∈Nn

∣∣β∗
j

∣∣ ≥ θ, for some θ > 0,

k0

( ∑
j∈Nn

∣∣β∗
j

∣∣)2
= o(n/ logp).

(3.7)

REMARK 2. The sparsity condition (3.7) implies k0 = o((n/ logp)1/3), allowing k0 to
grow to ∞ slowly with n. Moreover, (3.6) also holds when (2.19) is weakened to

min
�(J )≤η(n/ logp)1/2

λmin
(
�(J )

) ≥ λ1,(3.8)

for some η > 0; see Section S2 in the Supplementary Material. However, since it is unknown
which kind of sparsity condition is true among those described in (i), (ii) and (iii) of Theorem
3.1, and since (2.19) appears to be indispensable for the proofs of (3.4) and (3.5), the latter
assumption is still adopted in our unified theory.

REMARK 3. We briefly discuss extensions of Theorems 2.1 and 3.1 to the following
multivariate time series models:

(3.9) yt =
p∑

l=1

bj xtj + et , t = 1, . . . , n,

where yt , et , and bj are d-dimensional vectors, d is allowed to grow to infinity with n and
{(e�

t ,x�
t )�} is a zero-mean stationary time series satisfying E(xte

�
t ) = 0. Define ψ̂J,i =

‖Y�(I − HJ )Z�
i ‖/(n1/2‖Zi‖), where Y = (y1, . . . ,yn)

�, and HJ and Zi are defined as in
Section 2.1. A multivariate version of OGA, MOGA, is initialized by L̂0 = ∅. For m ≥ 1,
L̂m is recursively updated by

L̂m = L̂m−1 ∪ {l̂m},
where l̂m = arg max1≤l≤p,l /∈L̂m−1

ψ̂
L̂m−1,l

. Consider multivariate extensions of the sparsity
conditions (A3) and (A4):

(A3′) There is 0 < M̄0 < ∞ such that

d−1
p∑

j=1

∥∥b∗
j

∥∥2
< M̄0.

Moreover, there exist γ ≥ 1 and 0 < Cγ < ∞ such that for any J ⊆ P ,

∑
j∈J

∥∥b∗
j

∥∥/d1/2 ≤ Cγ

{∑
j∈J

∥∥b∗
j

∥∥2
/d

}(γ−1)/(2γ−1)

,

where b∗
j = σjbj .
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(A4′) There is 0 < M0 < ∞ such that

max
1≤j≤p

∥∥b∗
j

∥∥ < d1/2M0.

Moreover, there exists M1 > 1 such that for any J ⊆P ,∑
j∈J

∥∥b∗
j

∥∥ ≤ M1 max
j∈J

∥∥b∗
j

∥∥.
Moreover, a natural generalization of (A1) under model (3.9) is

(A1′) There exists c∗
1 > 0 such that

P

(
max

1≤j≤p,1≤l≤d

∣∣∣∣∣n−1
n∑

t=1

ztj εtl

∣∣∣∣∣ ≥ c∗
1(logpd)1/2/n1/2

)
= o(1),

where (εt1, . . . , εtd)� = et .

Let x = (x1, . . . , xp)� be defined as in Section 2.2 and y(x) = ∑p
j=1 bj xj . Then, y(x) can be

predicted by ŷm(x) = B̂(L̂m)�x(L̂m), where B̂(J ) = (
∑n

t=1 xt (J )×x�
t (J ))−1 ∑n

t=1 xt (J ) ×
y�

t . Suppose that

(3.10) logpd = o(n) and Kn = ζ(n/ logpd)1/2,

for some ζ > 0. Then, under (3.10) and the assumptions of Theorem 2.1, with (A1), (A3) and
(A4) replaced by (A1′), (A3′) and (A4′), it can be shown that

(3.11) max
1≤m≤Kn

(
d−1En‖y(x) − ŷm(x)‖2

m−2γ+1 + n−1m logpd

)
= Op(1),

and for some G4 > 0,

max
1≤m≤Kn

(
d−1En‖y(x) − ŷm(x)‖2

exp(−G4m) + n−1m logpd

)
= Op(1).(3.12)

To choose a suitable number of MOGA iterations, one may consider a multivariate extension
of HDAIC (MHDAIC),

MHDAIC(J ) =
(

1 + ιa�(J ) logpd

n

)
�̂J ,

where �̂J = (nd)−1 tr(Y�(I − HJ )Y) and ιa is some positive constant, and define

m̂n = arg min
1≤m≤Kn

MHDAIC(L̂m).

We conjecture that d−1En‖y(x) − ŷm̂n
(x)‖2 is of order Op((logpd/n)1−1/(2γ )),

Op(logn logpd/n), or Op(k0 logpd/n) under (A3′), (A4′), or a strong sparsity condition
resembling (3.7), respectively. However, the rigorous proof of this result and those of (3.11)
and (3.12) are out of the scope of this paper, and are left for future work.

3.2. Some comparisons with existing results. It would be interesting to compare (3.4)
with Corollary 3 of Negahban et al. (2012), which provides an error bound for Lasso in the
following high-dimensional regression model:

(3.13) yt =
p∑

j=1

β∗
j xtj + εt , t = 1, . . . , n,
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where {εt } is a sequence of i.i.d. N(0, σ 2) random variables and {xtj } are nonrandom con-
stants satisfying n−1 ∑n

t=1 x2
tj ≤ 1, 1 ≤ j ≤ p, and the restricted eigenvalue condition defined

in (31) of their paper. When

(3.14)
p∑

j=1

∣∣β∗
j

∣∣1/γ ≤ (n/ logp)1−1/(2γ ),

for some γ ≥ 1, it is shown in the corollary that

(3.15)
∥∥β̂λn

− β∗∥∥2 = Op

( p∑
j=1

∣∣β∗
j

∣∣1/γ
(

logp

n

)1−1/(2γ )
)
,

where β̂λn
is the Lasso estimate of β∗ with λn = 4σ(logp/n)1/2. On the other hand, (3.4)

implies that under model (1.1),∥∥β̂n(Ĵk̂n
) − β∗∥∥2 ≤ λ−1

1 En

(
y(x) − ŷ

k̂n
(x)

)2

= Op

((
logp

n

)1−1/(2γ ))
.

(3.16)

In addition to allowing for serially correlated data, (3.16) may lead to a faster convergence
rate than (3.15). In particular, the bound on the right-hand side of (3.15) is larger than that
on the right-hand side of (3.16) by a factor of logp as p → ∞ when (1.4), with γ > 1, and
(3.14) follows.

Assuming that the {xt } and {εt } in (3.13) are generated according to independent, centered,
Gaussian stationary time series, Proposition 3.3 of Basu and Michailidis (2015) establishes
for Lasso the following bounds:

(3.17)
∥∥β̂λn

− β∗∥∥2 = Op

(
k0 logp

n

)

and

(3.18) n−1
n∑

t=1

(
x�
t

(
β̂λn

− β∗))2 = Op

(
k0 logp

n

)
,

where p → ∞, k0 = O(n/ logp), and λn ≥ c∗(logp/n)1/2 for some c∗ > 0. By (3.6) and
an argument used in Section S2 of the Supplementary Material, it can be shown that under
model (1.1),

(3.19)
∥∥β̂(Ĵ

k̂n
) − β∗∥∥2 = Op

(
k0 logp

n

)

and

(3.20) n−1
n∑

t=1

(
x�
t

(
β̂(Ĵ

k̂n
) − β∗))2 = Op

(
k0 logp

n

)
.

Although (3.17)–(3.20) suggest that Lasso and OGA+HDAIC share the same error rate in
the case of k0 � n, they are obtained under somewhat different assumptions. Note first that
unlike (3.17) and (3.18), (3.19) and (3.20) do not require that {xt } and {εt } are independent,
and hence are applicable to ARX models. Moreover, (3.17) and (3.18) are established under

ess sup
θ∈[−π,π ]

λmax
(
fx(θ)

)
< S̄,(3.21)
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and

(3.22) ess inf
θ∈[−π,π ]λmin

(
fx(θ)

)
> s,

where 0 < s ≤ S̄ < ∞ and fx(θ) = [1/(2π)]∑∞
l=−∞ �x(l) exp(−ilθ) with �x(l) = E(xt ×

x�
t+l). Assumption (3.22) is comparable to (2.19) (which assumes that λmin(�) is bounded

away from zero and is needed for proving (3.19) and (3.20)), but is more stringent than the
latter because

λmin(�) = λmin
(
�x(0)

) = λmin

(∫ π

−π
fx(θ) dθ

)

≥ 2π
{

ess inf
θ∈[−π,π ]λmin

(
fx(θ)

)}
.

Maximum eigenvalue assumptions like (3.21) are not required for (3.19) and (3.20). This
type of assumption can be easily violated when the components of xt are highly correlated,
as illustrated by an ARX example in Section S3 of the Supplementary Material, in which
λmax(�) → ∞ as p → ∞, and hence ess supθ∈[−π,π ]λmax(fx(θ)) ≥ [1/(2π)]λmax(�). On
the other hand, while (3.19) and (3.20) are obtained under the beta-min condition given in
(3.7), (3.17) and (3.18) do not assume any beta-min condition. Wu and Wu (2016) also in-
vestigate the performance of Lasso under (3.13) with k0 � n and {xti} being nonrandom and
obeying the restricted eigenvalue condition defined in (4.2) of their paper. They allow {εt }
to be a stationary process following some general moment and dependence conditions. The
error rates that they derive for Lasso, however, are usually larger than those in (3.17)–(3.20).

In fact, it can be argued that all error bounds obtained in Theorem 3.1 are rate opti-
mal. To see this, let Ĵ (m),1 ≤ m ≤ Kn, be a sequence of nested models chosen from p

candidate variables in a data-driven fashion, where �(Ĵ (m)) = m. The CMSPE of model
Ĵ (m) is En(y(x) − ŷ

Ĵ (m)
(x))2 = En(y(x) − y

Ĵ (m)
(x))2 + En(ŷĴ (m)

(x) − y
Ĵ (m)

(x))2, where

ŷJ (x) = x�(J )β̂(J ). It is not difficult to show that the squared bias terms obey

(3.23) En

(
y(x) − y

Ĵ (m)
(x)

)2 ≥ E
(
y(x) − yJ ∗

m
(x)

)2
,

where yJ ∗
m
(x), satisfying �(J ∗

m) = m and

E
(
y(x) − yJ ∗

m
(x)

)2 = min
�(J )=m

E
(
y(x) − yJ (x)

)2
,(3.24)

is called the best m-term approximation of y(x). In addition, an argument similar to that used
to prove (2.32) implies that the variance terms satisfy

(3.25) max
1≤m≤Kn

nEn(ŷĴ (m)
(x) − y

Ĵ (m)
(x))2

m logp
= Op(1).

In view of (3.23) and (3.25), the best possible rate that can be achieved by a forward inclusion
method accompanied by a stopping criterion is the same as that of

(3.26) L̄n

(
m∗

n

) ≡ min
1≤m≤Kn

L̄n(m) = min
1≤m≤Kn

{
E

(
y(x) − yJ ∗

m
(x)

)2 + m logp/n
}
.

According to Lemma A.3, (A.11) and E(y(x)− yJ ∗
m
(x))2 = 0 if m ≥ k0, the convergence rate

of L̄n(m
∗
n) under (1.4), (1.5) or (2.17) is (logp/n)1−1/2γ , logn logp/n, or k0 logp/n, which

coincides with that of (3.4), (3.5) or (3.6), respectively. We therefore conclude that the bounds
obtained in Theorem 3.1 are rate optimal. In this connection, we also note that when (1.1)
is a stationary AR(p) model with p � n, the set of candidate models are usually given by
AR(1), . . . ,AR(Kn), with Kn approaching ∞ at a rate slower than n. Unlike Ĵ (m),1 ≤ m ≤
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Kn, the candidate set in this case is not determined by any data-driven methods, and hence
the corresponding variance terms can get rid of the variance inflation factor logp (see (3.25)),
which is introduced by data-dependent selection of the candidate set from all p variables. As
a result, the optimal rate that can be attained by an order selection criterion is equivalent to
that of

min
1≤m≤Kn

{
E

(
y(x) − yJ ∗

m
(x)

)2 + m/n
};(3.27)

see Shibata (1980) for more details. Under (1.2), (1.3) or (2.17) with Nn = {1, . . . , k0}, the
convergence rate of (3.27) is (1/n)1−1/2γ , logn/n or k0/n, which differs by a factor of
(logp)1−1/2γ from that of L̄n(m

∗
n) under (1.4), (1.5) or (2.17), respectively.

We would also like to point out the differences between the current paper and the paper
by Ing and Lai (2011), which investigates the performance of OGA under (1.1) with (xt , εt )

being i.i.d. and obeying sub-Gaussian or subexponential distributions. Note first that Theo-
rem 1 of Ing and Lai (2011) can be understood as a special case of Theorem 2.1 when γ = 1
and observations are independent over time. However, since the former theorem only focuses
on the case of γ = 1, its proof does not involve the approximation errors of the population
OGA under general sparsity conditions such as those given in Lemma A.1 in the Appendix.
Moreover, when γ = 1 is known, the optimal rate, (logp/n)1/2, can be achieved by choosing
m = (n/ logp)1/2, without recourse to any data-driven method to help determine the number
of iterations. Alternatively, Theorem 3.1 encompasses a much wider class of sparsity condi-
tions, and demonstrates that HDAIC can automatically choose a suitable m, leading to the
optimal balance between the squared bias term and the variance term, without knowing the
degree of sparseness. Indeed, Theorem 4 of Ing and Lai (2011) has suggested using a high-
dimensional information criterion (whose penalty is heavier than that of HDAIC) to decide
the number of OGA iterations when the regression coefficients satisfy the strong sparsity
condition, (2.17), and a beta-min condition. Theorem 5 of Ing and Lai (2011) further intro-
duces a backward elimination method based on the aforementioned information criterion to
remove possible redundant variables surviving the first two (variable) screening stages, and
shows that the resultant set of variables is equivalent to Nn with probability tending to 1. Al-
though the approaches adopted in both papers can be considered similar to a certain extent,
their goals are entirely different. In particular, whereas Ing and Lai (2011) aim to establish
selection consistency under the strong sparsity condition, this paper focuses on prediction
efficiency under much more general sparsity conditions, which include the strong sparsity
one as a special case. From a technical point of view, the main differences between the two
papers are: (i) serial correlation is not allowed in Ing and Lai (2011); and (ii) the squared
bias term in Theorems 4 (or Theorem 5) of Ing and Lai (2011) completely vanishes along the
OGA path in the sense that

P
(

min
1≤m≤Kn

En

(
y(x) − y

Ĵm
(x)

)2 = 0
)

→ 1 as n → ∞,

which is ensured by the sure screening property of OGA under the strong sparsity condition
(see Theorem 3 of Ing and Lai (2011)), but the squared bias term in Theorem 3.1 decays at a
variety of unknown rates and can never be zero along the OGA path, making it much harder
to pursue the bias-variance tradeoff along this data-driven path.

We close this section by mentioning that while condition (3.3) on sa involves unknown
parameters, we have introduced a data-driven method for determining sa in Section S3 of the
Supplementary Material, which is of practical relevance.
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3.3. Proof of Theorem 3.1. We only prove (3.4). The proof of (3.5) is similar to that
of (3.4), and hence is omitted. The proof of (3.6) is slightly different, and is deferred to
the Supplementary Material because of space constraints. In the rest of the proof, a weaker
restriction on the penalty term,

(3.28) sa > V̄ ∗ ≡ 2B̄c∗2

1

σ 2 ,

is used instead of (3.3), although the latter one is required in the proof of (3.6).
By making use of (2.11), (2.14) (which is ensured by (2.13)) and (2.19), we show in

Section B in the Appendix that for any 1 ≤ m ≤ Kn,

−CM,γ,λ1R1,p

{
En

(
ε2(Ĵm)

)}(2γ−2)/(2γ−1)

≤ n−1
n∑

t=1

ε2
t (Ĵm) − En

(
ε2(Ĵm)

)

≤ CM,γ,λ1R1,p

{
En

(
ε2(Ĵm)

)}(2γ−2)/(2γ−1)
,

(3.29)

where CM,γ,λ1 = (M + 1)2C2
γ λ

−(2γ−2)/(2γ−1)
1 , with M defined in (2.13), R1,p =

max1≤i,l≤p |n−1 ∑n
t=1 ztiztl −ρil|, εt (J ) = yt −εt −β∗�

(J )zt (J ) and ε(J ) = y(x)−yJ (x) =
y(x)−β∗�

(J )z(J ). In addition, it is shown in Section S2 of the Supplementary Material that∣∣∣∣∣n−1
n∑

t=1

εtεt (Ĵm)

∣∣∣∣∣
(3.30)

≤ C
1/2
M,γ,λ1

R2,p

{
En

(
ε2(Ĵm)

)}(γ−1)/(2γ−1)
,

max
1≤m≤Kn

‖n−1 ∑n
t=1 zt (Ĵm)εt (Ĵm)‖2

�̂
−1

(Ĵm)

m{En(ε2(Ĵm))}(2γ−2)/(2γ−1)

(3.31)
≤ CM,γ,λ1

∥∥�̂−1
(ĴKn)

∥∥R2
1,p,

and

max
1≤m≤Kn

‖n−1 ∑n
t=1 zt (Ĵm)εt‖2

�̂
−1

(Ĵm)

m
≤ ∥∥�̂−1

(ĴKn)
∥∥R2

2,p,(3.32)

where R2,p = max1≤i≤p |n−1 ∑n
t=1 ztiεt | and ‖ν‖2

A = ν�Aν for vector ν and nonnegative
definite matrix A.

Let m∗
n = min{(n/ logp)1/2γ ,Kn} and

(3.33) k̃n = min
{
k : 1 ≤ k ≤ Kn,En

(
ε2(Ĵk)

) ≤ Gm∗−2γ+1

n

}
(min∅= Kn),

in which G � C2 and C2 is defined in (2.27). Using (3.29)–(3.32), we next show that

(3.34) lim
n→∞P(k̂n ≤ k̃n − 1) = 0.

Since (2.27) implies En(ε
2(Ĵm∗

n
)) ≤ C2m

∗−2γ+1

n ≤ Gm∗−2γ+1

n on An(Kn), it follows that
m∗

n ≥ k̃n on An(Kn). By (2.30), one obtains

P(k̂n ≤ k̃n − 1)

≤ P
(
k̂n ≤ k̃n − 1,An(Kn)

) + P
(
Ac

n(Kn)
)

(3.35)

≤ P

(
min

1≤k≤k̃n−1
Qn(k) ≤ sam

∗
n

(
n−1

n∑
t=1

y2
t

)
logp/n,An(Kn)

)
+ o(1),
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where

Qn(k) = n−1
n∑

t=1

ε2
t (Ĵk) + 2n−1

n∑
t=1

εt (Ĵk)εt − 2n−1
n∑

t=1

εt (Ĵm∗
n
)εt

− n−1
n∑

t=1

ε2
t (Ĵm∗

n
) −

∥∥∥∥∥n−1
n∑

t=1

zt (Ĵk)
(
εt + εt (Ĵk)

)∥∥∥∥∥
2

�̂
−1

(Ĵk)

.

By (2.2), (2.3) and (2.28),

(3.36) lim
n→∞P(Wn) = 1,

where

Wn = {
R1,p ≤ c∗

2(logp)1/2/n1/2} ∩ {
R2,p ≤ c∗

1(logp)1/2/n1/2}
∩ {∥∥�̂−1

(ĴKn)
∥∥ ≤ B̄

}
.

Moreover, (3.29)–(3.32), (2.28) and (2.27) imply that for 1 ≤ k ≤ k̃n − 1 and all large n,

n−1
n∑

t=1

ε2
t (Ĵk)

≥ En

(
ε2(Ĵk)

)
(3.37)

×
{

1 − CM,γ,λ1c
∗
2

G1/(2γ−1)

(
I{γ=1} +

(
logp

n

)(γ−1)/2γ

I{γ>1}
)}

on Wn,

n−1

∣∣∣∣∣
n∑

t=1

εt (Ĵk)εt

∣∣∣∣∣ ≤ En

(
ε2(Ĵk)

)C1/2
M,γ,λ1

c∗
1

Gγ/(2γ−1)

(3.38)
on Wn,

n−1

∣∣∣∣∣
n∑

t=1

εt (Ĵm∗
n
)εt

∣∣∣∣∣ ≤ En

(
ε2(Ĵk)

)C1/2
M,γ,λ1

c∗
1

Gγ/(2γ−1)

(3.39)
on Wn ∩ An(Kn),

n−1
n∑

t=1

ε2
t (Ĵm∗

n
)

≤ En

(
ε2(Ĵk)

)
(3.40)

×
{
C2

G
+ CM,γ,λ1c

∗
2

G1/(2γ−1)

(
I{γ=1} +

(
logp

n

)(γ−1)/2γ

I{γ>1}
)}

on Wn ∩ An(Kn),∥∥∥∥∥n−1
n∑

t=1

zt (Ĵk)εt (Ĵk)

∥∥∥∥∥
2

�̂
−1

(Ĵk)

≤ En

(
ε2(Ĵk)

)
(3.41)

× CM,γ,λ1B̄c∗2

2 δ̄

G1/(2γ−1)

(
I{γ=1} +

(
logp

n

)(γ−1)/2γ

I{γ>1}
)

on Wn ∩ An(Kn),
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and ∥∥∥∥∥n−1
n∑

t=1

zt (Ĵk)εt

∥∥∥∥∥
2

�̂
−1

(Ĵk)

≤ En

(
ε2(Ĵk)

) B̄c∗2

1

G
on Wn ∩ An(Kn).(3.42)

By (3.37)–(3.42), it follows that for large enough G in (3.33), there exists 0 < ι < 1/2 such
that for all large n,

min
1≤k≤k̃n−1

Qn(k) ≥ min
1≤k≤k̃n−1

En

(
ε2(Ĵk)

)
(1 − ι)

≥ Gm∗−2γ+1

n (1 − ι) on Wn ∩ An(Kn).

(3.43)

In addition, (2.2), (2.3), (A3) and logp/n ≤ m∗−2γ+1

n ensure that there exists M̄2 > 0 such
that

(3.44) lim
n→∞P

(
sam

∗
nn

−1 ∑n
t=1 y2

t

n
logp ≤ M̄2m

∗−2γ+1

n

)
= 1.

By (2.30), (3.36), (3.44) and selecting G in (3.43) larger than 2M̄2, we obtain the desired
conclusion (3.34).

Using (3.29)–(3.32) again, it is shown in Section S2 of the Supplementary Material that

(3.45) lim
n→∞P

(
k̂n ≥ V m∗

n

) = 0, γ > 1,

where V is a sufficiently large constant to be specified in the proof of (3.45). With the help
of (3.34) and (3.45), the desired conclusion follows if one can show that for γ > 1,

En

{
y(x) − ŷ

k̂n
(x)

}2
I{k̃n≤k̂n<V m∗

n} = Op

(
m∗−2γ+1

n

)
,(3.46)

and for γ = 1,

En

{
y(x) − ŷ

k̂n
(x)

}2
I{k̃n≤k̂n≤Kn} = Op

(
(logp/n)1/2)

.(3.47)

To show (3.46), note first that

En

(
y(x) − ŷ

k̂n
(x)

)2
I{k̃n≤k̂n≤V m∗

n}

≤ Enε
2(Ĵ

k̃n
) + ∥∥L(Ĵ

k̂n
)
∥∥2∥∥�̂−1

(Ĵ
k̂n

)
∥∥I{k̃n≤k̂n≤V m∗

n}

+ ∥∥L(Ĵ
k̂n

)
∥∥2∥∥�̂−1

(Ĵ
k̂n

)
∥∥2∥∥�̂(Ĵ

k̂n
) − �(Ĵ

k̂n
)
∥∥I{k̃n≤k̂n≤V m∗

n},

(3.48)

where L(J ) = n−1 ∑n
t=1 zt (J )(εt + εt (J )). By (A3), (2.2), (2.3), (2.13) and straightforward

algebraic manipulations, it holds that∥∥L(Ĵ
k̂n

)
∥∥2

I{k̃n≤k̂n≤V m∗
n}

≤ 2V m∗
n max

1≤i≤p

(
n−1

n∑
t=1

εtzti

)2

+ 2V m∗
n max

1≤i,j≤p

(
n−1

n∑
t=1

ztiztj − ρij

)2

×
( p∑

j=1

∣∣β∗
j

∣∣)2(
1 + max

1≤�(J )≤Kn,1≤l≤p

∥∥�−1(J )gl(J )
∥∥

1

)2
(3.49)

= Op

(
m∗

n logp

n

)

= Op

(
m∗−2γ+1

n

)
.
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Moreover, we have

Enε
2(Ĵ

k̃n
) ≤ Enε

2(Ĵm∗
n
) ≤ C2m

∗−2γ+1

n on A(Kn),(3.50)

and ∥∥�̂(Ĵ
k̂n

) − �(Ĵ
k̂n

)
∥∥I{k̃n≤k̂n≤V m∗

n} ≤ Kn max
1≤i,j≤p

∣∣∣∣∣n−1
n∑

t=1

ztiztj − ρij

∣∣∣∣∣
= Op(1),

(3.51)

where the equality is ensured by (2.3) and (2.20). Consequently, (3.46) follows from (3.48)–
(3.51), (2.30) and (2.28). The proof of (3.47) is similar to that of (3.46). The details are
omitted. �

4. Conclusions. This paper has addressed the important problem of selecting high-
dimensional linear regression models with dependent observations when knowledge is lack-
ing about the degree of sparseness of the true model. When the true model is known to be
an AR model or a regression model whose predictor variables have been ranked a priori
based on their importance, this type of problem has been tackled in the past; see, for exam-
ple, Ing (2007), Yang (2007), Zhang and Yang (2015) and Ding, Tarokh and Yang (2018).
These authors have proposed various ways to combine the strengths of AIC and BIC and
shown that their methods achieve the optimal rate without knowing whether (1.2), (1.3) or
(2.17), with Nn = {1, . . . , k0}, is true. Their approaches, however, are not applicable to situ-
ations where the predictor variables have no natural ordering or their importance ranks are
unknown. To alleviate this difficulty, we first use OGA to rank predictor variables, and then
choose along the OGA path the model that has the smallest HDAIC value. Our approach is
not only computationally feasible, but also rate optimal without the need for knowing how
sparse the underlying time series model is.

Compared to a similar attempt made in Negahban et al. (2012), in which Lasso is
used instead of OGA+HDAIC, the novelty of this paper is threefold: first, the validity of
OGA+HDAIC is established not only for independent data, but also for time series data; sec-
ond, the advantage of OGA+HDAIC is obtained in the important special case (1.5), which
is seldom discussed in the high-dimensional literature; third, in another important special
case (1.4), it is shown that OGA+HDAIC can have a faster convergence rate than Lasso.
Finally, we note that OGA is exclusive for linear models. The counterpart of OGA in nonlin-
ear models is the Chebyshev greedy algorithm (CGA) (Temlyakov (2015)). Investigating the
performance of CGA+HDAIC in high-dimensional nonlinear time series models would be
an interesting topic for future research.

APPENDIX A: RATES OF CONVERGENCE OF THE POPULATION OGA

In this section, we consider the population counterpart of OGA, whose convergence rate
plays a crucial role in the analysis of the first term on the right-hand side of (2.18). Let
0 < ξ ≤ 1 be given. The algorithm initializes Jξ,0 =∅. For m ≥ 1, Jξ,m is recursively updated
by

Jξ,m = Jξ,m−1 ∪ {jξ,m},
where jξ,m is any element l in P satisfying∣∣E(um−1zl)

∣∣ ≥ ξ max
1≤j≤p

∣∣E(um−1zj )
∣∣,

with u0 = y(x) and um = y(x) − yJξ,m(x) if m ≥ 1. Because the algorithm is implemented
based on the “population” correlations of x, it is referred to as the population OGA when
ξ = 1, and the population weak OGA when 0 < ξ < 1. The following lemma provides a rate
of convergence of the E(u2

m) under (A3) or (A4).
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LEMMA A.1. Assume (2.11) and (2.19). Then there exists G1 > 0 such that

E
(
u2

m

) = E
(
y(x) − yJξ,m(x)

)2 ≤ G1m
−2γ+1.(A.1)

Moreover, if (2.12) holds instead of (2.11), then there exist G2,G3 > 0 such that

E
(
u2

m

) = E
(
y(x) − yJξ,m(x)

)2 ≤ G2 exp(−G3m).(A.2)

PROOF. Straightforward calculations yield

E
(
u2

m

) = E

[(
y(x) − yJξ,m(x)

) p∑
j=1

β∗
j zj

]

≤ max
1≤j≤p

|μJξ,m,j |
p∑

j=1,j /∈Jξ,m

∣∣β∗
j

∣∣,
(A.3)

recalling μJ,i = E[(y(x) − yJ (x))zi]. In addition, (2.19) implies

E
(
u2

m

) ≥ λ1

p∑
j=1,j /∈Jξ,m

β∗2

j .(A.4)

By (A.3), (A.4) and (2.11), it follows that

E
(
u2

m

) ≤ Cγ max
1≤j≤p

|μJξ,m,j |
( p∑

j=1,j /∈Jξ,m

β∗2

j

)(γ−1)/(2γ−1)

≤ Cγ λ
−(γ−1)/(2γ−1)
1 max

1≤j≤p
|μJξ,m,j |[E(

u2
m

)](γ−1)/(2γ−1)
,

(A.5)

and hence [
E

(
u2

m

)]γ /(2γ−1) ≤ Cγ λ
−(γ−1)/(2γ−1)
1 max

1≤j≤p
|μJξ,m,j |.(A.6)

In view of (A.6), one has

E
(
u2

m+1
) ≤ E(um − μJξ,m,jξ,m+1zjξ,m+1)

2

≤ E
(
u2

m

) − ξ2 max
1≤j≤p

μ2
Jξ,m,j

≤ E
(
u2

m

) − ξ2λ
2(γ−1)/(2γ−1)
1 C−2

γ

[
E

(
u2

m

)]2γ /(2γ−1)

= E
(
u2

m

){
1 − ξ2λ

2(γ−1)/(2γ−1)
1 C−2

γ

[
E

(
u2

m

)]1/(2γ−1)}
.

(A.7)

The desired conclusion (A.1) follows from (A.7) and Lemma 1 of Gao, Ing and Yang (2013).
To show (A.2), note first that (2.12), (A.3) and (A.4) yield

E
(
u2

m

)1/2 ≤ λ
−1/2
1 M1 max

1≤j≤p
|μJξ,m,j |.

This and an argument similar to that used in (A.7) imply

E
(
u2

m+1
) ≤ E

(
u2

m

) − ξ2λ1M
−2
1 E

(
u2

m

)
= E

(
u2

m

){
1 − ξ2λ1M

−2
1

}
.

(A.8)

Since M1 > 1, 0 < λ1 ≤ 1, and 0 < ξ ≤ 1, (A.8) leads directly to (A.2). �
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Lemma A.2 shows that (1.4) is a special case of (2.11). Using Lemmas A.1 and A.2,
Lemma A.3 demonstrates that the rate m−2γ+1 obtained in (A.1) cannot be improved under
(1.4). More specifically, recall the best m-term approximation, yJ ∗

m
(x), of y(x) (see (3.24)).

Lemma A.3 asserts that when (1.4) and (2.19) hold true, the approximation errors of yJξ,m(x)

and yJ ∗
m
(x) only differ by a positive constant.

LEMMA A.2. Suppose that (1.4) is true for some γ > 1. Then (2.11) holds for the
same γ .

PROOF. See Section S1 of the Supplementary Material. �

LEMMA A.3. Suppose that (1.4) holds for some γ > 1 and (2.19) is true. Then, for all
1 ≤ m ≤ (1 − ε)p, where ε is an arbitrarily small positive constant, there exist D1, D2 and
D3 such that

E
(
y(x) − yJξ,m(x)

)2 ≤ D1E
(
y(x) − yJ ∗

m
(x)

)2
,(A.9)

and

D2m
−2γ+1 ≤ E

(
y(x) − yJ ∗

m
(x)

)2 ≤ D3m
−2γ+1.(A.10)

PROOF. By Lemmas A.1 and A.2, it follows that for all 1 ≤ m ≤ (1 − ε)p,

G1m
−2γ+1 ≥ E

(
y(x) − yJξ,m(x)

)2 ≥ E
(
y(x) − yJ ∗

m
(x)

)2

≥ λ1
∑

j /∈J ∗
m

β∗2

j ≥ λ1
∑

j /∈J o
m

β∗2

j ≥ λ1L
2

p∑
j=m+1

j−2γ

≥ λ1L
2dm−2γ+1,

where J o
m is the index set corresponding to {β2

(1), . . . , β
2
(m)} and d > 0 depends only on γ

and ε. These inequalities lead immediately to (A.9) and (A.10). �

REMARK A.1. Theorem 2.1 of Temlyakov (1998) shows that a near best m-term approx-
imation can be realized by a greedy-type algorithm under a basis Lp-equivalent to the Haar
basis. Since the Haar basis yields an identity correlation matrix, our correlation assumption,
(2.19), appears to be substantially weaker. The performance of the m-term approximation
of OGA has been investigated by Tropp (2004) under a noise-free underdetermined system
and a condition on the cumulative coherence function, which requires that the atoms in the
dictionary are “nearly” uncorrelated. His approximation error for OGA is larger than that of
the best m-term approximation by a factor of (1 + 6m)1/2. Suppose that (1.5) holds. Then

λ1
∑

j /∈J o
m

β∗2

j ≤ E
(
y(x) − yJ ∗

m
(x)

)2 ≤ E
( ∑

j /∈J o
m

β∗
j zj

)2
,

which, together with (1.5) and Minkowski’s inequality, yields

(A.11) C1,βλ1L
2
1 exp(−2βm) ≤ E

(
y(x) − yJ ∗

m
(x)

)2 ≤ C2,βU2
1 exp(−2βm),

where C1,β ≤ C2,β are some positive constants depending on β . On the other hand, the argu-
ment used to prove (A.2) leads to

E
(
y(x) − yJξ,m(x)

)2 = O
(
exp(−mfoga)

)
,(A.12)

where foga = ξ2λ1(L1/U1)
2(1− exp(−β))2 < 2β . Equations (A.11) and (A.12) suggest that

the population OGA and the best m-term approximation in general do not share the same
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convergence rate in the exponential decay case. To be as efficient as the best m-term approx-
imation, the population OGA needs to run for another m(2β/foga − 1) iterations, which is
still of order m.

APPENDIX B: PROOF OF (3.29)

Recall that (2.13) implies (2.14) with C = M + 1. This, (2.11) and (2.19) yield∣∣∣∣∣n−1
n∑

t=1

ε2
t (Ĵm) − En

(
ε2(Ĵm)

)∣∣∣∣∣
=

∣∣∣∣∣
∑

�(J )=m

{
n−1

n∑
t=1

ε2
t (J ) − E

(
ε2(J )

)}
I{Ĵm=J }

∣∣∣∣∣
≤ ∑

�(J )=m

{ p∑
i=1

p∑
l=1

∣∣β∗
i − β∗

i (J )
∣∣∣∣β∗

l − β∗
l (J )

∣∣∣∣∣∣∣n−1
n∑

t=1

ztiztl − ρil

∣∣∣∣∣
}
I{Ĵm=J }

≤ (M + 1)2 max
1≤i,l≤p

∣∣∣∣∣n−1
n∑

t=1

ztiztl − ρil

∣∣∣∣∣
∑

�(J )=m

(∑
j /∈J

∣∣β∗
i

∣∣)2
I{Ĵm=J }

≤ C2
γ (M + 1)2R1,p

∑
�(J )=m

(∑
j /∈J

β∗2

i

)(2γ−2)/(2γ−1)

I{Ĵm=J }

≤ CM,γ,λ1R1,p

∑
�(J )=m

{
E

(
ε2(J )

)}(2γ−2)/(2γ−1)
I{Ĵm=J }

= CM,γ,λ1R1,p

{
En

(
ε2(Ĵm)

)}(2γ−2)/(2γ−1)
.

Thus, (3.29) follows.
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SUPPLEMENTARY MATERIAL

Supplement to “Model selection for high-dimensional linear regression with depen-
dent observations” (DOI: 10.1214/19-AOS1872SUPP; .pdf). The Supplementary Material
contains the proofs of (2.7), (2.28), (2.30), (2.32), (3.6), (3.30)–(3.32), (3.45) and Lemma
A.2, and a simulation study to demonstrate the performance of OGA+HDAIC under a high-
dimensional ARX model whose � obeys λmax(�) → ∞ and (2.19).
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