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Abstract. Consider a population of infinitesimally small frogs on the real line. Initially the frogs on the positive half-line are dormant
while those on the negative half-line are awake and move according to the heat flow. At the interface, the incoming wake frogs try to
wake up the dormant frogs and succeed with a probability proportional to their amount among the total amount of involved frogs at the
specific site. Otherwise, the incoming frogs also fall asleep. This frog model is a special case of the infinite rate symbiotic branching
process on the real line with different motion speeds for the two types.

We construct this frog model as the limit of approximating processes and compute the structure of jumps. We show that our frog
model can be described by a stochastic partial differential equation on the real line with a jump type noise.

Résumé. Considérons une population de grenouilles infinitésimales sur la droite réelle. Au début, toutes les grenouilles à droite
de l’origine sont endormies tandis que les grenouilles à gauche sont éveillées et bougent comme un flux de chaleur. A l’interface,
les grenouilles éveillées qui arrivent essaient de réveiller les grenouilles dormantes. Elles le font avec succès avec une probabilité
proportionnelle à leur proportion par rapport à la population totale de grenouilles à cet endroit. Si elles échouent, les grenouilles
arrivantes s’endorment aussi. Ce modèle de grenouilles est un modèle spécifique de branchement symbiotique sur la droite réelle où les
populations bougent avec des vitesses différentes. Nous construisons le modèle par une procédure d’approximation et nous calculons
la structure du processus de sauts. Nous montrons que notre modèle des grenouilles peut être décrit par une équation différentielle
partielle stochastique avec sauts.
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1. Introduction

1.1. Motivation and first results

Consider the following pair of stochastic partial differential equations

∂X
γ,i
t (x)

∂t
= ci

2
∂2
xX

γ,i
t (x)+

√
γX

γ,1
t (x)X

γ,2
t (x)Ẇ i(t, x), t ≥ 0, x ∈R. (1.1)

Here Ẇ i is a space–time white noise, i = 1,2, and Ẇ 1 and Ẇ 2 are correlated with parameter � ∈ [−1,1]. The constants
c1, c2 ≥ 0 govern the speeds of dispersion. We interpret X

γ,i
t (x) as the density of particles of type i at site x at time t .

Each type of particles performs super-Brownian motion on the real line with local branching rate proportional to the
density of the respective other type. This model hast been studied only for the case c1 = c2 > 0: If � = 0, then the types
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are uncorrelated and this model was introduced by Dawson and Perkins [3] under the name mutually catalytic branch-
ing process. For � �= 0, this model was introduced by Etheridge and Fleischmann [5] who coined the name symbiotic
branching process.

Recently, Blath et al. [1] studied the limit of γ →∞ of this model for a range of negative values of �. For � ≥ 0, it
is still an open problem how to construct the infinite rate limit of this model. If we replace the real line as site space by
some discrete space and replace 1

2∂2
x by the generator of some Markov chain on this site space, then for �= 0 the infinite

rate process was studied in great detail in [13–15] and [16].
The main tool for showing (weak) uniqueness for the solutions of (1.1) is a self-duality relation that goes back to

Mytnik [18] for the case � = 0 and Etheridge and Fleischmann [5] in the case � �= 0. Like many duality relations for
genealogical or population dynamical models, the underlying principle of the duality is a back-tracing of ancestral lines.
The viability of this method relies crucially on the fact that the ancestral lines can be drawn without knowledge of the
type of the individual. This is possible only in the absence of selection and of a type-dependent motion. This is the deeper
reason why no simple duality relation could be established for the model (1.1) in the case c1 �= c2.

Here, we make a step towards the model of infinite rate symbiotic branching with different speeds of motion by
considering the extreme case c1 = 1, c2 = 0 and � =−1. In other words, we consider a two-type model on the real line
where only infinitesimal individuals of type 1 (which we imagine as green) move according to the heat flow while type 2
(red) stands still. Furthermore, by infinite rate branching, there cannot be both types present at any given site. Finally, at
any given site, each population evolves in a martingale fashion while the sum of both types has no random drift since
�=−1 and hence the gains of type 1 are the losses of type 2 and vice versa.

Our model is a variation of a model often called frog model. See, e.g., [7,8,17,19]. Loosely speaking, there are two
kinds of particles distributed in space, named wake frogs (green) and sleeping frogs (red). Wake frogs move in space and
activate sleeping frogs when they are in contact with them. Our model is different to the classical frog model mainly in
the sense that wake frogs can activate sleeping frogs but also can get tired and fall asleep when they are in contact with
dormant frogs. Furthermore, our frogs are of infinitesimal size and hence move deterministically according to the heat
flow.

When a (infinitesimal) wake frog of size dx encounters a colony of sleeping frogs of size r it either falls asleep
(becomes red) or wakes the whole colony (turns them green). The latter happens with probability dx/r which makes the
number of dormant frogs a martingale.

For simplicity, let us explain the basic concepts in the discrete space situation first. Assume that S is a countable site
space and that A is the generator of a continuous time Markov chain on S. Let A∗ be the adjoint of A with respect to the
counting measure on S. That is〈

A∗f,g
〉= 〈f,Ag〉

for all suitable f , g and where 〈f,g〉 =∑
i∈S f (i)g(i). Let E := [0,∞)2 \ (0,∞)2 and

E :=
{
x = (

x1, x2) ∈ES :
∑
k∈S

(
x1(k)+ x2(k)

)
<∞

}
.

By a solution of the martingale problem MPS we understand an E-valued Markov process (X1,X2) with càdlàg paths
such that

X1
t (k) :=X1

0(k)+
∫ t

0
A∗X1

s (k) ds +Mt(k),

X2
t (k) :=X2

0(k)−Mt(k)

(1.2)

for some orthogonal zero mean martingales M(k), k ∈ S. As usual, uniqueness of the solution to a martingale problem
means uniqueness in law.

Theorem 1.1. If S is finite, then for any initial condition (X1
0,X

2
0) ∈ E, there exists a unique solution of MPS .

Remark 1.2. If in the martingale problem MPS , we would allow local coexistence of types, that is X1
t (k)X2

t (k) could be
positive, and we define M(k) to be a continuous martingale with square variation process 〈M(k)〉t =

∫ t

0 γX1
s (k)X2

s (k) ds,
then we would have the process of finite rate γ ≥ 0 symbiotic branching with � =−1. It is standard to show that if we
let γ →∞, then we get convergence to the infinite rate model defined above. This programme has been carried out for
similar models, e.g., in [14] and [4].
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Remark 1.3. It is standard to extend the existence result in Theorem 1.1 to countable sets S under some mild regularity
assumptions on A, e.g., for random walks on an abelian group S. This is done, for example, using an approximation
scheme with finite subsets of S.

Remark 1.4. In order to stress the formal similarity with the corresponding processes on R instead of S, it is convenient
to have a weak formulation of (1.2). Note that (1.2) is equivalent to

〈
X1

t , φ1
〉= 〈

X1
0, φ1

〉+ ∫ t

0

〈
X1

s ,Aφ1
〉
ds + 〈Mt,φ1〉,〈

X2
t , φ2

〉= 〈
X2

0, φ2
〉− 〈Mt,φ2〉

(1.3)

for finitely supported functions φ1, φ2. Here the martingales 〈Mt,φ1〉 and 〈Mt,φ2〉 are orthogonal for functions with
disjoint supports.

A preliminary step towards Theorem 1.1 is the one-colony model. Here the single colony either hosts dormant frogs
(type 2) or wake frogs (type 1). At varying speed θs at any time s infinitesimal wake frogs arrive. They try to wake up
the sleeping frogs and succeed with probability (θs/X2

s ) ds in the time interval ds. Otherwise they also fall asleep. After
the awakening, the colony will host only wake frogs. The wake frogs still arrive at the varying speed θs . In addition, they
emigrate at a speed proportional to the number of wake frogs.

To be more formal, let c ≥ 0 be a constant determining the strength of emigration of type 1 and let (θs)s≥0 be a
nonnegative measurable deterministic map that governs the rate of immigration of type 1. We consider a Markov process
X = (X1,X2) with values in E and with càdlàg paths which solves the martingale problem MP0:

X1
t :=X1

0 +
∫ t

0
θs ds −

∫ t

0
cX1

s ds +Mt,

X2
t :=X2

0 −Mt

(1.4)

for some zero mean martingale M .

Theorem 1.5. For any initial condition (X1
0,X

2
0) ∈E, there exists a unique solution of MP0.

Note that as long as X1
t = 0, we have that −Mt =

∫ t

0 θs ds is the amount of additional frogs that have fallen asleep by
time t . Thus −Mt adds to the initially dormant frogs X2

0 to give X2
t . At some random time, all frogs wake up and Mt

jumps to the value X2
0. This random time point is chosen such that (Mt) is a martingale.

Before we proceed, let us heuristically describe the evolution of the processes solving martingale problems MP0 and
MPS . Let us start with the one-colony model, that is, with the process (X1,X2) solving MP0. Since X2 is a nonnegative
martingale, if X2

t = 0, then we have X2
s = 0 for all s ≥ t (in fact, E[Xs | Xt = 0] = 0 due to the martingale property

and Xs ≥ 0 a.s. which implies Xs = 0 a.s. on the event {Xt = 0}). Hence, the process is non-trivial only if X2
0 > 0 and

thus X1
0 = 0. Since 0 is a trap for X2 and Xs ∈ E, the martingale X2

t is continuous and monotonically increasing with
derivative θt up to the random time τ where it has a single jump to 0, that is, X2

s = 0 if and only if s ≥ τ . (Compare with
the process Z defined in Lemma 2.1 below.) Moreover, as we see from the equations, at the same time τ , X1 makes a
jump up, becomes positive and solves the deterministic equation ∂tX

1
t = θt − cX1

t for t ≥ τ .
Now we will give a more detailed description of the jump time τ , although most of the technical details will be

provided in the proof of Theorem 1.5 in Section 2. Let W be a nonnegative random variable whose distribution is given
by

P[W > x] = X2
0

X2
0 + x

for all x > 0. (1.5)

That is, the hazard rate of W is x 
→ 1/(X2
0 + x). (Recall that the hazard rate of a nonnegative random variable W is the

map x 
→ h(x) := P[W ∈ dx |W ≥ x]/dx, or in terms of its distribution function FW : h(x)= F ′
W(x)/(1− FW(x)).) If∫∞

0 θs ds =∞, then due to the martingale property, we have (see Proposition 2.2 for a formal proof)

sup
{
X2

t : t ≥ 0
} d=W +X2

0. (1.6)
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Hence, we can use W to define

τ = inf

{
t ≥ 0 :

∫ t

0
θs ds > W

}
. (1.7)

With this τ at hand, we can define (X1,X2) as described above and get a solution of MP0 even if
∫∞

0 θs ds <∞.
An alternative point of view is the Markov structure of the process and we could construct τ in a more “adapted”

fashion which will be useful if we pass to models with many colonies. Note that if X2
t > 0, then it increases with derivative

θt ≥ 0 until it jumps down to 0. Very loosely speaking, the expectation of X2
t increases in the time interval dt by θt dt

due to the continuous growing and it decreases by X2
t dt times the jump rate. Hence, in order that X2 be a martingale,

the jump rate must be θt/X2
t . That is, the hazard rate of τ is θt/X2

t . Hence, we can define τ as the first time of a point of
a Poisson process with the appropriate rate. We do so by letting N (dt, dr) a Poisson point process on R

2+ with intensity
measure

N ′(dt, dr)= dt dr. (1.8)

Then we define the jump rate It := θt

X2
t

1{X2
t >0} and let

τ := inf

{
t ≥ 0 :

∫ t

0

∫ ∞

0
1[0,Is ](r)N (ds, dr) > 0

}
.

If we define W := ∫ τ

0 θt dt , then it is easy to check that (1.5) holds if
∫∞

0 θt dt =∞. Finally, we define the martingale
measure

M :=N −N ′. (1.9)

The advantage of this construction is that we get a very convenient description of the martingale M as

Mt =
∫ t

0

∫ ∞

0
X2

s−1[0,Is−](r)M(ds, dr).

Note that ∂tMt =−θt for t < τ and that Mt =X2
0 for all t ≥ τ since It = 0 for all t ≥ τ .

Having understood the evolution of the one-colony model, we are prepared to study the model of finitely many
colonies.

Let A∗,+(k, l)=A∗(k, l)1{k �=l}. At each site k, the rate of immigration is θt (k) =A∗,+X1
t (k) while the constant for

the rate of emigration is c(k)=−A∗(k, k).
As long as X2

t (k) > 0 (and hence X1
t (k)= 0), we have θt (k)=A∗X1

t (k) and ∂tX
2
t (k)=A∗X1

t (k); that is

X2
t (k)=X2

0(k)+
∫ t

0
A∗X1

s (k) ds for all k and t such that X2
t (k) > 0. (1.10)

On the other hand, if X2
t0
(k)= 0, then X1(k) solves the equation

X1
t (k)=X1

t0
(k)+

∫ t

t0

A∗X1
s (k) ds for all t ≥ t0. (1.11)

We will now describe the simple situation where S = {−N,−N + 1, . . . ,N − 1,N} and where A is the q-matrix of
a Markov chain on S with only nearest neighbour jumps. Furthermore, we assume, X2

0(k) > 0 for k > 0 and X2
0(k)= 0

for k ≤ 0. Recall from the motivation that X1 stands for wake frogs that move and X2 for dormant frogs that stand still.
Appealing to (1.5) we could define independent random variables Wk , k ∈ {1, . . . ,N}, by

P
[
Wk > x

]= X2
0(k)

X2
0(k)+ x

for all x > 0

and then define the process (X1,X2) in a deterministic way using the (Wk). However, this construction is a bit technical
and does not differ too much from a similar construction for the model on the continuous site space R that we will present
later. Hence, here we focus on the martingale measure M introduced in (1.9).
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Now for every k ∈ S, there is a martingale M(k) but at a given time t only one of them changes its values, the one at
k = �t−, where

�t :=min
{
k :X2

t (k) > 0
}∧N.

Note that due to the nearest neighbour jumps, �t is the unique point k such that A∗X1
t (k) > 0 and X2

t (k) > 0 (unless
〈X2

t ,1〉 = 0). In other word, the wake frogs invade the dormant sites one by one. �t is the site that wake frogs try to invade
at time t . Eventually, either all frogs are awake or the invasion gets stuck at some final point u∗ := supt �t <∞. In this
case, we have X2

t (u
∗) > 0 for all t ≥ 0. Now define

It := A∗X1
t (�t )

X2
t (�t )

1{X2
t (�t )>0}.

Finally, let

Mt(k) :=
∫ t

0

∫ ∞

0
1{�s−}(k)X2

s−(k)1[0,Is−](r)M(ds, dr). (1.12)

It is not hard to check that these M(k) are in fact orthogonal martingales and that the process (X1,X2) defined by (1.2)
in terms of these martingales solves the martingale problem MPS posed in Theorem 1.1.

We refrain from giving a formal proof of this statement since we later study a similar statement for the continuous
space process in more detail.

1.2. Continuous space model with discrete colonies of dormant frogs

We will now define a model similar to the one presented in the previous section but with the site space S = R. Initially,
X2

0 is a purely atomic finite measure with nowhere dense atoms which is supported by (0,∞), that is

X2
0 =

∑
i≥1

xiδzi
(1.13)

with 0 < z1 < z2 < · · · and
∑

i xi <∞.
We assume that X1

0 has a density and is supported by (−∞,0]. The mass transport of X1 follows the heat flow, that is,
A=A∗ = 1

2∂2
x . With a slight abuse of notation we will denote the density of X1

t (dx) by X1
t (x).

Let MF be the space of finite measures on R equipped with the weak topology. For μ ∈ MF and f a bounded
measurable function on R, denote

〈μ,f 〉 = μ(f )≡
∫
R

f (x)μ(dx).

We denote by Cb(R) and Cc(R) the spaces of bounded continuous functions, respectively compactly supported continu-
ous functions. By C2

b(R)⊂ Cb(R) and C2
c (R)= C2

b(R) ∩ Cc(R) we denote the subspaces of twice continuously differ-
entiable functions with bounded first and second derivative. By adding a superindex +, we further restrict the classes to
nonnegative functions. For any metric space U , we denote by DU the space of càdlàg functions [0,∞)→ U equipped
with the Skorohod topology.

We now give a more formal description of (X1
t ,X

2
t ), t ≥ 0, as MF -valued processes.

The model we consider here is quite similar to the discrete space model with S = {−N, . . . ,N} that was studied in
Section 1.1: Define

�t := sup
{
x :X2

t ((−∞, x])= 0
}
,

where clearly �t = ∞ if X2
t (1) = 0. If X2

t (1) > 0, then �t describes the position of the leftmost atom of X2
t at time

t , say at zi . Then X1
t (the wake frogs) solves the heat equation on (−∞, �t ) with Dirichlet boundary condition at �t .

The wake frogs at �t fall asleep (that is, the X1 mass killed at �t transforms into mass of X2
t ({�t })) until all sleeping

frogs at �t wake up. At this instant, �t jumps to the next atom at zi+1 and X1 continues to solve the heat equation on
(−∞, �t )= (−∞, zi+1) with Dirichlet boundary condition at �t = zi+1 and so on. Let τ 1 = 0 and

τ i := inf{t ≥ 0 : �t = zi} = inf
{
t ≥ 0 :X2

t

({zi−1}
)= 0

}
.
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More formally, we have{
∂tX

1
t = 1

2∂2
xX1

t on (−∞, zn), for τn < t < τn+1,

X1
t (x)= 0 for all x ≥ �t ,

(1.14)

It is well known that the above Dirichlet problem can be equivalently formulated as a solution of the heat equation with
killing at zn. For z ∈ R, let Sz denote the semigroup of heat flow with killing at z. That is, (Sz

t )t≥0 is the sub-Markov
semigroup with density pz

t (x, y) = 0 if z ∈ [x, y] or z ∈ [y, x] and pz
t (x, y) = pt(y − x)− pt (2z − y − x) otherwise,

by the reflection principle. Here pt (x) = (2πt)−1/2 exp(−x2/(2t)) is the density of the standard heat kernel. For any
measure μ on R, we also define Sz

t μ(dx)/dx = ∫
R

pz
t (y, x)μ(dy), x ∈ R. With a slight abuse of notation we also write

Sz
t μ(x) for the density Sz

t μ(dx)/dx. Then

X1
t (x)= S

zn

t−τnX
1
τn(x) for all τn < t < τn+1, x ∈R. (1.15)

By applying the integration by parts formula to X1 solving (1.14), it is easy to derive that for any smooth function
φt (x) :R+ ×R 
→R with compact support in the x ∈R variable, we have

−
∫ t

τ n

〈
X1

s , ∂sφs + 1

2
∂2
xφs

〉
ds = 〈

X1
τn , φτn

〉− 〈
X1

t , φt

〉+ ∫ t

τ n

(
1

2
∂−x X1

s (zn)

)
φs(zn) ds, t ∈ (

τn, τn+1),
where ∂−x denotes the left sided partial derivative, and hence,

〈
X1

t , φt

〉= 〈
X1

τn , φτn

〉+ ∫ t

τ n

〈
X1

s , ∂sφs + 1

2
∂2
xφs

〉
ds +

∫ t

τ n

(
1

2
∂−x X1

s (zn)

)
φs(zn) ds, t ∈ (

τn, τn+1). (1.16)

The above equation implies that formally X1 solves the following equation on t ∈ (τn, τn+1)

∂tX
1
t (x)= 1

2
∂2
xX1

t (x)+ 1

2
∂−x X1

s (zn)δzn(x), x ∈R. (1.17)

Note that ∂−x X1
s (zn)≤ 0, and hence the last term in (1.16) describes the loss of mass of X1 due to “killing” at zn. In what

follows, for a function f , ∂2
xf will denote the generalized second derivative of f at x. If ∂2

xf is an absolutely continuous
signed measure, then, with a slight abuse of notation, we will write ∂2

xf (x) for the density of this measure; if ∂2
xf has

an atom at x, then ∂2
xf ({x}) will denote the mass (possibly negative) of that atom at x. Note that for f having one sided

derivatives at all points and such that f (y) = 0 for all y ≥ x, ∂2
xf ({x}) equals minus the left sided partial derivative

−∂−x f (x) at x:

∂2
xf

({x})=−∂−x f (x) if f (y)= 0 for all y ≥ x.

With this notation at hand we can rewrite (1.17) as follows:

∂tX
1
t (x)= 1

2
∂2
xX1

t (x)− 1

2
∂2
xX1

s

({zn}
)
δzn(x), x ∈R, τ n < t < τn+1. (1.18)

From the above, we can easily derive an expression for the amount of mass of X1 “killed” at zn by time t . The amount
of mass of X1 “killed” at zn by time t < τn is zero. By time t ∈ (τn, τn+1) it equals the change of the total mass of X1 in
the time interval [τn, t], that is, by (1.18), it is given by

〈
X1

τn −X1
t ,1

〉= ∫ t

τ n

1

2
∂2
xX1

s

({zn}
)
ds =

∫ t

τ n

1

2
∂2
x

(
S

zn

s−τnX
1
τn

)({x})∣∣
x=zn

ds, (1.19)

where the second equality follows by (1.15).
In our model, before time τn+1 all the wake frogs that arrive at zn fall asleep; that is, all the “green” mass of X1 that

is killed at zn transforms into “red” mass at the same site. More formally,

X2
t

(
(−∞, zn])= 0 for all t ≥ τn+1,

X2
t (A)=X2

0(A) for all t ≤ τn+1, A⊂ (zn,∞),
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and

X2
t

({zn}
)=X2

0

({zn}
)+ ∫ t

τ n

1

2
∂2
xX1

s

({zn}
)
ds for τn < t < τn+1. (1.20)

At time τn+1, all the sleeping frogs at zn wake up, that is, the red mass at zn transforms at once into a green atom at zn:

X1
τn+1 =X1

τn+1− +X2
τn+1−

({zn}
)
δzn . (1.21)

Altogether the process looks like propagation of the wake frogs to the right with consecutive “struggles” with piles
of dormant frogs. During the fights, the propagation of the wake frogs to the right stops and the amount of wake frogs
decreases (as they fall asleep). However, if and when the wake frogs manage to wake up a pile of dormant frogs, they
reactivate the formerly wake frogs that have fallen asleep at this spot. In addition the initially dormant frogs at this spot
also wake up. Then the fight place moves to the next pile of sleeping frogs. As mentioned before, it is possible that the
wake frogs fail to activate the dormant frogs at some spot. In this case the remaining sleeping frogs will stay asleep
forever. Otherwise, after waking up all sleeping frogs, the frogs propagate as a solution to the heat equation.

As long as the sleeping frogs are distributed according to a purely atomic measure X2
0(dx) with nowhere dense loca-

tions of the atoms, the above construction is pretty simple. However, an immediate question that arises is whether it is
possible to construct such a process with X2

0(dx) being absolutely continuous measure? Answering this question is the
main goal of the paper.

1.3. Main results

Our main objective is the construction and characterization of the process (X1,X2) with absolutely continuous X2
0(dx).

In the sequel we will use the following assumptions on the initial conditions of the process (X1,X2).

Assumption 1.6.

(i) X1
0 is an absolutely continuous finite measure with compact support in (−∞,0] and with bounded density X1

0(x).
(ii) X2

0 is an absolutely continuous finite measure with support in [0,1] and with density X2
0(x).

(iii) X2
0(x) > 0 for all x ∈ (0,1) and X2

0(x) is continuous in x ∈ (0,1).

The idea behind the construction of the process (X1,X2) with these initial conditions is pretty simple. Since we do
understand the behavior of the process when X2

0 is purely atomic, we will approximate the absolutely continuous initial
conditions X2

0 by the purely atomic ones and see if and where the family of processes converges.
Let η > 0. We define the family of approximating processes (X1,η,X2,η) as follows. For any η > 0, define

X
1,η
0 =X1

0,

x
2,η
i =X2

0

(
((i − 1)η, iη]) for i ≥ 1,

X
2,η
0 =

∑
i≥1

x
2,η
i δiη.

(1.22)

Now let (X
1,η
t ,X

2,η
t ) be the process defined in Section 1.2. The wake frogs represented by X1,η try to activate the

colonies of sleeping frogs represented by X2,η.
To present our main result, recall the point process N and the martingale measure M from (1.8) and (1.9). Note that

M
([0, t] ×A

)
t≥0

is a martingale for any measurable A⊂R+ with finite Lebesgue measure.
For an MF ×MF -valued process μt = (μ1

t ,μ
2
t ), t ≥ 0, let �t be the leftmost point of the support of μ2

t if μ2
t (1) > 0

and the rightmost point of the support of μ2
0 otherwise. Then if ∂2

xμ1
t (�t ) is well-defined, we can define

I (μt )=
1
2∂2

xμ1
t ({�t })

μ2
t ({�t })

1{μ2
t ({�t })>0}, (1.23)

otherwise we set I (μt )= 0.
Our main result is as follows.
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Theorem 1.7. ((X1,η,X2,η))η>0 is tight in DMF×MF
and any limit point for η ↓ 0+ is a weak solution to the following

system of stochastic partial differential equations: for any φ1, φ2 ∈ C2
b(R),{

X1
t (φ1)=X1

0(φ1)+
∫ t

0 X1
s (

1
2φ′′1 ) ds +Mt(φ1),

X2
t (φ2)=X2

0(φ2)−Mt(φ2),
(1.24)

where Mt(φi), i = 1,2, are martingales derived from the orthogonal martingale measure M by

Mt(φ) :=
∫ t

0

∫ ∞

0
Ys−φ

(
�s−

)
1[0,I (Xs−)](a)M(ds, da). (1.25)

Here �s := inf{x :X2
s ((−∞, x]) > 0} ∧ 1 and Ys =X2

s ({�s}).
Let us give a few comments regarding the above result. As we will see, not only the limiting process (X1,X2) solves

the set of equations (1.24), but also any of the approximating processes (X1,η,X2,η). The only difference is in the set of
the initial conditions. Note that we do not prove uniqueness of the solution of (1.24) and (1.25). In fact, due to the absence
of a duality relation (which helped in similar models), we do not see a viable way to prove uniqueness here.

We can also check some properties of the limiting process (X1,X2). One of the interesting observations we have deals
with the properties of some point measure induced by the jumps of (X1,X2), where the jumps are indexed by their spatial
location. Let L denote the point process on R× R+ that describes the jumps of the total mass X2

t (1) of X2
t defined as

follows:

L(dx, dz)=
∑

s

1{�X2
s (1)�=0}δ(�s−,−�X2

s (1))(dx, dz). (1.26)

We will show that essentially L is a Poisson point process. However, it may happen that the total mass of X1 is not
sufficient to wake up all sleeping frogs. In this case, the proliferation of wake frogs gets stuck at some random point u∗
and L exhibits the Poisson points only up to this random position.

Let L̃ be a Poisson point process on R× (0,∞) with intensity X2
0(dx)z−2 dz. For u ∈R and s ≥ 0, define

Du,s :=
{
(x, z) : x ∈ [0, u], z > s +X2

0

([0, x)
)}

and

u∗ := sup
{
u : L̃(Du,X1

0(1))= 0
}
.

Then we have the following result:

Theorem 1.8. We can define L̃ and X on one probability space such that L(A) = L̃(A ∩ ([0, u∗) × (0,∞))) almost
surely for all measurable A⊂ [0,∞)× (0,∞) and we have

u∗ = sup
{
inf

(
supp

(
X2

t

)) : t ≥ 0
}= inf

{
u :X2

t ((−∞, u]) > 0 for all t ≥ 0
}
.

From the definition of Du,s and the above theorem it is easy to see that a point of L̃ in Du,s means that if initially there
is a total mass of s wake frogs, then the proliferation of wake frogs stops before the spatial point u. Also note that u∗
differs from sup{�t : t ≥ 0} only in that the latter is truncated at 1.

One of the most interesting features of the limiting process is that it develops atoms of sleeping frogs at random points
although it starts with an absolutely continuous distribution of sleeping frogs. In fact, all the random fluctuations in the
model occur at the (moving) site with this unique atom.

Once the atom of sleeping frogs is created, the process behaves like the model described in Section 1.2 (with only one
colony of sleeping frogs) until the dormant frogs at this spot wake up. The main difficulty then lies in predicting where
the next atom would appear.

1.4. Outline

The rest of the paper is organized as follows. In Section 2, we start with some elementary considerations on the mar-
tingale problem and prove Theorems 1.1 and 1.5. In Section 3, we formulate the SPDE that the approximating process
(X1,η,X2,η) solves and we give a description of the process that is indexed by space rather than time, providing the proof
of Theorem 1.8. In Section 4, we show tightness of the approximating process. Finally, in Section 5, we finish the proof
of Theorem 1.7 by showing convergence of the semimartingale characteristics.
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2. Discrete space martingale problems. Proofs of Theorems 1.1, 1.5

Let Z = (Zt )t≥0 be an integrable nonnegative Markov process with respect to some filtration F= (Ft )t≥0. Assume Z is
of the form

Zt =
{

z0 + t, if t < τ,

0, otherwise,

for some F-stopping time τ <∞ and some deterministic z0 > 0.

Lemma 2.1. Z is a martingale if and only if P[τ > t] = z0/(t + z0) for all t > 0.

Proof. If τ has the desired distribution, then for t > s ≥ 0, we have

E[Zt |Fs] = z0 + t

z0 + s
ZsP[τ > t |Fs]

= z0 + t

z0 + s
Zs

P[τ > t]
P[τ > s]

=Zs.

On the other hand, if Z is a martingale, then

P[τ > t] = P[Zt = t + z0] = 1

t + z0
E[Zt ] = 1

t + z0
E[Z0]. �

For u > 0 fixed, let W(u) be a random variable with

P
[
W(u) > r

]= u

r + u
for all r > 0. (2.1)

Define the process (Ut (u))t≥0, by

Ut(u)=
{

u+ t, if t < W(u),

0, otherwise.

Hence, (Ut (u))t≥0 is a continuous time Markov process on [0,∞) with generator

Gf (x)=
[
f ′(x)+ 1

x

(
f (0)− f (x)

)]
1(0,∞)(x).

That is, U(u) grows linearly with slope 1 until it collapses to 0. By construction, U(u) is a martingale.
We will need this process U in the following proposition that is a preparation for proving Theorem 1.5. Recall that

E = [0,∞)2 \ (0,∞)2.

Proposition 2.2 (MP1). Consider the following martingale problem for the process (X1
t ,X

2
t )t≥0 on E with initial condi-

tion (X1
0,X

2
0):

X1
t =Mt + t, t ≥ 0,

for some zero mean martingale M and

X2
t =X2

0 −Mt, t ≥ 0.

Then (X1,X2) is uniquely defined (in law) and

X1
t = t −Ut

(
X2

0

)+X2
0,

X2
t =Ut

(
X2

0

)
.

(2.2)
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Proof. Clearly, (2.2) defines a solution of the martingale problem.
In order to show uniqueness, assume that (X1,X2) is a solution of the martingale problem. Let

τ := inf
{
t ≥ 0 :X2

t = 0
}
.

Clearly, X2
t = 0 for t ≥ τ since X2 is a nonnegative martingale. Furthermore, X1

t = 0 for t < τ . Note that

X1
t +X2

t =X2
0 + t.

Hence, X2 is a martingale with

X2
t =

{
X2

0 + t, if t < τ,

0, otherwise.

By Lemma 2.1, the only solution is X2 =U . �

Now we come to the following generalization of the martingale problem (MP1) where the input rate varies in time and
there is also output proportional to X1

t .

Proposition 2.3 (MP2). Let 
 be a locally finite measure on [0,∞) with 
({0}) = 0. Let c ≥ 0. Let (X1
t ,X

2
t )t≥0 be a

stochastic process on E with initial condition (X1
0,X

2
0). Assume that

X1
t =
((0, t])−

∫ t

0
cX1

s ds +Mt (2.3)

for some zero mean martingale M and

X2
t =X2

0 −Mt. (2.4)

Then (X1,X2) is uniquely defined (in law) and

X1
t =

{
(
((0, τ ])+X2

0)e
−c(t−τ) + ∫ t

τ
e−c(t−s)
(ds), if t ≥ τ,

0, otherwise,

X2
t =U
((0,t])

(
X2

0

)
,

(2.5)

where

τ = inf
{
t ≥ 0 :X2

t = 0
}= inf

{
t ≥ 0 :
((0, t])≥W

(
X2

0

)}
.

Proof. Existence. We show that (2.5) is a solution. As a deterministic (or independent) time transform of a martingale,
X2 is a martingale. Hence, (Mt) := (X2

0 −X2
t ) is a martingale such that

Mt =−
((0, t]) for t < τ,

and

Mt =X2
0 for t ≥ τ. (2.6)

Therefore X2 satisfies (2.4). This also gives that X1
t = 0 solves (2.3) for t < τ . Recalling (2.6) it is easy to see from the

theory of differential equations that X1
t = (
((0, τ ])+X2

0)e
−c(t−τ) + ∫ t

τ
e−c(t−s)
(ds) solves (2.3) for t ≥ τ . From all

this we infer that (X1,X2) defined by (2.5) is indeed a solution of (MP2).
Uniqueness. As in the proof of (MP1), Mt must be constant for t ≥ τ and hence must equal

Mt =Mτ =X2
0 −X2

τ =X2
0 for t ≥ τ.

On the other hand, we have

Mt =−
((0, t]) for t < τ.

This defines M uniquely (in law). �
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Proof of Theorem 1.5. Clearly, the proof of Theorem 1.5 follows immediately from the above proposition with

((0, t])= ∫ t

0 θs ds. �

Remark 2.4. Note that Proposition 2.3 not only gives the proof of Theorem 1.5, but also gives the exact form of the
solution.

Now we are ready to give the

Proof of Theorem 1.1. In fact, having all the above results, the proof of Theorem 1.1 is simple. Let S0 := {k ∈ S :
X2

0(k) > 0}. Denote by X̂1 the deterministic solution of

X̂1
0 =X1

0 and ∂t X̂
1
t (k)= 1S\S0(k)

∑
l∈S\S0

A∗(k, l)X̂1
t (l).

That is, X̂1 follows the deterministic flow induced by A∗ but with killing at S0.
Let (X̃1(k), X̃2(k)), k ∈ S, be independent solutions of MP0 with X̃i

0(k)=Xi
0(k) for all i = 1,2 and with (recall that

A∗,+(k, l)= 1{k �=l}A∗(k, l))

θt (k) :=A∗,+X̂1
t (k)

and

c(k) := −A∗(k, k).

Let τ := inf{t ≥ 0 : X̃2
t (k) = 0 for some k ∈ S0}. Note that θt (k) = A∗,+X̃1

t (k) for t < τ . Let k∗ ∈ S0 be the unique
element such that X̃2

τ (k
∗)= 0. Then we define (X1

t ,X
2
t )= (X̃1

t , X̃
2
t ) for all t < τ and

Xi
τ (k)=Xi

τ−(k) for all i = 1,2, k �= k∗

and

X1
τ

(
k∗

)=X2
τ−

(
k∗

)
, X2

τ

(
k∗

)= 0.

Now, use (X1
τ ,X

2
τ ) as the new initial state and proceed inductively as above to get a solution of MPS .

Uniqueness. In order to show uniqueness of the solution of MPS , note that X2
t (k) is a nonnegative martingale for any

k ∈ S. Hence, if for some k ∈ S and some t0, we have X2
t0
(k) = 0, then X2

t (k) = 0 for all t ≥ t0. Hence, it is enough
to show that in the above construction of a solution of MPS , the stopping time τ and the position k∗ are unique in law.
Hence, we assume that we are given a solution (X1,X2) of MPS . We define S0 := {k ∈ S :X2

0(k) > 0} and

τ := inf
{
t ≥ 0 :X2

t (k)= 0 for some k ∈ S0
}
.

Since the martingales X2(k), k ∈ S, are orthogonal, there is a unique element k∗ ∈ S0 such that X2
τ (k

∗) = 0. Since
(X2

τ∧t (k))t≥0 are orthogonal martingales by the optional stopping theorem, the hazard rate for a jump to 0 for each of
these martingales is

Ht(k) := A∗X1
t (k)

X2
t (k)

for all t < τ.

Since (X1
t ,X

2
t ) solves a deterministic set of differential equations with Lipschitz coefficients for t < τ , we have unique-

ness of (X1
t ,X

2
t ) for t < τ . Since the martingales are orthogonal, the hazard rate for τ is simply

Ht :=
∑
k∈S0

Ht(k).

Hence, P[τ > t] = exp(− ∫ t

0 Hs ds) and P[k∗ = k | τ ] =Hτ−(k)/Hτ−. This shows uniqueness in law up to time τ and by
iteration, we get uniqueness in law for all times.

This finishes the proof of Theorem 1.1. �
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3. Characterization of the approximating process and proof of Theorem 1.8

The approximating process (X1,η,X2,η) was introduced in Section 1.3 based on the construction in Section 1.2. Here
we show that it satisfies a certain set of equations. Furthermore, in Section 3.2, we change the perspective and give a
description in terms of the maximal amount of frogs that sleep at a given site before they wake up. This space indexed
description results in a spatial point process description of the approximating process and yields the proof of Theorem 1.8.

3.1. Martingale description of the approximating process

Let us define �
η
t by

�
η
t = inf

{
x :X2,η

t ((−∞, x]) > 0
}∧ sup supp

(
X

2,η
0

)
. (3.1)

Note that �
η
t is the left boundary of the support of X

2,η
t as long as X

2,η
t (1) > 0. We use this specific definition in order to

avoid that �η jumps to ∞ at the instance where the last atom of X2,η vanishes.
From the description of the process in Section 1.2, we can decompose the process X2,η as follows:

X
2,η
t (dx)=X

2,η
t

({
�
η
t

})
δ�

η
t
(dx)+ 1(�

η
t ,∞)(x)X

2,η
0 (dx). (3.2)

For simplicity, denote

Y
η
t ≡X

2,η
t

({
�
η
t

})
. (3.3)

Then we have

X
2,η
t (dx)= Y

η
t δ�

η
t
(dx)+ 1(�

η
t ,∞)(x)X

2,η
0 (dx). (3.4)

In order to define the point process N η
� of the sizes of the dormant colonies at the times when they wake up, we need

the process of jumps(
�X

2,η
t

)({
�
η
t−

}) := lim
r↓0

(
X

2,η
t

({
�
η
t−r

})−X
2,η
t−r

({
�
η
t−r

}))
. (3.5)

We can now define point process N η
� on R+ ×R+ by

N η
�(ds, dz)=

∑
t

1{(�X
2,η
t )({�η

t−})�=0}δ(t,−(�X
2,η
t )({�η

t−}))(ds, dz). (3.6)

Lemma 3.1. Let N η,′
� be the compensator measure of N η

�. Then

N η,′
� (ds,B)= 1B

(
Y

η
s−

)
I
(
X

η
s−

)
ds for B ⊂R+ measurable. (3.7)

Proof. By construction, X
2,η
t ({iη}) are orthogonal nonnegative martingales with hazard rates of a jump down to 0 (i.e.,

of size −X
2,η
t ({iη})) given by 1

2∂2
xX

1,η
t ({iη})/X

2,η
t ({iη}) if X

2,η
t ({iη}) > 0. This hazard rate is positive only if iη = �

η
t

and in this case equals I (X
η
t ). Hence, we get (3.7). �

Now we are going to derive the system of equations that describes (X1,η,X2,η). Let Mη
� = N η

� − N η,′
� and for

bounded measurable ψ :R+ ×R→R, define M
η
t (ψ) by

M
η
t (ψ)=

∫ t

0

∫
[0,∞)

zψ
(
s, �

η
s−

)
Mη

�(ds, dz). (3.8)

Clearly, M
η
t (ψ) is a local martingale. Note that

∫ t

0

∫
[0,∞)

zN η
�(ds, dz) ≤

�η−1�∑
i=1

∑
s

∣∣�X2,η
s

({iη})∣∣≤ ⌈
η−1⌉ sup

s≥0

〈
X2,η

s ,1
〉

≤ ⌈
η−1⌉〈

X1
0 +X2

0,1
〉
). (3.9)
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At each point {iη}, we have∫ t

0

∫
[0,∞)

1{�η
s−=iη}zN

η,′
� (ds, dz)≤ sup

s≥0
X2,η

s

({iη})≤ 〈
X1

0 +X2
0,1

〉
. (3.10)

Hence, we infer∣∣Mη
t (ψ)

∣∣≤ ‖ψ‖∞
(∫ t

0

∫
[0,∞)

zN η
�(ds, dz)+

∫ t

0

∫
[0,∞)

zN η,′
� (ds, dz)

)
≤ 2

⌈
η−1⌉‖ψ‖∞〈

X1
0 +X2

0,1
〉
. (3.11)

As a bounded local martingale, M
η
t (ψ) is in fact a martingale. We will use this martingale in the next lemma for

functions φ instead of ψ with no explicit time-dependence.

Lemma 3.2. The process (X1,η,X2,η) solves the following set of equations: For all φ1, φ2 ∈ C2
b(R),

X
1,η
t (φ1)=X

1,η
0 (φ1)+

∫ t

0
X1,η

s

(
1

2
φ′′1

)
ds +M

η
t (φ1), (3.12)

X
2,η
t (φ2)=X

2,η

0 (φ2)−M
η
t (φ2) (3.13)

where the martingales Mη(φi) are defined by (3.8).

Proof. This is an immediate consequence of the construction of the process Xη and the definition of Mη
�. �

Lemma 3.3. There exists a unique L2-martingale measure Mη(ds, dx) on R+ ×R such that

M
η
t (φ)=

∫ t

0

∫
R

φ(z)Mη(ds, dz) for all φ ∈ C2
b(R). (3.14)

Mη(ds, dx) is a pure jump martingale measure that has only a finite number of jumps (at most �η−1� jumps) and it fulfils

M
η
t (ψ)=

∫ t

0

∫
R

ψ(s, z)Mη(ds, dz)

=
∑
s≤t

(−�X2,η
s

)({
l
η
s−

})
ψ

(
s, l

η
s−

)− ∫ t

0
Y

η
s−I

(
X

η
s−

)
ψ

(
s, l

η
s−

)
ds for ψ ∈Cb(R+ ×R). (3.15)

Proof. This is standard (note that in fact there is only a bounded number of bounded jumps, see the discussion in and
after the proof of Lemma 3.1). See, e.g., Chapter 2 in [20] for more discussion of martingale measures. �

Alternatively, we can characterize the model via the process (X1,η, Y η). Then we have a simple corollary from the
above lemma.

Corollary 3.4. (X1,η, Y η) solves the following equations. For any φ ∈C2
b(R),〈

X
1,η
t , φ

〉= 〈
X

1,η
0 , φ

〉+ ∫ t

0

〈
X1,η

s ,
1

2
φ′′

〉
ds +

∫ t

0

∫
[0,∞)

zφ
(
�
η
s−

)
Mη

�(ds, dz), (3.16)

Y
η
t =X

2,η
0

(
(−∞, �

η
t ]

)− ∫ t

0

∫
[0,∞)

zMη
�(ds, dz). (3.17)

Note that the “noise” in the equations given above depends on the process itself. It is much more convenient to define
the equations driven by a noise whose parameters are independent of the solutions. To this end recall the point process N
and the corresponding martingale measure M that were introduced in (1.8) and (1.9).

Lemma 3.5. We can define our process Xη = (X1,η,X2,η) and M on one probability space such that the following
SPDE holds: For all φ1, φ2 ∈C2

b(R), we have

X
1,η
t (φ1)=X

1,η
0 (φ1)+

∫ t

0
X1,η

s

(
1

2
φ′′1

)
ds +

∫ t

0

∫
[0,∞)

Y
η
s−φ1

(
�
η
s−

)
1[0,I (X

η
s−)](a)M(ds, da), (3.18)

X
2,η
t (φ2)=X

2,η
0 (φ2)−

∫ t

0

∫
[0,∞)

Y
η
s−φ2

(
�
η
s−

)
1[0,I (X

η
s−)](a)M(ds, da). (3.19)
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Proof. By Lemma 3.2, Xη solves (3.12) and (3.13). Let (tn, xn)n≥1 be an arbitrary labeling of the points of the point pro-
cess N�. Let N 1 be a Poisson point process on R+×R+, with intensity dt dr , independent of N� and (X1,η,X2,η). Also
let {Un}n≥1 be a sequence of independent random variables uniformly distributed on (0,1) which are also independent of
N� and (X1,η,X2,η).

Define the new point process N on R+ ×R+ by

N (ds, dr)=
∑
n≥1

δ(tn,UnI (X
η
tn−))(ds, dr)

+
∑
n≥1

1{r>I (X
η
tn−)}N 1(ds, dr). (3.20)

Both summands in (3.20) are predictable transformations of point processes of class (QL) (in the sense of [9], Defi-
nition II.3.1); that is, they possess continuous compensators. Standard arguments yield that they are hence also point
processes of class (QL). A standard computation shows that the compensator measures are given by

1{r≤I (X
η
s−)} ds dr and 1{r>I (X

η
s−)} ds dr,

respectively. Hence, N is a point process of class (QL) and has the deterministic and absolutely continuous compensator
measure dr dt . By [9], Theorem II.6.2, we get that N is thus a Poisson point process with intensity dt dr . �

3.2. Set indexed description of the approximating process, proof of Theorem 1.8

The aim of this section is to prove Theorem 1.8. Note that in that theorem, the perspective has changed from a stochastic
process indexed by time to a stochastic process indexed by space. In fact, we can consider the struggle between dormant
(red) and wake (green) frogs at a given site as a continued gambler’s ruin problem. As long as there is an amount of, say,
y dormant frogs at a given site, the arriving infinitesimal amount dx of wake frogs have a chance dx/y to activate all
frogs at that site. Otherwise the arriving frogs fall asleep and the total amount of dormant frogs at the site increases to
y + dx. Once all frogs at a given site have woken up, the wake frogs can proceed to the next pile of sleeping frogs (to the
right).

Clearly, we can describe this process by determining for each spatial point in advance the amount of wake frogs that is
needed to wake up the different piles of dormant frogs. This point process is L̃ for the limiting process and is L̃η for the
approximating processes. We claim that we can construct L̃η as a simple and natural function of L̃ and that L̃η converges

to L̃ almost surely.
Before we start with the formal statements, we make the following considerations. We consider the wake frogs as

playing the gambler’s ruin problem described above successively against a finite number of piles of sleeping frogs. These
piles have the sizes x1, . . . , xn > 0. Assume that Wi is the random amount of wake frogs it takes to wake up the ith pile,
i = 1, . . . , n. Then clearly, W1, . . . ,Wn are independent and we have

P[Wi > r] = xi

xi + r
for r > 0. (3.21)

Now we ask: How many wake frogs are needed to wake up successively all dormant frogs? After waking up the first pile
of dormant frogs, we have W1 + x1 wake frogs to try and wake up the second pile of dormant frogs. If W2 < W1 + x1
then the wake frogs can wake up all the frogs in pile 2 without additional help from other wake frogs and then we have
W1 + x1 + x2 frogs who try to wake up the frogs in pile number 3. If, however, W2 ≥W1 + x1, then we need additional
wake frogs W2 − (W1 + x1) before waking up pile 2. In this case, we have W2 + x2 frogs to wake up pile number 3.
Summing up, we need

max{W1,W2 − x1}
wake frogs to wake up the frogs in the piles 1 and 2. Iterating this, we see that we need

max
{
(Wi − (x1 + · · · + xi−1) : i = 1, . . . , n

}
(3.22)

initially wake frogs to wake up all dormant frogs.
Now we will show how to construct a set of random variables W̃ 1, . . . , W̃ n from some Poisson point process such that

(W̃1, . . . , W̃n)
d= (W1, . . . ,Wn). (3.23)
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Consider the Poisson point process J on [0,∞)× (0,∞) with intensity measure dz⊗ r−2 dr . The points are thought of
as the amounts of wake frogs needed to wake up infinitesimal dormant frogs that are situated at the spatial points z. For
simplicity, we enumerate the points of J in an arbitrary way as (zi, ri). We write x̃i = x1 + · · · + xi . For s > 0, define the
set

Di,s =
{
(z, r) : z ∈ (x̃i−1, x̃i], r > s + (z− x̃i−1)

}
Motivated by (3.22), we define

W̃i := sup
(zj ,rj ):zj∈(x̃i−1,x̃i ]

(
rj − (zj − x̃i−1)

)= inf
{
s : J (Di,s)= 0

}
.

Lemma 3.6. The random variables W̃1, . . . , W̃n are independent and P[W̃i > r] = xi

r+xi
for all i = 1, . . . , n and r > 0.

That is, (3.23) holds.

Proof. The independence is obvious as the points are taken from disjoints intervals. In order to compute the distribution
of W̃i , for s > 0, we compute

P[W̃i ≤ s] = P
[
J (Di,s)= 0

]
= exp

(
−

∫ x̃i

x̃i−1

∫ ∞

s+(z−x̃i−1)

r−2 dr dz

)
= exp

[
log(s)− log(s + xi)

]
= s

s + xi

. (3.24)
�

The lemma shows that we can start from infinitesimal dormant frogs and lump them together to build piles of finite
size. Similarly, we can go backwards and split finite piles into smaller and smaller pieces to obtain the process J . We
will formulate this in the slightly more general situation where J has the density f (z) dz⊗ r−2 dr for some bounded and
nonnegative function f . Let μ be the measure on [0,∞) with density f . Furthermore, let η > 0 and define

W̃
η
i := sup

(zj ,rj ):zj∈((i−1)η,iη]
(
rj −μ

([(i − 1)η, zj )
))

.

Proposition 3.7. The random variables W̃
η
i , i = 1,2, . . . are independent and

P
[
W̃

η
i > r

]= μ([(i − 1)η, iη))

μ([(i − 1)η, iη))+ r
for all r > 0.

Furthermore, the point process

J η :=
∑

i

δ(iη,W̃
η
i )

converges almost surely to J (in the vague topology of Radon measures on [0,∞)× (0,∞)).

Proof. The independence of the W̃
η
i and the specific form of their distribution is immediate from Lemma 3.6. In order to

show convergence of J η, it is enough to show

J η(C)→ J (C) as η→ 0 almost surely (3.25)

for sets C of the form C = [x1, x2] × [s,∞) for some x2 > x1 ≥ 0 and s > 0. Note that J (C) is finite almost surely. We
first define a point process J̃ η that is similar to J η but a little simpler. For η > 0, define

M
η
i :=max

{
rj : zj ∈ ((i − 1)η, iη]}= inf

{
s′ > 0 : J ((

(i − 1)η, iη
]× [s′,∞)

)= 0
}

and let

J̃ η :=
∑

i

δ(iη,M
η
i ).
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Since the points of J in the set C are discrete, the points of J̃ η in C approximate the points of J in C for η > 0 small
enough. To make this precise, note that since the intensity measure of J has a density, almost surely there exists a (random)
ε > 0 such that

J
([x1 − ε, x1] × [s,∞)

)= J
([x2 − ε, x2] × [s,∞)

)= J
([x1 − ε, x2] × [s − ε, s)

)= 0

and

J
([x, x + ε] × [s,∞)

)≤ 1 for all x ∈ [x1, x2 − ε].

For η ∈ (0, ε), we then have J̃ η(C)= J (C).
It remains to compare J̃ η and J η. The points in J̃ η have a slightly larger second coordinate (at most ε/2 > 0 larger

if η is small enough) and have thus possibly more points in sets of the form C. These additional points must originate in
points of J in [x1 − ε, x2] × (s − ε, s). By assumption, however, there are no such points, and hence J η(C) = J̃ η(C).
More formally, we have M

η
i ≥ W̃

η
i ≥M

η
i − η‖f ‖∞. This shows that

J η(C)≤ J̃ η(C)≤ J η(C)+ J
([x1 − ε, x2] × (s − ε, s)

)= J η(C)

if 0 < η < ε ∧ (ε/2‖f ‖∞) and hence it shows (3.25). �

Now we come back to our process (X1,η,X2,η). Here we will address the following question: What is the distribution
of the amount of wake frogs that is needed to wake up a given pile of sleeping frogs. Recall the definition of the point
process N η

� introduced in (3.6). Let (tn, xn) be the points of that process and we label them in a way that

t1 < t2 < · · · .
Now define the new point process

Lη(dx, dr)≡
∑

i

δ
(�

η
ti−,|(�X

2,η
ti

)({�η
ti−})|−X

2,η
0 ({�η

ti−}))
(dx, dr)

=
∑

i

δ(iη,V
η
i )(dx, dr), (3.26)

where

V
η
i ≡ ∣∣�X

2,η
ti

({iη})∣∣−X
2,η
0

({iη})= ∣∣�X
2,η
ti

({iη})∣∣− x
2,η
i

is exactly the amount of wake frogs that arrived at iη before waking up the dormant frogs in the ith pile. Let us characterize
these random variables V

η
i and the point process Lη.

Recall the definition of W(x), x > 0 from (2.1). Now given the initial measure of dormant frogs X
2,η
0 =∑

i≥1 x
2,η
i δiη ,

we define the following sequence of independent random variables W
η
i , i = 1,2, . . . , such that

W
η
i

d=W
(
x

2,η
i

)
for all i ≥ 1. (3.27)

Recall that W
η
i is (in distribution) the amount of wake frogs needed to activate the dormant frogs at iη. However, since

the wake frogs possibly do not suffice to wake up all dormant frogs, we see only some of the W
η
i realized as values of

V
η
i . Note that, for any i, we have

V
η
i ≤

∑
j<i

x
2,η
j + 〈

X
1,η
0 ,1

〉
=X

2,η
0

(
(−∞, ηi)

)+ 〈
X

1,η
0 ,1

〉
. (3.28)

Recall that by Assumption 1.6(iii) and the stepsize η, our Lη has a finite number of atoms, whereas the “last” atom is
spatially located at �

η∞ which is either at �η−1�η or at the location of the leftmost pile of dormant frogs that will never
wake up because there are not enough wake frogs to activate them. Define

iη,∗ = inf
{
i = 1, . . . ,

⌈
η−1⌉ :Wη

i ≥X
2,η
0

(
(−∞, ηi)

)+ 〈
X

1,η
0 ,1

〉}
(3.29)
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which might be infinite. This is the analogous quantity to u∗ from Theorem 1.8. Now we define an auxiliary point process
based on the above random variables:

L̃η ≡
�η−1�∑
i=1

δ(iη,W
η
i ). (3.30)

We have the following lemma.

Lemma 3.8. For all η > 0,

Lη(·) d= L̃η
(·∩ ([0, iη,∗η)× (0,∞)

))
. (3.31)

Proof. The proof of the lemma is simple and thus is omitted. �

Now we are ready to finish the

Proof of Theorem 1.8. Recall L̃ from Theorem 1.8. By Proposition 3.7 with μ = X2
0, J

d= L̃ and J η d= L̃η, we can
assume that all the processes L̃ and L̃η, η > 0, are constructed on one probability space such that L̃η → L̃ almost surely.
It is simple to see that iη,∗η converges to u∗ almost surely. Hence, we can choose a subsequence ηk ↓ 0 such that Lηk

converges almost surely to some L̂. By Theorem 1.7 and after taking another subsequence of (ηk) if needed, and by the
properties of convergence in Skorohod space, we see that all jumps of X2,k of size at least ε converge in size and position
to the jumps of X2 for all ε > 0. In other words, we have

L̂= L almost surely.

This finishes the proof of Theorem 1.8. �

We close this section with a proposition that will be used in Section 4.2 for proving tightness of the approximating
processes.

Proposition 3.9. Recall the sequence of random variables W
η
i , i ≥ 1, defined in (3.27). Let a ∈ (0,10−1) be arbitrary.

Let δ ∈ (0, a/2) and let

x2 = x2,a,δ := δ−1 inf
{
X2

0

(
(x, x + δ/2)

) : x ∈ (a,1− a)
}
.

Then, for all η > 0 sufficiently small, we have

P
[
∃j ∈

{⌈
a

η

⌉
, . . . ,

⌈
1− a

η

⌉}
: max
i=1,...,�δ/η�

W
η
i+j < δ2

]
≤ 2

δ
e−x2/(2δ). (3.32)

For δ ≤ x2/(12 log(12/x2)), the right hand side of (3.32) is bounded by e−x2/(3δ).

For the proof of Proposition 3.9 we need the following lemma.

Lemma 3.10. Let n ∈N and assume that A1, . . . ,An are independent events. Let k ∈ {2, . . . , �n/2�} and

c := min
j=0,...,n−�k/2�

�k/2�∑
i=1

(
1− P[Aj+i]

)
.

Then

P

[ ⋃
l=0,...,n−k

k⋂
i=1

Al+i

]
≤ 2n

k
exp(−c). (3.33)
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Proof. Each of the sets {l + i : i = 1, . . . , k}, l = 0, . . . , n− k, contains at least one of the sets{
r�k/2� + 1, . . . , (r + 1)�k/2�}, r = 0, . . . , �n/�k/2�� − 1.

Hence, the left hand side in (3.33) is bounded by

�n/�k/2��−1∑
r=0

P

[�k/2�⋂
i=1

Ar�k/2�+i

]
≤ ⌊

n/�k/2�⌋ max
j=0,...,n−�k/2�

�k/2�∏
i=1

P[Aj+i]

≤ 2n

k
max

j=0,...,n−�k/2�

�k/2�∏
i=1

exp
(−(

1− P[Aj+i]
))

= 2n

k
exp(−c). �

Now we are ready to give

Proof of Proposition 3.9. Recall from Assumption 1.6 that the density X2
0(x) of X2

0 is bounded on compact sub-
sets of (0,1). Hence, ca := supx∈[a/2,1−a/2](X2(x)) < ∞. Let η ∈ (0, δ2/ca). Now, for i and j from (3.32), we have

x
2,η
i+j ≤ ηca ≤ δ2 and

�δ/(2η)�∑
i=1

x
2,η
i+j ≥X2

0

(
(jη, jη+ δ/2)

)≥ x2δ.

Hence, we have

�δ/(2η)�∑
i=1

(
1− P

[
W

η
i+j < δ2])= �δ/(2η)�∑

i=1

x
2,η
i+j

δ2 + x
2,η
i+j

≥
�δ/(2η)�∑

i=1

x
2,η
i+j

2δ2
≥ x2

2δ
.

The claim now follows from Lemma 3.10 with c ≥ x2
2δ

, k = �δ/η� and n= �(1− a)η−1�− �aη−1�+ 1+ k < η−1, hence
2n/k ≤ 2/δ. (Note that �k/2� = �δ/(2η)�.) �

4. Tightness of the approximating processes

In order to show tightness of the approximating processes, it is crucial to have a control on the motion of the interface
�
η
t between wake and sleeping frogs. In Section 4.1, we derive some useful bounds on the approximating processes and

we show that for any limiting point (X1,X2) of (X1,η,X2,η) neither X1 has jumps down, nor X2 has jumps up. In
Section 4.2, we use these bounds to control the motion of the interface and to finally infer tightness of the approximating
processes.

4.1. Preliminary results

This section is devoted to showing for any limiting point (X1,X2) of (X1,η,X2,η) (if it exists) that neither X1 has
jumps down nor X2 has jumps up. Recall our Assumption 1.6. From this assumption and our construction of the ap-
proximating process (X1,η,X2,η), it is clear that the initial measure X

2,η
0 is concentrated on atoms sitting on the set

{iη, i = 1, . . . , �η−1�}.
Denote

x1 ≡ sup
x

X1
0(x) and x2 ≡ sup

x
X2

0(x). (4.1)

One of the main problems is to prove that in the limit neither X1 has jumps down nor X2 has jumps up. To this end we
need to find a bound on the mass of the process X1 in any fixed small space interval.
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Proposition 4.1. For any ξ ∈ (0,1), for all 0 < δ < ξ/max{1,240x2,40x1} and all 0 < η ≤ δ, we have

P
[
sup
t≥0

X
1,η
t

([x0 − δ, x0]
)≥ ξ

]
≤ 5520

√
δ

ξ
for all x0 ∈R. (4.2)

Proof. First note that

1[x0−δ,x0](x)≤√
2πeδpδ2(x0 − x)≤ 5δpδ2(x0 − x) for all x ∈R, δ > 0

where pt is the heat kernel and satisfies 1
2∂2

xpt (x)= ∂tpt (x). Thus, it is clear that it is enough to get an appropriate bound
on

P
[
sup
t≥0

X
1,η
t

(
δpδ2(x0 − ·))≥ ξ/5

]
.

We will bound the appropriate probabilities for all the terms on the right hand side of (3.12). By the choice of δ, the
first term is

X
1,η
0

(
δpδ2(x0 − ·))≤ δx1 <

ξ

40
. (4.3)

The next term we bound is the martingale term.

P
[
sup
t≥0

∣∣Mη
t

(
δpδ2(x0 − ·))∣∣≥ ξ/20

]
= P

[
sup
t≥0

∣∣X2,η
t

(
δpδ2(x0 − ·))−X

2,η
0

(
δpδ2(x0 − ·))∣∣≥ ξ/20

]
≤ P

[∣∣X2,η
0

(
δpδ2(x0 − ·))∣∣≥ ξ/40

]
+ P

[
sup
t≥0

∣∣X2,η
t

(
δpδ2(x0 − ·))∣∣≥ ξ/40

]
. (4.4)

Denote by ϑ(x) = ∑∞
n=−∞ e−xπn2

, x > 0, (a variation of) Jacobi’s theta-function. By Ramanujan’s formula (see

[21], page 525), we have ϑ(1) = π1/4

�(3/4)
≈ 1.086. By Jacobi’s equality (see, e.g., [10], page 307, line 23), we have

ϑ(x)= ϑ(1/x)/
√

x and hence for x ≤ 1

ϑ(x)= 1√
x

ϑ(1/x)≤ 1√
x

ϑ(1)≤ 1.086√
x

. (4.5)

We use this in the third line with x = η2

2πδ2 to get

X
2,η
0

(
pδ2(x0 − ·))≤ x2η

1√
2πδ2

∞∑
n=−∞

exp

(
− (x0 − nη)2

2δ2

)

≤ x2η
1√

2πδ2

(
1+ ϑ

(
η2

2πδ2

))
≤ x2η

1√
2πδ2

(
1+ δ

η

√
2πϑ(1)

)
= x2

(
η

δ

1√
2π

+ ϑ(1)

)
≤ 2x2. (4.6)

Here, the last inequality follows since η ≤ δ. Summing up, we have∥∥Sδ2X
2,η
0 (·)∥∥∞ ≤ 2x2. (4.7)

Here St is the heat semigroup, that is, Stφ(x) = ∫
R

pt(x − y)φ(y)dy for any integrable function φ and we set

Stμ(x)= ∫
R

pt (x − y)μ(dy) if μ is a measure. Since η ≤ δ ≤ ξ
40x2

, the first term on the right hand side of (4.4) equals
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zero. As for the second term, X
2,η
t (δpδ2(x0 − ·)) is a non-negative martingale, hence, by Doob’s inequality, we get

P
[
sup
t≥0

∣∣X2,η
t

(
δpδ2(x0 − ·))∣∣≥ ξ/40

]
≤ E[X2,η

0 (δpδ2(x0 − ·))]
ξ/40

= E[δSδ2X
2,η
0 (x0)]

ξ/40

≤ 80x2δ

ξ
,

where the last inequality follows from (4.7). These bounds imply that

P
[
sup
t≥0

∣∣Mη
t

(
δpδ2(x0 − ·))∣∣≥ ξ/20

]
≤ 80x2δ

ξ
. (4.8)

We will need this bound later also with ξ replaced by ξ/2, that is,

P
[
sup
t≥0

∣∣Mη
t

(
δpδ2(x0 − ·))∣∣≥ ξ/40

]
≤ 160x2δ

ξ
. (4.9)

Now we need to bound

P
[

sup
t≥0

∣∣∣∣δ ∫ t

0
X1,η

s

(
1

2
∂2
xpδ2(x0 − ·)

)
ds

∣∣∣∣≥ ξ/10

]
. (4.10)

Recall (3.12). By following the proofs of Theorems 5.1, 5.2 in [20], one easily gets that if X1,η solves (3.12), then it
also solves the so-called mild form of the equation:

X
1,η
t (φ)=X

1,η
0 (Stφ)+

∫ t

0

∫
R

St−rφ(x)Mη(dr, dx) for all φ ∈Cb(R). (4.11)

In fact, one can also derive (4.11) directly using (1.16) with St−sφ instead of φs , for s ≤ t , and also using (1.21) together
with the definition of Mη(dr, dx).

Then from (4.11) we get∫ t

0
X1,η

s

(
1

2
∂2
xpδ2(x0 − ·)

)
ds =

∫ t

0
X

1,η
0

(
Ss

(
1

2
∂2
xpδ2(x0 − ·)

))
ds

+
∫ t

0

∫ s

0

∫
R

Ss−r

(
1

2
∂2
xpδ2(x0 − ·)

)
(x)Mη(dr, dx)ds

=: I 1,η
t + I

2,η
t . (4.12)

Let us take care of I
1,η
t which is an easy term. Recall that X

1,η
0 =X1

0. By using this, the Chapman–Kolmogorov equation,
Fubini’s theorem and properties of the heat semigroup, we easily get∫ t

0
X

1,η
0

(
Ss

(
1

2
∂2
xpδ2(x0 − ·)

))
ds =X1

0

(∫ t

0
∂sps+δ2(x0 − ·) ds

)
= St+δ2X

1
0(x0)− Sδ2X

1
0(x0).

Then we immediately get∣∣∣∣∫ t

0
X

1,η
0

(
Ss

(
1

2
∂2
xpδ2(x0 − ·)

))
ds

∣∣∣∣≤ ∣∣St+δ2X
1
0(x0)

∣∣+ ∣∣Sδ2X
1
0(x0)

∣∣≤ 2x1 for all x0 ∈R, t ≥ 0. (4.13)

Since δ <
ξ

40x1
, we get∣∣δI 1,η

t

∣∣ < ξ/20 for all t ≥ 0. (4.14)
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Now let us take care of I
2,η
t . Recall Mη from Lemma 3.3. Since Ss−r∂

2
x = ∂2

xSs−r , using the Chapman–Kolmogorov
equation, we get

I
2,η
t =

∫ t

0

∫ s

0

∫
R

1

2
∂2
xps−r+δ2(x0 − x)Mη(dr, dx)ds. (4.15)

Note that {(r, s) 
→ 1
2∂2

xps−r+δ2(x0−x),0≤ r ≤ s ≤ t} is bounded and continuous. Hence we can apply Fubini’s theorem
(see (3.9)–(3.11) for necessary bounds) to get

I
2,η
t =

∫ t

0

∫
R

∫ t

r

1

2
∂2
xps−r+δ2(x0 − x)dsMη(dr, dx)

=
∫ t

0

∫
R

[
pt−r+δ2(x0 − x)− pδ2(x0 − x)

]
Mη(dr, dx)

=
∫ t

0

∫
R

pt−r+δ2(x0 − x)Mη(dr, dx)−
∫ t

0

∫
R

pδ2(x0 − x)Mη(dr, dx). (4.16)

Now we express the integral with respect to Mη in terms of X2,η which is easier to handle since it does not move. By
partial integration, for r ≤ t , we get

St+δ2−rX
2,η
r (x0)= St+δ2X

2,η
0 (x0)−

∫ r

0

∫
R

∂tpt+δ2−u(x0 − x)X2,η
u (dx) du

−
∫ r

0

∫
R

pt+δ2−u(x0 − x)Mη(du,dx). (4.17)

Hence, for r = t we get

∫ t

0

∫
R

pt+δ2−u(x0 − x)Mη(du, dx)=−Sδ2X
2,η
t (x0)+ St+δ2X

2,η
0 (x0)

−
∫ t

0

∫
R

∂tpt+δ2−u(x0 − x)X2,η
u (dx) du, (4.18)

and

sup
t≥0

∣∣∣∣∫ t

0

∫
R

pt+δ2−u(x0 − x)Mη(du, dx)

∣∣∣∣≤ sup
t≥0

∣∣Sδ2X
2,η
t (x0)

∣∣+ sup
t≥0

∣∣St+δ2X
2,η
0 (x0)

∣∣
+ sup

t≥0

∣∣∣∣∫ t

0

∫
R

∂tpt+δ2−u(x0 − x)X2,η
u (dx) du

∣∣∣∣
=: J 1,η + J 2,η + J 3,η. (4.19)

Let us treat J 3,η . Fix α ∈ (0,1]. Then decompose

∫ t

0

∫
R

∂tpt+δ2−u(x0 − x)X2,η
u (dx) du=

∫ t−δ2α

0

∫
R

∂tpt+δ2−u(x0 − x)X2,η
u (dx) du

+
∫ t

t−δ2α

∫
R

∂tpt+δ2−u(x0 − x)X2,η
u (dx) du. (4.20)

Note that for t > 0 and x ∈R, we have∣∣∂tpt (x)
∣∣≤√

2t−1p2t (x). (4.21)
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Then we get∣∣∣∣∫ t

t−δ2α

∫
R

∂tpt+δ2−u(x0 − x)X2,η
u (dx) du

∣∣∣∣
≤√

1/π

∣∣∣∣∫ t

t−δ2α

(
t + δ2 − u

)−3/2
∫
R

exp

(
− (x0 − x)2

4(δ2 + δ2α)

)
X2,η

u (dx) du

∣∣∣∣
≤√

1/π sup
u≤t

{∫
R

exp

(
− (x0 − x)2

8δ2α

)
X2,η

u (dx)

}∫ t

t−δ2α

(
t + δ2 − u

)−3/2
du

≤ 2(
√

πδ)−1 sup
u≤t

{∫
R

exp

(
− (x0 − x)2

8δ2α

)
X2,η

u (dx)

}
≤ 6δα−1 sup

u≤t

{
S4δ2αX

2,η
u (x0)

}
. (4.22)

Also ∣∣∣∣∫ t−δ2α

0

∫
R

∂tpt+δ2−u(x0 − x)X2,η
u (dx) du

∣∣∣∣
≤√

1/π

∣∣∣∣∫ t−δ2α

0

(
t + δ2 − u

)−3/2
∫
R

exp

(
− (x0 − x)2

4(t + δ2)

)
X2,η

u (dx) du

∣∣∣∣
≤ sup

u≤t

(
X2,η

u (1)
)(

δ2α
)−1/2

≤ δ−α sup
u≤t

(
X2,η

u (1)
)
. (4.23)

Now take α = 1/2 and get

J 3,η ≤ 7δ−1/2
(

sup
t≥0

X
2,η
t (1)+ sup

t≥0
S4δX

2,η
t (x0)

)
. (4.24)

Recall that X
2,η
t (1) and S4δX

2,η
t (x0) are martingales. Hence, Doob’s inequality gives

P
[
7δ1/2 sup

t≥0
X

2,η
t (1)≥ ξ/240

]
≤ 1680δ1/2

ξ
X

2,η
0 (1)≤ 1680x2

δ1/2

ξ

and (using also (4.7) with δ2 replaced by 4δ)

P
[
7δ1/2 sup

t≥0
S4δX

2,η
t (x0)≥ ξ/240

]
≤ 1680δ1/2

ξ

∥∥S4δX
2,η
0

∥∥∞ ≤ 3360x2δ
1/2

ξ

since η ≤ δ ≤√
4δ. Summing up, we have

P
[
δJ 3,η ≥ ξ/120

]≤ 5040x2
δ1/2

ξ
.

Using Doob’s inequality again for the martingale Sδ2X
2,η
t (x0) and using (4.7), we get

P
[
δJ 1,η ≥ ξ/120

]≤ 240x2δ

ξ
.

Combining this with the estimate for J 3,η , we get

P
[
δJ 1,η ≥ ξ/120

]+ P
[
δJ 3,η ≥ ξ/120

]≤ 5280x2

√
δ

ξ
. (4.25)
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Now we bound J 2,η using (4.7) (recall that η ≤ δ <
ξ

240x2
):

J 2,η = sup
t≥0

StSδ2X
2,η
0 (x0)≤ sup

t≥0
St

∥∥Sδ2X
2,η
0 (·)∥∥∞ ≤ 2x2 ≤ ξ

120
δ−1.

Combine this, (4.25) and (4.19) to get

P
[

sup
t≥0

∣∣∣∣δ ∫ t

0

∫
R

pt+δ2−u(x0 − x)Mη(du, dx)

∣∣∣∣≥ ξ/40

]
≤ 5280x2

√
δ

ξ
(4.26)

since η ≤ δ <
ξ

240x2
.

By this, (4.16) and (4.9), we immediately get

P
[
sup
t≥0

∣∣δI 2,η
t

∣∣≥ ξ/20
]
≤ 5440x2

√
δ

ξ
, (4.27)

again since η ≤ δ <
ξ

240x2
. This, (4.14) and (4.12) imply that

P
[

sup
t≥0

∣∣∣∣δ ∫ t

0
X1,η

s

(
1

2
∂2
xpδ2(x0 − ·)

)
ds

∣∣∣∣≥ ξ/10

]
≤ 5440x2

√
δ

ξ
, (4.28)

as we assumed η ≤ δ ≤ ξ/max{1,240x2,40x1}.
Combine this with (3.12), (4.3) and (4.8), and we are done. �

Define (recall that supp(X2
0)= [0,1])

τ
η
i = inf

{
t ≥ 0 : �η

t = iη
}
. (4.29)

and for s ≥ 0 and i = 1, . . . , �η−1� the random variables

Z
η
i,s :=

{
X

2,η

τ
η
i +s

({iη})−X
2,η

τ
η
i

({iη}), if τ
η
i <∞,

0, otherwise.
(4.30)

Lemma 4.2. For any ξ ∈ (0,1) and all η ≤ δ ≤ (ξ/[4 max{1,120x2,20x1,X
1
0(1)+X2

0(1)}])4, we have

P
[

sup
i=1,...,�η−1�

sup
s∈[0,δ]

Z
η
i,s ≥ ξ

]
≤ 30 000

x2δ
1/8

ξ2
(4.31)

Proof. We use the trivial estimate

P
[

sup
i=1,...,�η−1�

sup
s∈[0,δ]

Z
η
i,s ≥ ξ

]
≤

�η−1�∑
i=1

P
[

sup
s∈[0,δ]

Z
η
i,s ≥ ξ

]
. (4.32)

For every i = 1, . . . , �η−1�, define

Ai,δ,ξ,η :=
{

sup
t≥0

X
1,η
t

([
iη− δ1/4, iη

])≥ ξ/2
}
,

Aτ
i,δ,ξ,η :=

{
X

1,η

τ
η
i

([
iη− δ1/4, iη

])≥ ξ/2
}
.

Fix an arbitrary i ∈ {1, . . . , �η−1�}. By Proposition 4.1, for η ≤ δ ≤ (ξ/[2 max{1,240x2,40x1}])4, we get

P
[
Aτ

i,δ,ξ,η

]≤ P[Ai,δ,ξ,η] ≤ 11 040
δ1/8

ξ
. (4.33)
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Let us get the bound on sups∈[0,δ]X
2,η

τ
η
i +s

({iη})−X
2,η

τ
η
i

({iη}) on the event (Aτ
i,δ,ξ,η)

c . Recall that definition of the transition

density pz of the heat flow Sz with killing at z ∈ R from (1.15). We start with an elementary observation that rephrases
the reflection principle. For x < z, we have∫ z

−∞
pz

δ(x, y) dy + 2
∫ ∞

z

pδ(y − x)dy

=
∫ 0

−∞
pz

δ(x, y + z) dy +
∫ 0

−∞
pδ(z− y − x)dy +

∫ ∞

0
pδ(z+ y − x)dy

=
∫ 0

−∞
(
pδ(y + z− x)− pδ(z− y − x)

)
dy +

∫ 0

−∞
pδ(z− y − x)dy +

∫ ∞

0
pδ(z+ y − x)dy

=
∫ ∞

−∞
pδ(y + z− x)dy = 1.

Hence, for any z ∈R and any finite measure μ supported by (−∞, z) and ε > 0, we have

〈μ,1〉 − 〈
Sz

δμ,1
〉≤ μ

(
(z− ε, z)

)+ 〈μ1(−∞,z−ε],1〉 − 〈
Sz

δ (μ1(−∞,z−ε]),1
〉

= μ
(
(z− ε, z)

)+ 2
〈
Sδ(μ1(−∞,z−ε]),1(z,∞)

〉
= μ

(
(z− ε, z)

)+ 2
∫

(−∞,z−ε]
μ(dx)〈Sδδx,1(z,∞)〉

≤ μ
(
(z− ε, z)

)+ 2μ(R)

∫
[ε,∞)

pδ(x) dx

≤ μ
(
(z− ε, z)

)+μ(R)
√

δε−1e−ε2/2δ

≤ μ
(
(z− ε, z)

)+ 2μ(R)δ2ε−4. (4.34)

Recall that (X
η,1
t +X

η,2
t )(1) is constant and that in the time interval (τ

η
i , τ

η
i+1) the process Xη,2 changes values only at

iη, hence, X
η,1
t (1)+X

η,2
t ({iη}) is constant in this time interval. We use (4.34) with ε = δ1/4 and z= iη to derive the last

inequality in the following display formula on the event {τη
i <∞}

sup
s∈[0,δ]

Z
η
i,s =−

(
inf

s∈[0,δ∧(τ
η
i+1−τ

η
i )]

〈
X

1,η

τ
η
i +s

,1
〉− 〈

X
1,η

τ
η
i

,1
〉)

=−
(

inf
s∈[0,δ∧(τ

η
i+1−τ

η
i )]

〈
Siη

s X
1,η

τ
η
i

,1
〉− 〈

X
1,η

τ
η
i

,1
〉)

≤ 〈
X

1,η

τ
η
i

,1
〉− 〈

S
iη
δ X

1,η

τ
η
i

,1
〉

≤X
1,η

τ
η
i

((
iη− δ1/4, iη

))+ 2
(
X1

0(1)+X2
0(1)

)
δ. (4.35)

Hence, for δ < δ0 := ξ/4(X1
0(1)+X2

0(1)), we have

P
[

sup
s∈[0,δ]

Z
η
i,s ≥ ξ ; (Aτ

i,δ,ξ,η

)c
]
= 0. (4.36)

Assume that (Ft )t≥0 is the filtration generated by (X1,X2). By the optional stopping theorem, we get that
(X

2,η

τ
η
i +s

({iη}))s≥0 is a martingale with respect to the filtration (Fτ
η
i +s)s≥0. Hence, by Doob’s inequality, we have (on

the event {τη
i <∞})

P
[

sup
s∈[0,δ]

Z
η
i,s ≥ ξ

∣∣Fτ
η
i

]
≤

X
2,η

τ
η
i

({iη})
X

2,η

τ
η
i

({iη})+ ξ
≤ ηx2

ηx2 + ξ
≤ 2x2η

ξ
, (4.37)
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where the last inequality holds if η ≤ ξ/x2. Together with (4.33), we get

P
[

sup
s∈[0,δ]

Z
η
i,s ≥ ξ

∣∣ Aτ
i,δ,ξ,η

]
P
[
Aτ

i,δ,ξ,η

]≤ 22 080
x2η

ξ

δ1/8

ξ
. (4.38)

From (4.36) and (4.38) we get

P
[

sup
s∈[0,δ]

Z
η
i,s ≥ ξ

]
≤ 22 080

x2ηδ1/8

ξ2
, (4.39)

and the result follows by (4.32) (note that η�η−1� ≤ 5
4 < 30 000

22 080 by assumption). �

Since X
2,η

τ
η
i

({iη})≤ x2η < ξ/5 (whence (ξ −X
2,η

τ
η
i

({iη}))2 ≥ 16
25ξ2 ≥ 3

5ξ2) by our choice of η (on the event {τη
i <∞}),

the following corollary is immediate.

Corollary 4.3. For any ξ ∈ (0,1) and all η ≤ δ ≤ (ξ/[8 max{1,120x2,20x1,X
1
0(1)+X2

0(1)}])4, we have

P
[

sup
i=1,...,�η−1�

sup
s∈[0,δ]

1{τη
i <∞}X

2,η

τ
η
i +s

({iη})≥ ξ
]
≤ 50 000

x2δ
1/8

ξ2
. (4.40)

Corollary 4.4. For any ξ ∈ (0,1) and all η ≤ δ ≤ (ξ/[16 max{1,120x2,20x1, (X
1
0(1)+X2

0(1))}])8, we have

P
[
sup
t≥0

sup
s∈[0,δ]

X
2,η
t+s

({
�
η
t+s

})−X
2,η
t

({
�
η
t

})≥ ξ
]
≤ 105ξ−2δ1/16. (4.41)

Proof. Recall that τ
η
1 = 0 and define τ

η

�η−1�+1
= ∞. By splitting the interval [0,∞) into intervals [τη

i , τ
η
i+1),

i = 1, . . . , �η−1�, we get

P
[
sup
t≥0

sup
s∈[0,δ]

(
X

2,η
t+s

({
�
η
t+s

})−X
2,η
t

({
�
η
t

}))≥ ξ
]

= P
[

sup
i=1,...,�η−1�

sup
r∈[τη

i ,τ
η
i+1)

sup
(r−δ)∧0≤t≤r

(
X2,η

r

({
�η
r

})−X
2,η
t

({
�
η
t

}))≥ ξ
]
≤ I1 + I2, (4.42)

where

I1 := P
[

sup
i=1,...,�η−1�

sup
r∈[τη

i ,τ
η
i +δ+δ1/2)

X2,η
r

({iη})≥ ξ
]

(4.43)

and

I2 := P
[

sup
i=1,...,�η−1�

τ
η
i+1−τ

η
i >δ+δ1/2

sup
r∈[τη

i +δ+δ1/2,τ
η
i+1)

(
X2,η

r

({iη})−X
2,η
r−δ

({iη}))≥ ξ
]

(4.44)

By Corollary 4.3, we have the bound

I1 ≤ 50 000
x2(2δ)1/16

ξ2
≤ 105 x2δ

1/16

ξ2
. (4.45)

For I2, note that r − δ− δ1/2 ∈ (τ
η
i , τ

η
i+1), hence

X
1,η
r−δ = S

iη

δ1/2X
1,η

r−δ−δ1/2

and thus∥∥X
1,η
r−δ

∥∥∞ ≤ [
X1

0(1)+X2
0(1)

]
δ−1/4.
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Also note that for any z ∈R, we have

〈Sδ1(−∞,z],1[z,∞)〉 ≤ δ1/2.

Taking z= iη, we infer using also the reflection principle

X2,η
r

({iη})−X
2,η
r−δ

({iη})=X
1,η
r−δ(1)− 〈

S
iη
δ X

1,η
r−δ,1

〉
= 2

〈
SδX

1,η
r−δ,1(iη,∞)

〉
≤ 2

∥∥X
1,η
r−δ

∥∥∞〈Sδ1(−∞,iη),1(iη,∞)〉
≤ [

X1
0(1)+X2

0(1)
]
δ1/4 < ξ. (4.46)

The last inequality is due to the assumption on δ. Hence, I2 = 0. �

From the above corollary, we immediately get

Corollary 4.5. For any ξ > 0,

lim
δ↓0

lim sup
η↓0

P
[
sup
t≥0

sup
s∈[0,δ]

X
2,η
t+s

({
�
η
t+s

})−X
2,η
t

({
�
η
t

})≥ ξ
]
= 0. (4.47)

This implies that the limiting process X2 (if exists) does not have jumps up (and X1 jumps down).

4.2. Tightness of (X1,η,X2,η) and �η

This section is devoted to the proof of tightness of (X1,η,X2,η) and �η. For the rest of this section, we fix an arbitrary
sequence (ηk)k=1,2,... such that ηk ↓ 0. With some abuse of notation denote the corresponding processes by (X1,k,X2,k)

and �k and define (Fk
t )t≥0 as the filtration generated by (X1,k,X2,k).

Recall from (3.2) that

X
2,k
t (dx)=X

2,k
t

({
�k
t

})
δ�k

t
(dx)+ 1(�k

t ,∞)(x)X
2,k
0 (dx). (4.48)

For simplicity, denote

Y k
t :=X

2,k
t

({
�k
t

})
. (4.49)

In fact, we will show a bit more than tightness of (X1,η,X2,η). We are going to prove the following proposition.

Proposition 4.6. {(X1,k, Y k, �k)}k≥1 is tight in DMF×R+×R+ . Moreover, (�k)k≥1 is C-tight in DR.

We prove Proposition 4.6 via a series of lemmas. We start with proving the C-tightness of (�k)k≥1 by checking the
Aldous criterion of tightness.

Lemma 4.7 (Aldous criterion for {�k}k≥1). Let (̃τ k)k≥1 be an arbitrary sequence of finite (Fk
t )t≥0-stopping times. Then

for any ε > 0,

lim
δ↓0

lim sup
k→∞

P
[∣∣�k

τ̃ k+δ
− �k

τ̃ k

∣∣≥ ε
]= 0. (4.50)

Moreover, (supt≥0 �k
t )k≥0 is a tight sequence of random variables.

Proof. By construction and Assumption 1.6, �k takes values in [0,1+ ηk], and thus tightness of (supt≥0 �k
t ) is trivial.

Recall the definition of W
ηk

i in the lines preceding (3.21). The idea of the proof is the following. If �k
s makes a quick

leap forward, then on the way it has to wake up many sleeping colonies of amounts W
ηk

i in a short time. This is very
unlikely, if one of the sleeping colonies is too large. On the other hand, it is unlikely that all the sleeping colonies that are
leapt over are small. By Proposition 3.9, we do have control of the sizes of sleeping colonies only in [a,1− a] (for any
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small a > 0) since we have control on the density of X2
0 only away from the boundaries of the interval [0,1]. This leads

to a small technical twist in the following argument. Fix an arbitrary ε > 0. Then choose ε′ ∈ (0, ε) arbitrarily small.
Define the events

Ak,ε,ε′ =
{
∀j ∈

(⌈
ε/3

ηk

⌉
,

⌈
1− ε/3

ηk

⌉)
: max
i:iηk∈(0,ε′/3)

W
ηk

j+i ≥
(
ε′

)2
/9

}
. (4.51)

Note that for any interval I ⊂ [0,1] of length at least ε, for any k sufficiently large such that ηk < ε/6, there exists a j

such that jηk ∈ (ε/3,1− ε/3) and such that [jηk, jηk + ε′/3] ⊂ I .
Now let δ > 0 and apply the observation with I = [�k

τ̃ k , �
k
τ̃ k+δ

]. Hence, we have (using Lemma 4.2 in the second
inequality)

P
[∣∣�k

τ̃ k+δ
− �k

τ̃ k

∣∣≥ ε,Ak,ε,ε′
]≤ P

[
sup

i=1,...,�η−1
k �

sup
s∈[0,δ]

X
2,k

τ
ηk
i +s

({iηk}
)−X

2,k

τ
ηk
i

({iηk}
)≥ (

ε′
)2

/9
]

≤C
x2δ

1/8

(ε′)4

δ↓0−→ 0 (4.52)

uniformly in k large enough. Note that in Proposition 3.9, by Assumption 1.6(ii, iii), we have

ca := inf{x2,a,δ : δ < a} ≥ 1

2
inf

{
X2

0(x) : x ∈ [a/2,1− a/2]} > 0.

Hence, by Proposition 3.9 (with a = ε/3 and δ = ε′/3), there exists a c= c(ε,X2
0) > 0 such that

P
[
Ac

k,ε,ε′
]≤ e−c/ε′ . (4.53)

Thus we get

lim
δ↓0

lim sup
k→∞

P
[∣∣�k

τ̃ k+δ
− �k

τ̃ k

∣∣≥ ε
]≤ e−c/ε′ . (4.54)

Since ε′ ∈ (0, ε) was arbitrarily small, we are done. �

Corollary 4.8. (�k)k≥1 is C-tight.

Proof. From the previous lemma and Theorem 6.8 in [20] we get that {�k}k≥1 is tight in DR. Moreover, we can easily
see that

sup
t≥0

��k
t ≤ ηk

k→∞−→ 0. (4.55)

Hence, C-tightness follows by [11], Proposition VI.3.26. �

Now we will verify Aldous’ criterion for (Y k)k≥1.

Lemma 4.9 (Aldous criterion for (Y k)). Let (̃τ k)k≥1 be an arbitrary sequence of finite Fk-stopping times. Then for any
ε > 0,

lim
δ↓0

lim sup
k→∞

P
[∣∣X2,k

τ̃ k+δ

({
�k
τ̃ k+δ

})−X
2,k

τ̃ k

({
�k
τ̃ k

})∣∣≥ ε
]= 0. (4.56)

Moreover, (supt≥0 X
2,k
t ({�k

t }))k=1,2,... is a tight sequence of random variables.

Proof. Since〈
X

1,k
t ,1

〉+ 〈
X

2,k
t ,1

〉= 〈
X

1,k
0 ,1

〉+ 〈
X

2,k
0 ,1

〉
for all t ≥ 0,

we get that

sup
t≥0

X
2,k
t

({
�k
t

})≤ 〈
X

1,k
0 ,1

〉+ 〈
X

2,k
0 ,1

〉
, k = 1,2, . . .

is tight.
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The main work is proving (4.56). By Corollary 4.4, we only have to show

lim
δ↓0

lim sup
k→∞

P
[
X

2,k

τ̃ k+δ

({
�k
τ̃ k+δ

})−X
2,k

τ̃ k

({
�k
τ̃ k

})≤−ε
]= 0. (4.57)

Note that δ′ 
→ X
2,k

τ̃ k+δ′({�k
τ̃ k+δ′ }) is nondecreasing as long as X2,k does not jump down in which case we have that

X
2,k

τ̃ k+δ∗−({�k
τ̃ k }) > 0 jumps to X

2,k

τ̃ k+δ∗({�k
τ̃ k }) = 0 for some δ∗ > 0 and then X2,k stays zero at �k

τ̃ k after time τ̃ k + δ∗.

Hence we have X
2,k

τ̃ k+δ
({�k

τ̃ k+δ
})≥X

2,k

τ̃ k ({�k
τ̃ k }) unless there exists a δ′ ∈ (0, δ] such that X

2,k

τ̃ k+δ′({�k
τ̃ k })= 0 which in turn

implies X
2,k

τ̃ k+δ
({�k

τ̃ k })= 0. Hence, it is sufficient to show that

lim
δ↓0

lim sup
k→∞

P
[
X

2,k

τ̃ k

({
�k
τ̃ k

})≥ ε;X2,k

τ̃ k+δ

({
�k
τ̃ k

})= 0
]= 0. (4.58)

By the optional stopping theorem, Zs := X
2,k

τ̃ k+s
({�k

τ̃ k }), s ≥ 0, is a martingale. On the event Z0 ≥ ε it takes values in
{0} ∪ [ε,∞). Hence, by Corollary 4.4, for any ξ > 0 and for any δ > 0 sufficiently small and for some constant C that is
independent of δ and ξ , we have for all η > 0 small enough

P[Z0 ≥ ε;Zδ = 0] ≤ ε−1E
[
(Zδ −Z0)

+]≤ ξ +
∫ ∞

ξ

P
[
Zδ −Z0 ≥ ξ ′

]
dξ

≤ ξ + 105δ1/16
∫ ∞

ξ

ξ−2 dξ

≤ ξ + 105δ1/16/ξ.

Letting first δ → 0 and then ξ → 0, we get (4.58). �

We need a simple tightness criterion for finite measures on R.

Lemma 4.10. A family F ⊂MF of finite measures on R is tight if

sup
μ∈F

∫ (
1+ x2)μ(dx) <∞.

Proof. This is obvious. �

Lemma 4.11. Let φ(x)= 1+ x2. For all t ≥ 0, we have almost surely〈
X

1,k
t +X

2,k
t , φ

〉≤ 〈
X

1,k
0 +X

2,k
0 , t + φ

〉
<∞. (4.59)

In particular, for any T > 0, there is a compact set KT ⊂MF such that almost surely, X
1,k
t ,X

2,k
t ∈KT for all t ∈ [0, T ].

Proof. Let (ψn) be a sequence in C2
b(R) such that ψn ≥ 0, ψn ↑ φ and ψ ′′

n ≤ 2 for all n. For example, let
ψn(x) := (1+ x2)/(1+ x2/n). By Lemma 3.5, we have〈

X
1,k
t +X

2,k
t ,ψn

〉= 〈
X

1,k
0 +X

2,k
0 ,ψn

〉+ 1

2

∫ t

0

〈
X1,k

s ,ψ ′′
n

〉
ds

≤ 〈
X

1,k
0 +X

2,k
0 , φ

〉+ 1

2

∫ t

0

〈
X1,k

s +X2,k
s ,ψ ′′

n

〉
ds

≤ 〈
X

1,k
0 +X

2,k
0 , φ

〉+ ∫ t

0

〈
X1,k

s +X2,k
s ,1

〉
ds

≤ 〈
X

1,k
0 +X

2,k
0 , φ

〉+ t
〈
X

1,k
0 +X

2,k
0 ,1

〉
.

By monotone convergence, we infer〈
X

1,k
t +X

2,k
t , φ

〉= sup
n∈N

〈
X

1,k
t +X

2,k
t ,ψn

〉≤ 〈
X

1,k
0 +X

2,k
0 , t + φ

〉
.

The second part of the claim follows by Lemma 4.10. �
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The above lemmas almost immediately imply the tightness of (Y k, �k) and of X2,k :

Lemma 4.12.

(a) ((Y k, �k))k≥1 is tight in DR2 ;
(b) (X2,k)k≥1 is tight in DMF

.

Proof. (a) Note that fk → f and gk → g in DR does not imply fk + gk → f + g or even (fk, gk) → (f, g) in DR2 .
Some additional condition is needed. We know that (�k) is C-tight in DR. So by [11], Corollary VI.3.33, to get the result,
it is enough to show tightness of (Yk) in DR. Since, by construction,

Y k
t ≤

〈
X

1,k
0 ,1

〉+ 〈
X

2,k
0 ,1

〉
<∞ for all t ≥ 0,

the compact containment condition for (Y k)k≥1 is fulfilled. Now, Aldous’ criterion for (Y k)k≥1 is satisfied by Lemma 4.9,
and thus the result follows.

(b) Since〈
X

2,k
t ,1

〉≤ 〈
X

1,k
0 ,1

〉+ 〈
X

2,k
0 ,1

〉
<∞ for all t ≥ 0,

(X
2,k
t )k≥1 is a tight sequence of measures on the compact [0,1+maxk ηk]. (In fact, the support of X

2,k
t is contained in

[0, ηk�η−1
k �] ⊂ [0,1+ ηk].)

By (4.48), for any φ ∈Cc(R), we have

X
2,k
t (φ)= Y k

t φ
(
�k
t

)+ ∫
(�k

t ,∞)

φ(x)X
2,k
0 (dx). (4.60)

By tightness of ((Y k, �k))k≥1 in DR2 (with (�k)k≥1 being C-tight) and by the very definition of X
2,k
0 , we get that(

X2,k(φ)
)
k≥1 (4.61)

is tight in DR for any φ ∈ Cc(R). Thus the result follows by Jakubowski’s criterion of tightness of measure-valued
processes (see [2], Theorem 3.6.4, or [12]). �

Proof of Proposition 4.6. Now let us show that (X1,k)k≥1 is tight in DMF
. By Lemma 4.12(b), we have that (X2,k)k≥1

is tight in DMF
. Therefore, from (3.13), we obtain that for any φ ∈ C2

b(R), (Mηk (φ))k≥1 is tight in DR. Since

X
1,k
t (1)≤X1

0(1)+X2
0(1) <∞ for all t ≥ 0,

and ‖φ′′‖∞ <∞ we get that(
t 
→

∫ t

0

〈
X1,k

s ,
1

2
φ′′

〉
ds

)
k≥1

is uniformly Lipschitz continuous and is hence C-tight. This, (3.12) and Corollary VI.3.33 in [11] imply that (X1,k(φ))k≥1
is tight in DR. Again, Jakubowski’s criterion gives tightness of (X1,k)k≥1 in DMF

.
Let us check that for any φ ∈C2

b(R)(
X1,k(φ)+ Y k

)
k≥1 is tight in DR; (4.62)(

X1,k(φ)+ �k
)
k≥1 is tight in DR. (4.63)

Note that (X1,k(φ))k≥1 is tight in DR, and (�k)k≥1 is C-tight in DR. Thus, by Corollary VI.3.33 in [11], (4.63) follows.
Now use Corollary 3.4 to get

X
1,k
t (φ)+ Y k

t =X
1,k
0 (φ)+X

2,k
0

(
(−∞, �k

t ]
)+ ∫ t

0

〈
X1,k

s ,
1

2
φ′′

〉
ds

+
∫ t

0

∫
[0,∞)

z
(
φ
(
�k
s−

)− 1
)
Mk

�(ds, dz). (4.64)
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By tightness of (X1,k(φ))k≥1 in DR, C-tightness of (�k)k≥1 and by the definition of X
2,k
0 , we get that

X
1,k
0 (φ)+X

2,k
0

(
(−∞, �k

t ]
)+ ∫ t

0

〈
X1,k

s ,
1

2
φ′′

〉
ds

is C-tight. Tightness of (X1,k(φ))k≥1 (for any φ ∈C2
b(R)) immediately implies tightness of the processes

t 
→
∫ t

0

∫
[0,∞)

zφ
(
�k
s−

)
Mk

�(ds, dz)

for any φ ∈ C2
b(R); in particular it gives tightness of

t 
→
∫ t

0

∫
[0,∞)

z
(
φ
(
�k
s−

)− 1
)
Mk

�(ds, dz).

Again use Corollary VI.3.33 in [11] to get (4.62).
Now use Lemma 4.12, tightness of (X1,k)k≥1, (4.62), (4.63) and a simple adaptation of Problem 22 in Chapter 3 from

[6], to derive the result. �

5. Martingale problem for limit points, proof of Theorem 1.7

In the Section 4 we proved tightness of ((X1,k, Y k, �k))k≥1. In this section, we show that the semimartingale characteris-
tics converge (along a suitable subsequence ηk ↓ 0). We proceed by checking the conditions of Theorem IX.2.4 of [11].
We start by proving some preparatory lemmas in Section 5.1 and then finish the proof of Theorem 1.7 in Section 5.2.

5.1. Preparations

Let (X1, Y, �) be a process whose law is an arbitrary limit point of the subsequence (X1,k, Y k, �k)k=1,2,.... Then there
exists a subsequence ((X1,km, Y km, �km))m≥1 which converges in law to (X1, Y, �). To simplify notation we will continue
to denote that subsequence by ((X1,k, Y k, �k))k≥1. Moreover, by Skorohod’s theorem, we may (and will) assume that the
convergence of ((X1,k, Y k, �k))k≥1 to (X1, Y, �) holds a.s. We will prove some helpful lemmas first.

When at time t , we have an atom of X2
t at the point �t , then this atom has started growing out of an infinitesimal mass

of X2
t at �t at some time τ(t) < t . Furthermore, at some time σ(t) > t the atom at �t will collapse. Between τ(t) and

σ(t), the dormant frogs at �t grow. Our aim is to describe the behaviour of our process by a decomposition of the time
axis into intervals where the atom at �t grows. These intervals may be very short and hence may be infinitely many (but
countably many). Just as Brownian motion can be decomposed into excursions from 0, we try a similar procedure here
for the frog model. We formalize this by the following definitions. Define

τ(t)= sup{s ≤ t : Ys = 0} and σ(t)= inf{s ≥ t : Ys = 0}. (5.1)

Lemma 5.1. P-a.s. for any t ≥ 0 such that Yt > 0, we have

X1
s (x)= S

�t

s−τ(t)X
1
τ(t)(x) for all s ∈ (

τ(t), σ (t)
)
. (5.2)

Proof. Note that (Y k
t − X2

0({�k
t }))t≥0 is a sequence of processes which have no jumps up and which are hence lower

semicontinuous. Furthermore, (Y k
t −X2

0({�k
t }))t≥0 and Y k differ in supremum norm by at most x2ηk

k→∞−→ 0. Hence, Y is
the DR-limit of lower semicontinuous processes and is hence also lower semicontinuous.

Fix an arbitrary t ≥ 0 such that Yt > 0. As Y is lower semicontinuous, we have σ(t) < t < τ(t).
Let δ ∈ (0, (σ (t)− τ(t))/2). Then Ys > 0 for all s ∈ [τ(t)+ δ/2, σ (t)− δ/2]. Since Y is lower semicontinuous, we

infer

ε := inf
s∈[τ(t)+δ/2,σ (t)−δ/2]Ys > 0.

Hence,

lim sup
k→∞

inf
s∈[τ(t)+δ,σ (t)−δ]Y

k
s ≥ ε > 0.
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Note that Y k
s ≤ x2ηk if ��k

s > 0. Hence, �k
s is constant on [τ(t)+ δ, σ (t)− δ] if k is large enough such that x2ηk < ε/2

and infs∈[τ(t)+δ,σ (t)−δ] Y k
s ≥ ε/2. Hence, for those k, we have

X1,k
s (x)= S

�k
t

s−(τ (t)+δ)X
1,k
τ (t)+δ(x) for s ∈ (

τ(t)+ δ, σ (t)− δ
)
. (5.3)

By passing to the limit (and using uniform convergence of �k to � and of X1,k to X1 on compacts of (τ (t), σ (t))) we get

X1
s (x)= S

�t

s−(τ (t)+δ)X
1
τ(t)+δ(x) for s ∈ (

τ(t)+ δ, σ (t)− δ
)
. (5.4)

By letting δ ↓ 0, we are done. �

As an immediate consequence of Lemma 5.1 we get the following corollary.

Corollary 5.2. P-a.s. for any ε > 0,

1{Y k
t ≥ε}

1

2
∂2
xX

1,k
t

({
�k
t

}) k→∞−→ 1{Yt≥ε}
1

2
∂2
xX1

t

({
�t

})
for all t ≥ 0.

Moreover, if τ(t)= sup{s ≤ t : Ys = 0}, then, P-a.s. for any ε > 0,

1{Yt≥ε}X1
t (x)= 1{Yt≥ε}S

�t

t−τ(t)X
1
τ(t)(x) for all x ∈R, t ≥ 0. (5.5)

Also, P-a.s. for any ε > 0,

1{Yt≥ε}Yt = 1{Yt≥ε}
∫ t

τ (t)

1

2
∂2
xX1

s

({
�s

})
ds for all t ≥ 0, (5.6)

or equivalently

1{Yt>0}∂tYt = 1{Yt>0}
1

2
∂2
xX1

t

({
�t

})
for all t ≥ 0, (5.7)

From (1.23) and by construction we have

I
(
Xk

t

)= 1
2∂2

xX
1,k
t ({�k

t })
Y k

t

1{Y k
t >0} for t ≥ 0. (5.8)

Lemma 5.3. Let G(x) = x21(−1,1)(x). Then there is a subsequence of (ηk) which we also denote by (ηk), such that
P-a.s., for all T > 0,

∫ t

0
I
(
Xk

s−
)
G

(−Y k
s−

)
ds →

∫ t

0
I (Xs−)G(−Ys−) ds as k →∞, (5.9)

uniformly on t ∈ [0, T ].

Proof. Recall that

τ k
i = inf

{
t : �k

t = iηk

}
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and note that τ k
1 = 0 a.s. Note that by (1.20), we have 1

2∂2
xX

1,k
s ({iη}) = ∂sX

2,k
s ({iη}) for s ∈ (τ k

i , τ k
i+1) and hence

1
2∂2

xX
1,k
s ({�k

s })= ∂sY
k
s . We have∫ t

0
I
(
Xk

s−
)
G

(−Y k
s−

)
ds =

∫ t

0

1

2
∂2
xX

1,k
s−

({
�k
s−

})
Y k

s−1{0<Yk
s−<1} ds

=
�η−1

k �−1∑
i=1

∫ τk
i+1∧t

τ k
i ∧t

1

2
∂2
xX

1,k
s−

({
�k
s−

})
Y k

s−1{0<Yk
s−<1} ds

=
�η−1

k �−1∑
i=1

∫ τk
i+1∧t

τ k
i ∧t

(
∂sY

k
s−

)
Y k

s−1{0<Yk
s−<1} ds

=
η−1
k �k

t −1∑
i=1

1

2

(((
Y k

τk
i+1−

)2 ∧ 1
)− (

X
2,k
0

({iηk}
)2 ∧ 1

))

+ 1

2

(((
Y k

t−
)2 ∧ 1

)− (
X

2,k
0

({
�k
t

})2 ∧ 1
))

. (5.10)

Note that

X
2,k
0

({
�k
t

})2 +
η−1
k �k

t −1∑
i=1

X
2,k
0

({iηk}
)2 ≤

�η−1
k �∑

i=1

(x2ηk)
2 ≤ 2x2

2ηk
k→∞−→ 0. (5.11)

Also note that∣∣((�Yk

τk
i

)2 ∧ 1
)− ((

Y k

τk
i −

)2 ∧ 1
)∣∣≤ 2Y k

τk
i −

X
2,k
0

({
η(i + 1)

})+X
2,k
0

({
η(i + 1)

})2 ≤ 2x2ηkY
k

τk
i −

+ x2
2η2

k . (5.12)

Recall that P[Y k

τk
i+1−

> x | τ k
i+1 <∞]=X

2,k
0 ({iηk})/(X2,k

0 ({iηk})+ x) for x > 0. Hence

P
[
Y k

τk
i+1−

1{i≤η−1
k �k

t −1} > x
]≤ X

2,k
0 ({iηk})

X
2,k
0 ({iηk})+ x

≤ x2ηk

x2ηk + x
≤ x2ηk

x
.

and

E
[(

Y k

τk
i+1−

∧K
)
1{i≤η−1

k �k
t −1}

]≤ ∫ K

0

X
2,k
0 ({iηk})

X
2,k
0 ({iηk})+ x

dx

≤
∫ K

0

x2ηk

x2ηk + x
dx

= x2ηk

(
log(K + x2ηk)− log(x2ηk)

)
.

Note that �k
t ≤ sup suppX

2,k
0 ≤ 2. Hence, for any ε > 0 and K > 0, we have

P

[η−1
k �k

t∑
i=1

ηkY
k

τk
i −

> ε

]
≤ P

[
max

i=1,...,η−1
k �k

t

Y k

τk
i −

> K
]
+ ε−1E

[η−1
k �k

t∑
i=1

ηk

(
Y k

τk
i −

∧K
)]

≤ 2x2/K + 2ηkε
−1x2

(
log(K + x2ηk)+

∣∣log(x2ηk)
∣∣).

By letting first k →∞ and then K →∞, we get

lim sup
k→∞

P

[η−1
k �k

t∑
i=1

ηkY
k

τk
i −

> ε

]
= 0 uniformly in t ≥ 0 (5.13)
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and hence

lim sup
k→∞

P

[η−1
k �k

t∑
i=1

∣∣((�Yk

τk
i+1

)2 ∧ 1
)− ((

Y k

τk
i+1−

)2 ∧ 1
)∣∣ > ε

]
= 0 uniformly in t ≥ 0. (5.14)

Combining (5.10), (5.11) and (5.14), we get uniformly in t ≥ 0

lim sup
k→∞

P
[∣∣∣∣∫ t

0
I
(
Xk

s−
)
G

(−Y k
s−

)
ds − 1

2

(( ∑
s<t :�Yk

s �=0

(
�Yk

s

)2 ∧ 1

)
+ ((

Y k
t−

)2 ∧ 1
))∣∣∣∣ > ε

]

= lim sup
k→∞

P

[∣∣∣∣∣
∫ t

0
I
(
Xk

s−
)
G

(−Y k
s−

)
ds − 1

2

((η−1
k �k

t∑
i=1

(
�Yk

τk
i+1

)2 ∧ 1

)
+ (

Y k
t−

)2 ∧ 1

)∣∣∣∣∣ > ε

]
= 0. (5.15)

On the other hand define for the limiting process the sequence of time intervals (τY
i , σ Y

i ) such that

YτY
i
= 0,

�YσY
i
=−YσY

i −,

Yt > 0 for all t ∈ (
τY
i , σ Y

i

)
.

Note that there is at most a countable number of such intervals since all the intervals have positive lengths. We may call
these intervals excursion intervals of Y . For simplicity, we order these intervals in a way that

σY
i+1 − τY

i+1 ≤ σY
i − τY

i for all i ≥ 1.

By Corollary 5.2, we know that

1

2
∂2
xX1

s

({
�s

})= ∂sYs, (5.16)

for any s such that Ys > 0. Hence, we get∫ t

0
I (Xs−)G(−Ys−) ds =

∫ t

0

1

2
∂2
xX1

s−
({

�s−
})

Ys−1{0<Ys−<1} ds

=
∑

i≥1:σY
i <t

∫ σY
i

τY
i

1

2
∂2
xX1

s−
({

�s−
})

Ys−1{0<Ys−<1} ds

+
∫ t

τ (t)

1

2
∂2
xX1

s−
({

�s−
})

Ys−1{0<Ys−<1} ds

=
∑

i≥1:σY
i <t

∫ σY
i

τY
i

(∂sYs−)Ys−1{0<Ys−<1} ds

+
∫ t

τ (t)

(∂sYs−)Ys−1{0<Ys−<1} ds

= 1

2

(( ∑
s<t :�Ys �=0

(�Ys)
2 ∧ 1

)
+ (

(Yt−)2 ∧ 1
))

. (5.17)

Note that by the properties of the Skorohod topology∑
s<t :|�Ys |>ε

(
(�Ys)

2 ∧ 1
)≤ lim inf

k→∞
∑

s<t :|�Yk
s |>ε

((
�Yk

s

)2 ∧ 1
)

≤ lim sup
k→∞

∑
s<t :|�Yk

s |>ε

(
�Yk

s

)2 ∧ 1≤
∑

s<t :|�Ys |≥ε

(
(�Ys)

2 ∧ 1
)
. (5.18)
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Note that, using the explicit distribution of Y k

τk
i+1−

given τ k
i+1 <∞, we get (for k large enough such that x2ηk < ε)

E
[(

�Yk

τk
i+1

)21{|�Yk

τk
i+1

|≤ε} | τ k
i+1 <∞]≤ E

[(
Y k

τk
i+1−

)21{Y k

τk
i+1−

<2ε} | τ k
i+1 <∞]≤ 4ηkx2ε.

This shows that (uniformly in t ≥ 0)

lim sup
k→∞

E
[ ∑

s<t :0<|�Yk
s |≤ε

(
�Yk

s

)2
]
≤ 8x2ε. (5.19)

Putting together (5.15), (5.17), (5.18) and (5.19), and passing to a suitable subsequence of (ηk) if needed, we get the claim
of the lemma. �

Lemma 5.4. Let H ∈ R→ R+ be a bounded continuous function with compact support and such that H equals 0 in
some neighbourhood of 0. Then, P-a.s., for all T > 0,∫ t

0
I
(
Xk

s−
)
H

(−Y k
s−

)
ds

k→∞−→
∫ t

0
I (Xs−)H(−Ys−) ds (5.20)

uniformly on t ∈ [0, T ].

Proof. The proof of this lemma goes along the lines of the proof of Lemma 5.3 and it is in fact even simpler. We omit
the details. �

5.2. Convergence of functionals

Recall that (X1, Y, �) is the almost sure limit of the subsequence ((X1,k, Y k, �k))k≥1 in DMF×R×R. Let us assume that
the subsequence (ηk) is chosen such that also the claims of Lemmas 5.3 and 5.4 hold.

With a slight abuse of notation let N k
� denote a family of point processes on R+ × R related to the jumps

(�X
2,k
s )({�k

s−}). Recall that this family introduced in (3.6) was related to the jumps (�X
2,η
s )({�η

s−}) (see (3.5)) and
was denoted by N η

�. That is,

N k
�(dt, dz)=

∑
s

1{(�X
2,k
s )({�k

s−})�=0}δ(s,−(�X
2,k
s )({�k

s−})(dt, dz). (5.21)

Let N k,′
� be the corresponding compensator measure and let Mk

� =N k
� −N k,′

� . Furthermore define N�, N ′
�, M�

similarly but with Y k replaced by Y .
Recall from Corollary 3.4 that (X1,k, Y k, �k) is a solution to the following system of equations: for any φ ∈ C2

b(R)

〈
X

1,k
t , φ

〉= 〈
X1

0, φ
〉+ ∫ t

0

〈
X1,k

s ,
1

2
φ′′

〉
ds +

∫ t

0

∫
[0,∞)

zφ
(
�k
s−

)
Mk

�(ds, dz), (5.22)

Y k
t =X2

0

(
(−∞, �k

t ]
)− ∫ t

0

∫
[0,∞)

zMk
�(ds, dz). (5.23)

In fact, by the very defintion of X
1,k
0 and X

2,k
0 , we have X

1,k
0 =X1

0 and X
2,k
0 ((−∞, iη])=X2((−∞, iη]) for all i ∈N0,

hence X
2,k
0 ((−∞, �k

t ])=X2
0((−∞, �k

t ]).
By Lemma 3.1, we have

N k,′
� (dt,B)= 1B\{0}

(
Y k

t−
)
I
(
Xk

t−
)
dt for B ⊂R+ measurable. (5.24)

Lemma 5.5. (X1, Y, �) is a weak solution to the following system of equations: for any φ ∈C2
b(R)

〈
X1

t , φ
〉= 〈

X1
0, φ

〉+ ∫ t

0

〈
X1

s ,
1

2
φ′′

〉
ds +

∫ t

0

∫
[0,∞)

zφ
(
�s−

)
M�(ds, dz), (5.25)

Yt =X2
0

(
(−∞, �t ]

)− ∫ t

0

∫
[0,∞)

zM�(ds, dz), (5.26)
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where

M� =N� −N ′
�, (5.27)

and N� is the point process on R+ ×R+ with the compensator process

N ′
�(dt,B)= 1B\{0}(Yt−)I (Xt ) dt for B ⊂ [0,∞) measurable. (5.28)

Moreover,

supp
(
X1

t

)⊂ (−∞, �t ] for all t ≥ 0 such that X2
t (1) > 0. (5.29)

Proof. Clearly the point processes N k
�(dt, dz) and corresponding compensator processes and martingale measures could

be extended to the processes on R+×R while giving zero mass to R+×(R−\{0}), that is, N k
�(dt,B)=N k,′

� (dt,B)= 0,
for all B ⊂ (R− \ {0}). We will use this trivial extension throughout the proof.

First note that (5.29) is obvious. Now we will derive (5.26). Note that∑
s≤t

(�X
2,k
0

((−∞, �k
s ]

))2 k→∞−→ 0 (5.30)

since the left-hand side of (5.30) is bounded by

�η−1
k �∑

i=1

X
2,k
0

({iηk}
)2 ≤ x2ηkX

2
0(1)

k→∞−→ 0.

Hence, by Theorem IX.2.4 of [11], it is enough to check that(
Y k

t ,X2
0

(
(−∞, �k

t ]
)
,

∫ t

0

∫
R

N k,′
� (ds, dz)G(z)

)
t≥0

k→∞=⇒
(

Yt ,X
2
0

(
(−∞, �t ]

)
,

∫ t

0

∫
R

N ′
�(ds, dz)G(z)

)
t≥0

(5.31)

in DR+×R+×R for

(i) each continuous G ∈ C+
b (R) which is 0 in some neighbourhood of 0 and

(ii) for some bounded and compactly supported function G :R→R that fulfills G(x)= x2 in some neighbourhood of 0.
(In the notation of [11], this G is h2, where h is the truncation function used in IX.2.2 to define their C̃ and which is
defined in II.2.3.)

Using that (X1,k, Y k, �k)
k→∞−→ (X1, Y, �) almost surely, we will derive that in fact the convergence (5.31) holds a.s. on

that probability space.
Note that by (5.24), for G satisfying either (i) or (ii), we have∫

R

G(z)N k,′
� (dt, dz)= I

(
Xk

t−
)
G

(
Y k

t−
)
dt. (5.32)

Similarly, by (5.28), for G satisfying either (i) or (ii), we have∫
R

G(z)N ′
�(dt, dz)= I (Xt−)G(Yt−) dt. (5.33)

Now the a.s. convergence of
∫ t

0

∫
R
N k,′

� (ds, dz)G(z) follows from Lemmas 5.3 and 5.4. Recall that the convergence in
these lemmas is uniform on compact time intervals and the limiting integrals are clearly continuous functions of t . In other
words, the third entry on the left-hand side of (5.31) is C-tight. Similarly, we get C-tightness and uniform convergence
of (X

2,k
0 ((−∞, �k

t ]))t≥0 = (X2
0((−∞, �k

t ]))t≥0 from C-tightness of (�k
t )t≥0 and the fact that X2

0 has a density.

By Corollary VI.3.33 in [11], this together with the convergence of (Y k,X
2,k
0 ((−∞, �k

t ])), k ≥ 1, implies “joint” con-
vergence in (5.31). It is also straightforward to see from our construction that M�(ds,B)=N ′

�(dt,B)=N�(dt,B)= 0
for any B ⊂R−. Hence, we get (5.26).
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Now let us show (5.25). Using the above proof it is easy to get that for any G ∈ Cb(R) such that G(x) = 0 in a
neighbourhood of zero,∫ t

0

∫
[0,∞)

zφ
(
�k
s−

)
G(z)Mk

�(ds, dz)
k→∞−→

∫ t

0

∫
[0,∞)

zφ
(
�s−

)
G(z)M�(ds, dz) (5.34)

uniformly in t on compacts. In fact, there are only finitely many jumps of size |z| ≥ ε in any compact time interval
and both the sizes and the positions converge due to the properties of convergence of Y k in the Skorohod space. The
compensator of these large jumps converges almost surely by Lemma 5.4. Finally, we show that the martingale measure
of the small jumps vanishes in L2 as ε → 0 uniformly in k. This gives the desired almost sure convergence after passing
to a subsequence of (ηk) which we also denote by (ηk).

In order to bound the small jumps in L2, we use that by the Burkholder–Davis–Gundy inequality, we have, for any
T > 0,

E
[

sup
t≤T

(∫ t

0

∫
[0,∞)

zφ
(
�k
s−

)
1{|z|≤ε}Mk

�(ds, dz)

)2]
+E

[
sup
t≤T

(∫ t

0

∫
[0,∞)

zφ
(
�s−

)
1{|z|≤ε}M�(ds, dz)

)2]

≤C‖φ‖2∞E
[∫ T

0

∫
[0,∞)

z21{|z|≤ε}N k,′
� (ds, dz)

]
+C‖φ‖2∞E

(∫ T

0

∫
[0,∞)

z21{|z|≤ε}N ′
�(ds, dz)

)
Arguing as in the proof of Lemma 5.3, derivation of (5.19), the right hand side is bounded by

C‖φ‖2∞εx2.

This finishes the proof. �

Recall the Poisson point process N and the corresponding martingale measure M that were introduced in (1.8) and
(1.9). Now we are ready to state the proposition that will help finishing the proof of Theorem 1.7.

Proposition 5.6. Any limiting point (X1, Y, �) of {(X1,k, Y k, �k)}k≥1 is a weak solution to the following system of equa-
tions: for any φ ∈ C2

b(R),

〈
X1

t , φ
〉= 〈

X1
0, φ

〉+ ∫ t

0

〈
X1

s ,
1

2
φ′′

〉
ds +

∫ t

0

∫
[0,∞)

Ys−φ
(
�s−

)
1[0,I (Xs−)](a)M(ds, da), (5.35)

Yt =X2
0

(
(−∞, �t ]

)− ∫ t

0

∫
[0,∞)

Ys−1[0,I (Xs−)](a)M(ds, da). (5.36)

In addition, we have

�t = inf
{
x :X2

t ((−∞, x]) > 0
}∧ 1.

Proof. The proof of this proposition is rather standard and follows line by line the proof of Lemma 3.5. �

Proof of Theorem 1.7. We define

X2
t := Ytδ�t

+ 1(�t ,∞)X
2
0.

This is consistent with (recall (3.4))

X
2,k
t = Y k

t δ�k
t
+ 1(�k

t ,∞)X
2,k
0 .

With this definition, X2 is clearly a continuous functional of � and Y and is hence the limit of X2,k as k →∞.
By Proposition 5.6, the process (X1,X2) is a weak solution to (1.24), and thus the proof of Theorem 1.7 is finished. �
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