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Abstract. We obtain non-asymptotic Gaussian concentration bounds for the difference between the invariant distribution ν of an
ergodic Brownian diffusion process and the empirical distribution of an approximating scheme with decreasing time step along a
suitable class of (smooth enough) test functions f such that f − ν(f ) is a coboundary of the infinitesimal generator. We show that
these bounds can still be improved when some suitable squared-norms of the diffusion coefficient also belong to this class. We apply
these estimates to design computable non-asymptotic confidence intervals for the approximating scheme. As a theoretical application,
we finally derive non-asymptotic deviation bounds for the almost sure Central Limit Theorem.

Résumé. Nous obtenons des estimées de concentration gaussienne non asymptotiques pour la différence entre la mesure invariante ν

d’une diffusion brownienne ergodique et la mesure empirique d’un schéma d’approximation à pas décroissants évaluée le long d’une
classe admissible de fonctions tests f telles que f − ν(f ) soit un co-bord du générateur infinitésimal. Nous montrons que ces bornes
peuvent être améliorées lorsque le carré de certaines normes du coefficient de diffusion appartient également à cette classe. Nous
déduisons de ces estimées des intervalles de confiance non asymptotiques explicitement calculables pour le schéma d’approximation.
Nous obtenons également, en terme d’application théorique, des estimées de déviations non asymptotiques pour le théorème de la
limite centrale presque sûr.
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1. Introduction

1.1. Setting

The aim of this article is to approach the invariant distribution of the solution of the diffusion equation:

dYt = b(Yt ) dt + σ(Yt ) dWt , (1.1)

where (Wt)t≥0 is a Wiener process of dimension r on a given filtered probability space (�,G, (Gt )t≥0,P), b :Rd→R
d ,

and σ : Rd → R
d ⊗ R

r are assumed to be Lipschitz continuous functions and to satisfy a mean-reverting assumption
in the following sense. If A denotes the infinitesimal generator of the diffusion (1.1), there exists a twice continuously
differentiable Lyapunov function V :Rd→ (0,+∞) such that lim|x|→+∞ V (x)=+∞ and AV ≤ β − αV where β ∈R
and α > 0. Such a condition ensures the existence of an invariant distribution, see [16]. We will also assume uniqueness
of the invariant distribution, denoted from now by ν. For in-depth discussions on the conditions yielding such existence
and uniqueness results, we refer to the monograph by Khasminskii [23] (see also its augmented second edition [22]) and
the survey paper [33]. Let us also mention Villani [45] for the convergence to the equilibrium distribution of the solution
of a particular Fokker–Planck equation which ensures the existence of an invariant distribution.
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We introduce an approximation algorithm based on an Euler like discretization with decreasing time step, which may
use more general innovations than the Brownian increments. Namely, for the step sequence (γk)k≥1 and n≥ 0, we define:

Xn+1 =Xn + γn+1b(Xn)+√γn+1σ(Xn)Un+1, (S)

where X0 ∈ L2(�,F0,P) and (Un)n≥1 is an i.i.d. sequence of centered random variables matching the moments of the
Gaussian law on R

r up to order three, independent of X0.
We define the empirical (random) occupation measures of the scheme in the following way. For any A ∈ B(Rd) (where

B(Rd) denotes the Borel σ -field on R
d ):

νn(A) := νn(ω,A) :=
∑n

k=1 γkδXk−1(ω)(A)∑n
k=1 γk

, n≥ 1. (1.2)

The measure νn is here defined accordingly to the intrinsic time scale of the scheme. Namely, 
n =∑n
k=1 γk represents the

current time associated with the Euler scheme (S) after n iterations. Since we are interested in long time approximation,
we consider steps (γk)k≥1 such that 
n :=∑n

k=1 γk→n +∞. We also assume γk ↓
k

0. Observe that, for a bounded ν-a.s.

continuous function f , it is proved in [25] (see e.g. Theorem 1), that:

νn(f )= 1


n

n∑
k=1

γkf (Xk−1)
a.s.−→
n

ν(f )=
∫
Rd

f (x)ν(dx), (1.3)

or equivalently that νn(ω, ·) w−→
n

ν, P(dω)-a.s. The above result can be seen as an inhomogeneous counterpart of stability

results discussed for homogeneous Markov chains in Duflo [15]. Intuitively, the decreasing steps make the approximation
more and more accurate in long time and, therefore, the ergodic empirical mean of the scheme converges to the quantity
of interest. Put it differently, there is no bias. This is a significant advantage w.r.t. a more naive discretization method
that would rely on a constant step scheme. Indeed, even if this latter approach gains in simplicity, taking γk = h > 0
in (S) would lead to replace the r.h.s. of (1.3) by the quantity νh(f ) := ∫

Rd f (x)ν
h(dx), with νh denoting the invariant

distribution of the Euler scheme with step h. In such a case, for the analysis to be complete, one needs to investigate the
difference ν − νh through the corresponding continuous and discrete Poisson problems. We refer to Talay et al. [43,44]
for a precise presentation of this approach.

Now, once (1.3) is available, the next question naturally concerns the rate of that convergence. This was originally
investigated by Lamberton and Pagès [25] for functions f of the form f − ν(f ) =Aϕ, i.e. f − ν(f ) is a coboundary
for A. The specific reason for focusing on such a class of functions is that an invariant distribution ν is characterized as a
solution in the distribution sense of the stationary Fokker–Planck equation A∗ν = 0 (where A∗ stands for the adjoint of
A). Thus, for smooth enough functions ϕ (at least C2(Rd ,R)), one has ν(Aϕ)= ∫

Rd Aϕ(x)ν(dx)= 0. The authors then
investigate the weak convergence of νn(f )−ν(f ) once suitably renormalized. However, in these results, the assumptions
are made on the function ϕ itself rather than on f . To overcome this limitation and exploit directly some assumptions on
the function f requires to solve the Poisson equation Aϕ = f − ν(f ). This is precisely for this step that some structure
conditions are needed, namely (hypo)ellipticity or confluence conditions. We refer for instance to the work of Pardoux
and Veretennikov [37], Rothschield and Stein [41] or Villani [45] who discuss the solvability of the Poisson and of the
Fokker–Planck problems under some ellipticity or hypoellipticity assumptions. We also mention the work of Pagès and
Panloup [35] who exploit some confluence conditions allowing to handle for instance the case of an Ornstein–Uhlenbeck
process with degenerate covariance matrix. We refer to Sections 2.2 and 2.3 for precise assumptions giving the uniqueness
of the invariant distribution of (1.1) and the expected smoothness properties for the associated Poisson problem.

In the current paper, our goal is to establish for this recursive procedure a non-asymptotic Gaussian control for the
deviations of the quantity νn(f )− ν(f ) for possibly unbounded Lipschitz continuous functions f . Such non-asymptotic
bounds are crucial in many applicative fields. Indeed, for specific practical simulations, it is not always possible to run
ergodic means for very large values of n. It will be direct to derive, as a by-product of our deviations estimates, some
computable non-asymptotic confidence intervals. A specific feature of such non-asymptotic deviation inequalities is that
their accuracy depends again on the status of the diffusion coefficient σ with respect to the Poisson equation. Thus, if
~σ~2 − ν(~σ~2) = Aϑ is a coboundary (where ~ · ~ denotes a matrix norm), we manage to improve our analysis, to
derive better concentration bounds in a certain deviation range as well as some additional deviation regimes. Also, this
additional study seems rather efficient to capture the numerical behavior of the empirical deviations. We refer to Sections 4
and 6.2 for details about these points. Eventually, our main deviation results allow to provide deviation inequalities for
plain Lipschitz continuous sources f in the ergodic approximation, by using a suitable regularization procedure, as
established in Theorem 7. As expected, dealing with this general class of functions requires more stringent constraints on
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the time steps, that must be small enough, and prevents from obtaining the fastest convergence rates (see again Theorem 7
and Section 5.3).

The main feature of the sequence (1.2) of weighted empirical measures is that it targets the true invariant distribu-
tion ν of the continuous time diffusion. The price to pay is the use of an Euler scheme with decreasing step which is
a non-homogeneous Markov chain. This induces new difficulties compared to the extensive literature on deviation in-
equalities for ergodic homogeneous Markov chains. In particular, our approximation procedure produces some remainder
terms that need to be controlled accurately enough in a non-asymptotic way to produce tractable deviation inequalities
asymptotically close to their counterparts for the diffusion itself. This is a major difficulty compared to a CLT where these
remainder terms are simply requested to go to 0 fast enough.

As mentioned above and like for the CLT (see [6] for the diffusion or [25] for the weighted empirical measures νn),
these deviation inequalities are naturally established for coboundaries f − ν(f ) = A(ϕ), the assumptions being made
on ϕ. Our second objective in this paper is to state our results so that all assumptions could be read on the source function
f itself. This first requires to solve the Poisson equation in that spirit, that means deriving pointwise regularity on ϕ from
that supposed on f . Again, for Lipschitz sources, this step will require an appropriate regularization procedure.

In particular, we will not rely on the Sobolev regularity (see e.g. Pardoux and Veretennikov [37]) but rather on some
Schauder estimates in line with the works by Krylov and Priola [24], which allow to benefit from the elliptic regularity
for operators with unbounded coefficients. For more details, we refer to the introduction of Section 5.

1.2. Assumptions and related asymptotic results

From now on, we will extensively use the following notations.
For a given step sequence (γn)n≥1, we denote:

∀ ∈R, 
()
n :=

n∑
k=1

γ 
k , 
n :=

n∑
k=1

γk = 
(1)
n .

In practice, we will consider time step sequences: γn � 1
nθ

with θ ∈ (0,1], where for two sequences (un)n∈N, (vn)n∈N the

notation un � vn means that ∃n0 ∈N, ∃C ≥ 1 such that ∀n≥ n0, C−1vn ≤ un ≤Cvn.

For a vector v ∈ Rk , k ∈ {d, r}, we denote by |v| := (∑k
j=1 v

2
j

) 1
2 its (canonical) Euclidean norm. Also, for a function

ψ :Rq→R
d , we set ‖ψ‖∞ := supx∈Rq |ψ(x)|.

Hypotheses

(C1) The random variable X0 is supposed to be sub-Gaussian, i.e. its square is exponentially integrable up to some
threshold. Namely, there exists λ0 ∈R∗+ such that:

∀λ < λ0, E
[
exp

(
λ|X0|2

)]
<+∞.

(GC) The μ-distributed i.i.d. innovation sequence (Un)n≥1 is such that E[U1] = 0 and for each (i, j, k) ∈ {1, . . . , r}3,
E[Ui

1U
j

1 ] = δij , E[Ui
1U

j

1 U
k
1 ] = 0. Also, (Un)n≥1 and X0 are independent. Eventually, U1 satisfies the following

Gaussian concentration property, i.e. for every 1-Lipschitz continuous function g :Rr→R and every λ > 0:

E
[
exp

(
λg(U1)

)]≤ exp

(
λE

[
g(U1)

]+ λ2

2

)
.

Observe that if U1
(law)= N (0, Ir ) or U1

(law)= ( 1
2 (δ1 + δ−1))

⊗r , i.e. for Gaussian or symmetric Bernoulli increments
which are the most commonly used sequences for the innovations, the above identity holds. On the other hand,
what follows can be adapted almost straightforwardly for a wider class of sub-Gaussian distributions satisfying
that for some � > 0 and for any λ > 0:

E
[
exp

(
λg(U1)

)]≤ exp

(
λE

[
g(U1)

]+ �λ2

4

)
, (1.4)

which yields that for any r > 0, P[|U1| ≥ r] ≤ 2 exp(− r2

�
) (sub-Gaussian concentration of the innovation). The case

� = 2 corresponds to the standard Gaussian concentration. This is also the constant in the logarithmic Sobolev
inequality fulfilled by the standard Gaussian measure, see [4].
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(C2) There exists a positive constant κ such that,

sup
x∈Rd

∥∥σ(x)∥∥2 ≤ κ,

where ‖σ(x)‖ stands for the operator norm of σ(x), i.e. ‖σ(x)‖ = supz∈Rr ,|z|≤1 |σ(x)z| (keep in mind that

‖σ(x)‖ = ‖σ ∗(x)‖ = ‖σσ ∗(x)‖ 1
2 ). We then set ‖σ‖∞ := supx∈Rd ‖σ(x)‖.

(LV) There exists a Lyapunov function V :Rd −→ [v∗,+∞), with v∗ > 0, satisfying the following conditions:
(i) Regularity–Coercivity. V is a C2 function, ‖D2V ‖∞ <+∞ and lim|x|→∞ V (x)=+∞.

(ii) Growth control. There exists CV ∈ (0,+∞) such that for any x ∈Rd :∣∣∇V (x)
∣∣2 + ∣∣b(x)∣∣2 ≤ CV V (x).

(iii) Stability. Let A be the infinitesimal generator associated with the diffusion equation (1.1), defined for all
ϕ ∈ C2

0(R
d,R) and x ∈Rd by:

Aϕ(x)= 〈
b(x),∇ϕ(x)〉+ 1

2
Tr

(
�(x)D2ϕ(x)

)
, �(x) := σσ ∗(x),

where, for two vectors v1, v2 ∈ R
d , the symbol 〈v1, v2〉 stands for the canonical inner product of v1 and v2

and for M ∈Rd ⊗R
d,Tr(M) denotes the trace of the matrix M .

There exist αV > 0, βV ∈R+ such that for all x ∈Rd ,

AV (x)≤−αV V (x)+ βV .

As a consequence of (LV)(i), there exist constants K and c̄ such that for |x| ≥ K , |V (x)| ≤ c̄|x|2, which in turn
implies, from (LV)(ii), that |b(x)| ≤ √CV c̄|x|.

(U) There exists a unique invariant distribution, denoted from now on by ν, for equation (1.1).
(S) For a Lyapunov function V satisfying (LV ), we assume that the step sequence (γk)k≥1 satisfies for each k ≥ 1,

γk ≤ 1
2 min( 1√

CV c̄
,

αV
CV ‖D2V ‖∞ ).

Condition (S) means that we assume that the time steps are sufficiently small w.r.t. the upper bounds of the coefficients
and the Lyapunov function.

Remark 1. We have assumed (U) without imposing some specific non-degeneracy conditions. Observe that (LV) yields
existence of an invariant distribution (see e.g. Chapter 4.9 in [16]). Additional structure conditions on the coefficients
((hypo-)ellipticity [22,37–39], or confluence [35]) then yield uniqueness.

Assumption (S) is a technical condition which is exploited in order to derive the non-asymptotic controls of Theorem 2
(see especially the proof of Proposition 1 below).

Observe that, as soon as conditions (C2), (LV), (U) are satisfied and E[U1] = 0, E[U⊗3
1 ] = 0, the following Central

Limit Theorem (CLT) holds (see Theorems 9, 10 in [25]).

Theorem 1 (CLT). Under (C2), (LV), (U), if E[U1] = 0, E[U⊗3
1 ] = 0 and E[V (X0)] < +∞, we have the following

results.

(a) Fast decreasing step. If limn


(2)
n√

n
= 0 and E[|U1|6]<+∞, then, for any Lipschitz continuous function ϕ in C3(Rd ,R)

with D2ϕ bounded and D3ϕ bounded and Lipschitz, one has (with (L) denoting weak convergence)√

nνn(Aϕ)

(L)−→N
(

0,
∫
Rd

∣∣σ ∗∇ϕ∣∣2 dν).
(b) Critical and slowly decreasing step. If limn



(2)
n√

n
= γ̃ ∈ (0,+∞] and if E[|U1|8] < +∞, then for every Lipschitz

continuous function ϕ ∈ C4(Rd ,R) with (Diϕ)i∈{2,3,4} bounded:√

nνn(Aϕ)

(L)−→N
(
γ̃ m,

∫
Rd

∣∣σ ∗∇ϕ∣∣2 dν) if γ̃ <+∞ (critical decreasing step),


n



(2)
n

νn(Aϕ)
P−→m if γ̃ =+∞ (slowly decreasing step),
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with the notations of [25]

m := −
∫
Rd

(
1

2
D2ϕ(x)b(x)⊗2 +�4(x)

)
ν(dx),

where

�4(x) :=
∫
Rr

(
1

2

〈
D3ϕ(x)b(x),

(
σ(x)u

)⊗2〉+ 1

24
D4ϕ(x)

(
σ(x)u

)⊗4
)
μ(du)

and μ denotes the distribution of the innovations (Uk)k≥1. In the above definition of �4, the term D3ϕ stands for
the order 3 tensor (∂3

xi ,xj ,xk
ϕ)(i,j,k)∈�1,d�3 and we denote, for any x ∈ Rd , by D3ϕ(x)b(x) the R

d ⊗R
d matrix with

entries (D3ϕ(x)b(x))ij =∑d
k=1(D

3ϕ(x))ijkbk(x), (i, j) ∈ �1, d�2.

Remark 2. Let us specify that for a step sequence (γn)n∈N such that γn � n−θ , θ ∈ (0,1], it is easily checked that case

(a) occurs for θ ∈ ( 1
3 ,1] for which 


(2)
n√

n
→
n

0. In case (b), that is for 

(2)
n√

n
→
n

γ̃ > 0, we have θ ∈ (0, 1
3 ]. If γ̃ <+∞ then

θ = 1
3 and if γ̃ =+∞ then θ ∈ (0, 1

3 ).

Let us mention that, when supn≥0


(3/2)
n√

n

<+∞, i.e. for γn � n−θ , θ ∈ (1/2,1], the CLT of point (a) holds without the

condition E[U⊗3
1 ] = 0 provided E[|U1|4] < +∞ (see Theorem 9 in [25]). Moreover, the boundedness condition (C2)

can be relaxed to derive the CLT, which holds provided lim|x|→+∞ |σ
∗∇ϕ(x)|2
V (x)

= 0 (strictly sublinear diffusion) in case (a)

and supx∈Rd
|σ ∗∇ϕ(x)|2

V (x)
<+∞ (sublinear diffusion) in case (b). We refer again to Theorems 9 and 10 in [25] for further

considerations.

Remark 3. The reader should have in mind that an ergodic result similar to the one stated in the fast decreasing step
setting holds for the diffusion itself under the same structure assumptions, i.e. (C2), (LV), (U) (see Bhattacharya [6]). In
fact (C2) can be partially relaxed as well, as mentioned above. Precisely, for (Ys)s≥0 as in (1.1),

1√
t

∫ t

0
Aϕ(Ys) ds

L−→N
(

0,
∫
Rd

∣∣σ ∗∇ϕ∣∣2 dν) as t→+∞.

Note that the asymptotic variance corresponds to the usual integral of the “carré du champ” w.r.t. to the invariant distri-
bution (see again Bhattacharya [6] or the monograph by Bakry et al. [4]), i.e.:∫

Rd

∣∣σ ∗∇ϕ(x)∣∣2ν(dx)=−2
∫
Rd

〈Aϕ,ϕ〉(x)ν(dx).

In both settings, the normalization is the same:
√
t for the diffusion and

√

n for the scheme. Except that, as emphasized

by Theorem 1, for slowly decreasing step – when θ < 1/3 – the time discretization effect becomes prominent and “hides”
the CLT so that θ = 1/3 (critical value between “fast” and “slow” settings) yields the fastest rate with a biased CLT.

Remark 4. We would like to mention that, in the biased case (b), for steps of the form γk = γ0k
−1/3, k ≥ 1, it is

important for a practical implementation to choose γ0 in an appropriate way, namely by minimizing the function γ0 �→
c1γ0 + c2γ

−1/2
0 , c1 = limn

∑n
k=1 k

−2/3

(
∑n

k=1 k
−1/3)1/2 , c2 =

∫
Rd |σ ∗∇ϕ|2 dν, which corresponds to the mean-variance contribution

deriving from the biased limit Theorem. Of course, c2 is usually unknown, and the concrete optimization has to be
performed replacing c2 by a computable estimate, like for instance upper bounds, c2 ≤ ‖σ‖∞‖∇ϕ‖∞, see Theorem 4 and
Section 5 below.

The purpose of this work is to obtain non-asymptotic deviation results which match with the above CLT. In the current
ergodic framework, the very first non-asymptotic results were established for the Euler scheme with constant time step by
Malrieu and Talay in [30] when the diffusion coefficient σ in (1.1) is constant. The key tool in their approach consists in
establishing a Log Sobolev inequality, which implies Gaussian concentration, for the Euler scheme. This approach allows
to easily control the invariant distribution associated with the diffusion process (1.1), see e.g. Ledoux [27] or Bakry et al.
[4] in a general framework. However Log Sobolev, and even Poincaré, inequalities turn out to be rather rigid tools and
are not very well adapted for discretization schemes like (S) with or without decreasing steps.
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Our approach relies on martingale techniques, which were already a crucial tool to establish the asymptotic results
of [25] and have been successfully used in Frikha and Menozzi [17] as well to establish non-asymptotic bounds for the
regular Monte Carlo error associated with the Euler discretization of a diffusion over a finite time interval [0, T ] and
a class of stochastic algorithms of Robbins–Monro type. Roughly speaking, for a given n, we decompose the quantity√

nνn(Aϕ) as Mn +Rn where (Mk)k≥0 is a martingale which has Gaussian concentration and Rn is a remainder term

to be controlled in a non-asymptotic way.
We can as well refer to the recent work by Dedecker and Gouëzel [14] who also use a martingale approach to derive

non-asymptotic deviation bounds for separately bounded functionals of geometrically ergodic Markov chains on a general
state space.

Let us also mention that many non-asymptotic results have been obtained based on functional inequalities. Bolley,
Guillin and Villani [10] derived non-asymptotic controls for the deviations of the Wasserstein distance between a reference
measure and its empirical counterpart, establishing a non-asymptotic version of the Sanov theorem. Deviation estimates
for sums of weakly dependent random variables (with sub exponential mixing rates) have been considered in Merlevède et
al. [31]. From a more dynamical viewpoint, let us mention the work of Joulin and Ollivier [21], who introduced for rather
general homogeneous Markov chains a kind of curvature condition to derive a spectral gap for the chain, and therefore
an exponential convergence of the marginal laws towards the stationary distribution. We also mention a work of Blower
and Bolley [7], who obtain Gaussian concentration properties for deviations of functional of the path for metric space
valued homogeneous Markov chains or Boissard [9] who established non-asymptotic deviation bounds for the Wasserstein
distance between the marginal distributions and the stationary law, still in the homogeneous case. The common idea of
these works is to prove some contraction properties of the transition kernel of the Markov chain in Wasserstein metric.
However, this usually requires to have some continuity in Wasserstein metric for the involved transition law, see e.g.
condition (ii) in Theorems 1.2 and 2.1 of [7]. Checking such continuity conditions figures out to be difficult in practice.
Sufficient conditions, which require absolute continuity and smoothness of the transition laws are given in Proposition 2.2
of [7].

Though potentially less sharp for the derivation of constants, the adopted martingale-based approach in this work turns
out to be rather simple, robust and can be very naturally adapted to both discrete innovations and inhomogeneous time
steps dynamics like the one we currently consider.

It should as well allow to control deviations for functionals of the path, in the spirit of those considered in [34,35].
Also, the approach could possibly extend to diffusions with less stringent Lyapunov conditions, like the weakly mean
reverting drifts considered in [26], or even to more general ergodic Markov processes, see e.g. Pagès and Rey [36]. These
aspects will concern further research.

As an application of our non-asymptotic concentration results, we will discuss two important topics:

– The first one is of numerical interest and deals with non-asymptotic confidence intervals associated with the estimation
of the ergodic mean. Such results can be very useful in practice when the computational resources are constrained (by
time, by the model itself, . . . ). If we assume that ϕ ∈ C3(Rd ,R), Lipschitz continuous with (Diϕ)i∈{2,3} bounded, such
that the mapping R

d � x �→ 〈b(x),∇ϕ(x)〉 and D3ϕ are Lipschitz continuous, we then establish that there are explicit
monotonic sequences cn ≤ 1≤ Cn converging to 1 such that for all n ∈N, a > 0 and γk � k−θ , θ ∈ ( 1

3 ,1],

P
[√


nνn(Aϕ)≥ a
]≤ Cn exp

(
−cn a2

2‖σ‖2∞‖∇ϕ‖2∞

)
. (1.5)

When the diffusion coefficient σ is such that ‖σ‖2 − ν(‖σ‖2) is itself a coboundary (or its counterpart for any other
norm dominating ‖ · ‖), the previous bound can be improved in a certain deviation range for a. Namely, we are able to
replace ‖σ‖2∞ by ν(‖σ‖2) in (1.5), going thus closer to the theoretical limit variance involving the “carré du champ”.
Moreover, a mixed regime appears in the non-asymptotic deviation bounds which dramatically improves, from the
numerical viewpoint, the general case for a certain deviation range. In particular, the corresponding variance is closer
to the asymptotic one given by the “carré du champ” (see Theorem 8 below). In accordance with the limit results of
Theorem 1, the drifts associated with the fastest convergence rates can be handled as well. We obtain in full generality,
results of type (1.5) under slightly weaker smoothness assumptions, considering e.g. D3ϕ being β ∈ (0,1]-Hölder
continuous. Eventually, under suitable ellipticity conditions on σ , we are able to give non-asymptotic deviation bounds
for a Lipschitz source f as well as explicit gradient bounds for the solution ϕ of the corresponding Poisson problem.

– The second one is mainly theoretical and concerns non-asymptotic deviation bounds for the celebrated almost-sure
CLT first established by Brosamler and Schatte (see [11] and [42]) and revisited through the ergodic discretization
schemes viewpoint in [25].

Both applications require a careful investigation of the corresponding Poisson equation Aϕ = f − ν(f ). We will in
particular prove that some pointwise regularity properties can be transferred from f to ϕ.
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The paper is organized as follows. We conclude this section by introducing some notations. Our main results are
presented in Section 2. We first state therein the specific concentration results for functions f writing f = Aϕ + ν(f )

(see Section 2.1). We then proceed with some suitable controls on the Poisson problem associated with A and f in
a confluent framework under the two main cases considered: namely a possibly degenerate setting, which requires a
strong confluence condition and smooth source and coefficients, and a non degenerate setting, which allows to weaken
the confluence condition as well as the smoothness assumptions on the source and the coefficients since in that case
we manage to benefit from an elliptic bootstrap property (see Section 2.2). We eventually give in Section 2.3 some
practical and tractable deviation bounds and non-asymptotic confidence intervals, including a Slutsky like result, for a
given specific source f under the afore mentioned conditions on the coefficients of (1.1).

We prove our main concentration result in Section 3. Section 4 is devoted to the case where ‖σ‖2 − ν(‖σ‖2) is a
coboundary. We then prove in Section 5 the required controls on the Poisson equation for our deviation result to hold
as well as the practical controls of Section 2.3. Section 6.1 is dedicated to the non-asymptotic deviation bounds for the
almost-sure CLT and Section 6.2 to the numerical illustration of our non-asymptotic confidence intervals.

1.3. Notations

In the following, we will denote by C a real constant that may change from line to line and depend, uniformly in time, on
known parameters appearing in (C1), (GC), (C2), (LV), (S). Other possible dependencies will be explicitly specified. We
will also denote by Rn and en deterministic remainder terms that respectively converge to 1 and 0 with n. The explicit
dependencies of those sequences again appear in the proofs.

For a function f ∈ Cβ(Rd ,R), β ∈ (0,1], we denote

[f ]β := sup
x �=x′
|f (x)− f (x′)|
|x − x′|β <+∞

its Hölder modulus of continuity. Observe carefully that, when f is also bounded, we have that for all 0 < β ′ < β:

[f ]β ′ ≤ [f ]
β

β′
β

(
2‖f ‖∞

)1− β

β′ . (1.6)

Additionally, for f ∈ Cp(Rd ,R), p ∈N, we set for β ∈ (0,1]:
[
f (p)

]
β
:= sup

x �=x′,|α|=p
|Dαf (x)−Dαf (x′)|

|x − x′|β ≤+∞,

where α (viewed as an element of Nd
0\{0} with N0 :=N∪ {0}) is a multi-index of length p, i.e. |α| :=∑d

i=1 αi = p.
For notational convenience, we also introduce for k ∈N0, β ∈ (0,1] and m ∈ {1, d, d × r} the Hölder space

Ck,β
(
R

d,Rm
) := {

f ∈ Ck
(
R

d,Rm
) : ∀α, |α| ∈ �1, k�, sup

x∈Rd

∣∣Dαf (x)
∣∣<+∞,

[
f (k)

]
β
<+∞

}
. (1.7)

We also denote by Ck,β
b the subset of Ck,β for which the functions themselves ares bounded. In particular, C0,1(Rd ,Rm)

is the space of Lipshitz continuous functions from R
d to R

m and C
0,β
b (Rd,Rm) denotes the space of bounded β-Hölder

continuous functions. Observe as well that, if f ∈Ck,β , k ≥ 1, then f is Lipschitz continuous.
We will as well use the notation �n, p�, (n,p) ∈ (N0)

2, n≤ p, for the set of integers being between n and p. Also, for
a given Borel function f :Rd→E, where E can be R,Rd,Rd ⊗R

q, q ∈ {r, d}, we set for k ∈N0:

fk := f (Xk),

where (Xk)k≥0 is the scheme introduced in (S). Eventually, for k ∈N0, we denote by Fk := σ((Xj )j∈�0,k�).

2. Main results

2.1. Result of non-asymptotic Gaussian concentration

Our main concentration result is given by the following theorem. In this theorem, we consider a slightly more general
situation than for the CLT recalled in Theorem 1. We only assume ϕ ∈ C3,β(Rd ,R), β ∈ (0,1] instead of ϕ ∈ C4(Rd ,R)

with existing bounded partial derivatives up to order four (which in particular implies that in Theorem 1 ϕ ∈ C3,1(Rd ,R)).
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Theorem 2. Assume (C1), (GC), (C2), (LV), (U), (S) hold. Consider a Lipschitz continuous (possibly unbounded)
function ϕ ∈ C3,β(Rd ,R) for some β ∈ (0,1]. Let us furthermore suppose that:

∃CV,ϕ > 0,∀x ∈Rd,
∣∣ϕ(x)∣∣≤ CV,ϕ

(
1+√

V (x)
)
. (GV)

Let θ ∈ [1/(2+ β),1] and assume the step sequence (γk)k≥1 is of the form γk � k−θ .
(a) Unbiased Case (sub-optimal convergence rate): Let θ ∈ ( 1

2+β ,1].
(i) Assume that the mapping x �→ 〈∇ϕ(x), b(x)〉 is Lipschitz continuous.

Then, there exist two explicit monotonic deterministic sequences cn ≤ 1≤ Cn, n≥ 1, with limn Cn = limn cn = 1,
such that for all n≥ 1 and for every a > 0:

P
[∣∣√
nνn(Aϕ)

∣∣≥ a
]≤ 2Cn exp

(
−cn a2

2‖σ‖2∞‖∇ϕ‖2∞

)
.

(ii) When the mapping x �→ 〈∇ϕ(x), b(x)〉 is not Lipschitz continuous. The above result still holds for 0 < a ≤ χn

√

n



(2)
n

for a positive sequence χn→
n

0 arbitrarily slowly, so that χn

√

n



(2)
n

→
n
+∞. In particular, for a fixed a > 0, the above

concentration inequality holds for n large enough.

(b) Biased Case (Optimal Convergence Rate): Let θ = 1
2+β . We set for any (k, t, u, x) ∈ �1, n�× [0,1]2 ×R

d :

�
β

k−1(t, u, x) := E
[
Tr

((
D3ϕ

(
x + γkb(x)+ ut

√
γkσ (x)Uk

)
σ(x)Uk

)(
σ(x)Uk ⊗Ukσ(x)

∗))], (2.1)

keeping in mind that, since ϕ ∈ C3,β(Rd ,R), [D3ϕ]β <+∞. We define subsequently:

Eβ
n :=

1√

n

n∑
k=1

γ
3/2
k

∫ 1

0
dt (1− t)t

∫ 1

0
du�

β

k−1(t, u,Xk−1). (2.2)

Set now

Bn,β :=Eβ
n , if β ∈ (0,1),

Bn,β :=Eβ
n +

1√

n

n∑
k=1

γ 2
k

∫ 1

0
(1− t)Tr

(
D2ϕ(Xk−1 + tγkbk−1)bk−1 ⊗ bk−1

)
dt

+ 1

2
√

n

n∑
k=1

γk Tr
((
D2ϕ(Xk−1 + γkbk−1)−D2ϕ(Xk−1)

)
�k−1

)
, if β = 1.

(2.3)

There exist two explicit monotonic deterministic sequences cn ≤ 1≤ Cn, n≥ 1, with limn Cn = limn cn = 1 such that for
all n≥ 1 and a > 0:

P
[∣∣√
nνn(Aϕ)+Bn,β

∣∣≥ a
]≤ 2Cn exp

(
−cn a2

2‖σ‖2∞‖∇ϕ‖2∞

)
.

For β ∈ (0,1), the random variables |Bn,β | = |Eβ
n | ≤ [ϕ

(3)]β‖σ‖(3+β)∞ E[|U1|3+β ]
(1+β)(2+β)(3+β)



(

3+β
2 )

n√

n

a.s.� aβ,∞ > 0. Also, for β = 1, the

(Bn,1)n≥1 are exponentially integrable and if, furthermore, D3ϕ is C1, Bn,1 �−γ̃ m a.s. where γ̃ m is as in Theorem 1. In
any case, a bias appears in our deviation controls when we consider, for a given smoothness of order β ∈ (0,1] for D3ϕ,
the fastest associated time steps γk � k−θ , θ = 1

2+β .

Remark 5. Observe that, when β = 1, the above result provides a non-asymptotic counterpart of the limit Theorem 1.
In particular, the concentration constants appearing in Theorem 2 asymptotically match those of the centered CLT re-
called in Theorem 1, up to a substitution of the asymptotic variance

∫
Rd |σ ∗∇ϕ(x)|2ν(dx) by its natural upper bound

‖σ‖2∞‖∇ϕ‖2∞.
Importantly, these bounds do not require “a priori” non-degeneracy conditions and only depend on the diffusion co-

efficient through the sup-norm of the diffusion matrix �, assumption (C2). It will anyhow be very natural to consider
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a non-degeneracy condition ([37,41]), or a confluence condition ([35]), when investigating the deviations for a given
function f , in order to ensure the solvability of the corresponding Poisson equation Aϕ = f − ν(f ) and to derive ex-
plicit upper bounds for ‖∇ϕ‖∞ in terms of the coefficients b, σ and the source f which turn out to be crucial to design
computable non-asymptotic confidence intervals. These aspects are discussed in Section 2.2 below.

The alternative form of the asymptotic variance (cf. Remark 3)
∫
Rd |σ∗∇ϕ(x)|2ν(dx)=−2

∫
Rd [f (x)−ν(f )]ϕ(x)ν(dx)

suggests that for bounded source terms f , an associated natural variance bound would be 2‖f ‖∞‖ϕ‖∞. Such a control
would a priori require less regularity on ϕ than assumed in Theorem 2. One could for instance try to exploit suitable
regularization procedures, like for instance the one proposed in Section 5.3 for the proof of Theorem 7 below, to establish
non-asymptotic deviation results under weaker assumptions. Our main objective being to capture unbounded Lipschitz
functions f , these aspects will concern further research.

Remark 6 (Smoothness and Convergence Rate). Observe that, in coherence with the asymptotic setting of the CLT
recalled in Theorem 1, for a given ϕ ∈ C3,β(Rd ,R), β ∈ (0,1], the fastest convergence rate for the deviations is attained
for θ = 1

2+β . A bias appears, which can be difficult to estimate in practice since ϕ is usually unknown.

Remark 7 (On the smoothness property of x �→ 〈b(x),∇ϕ(x)〉). The Lipschitz continuity assumption on the above
mapping appearing in case (i) might seem awkward at first sight. It is non-intrinsic in the sense that it involves both the
drift b of the model and the test function ϕ. However, this condition naturally appears when ϕ is a smooth solution to the
Poisson equation Aϕ = f − ν(f ). Indeed, recalling the definition of A in (LV)(iii), we can rewrite:

〈∇ϕ(x), b(x)〉= f (x)− ν(f )− 1

2
Tr

(
�(x)D2ϕ(x)

)
.

Hence, the Lipschitz continuity of the function in the above left hand side readily follows as soon as the source f is
Lipschitz and if D2ϕ is bounded and Lipschitz continuous (since σ is also bounded and Lipschitz). Note that with
the previous notations for function spaces the previous conditions are implied if f ∈ C1,β(Rd ,R) ⊂ C0,1(Rd ,R), ϕ ∈
C3,β(Rd ,R)⇒D2ϕ ∈ C1,β

b (Rd ,Rd ⊗R
d)⊂ C0,1

b (Rd ,Rd ⊗R
d). We refer to Section 5.1.2 for details.

We now state an improvement of the previous concentration bound when ‖σ‖2 − ν(‖σ‖2) is itself a coboundary, i.e.
when the Poisson problem Aϑ = ‖σ‖2 − ν(‖σ‖2) can be solved with ϑ satisfying the assumptions required for ϕ in
Theorem 2. Precisely, we have the following result.

Theorem 3.

(a) Under the assumptions of Theorem 2 and with the notations introduced therein, provided that ϑ , solution to the
Poisson equation Aϑ = ‖σ‖2 − ν(‖σ‖2), satisfies the same smoothness and growth conditions as ϕ, for β ∈ (0,1]
and θ ∈ ( 1

2+β ,1] (unbiased case), there exist two explicit monotonic deterministic sequences c̃n ≤ 1 ≤ C̃n, n ≥ 1,

with limn C̃n = limn c̃n = 1 such that for all n ≥ 1 and 0 < a ≤ χn

√

n



(2)
n

with (χn)n≥1 a positive sequence χn→
n

0

arbitrarily slowly, statisfying χn

√

n



(2)
n

→
n
+∞:

P
[∣∣√
nνn(Aϕ)

∣∣≥ a
]≤ 2C̃n exp

(
−c̃n a2

2ν(‖σ‖2)‖∇ϕ‖2∞

)
. (2.4)

(b) If ϑ solve the Poisson equation Aϑ = ~σ~2− ν(~σ~2) mutatis mutandis for a matrix norm dominating the operator
norm (~σ(x)~≥ ‖σ(x)‖), then the above bound (2.4) still holds with ν(~σ~2) instead of ν(‖σ‖2).

Importantly, the above result allows to improve the natural variance bound ‖∇ϕ‖2∞‖σ‖2∞ of Theorem 2 by a more
refined, namely ‖∇ϕ‖2∞ν(‖σ‖)2. Such a bound can be particularly interesting when the supremum norm of σ is high
but its average w.r.t. the invariant distribution ν significantly lower. We refer to Section 4, Theorem 8 (general form of
Theorem 3) and 6.2 (numerical results) for further discussions on that topic.

Of course Claim (b) is less sharp than (a) stated with the operator norm ‖ · ‖ but solving the Poisson equation for
‖σ(x)‖ seems highly non trivial. By contrast, if ~σ(x)~= ‖σ(x)‖F := [Tr(σσ ∗(x))]1/2 stands for the Fröbenius norm,
Theorem 4 below yields the expected smoothness properties on ‖σ‖2

F − ν(‖σ‖2
F ) that ensure the existence of a solution

to Aϑ = ‖σ‖2
F − ν(‖σ‖2

F ) meeting the required smoothness conditions. The price to pay with such computable norms
being that they usually induce some dependence on the dimension d on the estimates (observe e.g. for the identity matrix
Id of Rd ⊗R

d , ‖Id‖F = d1/2).



1568 I. Honoré, S. Menozzi and G. Pagès

2.2. Uniqueness of the invariant distribution and regularity issues for the Poisson problem

For our deviation analysis to work, we need to have the uniqueness of the invariant distribution ν and to establish some
pointwise controls on the solution of the associated Poisson equation. Namely, we need to have quantitative bounds on
its derivatives and the associated Hölder continuity modulus up to order 3.

To do so, additionally to our main assumptions introduced for Theorem 2, we will work in the confluent setting. In di-
mension one, any ergodic diffusion is in some sense confluent (see [23], Appendix of the English translation, Theorem 2.2
p. 308 and its alternative proof in [29] Theorem 2). Here, we will suppose that the following condition holds:

• Confluence Conditions.
(Dp

α ) We assume that there exists α > 0 and p ∈ (1,2] such that for all x ∈Rd , ξ ∈Rd

〈
Db(x)+Db(x)∗

2
ξ, ξ

〉
+ 1

2

r∑
j=1

(
(p− 2)

|〈Dσ·j (x)ξ, ξ〉|2
|ξ |2 + |Dσ·j ξ |2

)
≤−α|ξ |2,

where Db stands here for the Jacobian of b, σ·j stands for the j th column of the diffusion matrix σ and Dσ·j for its
Jacobian matrix.

Within the confluent framework, we will consider from now on two kinds of assumptions which first give the unique-
ness of ν and then can lead to the required smoothness and to computable gradient bounds, which are crucial since they
are precisely the quantities appearing in the non-asymptotic Gaussian deviation controls as emphasized in the statement
of Theorem 2.

– Strong Confluence condition and regularity of the coefficients, which means that the drift is sufficiently dominant in
the dynamics and the coefficients are smooth (see assumption (CR) below). Note that these conditions may hold for
degenerate diffusion coefficients.

– Non-degeneracy of the diffusion coefficient and mild confluence condition and smoothness on the coefficients (see
assumption (CUE) below).

Under a sufficiently strong confluence condition, i.e. when α is large enough in (Dp
α ), and provided that the coefficients

b, σ , f are sufficiently smooth, it is quite direct to derive, through stochastic flow techniques à la Kunita, the required
pointwise bounds for the derivatives of the Feynman–Kac representation of the solution to the Poisson equation (see [35]
and Section 5.1).

In the non-degenerate case, the main advantage is that we can alleviate some restrictions on α and the smoothness
assumptions on b, σ , f to benefit from an elliptic regularity bootstrap deriving from suitable Schauder estimates available
in the current setting from the work by Krylov and Priola [24].

We now introduce a smoothness assumption on b, σ , f that will be useful in both considered cases.

• Smoothness of the coefficients and the source. For k ∈ {1,3} and β ∈ (0,1) define
(Rk,β ) The coefficients in equation (1.1) are s.t. b ∈ Ck,β(Rd ,Rd), σ ∈ Ck,β

b (Rd,Rd). Also, the source f for which we
want to estimate ν(f ) belong to Ck,β(Rd ,R).

With these assumptions at hand, we now introduce the first setting to be considered.

� The confluent and regular assumption (CR), holds if (Dp
α ), (R3,β ), for some β ∈ (0,1], are in force and ‖Dσ‖2∞ ≤

2α
2(3+β)−p where ‖Dσ‖∞ := supx∈Rd (

∑d
j=1 ‖Dσ·j (x)‖2)

1
2 recalling that, for every j ∈ �1, d�, ‖Dσ·j (x)‖ stands for the

operator norm of Dσ·j (x).
In particular, we do not impose in this case any additional structure condition on σ which can degenerate.

In our second main framework, we will assume some uniform ellipticity conditions.

• Non-degeneracy Conditions.
(UE) Uniform ellipticity. We assume that w.l.o.g. that r = d (r ≥ d could also be considered) in (1.1) and that the

diffusion coefficient σ is such that

∃σ > 0,∀(ξ, x) ∈Rd ×R
d,

〈
σσ ∗(x)ξ, ξ

〉≥ σ |ξ |2.
We now introduce our second main setting:

� The confluent and non-degenerate assumption (CUE), holds if (Dp
α ), (R1,β ), for some β ∈ (0,1], are in force. If d > 1,

we also assume that ‖Dσ‖2∞ ≤ 2α
2(1+β)−p and that the diffusion matrix � satisfies a structure condition: for each (i, j) ∈

�1, d�2, �i,j (x)=�i,j (xi∧j , . . . , xd).
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Theorem 4. Assume that (LV) and either (CR) or (CUE) are in force. Then there exists a unique invariant distribution
for the solution of (1.1), i.e. assumption (U) holds.

The associated Poisson equation

∀x ∈Rd, Aϕ(x)= f (x)− ν(f ), (2.5)

admits a unique solution ϕ ∈ C3,β(Rd,R), β ∈ (0,1) centered w.r.t. ν. Furthermore, the following gradient bound holds

‖∇ϕ‖∞ ≤ [f ]1
α

,

and the mapping x �→ 〈∇ϕ(x), b(x)〉 is Lipschitz continuous.

2.2.1. About the regularity of the coefficients
Under (CR), the derivatives can be expressed using iterated tangent processes and we cannot expect, without a priori any
non-degeneracy condition, for a smoothing effect to hold. To have ϕ ∈ C3,β(Rd ,R), we need to consider a source f ∈
C3,β(Rd ,R) and the same smoothness on b, σ (Assumption (R3,β )). We refer to Section 5.1 for the proof of Theorem 4
under (CR).

In the non-degenerate case, the solvability of the Poisson problem is usually studied in a Sobolev setting, see e.g. [37].
Let us also indicate that pointwise gradient bounds have been obtained by the same authors in [38] for bounded drifts
and diffusion coefficients which are additionally supposed to be smooth, i.e. at least C2,β

b with the notations introduced
in Section 1.3. We point out that these estimates do not apply in our current setting in which the drift has typically linear
growth.

We eventually mention the last paper by these authors, namely [39]. They derive therein the uniqueness of the martin-
gale solution to the Poisson equation in a potentially degenerate setting under suitable local Doeblin conditions. In that
framework, pointwise controls are obtained as well for the solution itself but not for its derivatives.

To obtain the required smoothness, we use here in the non-degenerate framework of (CUE) some Schauder estimates,
deriving from the work of Krylov and Priola [24], which allow to benefit from the elliptic regularity. Namely, to obtain
the mentioned smoothness on ϕ solving Aϕ = f − ν(f ), that we expect to be in C3,β(Rd ,R), β ∈ (0,1), we can take a

source f ∈ C1,β(Rd ,R) and b ∈C1,β(Rd ,Rd), σ ∈C
1,β
b (Rd ,Rd).

We would eventually like to emphasize that the structure condition on � might seem weird at first sight. It is actu-
ally needed to decouple the PDEs formally satisfied by (∂xi ϕ)i∈�1,d� in order to exploit the a priori estimates of [24]
established for scalar valued PDEs. We refer to Section 5.1 for a proof and details.

2.2.2. About the confluence condition and the restrictions on σ

We work here in the confluent setting of (Dp
α ). This assumption will allow, through a pathwise analysis associated with

the tangent flow, to derive a pointwise gradient bound. Another possibility to obtain such a bound is to assume a so-called
Bakry and Émery curvature criterion, see [3,4]. Under this condition, the gradient and semi-group commute up to an
exponential multiplicative factor (see equation (2.7) below).

� Bakry and Émery curvature criterion. First, we recall that the “carré du champ” operator 
 of a Markov process with
generator A reads, for every f , g in its domain D(A)


(f,g) := 1

2

(
A(fg)− fAg − gAf

)
and 
(f ) := 
(f,f ).

We also need to define the 
2 operator


2(f )= 1

2

(
A
(f )− 2
(f,Af )

)
.

In our Brownian diffusion setting, we have

∀x ∈Rd, 
(f )(x)= ∣∣σ ∗∇f (x)∣∣2.
whereas the computation of 
2 is significantly more involved. However, if the diffusion matrix � = σσ ∗ is constant then:


2(f )(x) := Tr
((
D2f (x)�

)2)− 〈∇f,Db�∇f 〉(x).
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With these notations at hand, we say that the semi-group (Pt )t≥0 of A satisfies the Bakry and Émery curvature criterion
with parameter ρ > 0 if

(BEρ) ∀f ∈D(A), 
2(f )≥ ρ
(f ).

Observe that for � = Id the condition (BEρ ) is actually equivalent to (Dp
α ) with α = ρ (and any p ∈ (1,2] since

Dσ = 0) and reads〈
Db(x)+Db(x)∗

2
ξ, ξ

〉
≤−ρ|ξ |2.

The computation of the 
2 for a general non-degenerate diffusion of the form (1.1) is not easy and is discussed in [1].
In particular, in full generality, the computation of 
2 requires the coefficients of the operator itself to be smooth (i.e.
at least C2). We also refer to [2] if the diffusion matrix is scalar diagonal, i.e. �(x) = ς(x)Id , x ∈ Rd , where ς is real
valued. In that case, it is then shown that (BEρ ) holds if and only if:

−1

2

〈(
M(x)+M∗(x)

)
ξ, ξ

〉≤−ρς(x)|ξ |2, (2.6)

where

M(x)= 1

2

(
ς(x)�ς(x)+ 〈

b(x),∇ς(x)〉− ∥∥∇ς(x)∥∥2)
Id +

(
1

2
− d

4

)
∇ς ⊗∇ς(x)− ς(x)2Db(x).

An important property when (BEρ ) holds, see again [3,4], is that the following commutation inequality holds:

∀t ≥ 0,∀x ∈Rd, 
(Ptf )(x)≤ exp(−2ρt)Pt
(f ). (2.7)

To conclude, let us say that the Bakry–Emery curvature condition is a very powerful tool to derive pointwise gradient
bounds. In our framework, this is unfortunately not enough as soon as d > 1, because additionally to this kind of bounds
we also need, to enter in the framework of Schauder estimates under (CUE), a control of the β-Hölder modulus of the
gradient (see Section 5.1.2). It does not seem that the condition (BEρ ) helps to get such controls. The restrictions on
the variations of Dσ appearing in both assumptions (CUE) and (CR) are precisely needed to derive in the first case the
bounds on [Dϕ]β and in the second one to prove that the derivatives exist up to order 3 and that [D3ϕ]β is controlled
as well. This explains why the conditions on Dσ are more stringent in the potentially degenerate setting (CR). In each
case, those bounds are obtained through pathwise analysis and the restrictions on Dσ ensure the time integrability of the
iterated tangent flows, see again Section 5.1.2 and Appendix A in [35] for details.

2.3. Practical deviation bounds

2.3.1. A first non-asymptotic confidence interval result
Theorem 5 (Non-asymptotic confidence intervals without bias). Let the assumptions of Theorem 4 be in force. Then,
there exists a unique invariant distribution ν for (1.1), i.e. (U) holds. Also, ϕ satisfies (GV) introduced in Theorem 2 for
V (x)� 1+ |x|2.

Assume that (C1) (sub-gaussian tails of the innovation) holds and that the step sequence (γk)k≥1 is such that γk �
k−θ , θ ∈ ( 1

2+β ,1]. Then, for (cn)n≥1, (Cn)n≥1 like in Theorem 2 with limn cn = limn Cn = 1, we have that for all n≥ 1,
a > 0 and for any matrix norm ~ · ~ dominating the operator norm ‖ · ‖:

P
[√


n

∣∣νn(f )− ν(f )
∣∣> a

]≤ 2Cn exp

(
−cn a2α2

2~σ~2∞[f ]21

)
with ~σ~∞ := sup

x∈Rr

~σ(x)~, (2.8)

P

[
ν(f ) ∈

[
νn(f )− a~σ~∞[f ]1

α
√

n

, νn(f )+ a~σ~∞[f ]1
α
√

n

]]
≥ 1− 2Cn exp

(
−cn a

2

2

)
, (2.9)

where the parameter α is the same as in the pointwise gradient bound of Theorem 4.

Proof. Equation (2.8) is a direct consequence of Theorem 2 and the gradient bound in Theorem 4. Indeed, the mean-value
Theorem readily yields that (GV) holds. It then suffices to observe that νn(f )− ν(f )= νn(Aϕ). To prove (2.9), setting
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aσ,f,α := a~σ~∞ [f ]1α
, it suffices to write:

P

[
ν(f ) ∈

[
νn(f )− aσ,f,α√


n

, νn(f )+ aσ,f,α√

n

]]
= 1− P

[√

n

∣∣νn(f )− ν(f )
∣∣≥ aσ,f,α

]
and conclude by (2.8). �

2.3.2. A more refined non-asymptotic confidence interval when ~σ~2 − ν(~σ~2) is a coboundary
We provide in Theorem 6 below a kind of Slutsky’s Lemma when, for a matrix norm ~ · ~ dominating the operator norm
(i.e. ‖σ(x)‖ ≤ ~σ(x)~), ~σ~2 − ν(~σ~2) is a coboundary.

Theorem 6 (Slutsky type concentration result for the coboundary case). Under the assumptions of Theorem 5, for
β ∈ (0,1] and θ ∈ ( 1

2+β ,1] (unbiased case), assuming as well that there is a unique solution ϑ to Aϑ = ~σ~2−ν(~σ~2)

satisfying the same assumptions as ϕ in Theorem 5, there exist two explicit monotonic deterministic sequences cn ≤ 1≤
Cn, n ≥ 1, with limn Cn = limn cn = 1 such that for all n ≥ 1, a > 0, the following bounds hold: if a√


n
→ 0 (Gaussian

deviations) then,

P

[∣∣∣∣√
n

νn(f )− ν(f )√
νn(~σ~2)

∣∣∣∣≥ a

]
≤ 2Cn exp

(
−cn a2α2

2[f ]21

)
, (2.10)

P

[
ν(f ) ∈

[
νn(f )− a

√
νn(~σ~2)[f ]1
α
√

n

, νn(f )+ a
√
νn(~σ~2)[f ]1
α
√

n

]]
≥ 1− 2Cn exp

(
−cn a

2

2

)
. (2.11)

Again, the non-asymptotic confidence interval is explicitly computable as a function of the given source f , the coeffi-
cients in the dynamics and the chosen (computable) matrix norm ~ · ~. It is also sharper than the one in (2.9).

2.3.3. Towards Lipschitz sources in the non-degenerate case
We conclude this section stating a non-asymptotic deviation result for Lipschitz sources under some non-degeneracy
conditions (assumption (CUE) of Theorem 4 replacing the condition stated there for f by a Lipschitz condition).

Theorem 7 (Non-asymptotic concentration bounds for Lipschitz functions). Let the assumptions of Theorem 4 with
(CUE) hold except that f is here only a Lipschitz continuous function. For a time step sequence (γk)k≥1 of the form
γk � k−θ , θ ∈ (1/2,1], we have that, there exist two explicit monotonic sequences cn ≤ 1 ≤ Cn, n ≥ 1, with limn Cn =
limn cn = 1 such that for all n≥ 1, a > 0:

P
[∣∣√
n

(
νn(f )− ν(f )

)∣∣≥ a
]≤ 2Cn exp

(
−cn a2α2

2‖σ‖2∞[f ]21

)
, (2.12)

where α is as in Theorem 4.

Such estimates are important since they allow to get rather close to the natural framework which appear in functional
inequalities (that mainly deal with Wasserstein distances and their possible deviations). Indeed, through the Monge–
Kantorovich formulation, the Wasserstein distance W1 involves Lipschitz functions, since it is precisely achieved taking
the minimum over Lipschitz functions for any possible coupling with marginal corresponding to the arguments of the
distance (see [4]).

In the literature, some non-asymptotic bounds can be found for the deviations of the Wasserstein distance between the
empirical measure of a homogeneous Markov chain and its stationary distribution (see Boissard [9]). Here, we manage
to get directly the non-asymptotic deviation bounds over all possible Lipschitz functions for the empirical measure of
the scheme aiming directly to approximate the target stationary distribution of the diffusion. Handling the Wasserstein
distance in our framework would amount to consider the supremum over the Lipschitz functions in the probability in
(2.12). This will concern further research.

We eventually point out that Theorem 7 is obtained through regularization arguments of the source f exploiting the
previous results of Theorems 2 and 4 (see Section 5.3 for details). This leads to a constraint on the steps, i.e. γn � n−θ , θ ∈
( 1

2 ,1]. This is the price to pay, indeed a bigger θ yields a lower convergence rate, to handle less regular Lipschitz sources.
Also, to perform the approximation procedure, we precisely need a kind of elliptic bootstrap (like in Theorem 4 under
(CUE)). This is why we impose the non-degeneracy assumptions.
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3. Proof of the concentration results (Theorem 2)

For notational convenience, we say that assumption (A) holds whenever (C1), (GC), (C2), (LV), (U) and (S) are fulfilled.
We assume throughout this section that (A) is in force and that the function ϕ appearing in the lemmas satisfies the
smoothness assumptions of Theorem 2.

3.1. Strategy

To control the deviations of νn(Aϕ) we first give a decomposition lemma, obtained by a standard Taylor expansion. The
idea is to perform a kind of splitting between the deterministic contributions in the transitions and the random innovations.
Doing so, we manage to prove that the contributions involving the innovations can be gathered into conditionally Lipschitz
continuous functions of the noise, with small Lipschitz constant (functions (ψk(Xk−1, ·))k∈�1,n� below). These functions
precisely give the Gaussian concentration, see Lemma 2. The other terms, that we will call from now on “remainders”,
will be shown to be uniformly controlled w.r.t. n and do not give any asymptotic contribution in the “fast decreasing” case
θ > 1/(2+ β) (with the terminology of Theorem 2), see Lemmas 3, 4 and 5.

Lemma 1 (Local Decomposition of the empirical measure ). For all n≥ 1 and k ∈ �0, n− 1�:

ϕ(Xk)− ϕ(Xk−1) = γkAϕ(Xk−1)+
[
γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1
〉
dt

+ 1

2
γk Tr

((
D2ϕ(Xk−1 + γkbk−1)−D2ϕ(Xk−1)

)
�k−1

)+ψk(Xk−1,Uk)

]
=: γkA(Xk−1)+

(
ψk(Xk−1,Uk)+R1

n,k(Xk−1)
)
, (3.1)

where for each k ∈ �1, n�, conditionally to Fk−1, the mapping u �→ψk(Xk−1, u) is Lipschitz continuous in u with constant√
γk‖σk−1‖‖∇ϕ‖∞.

Introducing for a given k, the mapping u �→�k(Xk−1, u) :=ψk(Xk−1, u)−E[ψk(Xk−1,Uk)|Fk−1], we then rewrite:

ϕ(Xk)− ϕ(Xk−1)= γkAϕ(Xk−1)+�k(Xk−1,Uk)+Rn,k(Xk−1),

with Rn,k(Xk−1) :=R1
n,k(Xk−1)+E[ψk(Xk−1,Uk)|Fk−1]. The contribution �k(Xk−1,Uk) can be viewed as a martingale

increment. Introduce now the associated (true) martingale

Mn :=
n∑

k=1

�k(Xk−1,Uk). (3.2)

Summing over k yields:

ϕ(Xn)− ϕ(X0)= 
nνn(Aϕ)+Mn +
n∑

k=1

Rn,k(Xk−1). (3.3)

Defining Rn :=∑n
k=1 Rn,k(Xk−1)+ϕ(X0)−ϕ(Xn) we obtain the following decomposition of the empirical measure:

νn(Aϕ)=− 1


n

(Mn +Rn). (3.4)

– Unbiased Case (Sub-Optimal Convergence Rate). This case corresponds to fast decreasing steps of the form γk �
k−θ , θ > 1/(2+ β). To investigate the non-asymptotic deviations of the empirical measure, the idea is now to write for
a,λ > 0:

P
[√


nνn(Aϕ)≥ a
] ≤ exp

(
− aλ√


n

)
E

[
exp

(
− λ


n

(Mn +Rn)

)]

≤ exp

(
− aλ√


n

)
E

[
exp

(
−qλ


n

Mn

)]1/q

E

[
exp

(
pλ


n

|Rn|
)]1/p

,
1

p
+ 1

q
= 1,p, q > 1. (3.5)
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We actually aim to choose q := q(n)→
n

1. For a suitable choice of q satisfying the previous condition, we manage, in the

fast decreasing case, to show that Rn := E[exp(pλ

n
|Rn|)]1/p→

n
1. For the term involving the martingale Mn we actually

use the Gaussian concentration property (GC) of the innovation on its increments (�k(Xk−1,Uk))k∈�1,n�. Namely, using
the control of the Lipschitz constant of �k(Xk−1, ·) stated in Lemma 1, we derive:

E

[
exp

(
−qλ


n

Mn

)]
= E

[
exp

(
−qλ


n

Mn−1

)
E

[
exp

(
−qλ


n

�n−1(Xn−1,Un)

)∣∣∣Fn−1

]]

≤ E

[
exp

(
−qλ


n

Mn−1

)]
exp

(
λ2q2

2
2
n

γn‖σ‖2∞‖∇ϕ‖2∞
)

≤ exp

(
λ2q2

2
n

‖σ‖2∞‖∇ϕ‖2∞
)
, (3.6)

iterating the procedure to derive the last identity. From (3.5), we thus get:

P
[√


nνn(Aϕ)≥ a
]≤Rn exp

(
− aλ√


n

+ λ2q

2
n

‖σ‖2∞‖∇ϕ‖2∞
)
.

Keeping in mind that we manage to find q := q(n) ↓n 1 such that the remainder Rn ↓n 1, the result of Theorem 2 in the
considered case then follows from a quadratic optimization over the parameter λ.

– Biased Case (Optimal Convergence Rate). This case corresponds to slow decreasing steps of the form γk � k−θ ,
θ = 1/(2+ β). In this setting, some terms of the remainder Rn in (3.4) give a non trivial asymptotic contribution. We
choose to substract them before studying the deviation (term Bn,β in (2.3)).

3.2. Explicit controls on the remainders

Summing the increments appearing in (3.1), we now choose for the analysis to write for a given n ∈N the remainder Rn

defined after (3.3) as

Rn =
n∑

k=1

Rn,k(Xk−1)+ ϕ(X0)− ϕ(Xn)= (D2,b,n +D2,�,n)+ Ḡn −Ln,

where:

D2,b,n :=
n∑

k=1

γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1
〉
dt,

D2,�,n := 1

2

n∑
k=1

γk Tr
((
D2ϕ(Xk−1 + γkbk−1)−D2ϕ(Xk−1)

)
�k−1

)
,

Ḡn :=
n∑

k=1

E
[
ψk(Xk−1,Uk)|Fk−1

]
,

Ln := ϕ(Xn)− ϕ(X0).

(3.7)

We refer to the proof of Lemma 1 to check that the above definition of Ḡn actually matches the term
√

nE

β
n introduced

in equation (2.2) of Theorem 2. We rewrite from (3.4)

νn(Aϕ)=− 1


n

(Mn +Rn)=− 1


n

(
Mn + (D2,b,n +D2,�,n)+ Ḡn −Ln

)
. (3.8)

We now split the analysis according to the cases (a) and (b) introduced in Theorem 2.
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(a) θ ∈ (1/(2 + β),1], β ∈ (0,1]. From (3.8), the exponential Tchebychev and Hölder inequalities yield that, for all
λ ∈R+ and p,q ∈ (1,+∞), 1

p
+ 1

q
= 1,

P
[√


nνn(Aϕ)≥ a
]

≤ exp

(
− aλ√


n

)(
E exp

(
−qλ


n

Mn

)) 1
q

×
(
E exp

(
2pλ


n

(|Ln| + |Ḡn|
))) 1

2p
(
E exp

(
4pλ


n

|D2,b,n|
)) 1

4p
(
E exp

(
4pλ


n

|D2,�,n|
)) 1

4p

. (3.9)

(b) θ = 1
2+β , β ∈ (0,1]. If β = 1, denoting, D2,n :=D2,b,n+D2,�,n, we have from (3.7) and with the notations of (2.3),

(Ḡn +D2,n)=√
nBn,1. We study the deviations of:

P
[√


nνn(Aϕ)+Bn,β ≥ a
] = P

[
νn(Aϕ)+ Ḡn +D2,n


n

≥ a√

n

]

≤ exp

(
− aλ√


n

)(
E exp

(
−qλ


n

Mn

)) 1
q
(
E exp

(
pλ


n

|Ln|
)) 1

p

. (3.10)

For β ∈ (0,1), the contributions of D2,n do not yield any asymptotic bias. Recalling from (2.3) that Bn,β =E
β
n = Ḡn√


n
,

we write:

P
[√


nνn(Aϕ)+Bn,β ≥ a
] = P

[
νn(Aϕ)+ Ḡn


n

≥ a√

n

]

≤ exp

(
− aλ√


n

)(
E exp

(
−qλ


n

Mn

)) 1
q
(
E exp

(
2pλ


n

|Ln|
)) 1

2p

×
(
E exp

(
4pλ


n

|D2,b,n|
)) 1

4p
(
E exp

(
4pλ


n

|D2,�,n|
)) 1

4p

. (3.11)

Remark 8. Observe that in case (a), the “small steps” and the corresponding sufficient smoothness of ϕ prevent from the
appearance of a bias. As a result, the concentration bound is, at the non-asymptotic level, the same as in Theorem 1, up to
the additional upper-bound for the variance. In case (b), we subtract the terms Bn,β that asymptotically give a bias. When

β = 1, this is the case for both terms Ḡn


n
, D2,n


n
. Also, for D3ϕ ∈ C1, Bn,1 = Ḡn+D2,n√


n
→
n
−γ̃ m introduced in Theorem 1.

For β ∈ (0,1) and ϕ ∈ C3(Rd,R), [ϕ(3)]β <+∞, the only term giving a bias is Bn,β =E
β
n = Ḡn√


n
.

The lemma below provides the Gaussian contribution to be exploited in inequalities (3.9)–(3.11).

Lemma 2 (Gaussian concentration). For a > 0, q ∈ (1,+∞), setting

λn := a

q‖σ‖2∞‖∇ϕ‖2∞

√

n, (3.12)

we derive:

exp

(
−λn a√


n

)(
E exp

(
−qλn


n

Mn

)) 1
q ≤ exp

(
− a2

2q‖σ‖2∞‖∇ϕ‖2∞

)
.

Lemma 3 (Bounds for the Conditional Expectations). With the above notations, we have that for β ∈ (0,1], θ ∈
[ 1

2+β ,1]:

∣∣Eβ
n

∣∣= |Ḡn|√

n

≤ an := [ϕ
(3)]β‖σ‖(3+β)∞ E[|U1|3+β ]
(1+ β)(2+ β)(3+ β)



(

3+β
2 )

n√

n

, a.s.
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Moreover, an→
n

a∞, with a∞ = 0 if θ ∈ ( 1
2+β ,1] and a∞ > 0 if θ = 1

2+β . Also, for β ∈ (0,1], θ ∈ ( 1
2+β ,1]:

(
E exp

(
2pλn

n

|Ḡn|
)) 1

2p ≤ exp

(
λn√

n

an

)
≤ exp

(
λ2
n

2
np
+ a2

np

2

)
, ∀p > 1. (3.13)

As indicated before, we now aim at controlling the remainders. In particular, from (3.5) and (3.7), we are led to handle
terms of the form

E exp

(
c

n∑
k=1

γ 2
k

∣∣b(Xk−1)
∣∣2) ≤

(LV)
E exp

(
cCV

n∑
k=1

γ 2
k

∣∣V (Xk−1)
∣∣)

for small enough real constants c > 0.
To this end, we will thoroughly rely on the following important integrability result for the Lyapunov function.

Proposition 1. Under (A) there is a constant cV := cV ((A)) > 0 such that for all λ ∈ [0, cV ], ξ ∈ [0,1]:
I
ξ
V := sup

n≥0
E
[
exp

(
λV ξ

n

)]
<+∞.

We now have the following results for the terms appearing in (3.7).

Lemma 4 (Initial term). Let q ∈ (1,+∞) be fixed and λn be as in (3.12) in Lemma 2. For functions ϕ satisfying (GV),
i.e. there exists CV,ϕ > 0 such that for any x ∈Rd , |ϕ(x)| ≤ CV,ϕ(1+√V (x)), for p := q

q−1 and j ∈ {1,2}:
(
E exp

(
jpλn

|Ln|

n

)) 1
jp ≤ (

I 1
V

) 1
jp exp

(
(j + 1)pC2

V,ϕλ
2
n

cV 
2
n

+ cV

p

)
= (

I 1
V

) 1
jp exp

(
(j + 1)pC2

V,ϕa
2

cV q2‖σ‖4∞‖∇ϕ‖4∞
n

+ cV

p

)
,

with cV , I 1
V like in Proposition 1.

Lemma 5 (Remainders). Let q ∈ (1,+∞) be fixed and λn be as in Lemma 2. Then, there exists C3.14 := C3.14((A), ϕ)

such that for p = q
q−1 :

(
E exp

(
4pλn

n

|D2,�,n|
)) 1

4p ≤ exp

(
C3.14

pλ2
n(


(2)
n )2


2
n

)(
I 1
V

) 1
4p . (3.14)

We also have:

– If the mapping x �→ 〈∇ϕ(x), b(x)〉 is Lipschitz continuous, then there exists C3.15 := C((A), ϕ) > 0 such that(
E exp

(
4pλn

n

|D2,b,n|
)) 1

4p ≤ exp

(
C3.15

pλ2
n(


(2)
n )2


2
n

)(
I 1
V

) 1
4p . (3.15)

– For a ≤ cV ‖σ‖2∞‖∇ϕ‖2∞
4CV ‖D2ϕ‖2∞

q
p

√

n



(2)
n

, there exists an R
+-valued sequence (vn)n≥1 such that |vn| ≤ C3.16 := C3.16((A), ϕ) and

(
E exp

(
4pλn

n

|D2,b,n|
)) 1

4p ≤ (
I 1
V

)vn . (3.16)

Also, vn→
n

v∞ where v∞ = 0 if θ > 1/3 and v∞ > 0 for θ = 1/3.

Proof of Theorem 2. From Lemma 2 we get:(
E exp

(
−qλnMn


n

)) 1
q

exp

(
− aλn√


n

)
≤ exp

(
− a2

2q‖σ‖2∞‖∇ϕ‖2∞

)
. (3.17)

(a) We deal with the case θ ∈ ( 1
2+β ,1], β ∈ (0,1].
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(i) We suppose that the mapping x �→ 〈∇ϕ(x), b(x)〉 is Lipschitz continuous. Plugging in (3.9) the controls from

(3.17), Lemma 3 equation (3.13) (|Eβ
n | = |Ḡn|√


n
is a.s. bounded), Lemma 4 (with j = 2) and Lemma 5 (equations (3.14),

(3.15)), we get:

P

[
νn(Aϕ)≥ a√


n

]

≤ exp

(
− a2

2q‖σ‖2∞‖∇ϕ‖2∞

)
exp

(
λ2
n

2
np
+ pa2

n

2

)
exp

(3pC2
V,ϕλ

2
n

cV 
2
n

+ cV

p

)(
I 1
V

) 1
2p

× exp

(
C3.14

pλ2
n(


(2)
n )2


2
n

)(
I 1
V

) 1
4p × exp

(
C3.15

pλ2
n(


(2)
n )2


2
n

)(
I 1
V

) 1
4p

≤ (
I 1
V

) 1
p exp

(
− a2

2q‖σ‖2∞‖∇ϕ‖2∞

(
1− 1

q‖σ‖2∞‖∇ϕ‖2∞

{
p


n

(6C2
V,ϕ

cV
+ 2[C3.14 +C3.15]

(

(2)
n

)2
)
+ 1

p

}))

× exp

(
cV

p
+ pa2

n

2

)
. (3.18)

Recall now that for θ > 1
2+β ≥ 1/3, 


(
3+β

2 )
n /

√

n→

n
0, 
(2)

n /
√

n→

n
0 (see Lemma 3 and Remark 2). We now take p :=

pn→
n
+∞, and therefore q := qn→

n
1, such that p1/2

n


(

3+β
2 )

n√

n
→
n

0 so that from Lemma 3, pna
2
n→n 0. Since 


(
3+β

2 )

n√

n
≥ 


(2)
n√

n

this in turn implies:

dn := 1

qn‖σ‖2∞‖∇ϕ‖2∞

{
pn


n

(6C2
V,ϕ

cV
+ 2[C3.14 +C3.15]

(

(2)
n

)2
)
+ 1

pn

}
→
n

0. (3.19)

We conclude from (3.18) setting cn = q−1
n (1− dn), Cn := (I 1

V )
1
pn exp( cV

pn
+ pna

2
n

2 )→
n

1. Observe that taking an increasing

sequence (pn)n≥1 readily yields Cn ↓n 1, and qn ↓n 1. Also, the sequence (pn)n≥1 can be chosen in order to have, for n
large enough, dn ↓n 0 so that cn ↑n 1.

(ii) Assume a ≤ cV q
4CV p

‖σ‖2∞‖∇ϕ‖2∞
‖D2ϕ‖2∞

√

n



(2)
n

. Plugging in (3.9) the controls from (3.17), Lemma 3, equation (3.13), Lemmas

4 (with j = 2), 5 (equations (3.14), (3.16)) we then derive:

P

[
νn(Aϕ)≥ a√


n

]

≤ exp

(
− a2

2q‖σ‖2∞‖∇ϕ‖2∞

)
exp

(
λ2
n

2
np
+ pa2

n

2

)
exp

(3pC2
V,ϕλ

2
n

cV 
2
n

+ cV

p

)(
I 1
V

) 1
2p

× exp

(
C3.14

pλ2
n(


(2)
n )2


2
n

)(
I 1
V

) 1
4p
(
I 1
V

)vn
≤ (

I 1
V

)vn+ 3
4p exp

(
cV

p
+ pa2

n

2

)
exp

(
− a2

2q‖σ‖2∞‖∇ϕ‖2∞

(
1− 1

q‖σ‖2∞‖∇ϕ‖2∞

×
{

p


n

(6C2
V,ϕ

cV
+ 2C3.14

(

(2)
n

)2
)
+ 1

p

}))
, (3.20)

where the sequence (v(n)n≥1 is defined in Lemma 5. Since θ > 1
2+β ≥ 1/3 (see Remark 2), we again take p := pn ↑n +∞

so that p1/2
n an→

n
0 which also guarantees:

dn := 1

qn‖σ‖2∞‖∇ϕ‖2∞

{
pn

(6C2
V,ϕ

cV 
n

+ 2C3.14(

(2)
n )2


n

)
+ 1

pn

}
→
n

0. (3.21)

In this case, we derive the result by setting cn := q−1
n (1− dn)→

n
1, Cn := (I 1

V )
vn+ 3

4pn exp( cV
pn
+ pna

2
n

2 )→
n

1 (see the

limits of vn following equation (3.16) and (3.34)). Again, (pn)n≥1 can be chosen in order to have the stated monotonicity
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for n large enough. Set now

χn := cV ‖σ‖2∞‖∇ϕ‖2∞
4CV ‖D2ϕ‖2∞

qn

pn

, (3.22)

so that a ≤ χn

√

n



(2)
n

. Thus, the slower pn goes to infinity, the wider the domain of validity for the estimate in the parame-

ter a.
(b) It remains to analyze the case β ∈ (0,1], θ = 1

2+β . Let us deal with β = 1. From (3.10), the controls of (3.17) and
Lemma 4 (with j = 1) we get:

P

[
νn(Aϕ)+ Ḡn +D2,n


n

≥ a√

n

]
≤ exp

(
− a2

2q‖σ‖2∞‖∇ϕ‖2∞

)
exp

(2pC2
V,ϕλ

2
n

cV 
2
n

+ cV

p

)(
I 1
V

) 1
p .

Recalling the definition of λn in (3.12), we conclude as previously with obvious modifications of (cn)n≥1, (Cn)n≥1. The
case β ∈ (0,1) is handled similarly starting from (3.11).

Also, when D3ϕ ∈ C1, we derive similarly to the proof of Theorem 10 in [25] that Bn,1→
n
−γ̃ m.

Eventually, the final control involving the two sided deviation is derived by symmetry. �

3.3. Proof of the technical lemmas

This section is devoted to the proof of the previously used Lemmas 1–5 and Proposition 1 which were the key ingredients
to derive Theorem 2.

Proof of Lemma 1. For k ∈ �1, n�, we first write:

ϕ(Xk)− ϕ(Xk−1)=
(
ϕ(Xk)− ϕ(Xk−1 + γkbk−1)

)+ (
ϕ(Xk−1 + γkbk−1)− ϕ(Xk−1)

)
=: Tk−1,r (ϕ)+ Tk−1,d (ϕ), (3.23)

in order to split the random and deterministic contributions in the transitions of the scheme (S).
We then perform a Taylor expansion with integral remainder at order 2 for the function ϕ in the two terms of the r.h.s.

of (3.23). Namely, with the above notations:

Tk−1,d (ϕ)= γkbk−1 · ∇ϕ(Xk−1)+ γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1
〉
dt,

Tk−1,r (ϕ)=√γkσk−1Uk · ∇ϕ(Xk−1 + γkbk−1)

+ γk

∫ 1

0
(1− t)Tr

(
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗Ukσ

∗
k−1

)
dt.

Hence,

ϕ(Xk)− ϕ(Xk−1)

= γkAϕ(Xk−1)

+ γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1
〉
dt +√γkσk−1Uk · ∇ϕ(Xk−1 + γkbk−1)

+ γk

∫ 1

0
(1− t)Tr

(
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗Ukσ

∗
k−1 −D2ϕ(Xk−1)�k−1

)
dt

= γkAϕ(Xk−1)+ γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1
〉
dt

+ γk

∫ 1

0
(1− t)Tr

((
D2ϕ(Xk−1 + γkbk−1)−D2ϕ(Xk−1)

)
�k−1

)
dt +ψk(Xk−1,Uk)

=: γkAϕ(Xk−1)+Dk
2,b +Dk

2,� +ψk(Xk−1,Uk), (3.24)



1578 I. Honoré, S. Menozzi and G. Pagès

where

ψk(Xk−1,Uk) =√γkσk−1Uk · ∇ϕ(Xk−1 + γkbk−1)

+ γk

∫ 1

0
(1− t)Tr

(
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗Ukσ

∗
k−1

−D2ϕ(Xk−1 + γkbk−1)�k−1
)
dt. (3.25)

Observe now that, conditionally to Fk−1, the mapping u �→ ψk(Xk−1, u) is Lipschitz continuous: indeed, the innovation
Uk does not appear in the other contributions of the right side of (3.24). Consequently, as ϕ is Lispchitz continuous we
derive, for any (u,u′) ∈ (Rd)2:∣∣ψk(Xk−1, u)−ψk

(
Xk−1, u

′)∣∣≤√γk‖σk−1‖‖∇ϕ‖∞
∣∣u− u′

∣∣.
The result is obtained by summing up the previous identities from k = 1 to n, observing, with the notations of (3.7), that
Ln =∑n

k=1 ϕ(Xk)− ϕ(Xk−1), D2,b,n =∑n
k=1 D

k
2,b , D2,�,n =∑n

k=1 D
k
2,� , Gn :=∑n

k=1 ψk(Xk−1,Uk). �

Proof of Lemma 2. The idea is to use conditionally and iteratively the Gaussian concentration property (GC) of the
innovation. Let us note that this strategy was already the key ingredient in [17]. In the current framework, we exploit that
the functions u �→�k(Xk−1, u) :=ψk(Xk−1, u)−E[ψk(Xk−1,Uk)|Fk−1] are conditionally independent w.r.t. Fk−1 and
Lipschitz continuous with constant

√
γk‖σ‖∞‖∇ϕ‖∞ by Lemma 1. We thus write:

E exp

(
−qλ


n

Mn

)
= E exp

(
−qλ


n

n∑
k=1

�k(Xk−1,Uk)

)

= E

[
exp

(
−qλ


n

n−1∑
k=1

�k(Xk−1,Uk)

)
E

[
exp

(
−qλ


n

�n(Xn−1,Un)

)∣∣∣Fn−1

]]

≤ E

[
exp

(
−qλ


n

n−1∑
k=1

�k(Xk−1,Uk)

)
exp

(
q2λ2

2
2
n

γn‖σ‖2∞‖∇ϕ‖2∞
)]

, (3.26)

where we used (GC) in the third line recalling as well that E[�n(Xn−1,Un)|Fn−1] = 0.
Iterating the process over k, we obtain:

(
E exp

(
−qλ


n

Mn

)) 1
q =

(
E exp

(
−qλ


n

n∑
k=1

�k(Xk−1,Uk)

)) 1
q

≤ exp

(
qλ2‖σ‖2∞‖∇ϕ‖2∞

2
n

)
. (3.27)

Finally,

exp

(
− λa√


n

)(
E exp

(
−qλ


n

Mn

)) 1
q ≤ exp

(
g(λ)√

n

)
,

where g : R+ → R is defined by g(λ)=− a√

n

λ+ qλ2

2
n
‖σ‖2∞‖∇ϕ‖2∞. As a > 0, the function attains its minimum at λn

given in (3.12). This eventually yields the expected bound. �

Proof of Lemma 3. From the definition in (3.25) and the Fubini theorem, we have that for each k ∈ �1, n�:

E
[
ψk(Xk−1,Uk)|Fk−1

] = γk

∫ 1

0
(1− t)Tr

(
E
[
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗Ukσ

∗
k−1

−D2ϕ(Xk−1 + γkbk−1)�k−1|Fk−1
])
dt. (3.28)

Recalling that Uk has the same moments as the standard Gaussian random variable up to order three (see (GC)) and is
independent of Fk−1, a Taylor expansion yields:

E
[
Tr

(
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗Ukσ

∗
k−1 −D2ϕ(Xk−1 + γkbk−1)�k−1

)|Fk−1
]

= Tr
(
D2ϕ(Xk−1 + γkbk−1)σk−1E[Uk ⊗Uk]σ ∗k−1

)
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+
∫ 1

0
E
[
Tr

((
D3ϕ(Xk−1 + γkbk−1 + ut

√
γkσk−1Uk)t

√
γkσk−1Uk

)(
σk−1Uk ⊗Ukσ

∗
k−1

))|Fk−1
]
du

− Tr
(
D2ϕ(Xk−1 + γkbk−1)�k−1

)
= Tr

(
D2ϕ(Xk−1 + γkbk−1)σk−1

(
E[Uk ⊗Uk] − I

)︸ ︷︷ ︸
=0

σ ∗k−1

)

+ t
√
γk

∫ 1

0
E
[
Tr

(([
D3ϕ(Xk−1 + γkbk−1 + ut

√
γkσk−1Uk)−D3ϕ(Xk−1 + γkbk−1)

]
σk−1Uk

)
× (

σk−1Uk ⊗Ukσ
∗
k−1

))|Fk−1
]
du,

recalling from (GC) that for each (i, j, l) ∈ �1, r�3, E[Ui
kU

j
k U

l
k|Fk−1] = E[Ui

1U
j

1 U
l
1] = 0 (cancellation argument).

Hence,

∣∣E[ψk(Xk−1,Uk)|Fk−1
]∣∣ ≤ γk

∫ 1

0
(1− t)t1+β[ϕ(3)]

β
E

[
γ

1+β
2

k ‖σk−1‖3+β |Uk|3+β
∫ 1

0
uβ du

∣∣∣Fk−1

]
dt

= [ϕ
(3)]βγ

3+β
2

k ‖σk−1‖3+β
E[|Uk|3+β ]

(1+ β)(2+ β)(3+ β)
,

recalling that the third derivatives of ϕ are β-Hölder continuous for the first inequality. We thus derive:

∣∣Eβ
n

∣∣= |Ḡn|√

n

≤ 1√

n

n−1∑
k=1

∣∣E[ψk(Xk−1,Uk)|Fk−1
]∣∣≤ [ϕ(3)]β‖σ‖3+β∞ E[|U1|3+β ]

(1+ β)(2+ β)(3+ β)



(

3+β
2 )

n√

n

=: an.

Proof of Proposition 1. First of all, let us decompose the Lyapunov function V with a Taylor expansion like in Lemma 1.
We again use a splitting between the deterministic contributions and those involving the innovation. We write for each
n ∈N:

V (Xn)− V (Xn−1)

= γnAV (Xn−1)+ γ 2
n

∫ 1

0
(1− t)Tr

(
D2V (Xn−1 + tγnbn−1)bn−1 ⊗ bn−1

)
dt

− γn

2
Tr

(
D2V (Xn−1)

)
�n−1)+√γnσn−1Un · ∇V (Xn−1 + γnbn−1)

+ γn

∫ 1

0
(1− t)Tr

(
D2V (Xn−1 + γnbn−1 + t

√
γnσn−1Un)σn−1Un ⊗Unσ

∗
n−1

)
dt

≤−γnαV V (Xn−1)+ γnβV +CV

γ 2
n

2

∥∥D2V
∥∥∞V (Xn−1)

+ γn

2

∥∥D2V
∥∥∞‖σ‖2∞ +

√
γnσn−1Un · ∇V (Xn−1 + γnbn−1)+ γn

2

∥∥D2V
∥∥∞‖σ‖2∞|Un|2

≤ γn

(
−αV

2
V (Xn−1)+ c̃

)
+√γnσn−1Un · ∇V (Xn−1 + γnbn−1)+ γn

2

∥∥D2V
∥∥∞‖σ‖2∞|Un|2 (3.29)

for a constant c̃ := c̃(V ,σ,βV ). We have in fact considered the time steps sufficiently small, indeed in (S), we have chosen
for each n ∈ N, γn < min( 1

2
√
CV c̄

,
αV

2CV ‖D2V ‖∞ ). The two terms involving the innovation Un in the above decomposition

can be controlled thanks to the Gaussian concentration hypothesis (GC). Let us define for all x ∈ R
d and γ,λ > 0 the

quantities:

I1(γ,λ, x) := E

[
exp

(
λ
√
γ σ(x)U1 · ∇V

(
x + γ b(x)

))]
, I2(γ,λ) := E

[
exp

(
λ
γ

2

∥∥D2V
∥∥∞‖σ‖2∞|U1|2

)]
.
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The first one is directly controlled owing to hypothesis (GC):

I1(γn,λ, x)≤ exp

(
λ2γn|σ ∗(x)∇V (x + γnb(x))|2

2

)
≤

(LV)
exp

(
λ2γnCV ‖σ‖2∞V (x + γnb(x))

2

)
. (3.30)

Furthermore, under (GC), for any c < 1
2 , Ic := E[exp(c|Un|2)] < +∞. Hence, for any λ < 2c

‖D2V ‖∞‖σ‖2∞γ1
, Jensen’s

inequality yields:

I2(γn,λ)≤
[
E exp

(
c|Un|2

)] λγn‖D2V ‖∞‖σ‖2∞
2c = exp

(
γn ln(Ic)

λ‖D2V ‖∞‖σ‖2∞
2c

)
. (3.31)

These controls allow to prove the integrability statement of the proposition by induction. For n = 0, recalling from
assumption (C1) that for any λ < λ0, E exp(λ|X0|2) <+∞ and from (LV)(i) that V (x)≤ c̄|x|2 outside of a compact set,
we derive that for all λ ∈ (0, λ0

c̄
), there exists C0

V,λ ∈ (1,+∞) such that

E exp
(
λV (X0)

)≤C0
V,λ.

Set now β̃V := c̃+ ln(Ic)
‖D2V ‖∞‖σ‖2∞

2c and α̃V :=min( 1
γ1
,
αV
2 − λCV ‖σ‖2∞(1+ γ1CV [1+ γ1‖D2V ‖∞

2 ])) ∈ (0, 1
γ1
], for

λ <
αV

2CV ‖σ‖2∞(1+γ1CV [1+ γ1‖D2V ‖∞
2 ])

.

Let us assume that for any λ < λV :=min(λ0
2c̄ ,

αV

2CV ‖σ‖2∞(1+γ1CV [1+ γ1‖D2V ‖∞
2 ])

, c

‖D2V ‖∞‖σ‖2∞γ1
), the property

∀k ∈ �0, n− 1�, E exp
(
λV (Xk)

)≤ CV,λ := C0
V,λ ∨ exp

(
λβ̃V

α̃V

)
, (Pn−1)

holds for a fixed n− 1 ∈ N0 and let us prove (Pn). By inequalities (3.29), (3.30) and (3.31) and the Cauchy–Schwarz
inequality, we derive that for any λ < λV ,

E exp
(
λV (Xn)

) = E
[
exp

(
λV (Xn−1)

)
E
[
exp

(
λ
(
V (Xn)− V (Xn−1)

))|Fn−1
]]

≤ E

[
exp

(
λ

[
V (Xn−1)

(
1− αV

2
γn

)
+ c̃γn

])
I1(γn,2λ,Xn−1)

1/2I2(γn,2λ)1/2
]

= exp(λγnβ̃V )E

[
exp

(
λ

(
1− αV

2
γn

)
V (Xn−1)+ λ2γnCV ‖σ‖2∞V (Xn−1 + γnbn−1)

)]
.

Recall now that V (Xn−1 + γnbn−1) ≤ V (Xn−1) + γn|∇V (Xn−1)||bn−1| + γ 2
n

2 ‖D2V ‖∞|bn−1|2
(LV)(ii)≤ V (Xn−1)(1 +

γnCV [1+ γn‖D2V ‖∞
2 ]). Thus,

E
[
exp

(
λV (Xn)

)] ≤ exp(λγnβ̃V )E
[
exp

(
λ (1− γnα̃V )︸ ︷︷ ︸

∈[0,1)
V (Xn−1)

)]
(Jensen)≤ exp(λγnβ̃V )E

[
exp

(
λV (Xn−1)

)](1−γnα̃V ) ≤ exp(λγnβ̃V )C
(1−γnα̃V )

V ,λ

using (Pn−1) for the last inequality. From the above equation and the previous definition of CV,λ we have:

exp(λγnβ̃V )C
(1−γnα̃V )

V ,λ ≤ CV,λ ⇐⇒ CV,λ ≥ exp

(
λβ̃V

α̃V

)
.

Hence, (Pn) holds. Taking cV < λV completes the proof. �

Remark 9. Noting that v∗ := infx∈Rd V (x) > 0, we get that for all (n, ξ) ∈N× [0,1], and λ < λV (v
∗)1−ξ :

E exp
(
λV ξ

n

)= E exp

(
λ
(
v∗

)ξ (Vn

v∗

)ξ

︸ ︷︷ ︸
≥1

)
≤ E exp

(
λ
(
v∗

)ξ−1
Vn

)≤ CV,λ(v∗)ξ−1 <+∞.
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Thus, we readily get as a by-product of Proposition 1 that, for all ξ ∈ [0,1], λ < λV (v
∗)1−ξ , supn∈NE exp(λV ξ

n ) <+∞.
We refer to Lemaire (see e.g. Theorem 17 in [28]) for additional results in that direction.

Proof of Lemma 4. Recalling from (GV) that there exists CV,ϕ > 0 such that for any x ∈Rd , |ϕ(x)| ≤ CV,ϕ(1+√V (x)),
we get for j ∈ {1,2}:[

E exp

(
jpλn

|ϕ(X0)− ϕ(Xn)|

n

)] 1
jp

≤
[
E exp

(
jpλn

CV,ϕ(2+√V (X0)+√V (Xn))


n

)] 1
jp

≤ exp

(
2CV,ϕ

λn


n

)[
E exp

(
2jpCV,ϕλn

√
V (X0)


n

)] 1
2jp

[
E exp

(
2jpCV,ϕλn

√
V (Xn)


n

)] 1
2jp

.

Write now for i ∈ {0, n} by the Young inequality:

2jpCV,ϕλn

√
V (Xi)


n

≤ cV V (Xi)+
(jp)2C2

V,ϕλ
2
n

cV 
2
n

,

where cV is the positive real constant such that I 1
V = supn≥0 E[exp(cV V (Xn))]<+∞ (see Proposition 1). We then get[

E exp

(
jpλn

|ϕ(X0)− ϕ(Xn)|

n

)] 1
jp

≤ exp

(
2CV,ϕ

λn


n

)
exp

(
jpC2

V,ϕλ
2
n

cV 
2
n

)(
E exp

(
cV V (X0)

)) 1
2jp

(
E exp

(
cV V (Xn)

)) 1
2jp

≤ exp

(
(j + 1)pC2

V,ϕλ
2
n

cV 
2
n

)
exp

(
cV

p

)(
I 1
V

) 1
jp . �

Proof of Lemma 5.
• Proof of inequalities (3.15) and (3.16).
– If x �→ 〈∇ϕ(x), b(x)〉 is Lipschitz continuous. We first rewrite from the definition of D2,b,n in (3.7):

D2,b,n =
n∑

k=1

γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1
〉
dt

=
n∑

k=1

γk

[∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1), bk−1 − b(Xk−1 + tγkbk−1)
〉
dt

+
∫ 1

0

(〈∇ϕ,b〉(Xk−1 + tγkbk−1)− 〈∇ϕ,b〉(Xk−1)
)
dt

]
.

From the boundedness of ∇ϕ, and the Lipschitz property of the mappings x �→ b(x) (which has been assumed from the
very beginning) and x �→ 〈∇ϕ(x), b(x)〉 (assumed for the current inequality), recalling that bk−1 = b(Xk−1), one derives
that:

|D2,b,n| ≤
n∑

k=1

γ 2
k

(‖∇ϕ‖∞[b]1 + [〈∇ϕ,b〉]1

) |bk−1|
2
≤ C

n∑
k=1

γ 2
k |bk−1|, C := C(b,ϕ). (3.32)

From this inequality, assumption (LV)(ii) and the Jensen inequality (applied to the exponential function for the measure
1



(2)
n

∑n
k=1 γ

2
k δk), we derive:

(
E exp

(
4pλn

n

|D2,b,n|
)) 1

4p ≤
(

1



(2)
n

n∑
k=1

γ 2
k E exp

(
4pλn


(2)
n


n

C
√
CV

√
Vk−1

)) 1
4p

.
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From the Young inequality we obtain:

E exp

(
4pλn


(2)
n


n

C
√
CV

√
Vk−1

)
≤ exp

((
2
√

2pλn

(2)
n


n

C
√
CV√
cV

)2)
E
[
exp(cV Vk−1)

]
.

We finally derive with the notations of Proposition 1:(
E exp

(
4pλn

n

|D2,b,n|
)) 1

4p ≤ exp

(
2pλ2

n(

(2)
n )2


2
n

(C
√
CV )

2

cV

)(
I 1
V

) 1
4p ≤ exp

(
C3.15

pλ2
n(


(2)
n )2


2
n

)(
I 1
V

) 1
4p ,

setting C3.15 := 2 (C
√
CV )2

cV
with C = 1

2 (‖∇ϕ‖∞[b]1 + [〈∇ϕ,b〉]1) as in (3.32).

– If a ≤ cV ‖σ‖2∞‖∇ϕ‖2∞
4CV ‖D2ϕ‖2∞

qn
pn

√

n



(2)
n

= χn

√

n



(2)
n

with the notation introduced in (3.22). Write first from (3.7) (definition of D2,b,n),

using a Taylor expansion on ∇ϕ:(
E exp

(
4pλn

n

|D2,b,n|
)) 1

4p

≤
(
E exp

(
4pλn

n

n∑
k=1

γ 2
k

∫ 1

0
(1− t)

∣∣Tr
(
D2ϕ(Xk−1 + tγkbk−1)bk−1 ⊗ bk−1

)∣∣dt)) 1
4p

. (3.33)

We first easily get from the assumptions on ϕ and point (ii) of (LV) that:

(
E exp

(
4pλn

n

|D2,b,n|
)) 1

4p ≤
(
E exp

(
2pλn

n

n∑
k=1

γ 2
k CV Vk−1

∥∥D2ϕ
∥∥∞

)) 1
4p

.

From the Jensen inequality, we derive:

(
E exp

(
4pλn

n

|D2,b,n|
)) 1

4p ≤
(

1



(2)
n

n∑
k=1

γ 2
k E exp

(
2pλn


(2)
n


n

∥∥D2ϕ
∥∥∞CV Vk−1

)) 1
4p

.

We then have from the definition of λn in (3.12) that:

v̄n := 2pλn

(2)
n


n

∥∥D2ϕ
∥∥∞CV

cV
= 


(2)
n√

n

2CV p

cV q

‖D2ϕ‖∞
‖σ‖2∞‖∇ϕ‖2∞

a ≤ 1.

The Jensen inequality for concave functions yields for each k ∈ �1, n�:

E exp

(
2pλn


(2)
n


n

∥∥D2ϕ
∥∥∞CV Vk−1

)
= E exp(v̄ncV Vk−1)≤

(
E exp(cV Vk−1)

)v̄n .
Thus, setting

vn := v̄n

4p
= λn


(2)
n

2
n

∥∥D2ϕ
∥∥∞CV

cV
, (3.34)

we finally derive,

[
E exp

(
4pλn

n

|D2,b,n|
)] 1

4p ≤
[

1



(2)
n

n∑
k=1

γ 2
k

(
sup
l≥1

E
[
exp(cV Vl−1)

])v̄n] 1
4p

= (
I 1
V

)vn =: Cn,

using again the notations of Proposition 1. This gives (3.16). �

• Proof of inequality (3.14). We proceed as for the proof of (3.16) and (3.15). Write:(
E exp

(
4pλn

n

|D2,�,n|
)) 1

4p
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≤
(
E exp

(
4pλn

n

n∑
k=1

γk

2

∣∣Tr
((
D2ϕ(Xk−1 + γkbk−1)−D2ϕ(Xk−1)

)
�k−1

)∣∣)) 1
4p

≤
(
E exp

(
2pλn

n

‖σ‖2∞
[
ϕ(2)]

1

n∑
k=1

γ 2
k |bk−1|

)) 1
4p

≤
(
E exp

(
2pλn

n

‖σ‖2∞
[
ϕ(2)]

1C
1
2
V

n∑
k=1

γ 2
k |Vk−1| 12

)) 1
4p

≤
(

1



(2)
n

n∑
k=1

γ 2
k E exp

(
2pλn


(2)
n


n

‖σ‖2∞
[
ϕ(2)]

1C
1
2
V |Vk−1| 12

)) 1
4p

.

Using once again the Young inequality and setting C3.14 := ‖σ‖
4∞[ϕ(2)]21

4
CV

cV
, we obtain:

(
E exp

(
4pλn

n

|D2,�,n|
)) 1

4p ≤ exp

(
pλ2

n

4

(


(2)
n


n

)2

‖σ‖4∞
[
ϕ(2)]2

1

CV

cV

)(
I 1
V

) 1
4p ≤ exp

(
C3.14pλ

2
n

(


(2)
n


n

)2)(
I 1
V

) 1
4p .

�

4. A refinement when ~σ~2 − ν(~σ~2) is a coboundary

We will assume in this section that there exists a solution ϑ of the Poisson problem Aϑ = ~σ~2 − ν(~σ~2), where ~ · ~
is a matrix norm such that ‖ · ‖ ≤ ~ ·~, satisfying the assumptions stated for ϕ in Theorem 2. This is in particular the case
for the Fröbenius norm ‖ · ‖F under the assumptions of the previous Theorem 4.

In this special case, we have a slightly different concentration result improving our previous ones for a certain deviation
range.

Theorem 8. Under the assumptions of Theorem 2 and with the notations introduced therein, we have that:

(a) For β ∈ (0,1] and θ ∈ ( 1
2+β ,1], there exist two explicit monotonic sequences c̃n ≤ 1 ≤ C̃n, n ≥ 1, with limn C̃n =

limn c̃n = 1 such that for all n≥ 1 and a > 0:

P
[∣∣√
nνn(Aϕ)

∣∣≥ a
]≤ 2C̃n exp

(
− c̃n

2ν(~σ~2)‖∇ϕ‖2∞
�n(a)

)
,

�n(a) :=
[(

a2
(

1− 2

1+
√

1+ 4c̄3
n

n

a2

))
∨
(
a

4
3 


1
3
n c̄n

(
1− 2

3
c̄n

(

n

a2

) 1
3
)
+

)]
,

where x+ =max(x,0) and c̄n := (
[ϕ]1[ϑ]1 )

2/3ν(~σ~2)~σ~
−2/3∞ čn with čn being an explicit positive sequence s.t. čn ↓n 1.

(b) For β ∈ (0,1], θ = 1
2+β , there exist two explicit monotonic sequences c̃n ≤ 1≤ C̃n, n≥ 1, with limn C̃n = limn c̃n = 1

such that for all n≥ 1 and a > 0:

P
[∣∣√
nνn(Aϕ)+Bn,β

∣∣≥ a
]≤ 2C̃n exp

(
− c̃n

2ν(~σ~2)‖∇ϕ‖2∞
�n(a)

)
.

Remark 10 (About deviation rates). Observe that in order to derive global deviation bounds (valid for every a > 0)
two concentration regimes appear in the previous bounds. For an arbitrary fixed a > 0, we have that for n large enough
(depending on a), the Gaussian concentration regime will give the fastest decay, since 2

1+
√

1+4c̄3
n

n

a2

→
n

0. Also, when

a � √
n the two above contributions give a Gaussian bound, with suboptimal constants. Eventually, when a √
n,
for a fixed n, we have that the first term is “stuck” at the threshold 
n whatever level a is considered, i.e. a2(1 −

2

1+
√

1+4c̄3
n

n

a2

) −→
a→∞ c̄3

n
n whereas the second clearly becomes bigger.

To summarize, when the Gaussian regime prevails (i.e. when a√

n

is small), the results of Theorem 2 have
been improved in the sense that the variance in the deviations is a sharper upper bound of the “carré du champ”∫
Rd |σ ∗∇ϕ(x)|2ν(dx) appearing in the asymptotic Theorem 1. Indeed, we managed to replace the supremum norm ~σ~2∞

deriving from Theorem 2 and the domination condition on the matrix norms by ν(~σ~2). However, our martingale ap-
proach naturally leads to a bound in ‖∇ϕ‖2∞.
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On the other hand, the global double regime seems to be the price to pay to benefit from the better approximation of
the “carré du champ” in the Gaussian regime.

Eventually, Theorem 3 is a direct consequence of the previous theorem in the Gaussian regime.

Proof. We focus on case (a) for β ∈ (0,1), θ ∈ (1/(2+ β),1]. Case (b) could be derived similarly following the proof of
Theorem 2. We restart from the computations of Section 3.1 that give for any λ > 0 the control in equation (3.9). Let us
now deal with the term giving the concentration and write for any ρ > 1:

E exp

(
−qλ


n

Mn

)
≤

(
E exp

(
−ρ qλ


n

Mn − ρ2(qλ)2[ϕ]21
2
2

n

n∑
k=1

γkAϑ(Xk−1)

)) 1
ρ

×
(
E exp

(
ρ2(qλ)2[ϕ]21
2(ρ − 1)
2

n

n∑
k=1

γkAϑ(Xk−1)

))1− 1
ρ

=:T
1
ρ

1 T
1− 1

ρ

2 . (4.1)

Since for any x ∈Rd , Aϑ(x)= ~σ(x)~2 − ν(~σ~2), we obtain:

T1 = exp

(
ρ2(qλ)2[ϕ]21ν(~σ~2)

2
n

)
E exp

(
−ρ qλ


n

Mn − ρ2(qλ)2[ϕ]21
2
2

n

n∑
k=1

γk~σ(Xk−1)~
2

)
.

The key idea is that we have exploited the Poisson equation solved by ϑ to replace the previous rough control

exp(
(qλ)2[ϕ]21~σ~2∞

2
n
), coming from the martingale increment obtained in equation (3.6) and the domination condition

on the matrix norms, by the above term exp(
ρ2(qλ)2[ϕ]21ν(~σ~2)

2
n
). This last contribution will be part of the optimization

procedure over λ. This improvement will be all the more significant that neighborhoods of the points where the norm of
the diffusion coefficient σ attains its supremum are not very much charged by the invariant distribution. The point for T1
is then to prove that the remaining expectation is less than 1. It will be shown by exhibiting an appropriate underlying
supermartingale.

Set to this end T̃1 := exp(−ρ2(qλ)2[ϕ]21ν(~σ~2)

2
n
)T1. Define now, for a given n ∈N and m ∈N0, Sm := exp(−ρ qλ


n
Mm−

ρ2(qλ)2[ϕ]21
2
2

n

∑m
k=1 γk~σ(Xk−1)~

2). From the definition of the martingale (Mk)k≥1 in (3.2) and the controls of the Lipschitz

constants of the functions (ψk(Xk−1, ·))k∈�1,n� in Lemma 1, we get by iterated conditioning:

T̃1 ≤ E

[
Sn−1 exp

(
−ρ2(qλ)2[ϕ]21

2
2
n

γn~σ(Xn−1)~
2
)
E

[
exp

(
−ρ qλ


n

(Mn −Mn−1)

)∣∣∣Fn−1

]]

≤
(GC)

E

[
Sn−1 exp

(
−ρ2(qλ)2[ϕ]21

2
2
n

γn~σ(Xn−1)~
2
)

exp

(
ρ2(qλ)2

2
2
n

γn[ϕ]21~σ(Xn−1)~
2
)]
≤ E[Sn−1] ≤ 1.

In other words, (Sm)m≥0 is a positive supermartingale. We finally get that, for any ρ > 1:

T
1
ρ

1 ≤ exp

(
ρ(qλ)2[ϕ]21ν(~σ~2)

2
n

)
. (4.2)

For the term T2, we have that setting μ := μ(q,n,ρ,λ)= ρ2(qλ)2[ϕ]21
2(ρ−1)
n

,

T2 = E exp

(
μ


n

n∑
k=1

γkAϑ(Xk−1)

)
,

so that this contribution can be controlled from the previous expansion of Lemma 1 exploiting the technical lemmas of
Section 3.1 replacing λ by μ and ϕ by ϑ .

In case (a), for θ ∈ (1/(2+ β),1], β ∈ (0,1], the Hölder inequalities yield that for all μ ∈ R+ and p̄, q̄ ∈ (1,+∞),
1
p̄
+ 1

q̄
= 1, similarly to (3.9),

T2 = E exp

(
μ


n

n∑
k=1

γkAϑ(Xk−1)

)
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≤
(
E exp

(
− q̄μ


n

Mϑ
n

)) 1
q̄
(
E exp

(
2p̄μ


n

(∣∣Lϑ
n

∣∣+ ∣∣Ḡϑ
n

∣∣))) 1
2p
(
E exp

(
4p̄μ


n

∣∣Dϑ
2,b,n

∣∣)) 1
4p̄

×
(
E exp

(
4p̄μ


n

∣∣Dϑ
2,�,n

∣∣)) 1
4p̄

, (4.3)

where the superscripts in ϑ emphasize that the contributions to be analyzed are those associated with the solution ϑ of
the Poisson problem with source ~σ~2 − ν(~σ~2).

Still for simplicity, we assume as well (case (i)) that the mapping x �→ 〈b(x),∇ϑ(x)〉 is Lipschitz continuous. Plugging

in (4.3) the controls established in Lemma 3 (inequality (3.13) with aϑn := [ϑ
(3)]β‖σ‖(3+β)∞ E[|U1|3+β ]
(1+β)(2+β)(3+β)



(

3+β
2 )

n√

n

), Lemma 4 (with
j = 2), Lemma 5 (inequalities (3.14) and (3.15)) and (3.27), then replacing λn by μ, we get similarly to the first inequality
of (3.18) and with the notations of Lemma 3:

T2 ≤ exp

(
q̄μ2~σ~2∞[ϑ]21

2
n

)
exp

(
μ2

2
np̄
+ p̄(aϑn )

2

2

)
exp

(
3p̄C2

V,ϑμ
2

cV 
2
n

+ cV

p̄

)(
I 1
V

) 1
2p̄

× exp

(
C3.14

p̄μ2(

(2)
n )2


2
n

)(
I 1
V

) 1
4p̄ × exp

(
C3.15

p̄μ2(

(2)
n )2


2
n

)(
I 1
V

) 1
4p̄

≤ exp

(
μ2


n

(
q̄~σ~2∞[ϑ]21

2
+ p̄

( (
(2)
n )2


n

[
C3.14 +C3.15

]+ 3C2
V,ϑ

cV 
n

)+ 1

2p̄

))
× exp

(
cV

p̄
+ p̄(aϑn )

2

2

)(
I 1
V

) 1
p̄ .

Set now

C̄n := exp

(
cV

p̄
+ p̄(aϑn )

2

2

)(
I 1
V

) 1
p̄ ,

ēn := p̄

(
(


(2)
n )2


n

[
C3.14 +C3.15

]+ 3C2
V,ϑ

cV 
n

)
+ 1

2p̄
.

(4.4)

In the considered case, the exponent p̄ := p̄n can again be taken such that p̄n→
n
+∞ and p̄n

(

(2)
n )2


n
→
n

0 in order to have,

ēn→
n

0, C̄n→
n

1 with the indicated monotonicity for large enough n.

We derive from the above control and (4.2) that for all q,ρ > 1:

(
E exp

(
−λq


n

Mn

)) 1
q ≤ (

T
1
ρ

1 T
1− 1

ρ

2

) 1
q ≤ exp

(
ρqλ2[ϕ]21ν(~σ~2)

2
n

)
C̄

ρ−1
ρq

n exp

(
ρ − 1

ρq

μ2


n

(
q̄~σ~2∞[ϑ]21

2
+ ēn

))
.

Plugging this bound in (3.9), using again the controls of Lemmas 4 and 5, eventually yields:

P
[√


nνn(Aϕ)≥ a
]

≤ exp

(
− aλ√


n

)
exp

(
λ2

2
n

(
ρq[ϕ]21ν

(
~σ~

2)+ 1

p

))
C̄

ρ−1
ρq

n exp

(
ρ − 1

ρq

μ2


n

(
q̄~σ~2∞[ϑ]21

2
+ ēn

))

× exp

(
λ2


n

p

(
(


(2)
n )2


n

[
C3.14 +C3.15

]+ 3C2
V,ϕ

cV 
n

))
exp

(
cV

p
+ pa2

n

2

)(
I 1
V

) 1
p .

Choosing p := pn→
n
+∞ and such that pn

(

(2)
n )2


n
→
n

0, we get by a standard symmetry and with the notations introduced

in the proof of Theorem 2:

P
[∣∣√
nνn(Aϕ)

∣∣≥ a
] ≤ 2CnC̄

ρ−1
ρq

n exp

(
− aλ√


n

)
exp

(
λ2


n

(
ρq[ϕ]21ν(~σ~2)

2
+ en

))

× exp

(
ρ − 1

ρq

μ2


n

(
q̄~σ~2∞[ϑ]21

2
+ ēn

))
,
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where en is defined similarly to ēn in (4.4) replacing p̄ by p. In particular en→
n

0. Note that for the previous choices of

p, p̄, we have that C̃n := CnC̄
ρ−1
ρq

n →
n

1 uniformly in ρ > 1. Recalling that μ= (qλ)2ρ2[ϕ]21
2(ρ−1)
n

, we are thus led to minimize

the polynomial function

P : λ �−→− aλ√

n

+ λ2


n

An + λ4


3
n

Bn,

where An =An(ρ)= ρÃn and Bn = Bn(ρ)= ρ3

ρ−1 B̃n with

Ãn := q[ϕ]21ν(~σ~2)

2
+ en and B̃n := q3[ϕ]41

4

(
q̄~σ~2∞[ϑ]21

2
+ ēn

)
. (4.5)

Note that both sequences (Ãn)n≥1 and (B̃n)n≥1 are bounded and bounded away from zero sequences (and do not depend
on ρ). The function P is clearly convex and coercive so it attains its minimum at λmin, unique zero of the equation
P ′(λmin)= 0. This equation reads

λ3 + An

2
n

2Bn

λ− a

5
2
n

4Bn

= 0 (4.6)

which is the canonical form of this third degree equation to apply the Cardan–Tartaglia formula1 so that

λmin(ρ)= 
n

2

[(
a√

nBn

+
√(

2An

3Bn

)3

+ a2


nB2
n

) 1
3 +

(
a√

nBn

−
√(

2An

3Bn

)3

+ a2


nB2
n

) 1
3
]
. (4.7)

In order to derive our non-asymptotic bound, we select two “regimes” based on a first order expansion of λmin in two

cases a

Bn

√

n
→ 0 and Bn

√

n

a
→ 0, assuming that the free parameter ρ = ρn to be specified later on remains bounded, e.g.

ρ ∈ (1,3] (which implies that both quantities An

Bn
and 1

Bn
remain bounded as well). Also, note that if ρ→ 1, then 1

Bn
and

An

Bn
→ 0. First, one easily checks that if (xn)≥1 and (yn)n≥1 are two sequences of positive real numbers where (yn)n≥1 is

bounded, then

(
xn +

√
y3
n + x2

n

) 1
3 + (

xn −
√
y3
n + x2

n

) 1
3 ∼

⎧⎨⎩ 2
3
xn
yn

if xn = o(y
3
2
n ) (then xn→ 0),

(2xn)
1
3 if yn = o(x

2
3
n ) (then xn→+∞).

(4.8)

• If a

Bn

√

n
= o((An

Bn
)

3
2 ) (hence goes to 0), setting then xn = a

Bn

√

n

and yn = 2An

3Bn
yields

λmin(ρ)∼ λ∗(ρ) := a
√

n

2An

as n→+∞.

Note that λ∗ := λ∗(ρ) corresponds to the optimization of the quadratic part of P . Then

P
(
λ∗

)=− a2

4An

(
1− a2

4A3
n

Bn


n

)
=− a2

4Ãnρ

(
1− a2

4Ã3
n(ρ − 1)

B̃n


n

)
.

Set now ξn := αn(a)
ρ−1 with αn(a)= B̃n

4Ã3
n

a2


n
. Then

P
(
λ∗

)=− a2

4Ãn

1− ξn

1+ αn(a)
ξn

.

1If the equation z3+pz+ q = 0 has a unique real zero z∗ then its discriminant �= 4p3+27q2 > 0 and z∗ = ( 1
2 (−q+

√
�
27 ))

1
3 + ( 1

2 (−q−
√

�
27 ))

1
3 .
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It remains to maximize the mapping ξ �→ 1−ξ
1+αn(a)ξ−1 over (0,1). Its optimum is attained for ξ∗n = 1

1+
√

1+ 1
αn(a)

, which in
turn yields

P
(
λ∗

)=− a2

4Ãn

(
1− 2

1+
√

1+ 4 Ã3
n
n

B̃na2

)
. (4.9)

Let us remark that, with the resulting specification of ρ = ρ∗n := 1+ αn(a)
ξ∗n
∈ (1,3] (at least for large enough n), the

above condition xn = o(y
3
2
n ) in (4.8) is satisfied a posteriori.

• If a

Bn

√

n
→+∞, then, still owing to (4.8),

λmin(ρ)∼ λ̄∗(ρ)= 
n

2

(
2a

Bn

√

n

) 1
3 =

(
a
n

4Bn

) 1
3 √


n as n→+∞.

The value λ̄∗(ρ) corresponds to the quartic pseudo-optimum of P (i.e. obtained by neglecting the quadratic term). This
yields, when reintroducing the parameter ρ,

P
(
λ̄∗(ρ)

)=−a 4
3 


1
3
n

(ρ − 1)
1
3

ρ(4B̃n)
1
3

(
3

4
− Ãn

(4B̃n)
1
3



1
3
n

a
2
3

(ρ − 1)
1
3

)
.

The right hand side of this equality is a function of ρ ∈ (1,+∞). Its analysis yields that the optimum is attained in (1,3/2]
and that it tends asymptotically in n to 3/2 in our considered regime. Taking as suboptimal ρ = 3/2 gives:

P
(
λ̄∗(ρ)

)≤−a
4
3

4

(

n

B̃n

) 1
3
(

1− 2

3

Ãn

B̃n

(

n

a2

) 1
3
)
. (4.10)

From (4.10), (4.9) and (4.5), we conclude the proof of case (a) by setting c̄n := ÃnB̃
− 1

3
n which matches with the definition

in the statement of the Theorem.
In the biased case, the result follows similarly from the corresponding analysis performed in Section 2 taking An(ρ)=

ρq[ϕ]21ν(~σ~2)

2 . �

Remark 11. •When a �√
n, one checks that λmin(ρ)� 
n and P(λmin(ρ))�−
n. This behavior is consistent with
our non-asymptotic bound. However, for practical and numerical purposes observe that the optimum can be estimated.
Namely, plugging the identity (4.6) satisfied by λmin(ρ) in (4.7) into the definition of P , yields

P
(
λmin(ρ)

) = −λmin(ρ)

2
√

n

(
3a

2
− λmin(ρ)ρÃn√


n

)

= −
√

n

4

(ρ − 1)
1
3

ρ
�n(a,ρ)

(
3a

2
−
√

n

2
(ρ − 1)

1
3 Ãn�n(a,ρ)

)
,

where

�n(a,ρ)=
(

a√

nB̃n

+
(
(ρ − 1)

(
2Ãn

3B̃n

)3

+ a2

B̃2
n
n

) 1
2
) 1

3 +
(

a√

nB̃n

−
(
(ρ − 1)

(
2Ãn

3B̃n

)3

+ a2

B̃2
n
n

) 1
2
) 1

3

.

Then, an optimization in ρ ∈ (1,+∞) for given a, 
n can be performed (noting that ρ �→ (ρ − 1)i/3ρ−1, i ∈ {1,2} are
bounded functions over (1,+∞)).

5. Smoothness results for the Poisson problems (proof of Theorem 4)

We first prove here Theorem 4 which allows to derive from the deviation results of Theorems 2 and 3 the practical
deviation bounds of Section 2.3 (i.e. Theorems 5, 6 and 7). We recall that we work in the confluent setting of (Dp

α ) and
that we additionally consider two main types of assumptions:
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– Strong confluence conditions and smoothness (CR). Namely, assumptions (LV), (Dp
α ) and (R3,β ) introduced in Sec-

tions 1.2 and 2.2 with the condition ‖Dσ‖2∞ ≤ 2α
2(3+β)−p .

– Mild confluence conditions and non-degeneracy (CUE). Namely, assumptions (LV), (Dp
α ), (R1,β ) and (UE) introduced

in Sections 1.2 and 2.2 together, when d > 1, with the condition ‖Dσ‖2∞ ≤ 2α
2(1+β)−p and the technical structure

assumption on the diffusion coefficient that for each (i, j) ∈ �1, d�2, �i,j (x)=�i,j (xi∧j , . . . , xd).

It is well known that when (CR) or (CUE) are in force, there exists a unique invariant distribution for (1.1), i.e. as-
sumption (U) holds. We refer to [23,33,35,37] for proofs of this assertion. The next step consists precisely in investigating
the smoothness of the corresponding Poisson problem as well as some associated quantitative pointwise bounds on the
gradient of its solution, which is one of the key terms appearing in the deviation bounds of Theorems 2 and 3.

Let us indicate that the conditions appearing in (CR) depend on pure pathwise properties, whereas the case (CUE) takes
advantage of the regularity of the underlying semi-group which allows to alleviate some smoothness assumptions on the
coefficients and some restrictions on the variations of σ . When the dimension increases, it becomes useful to benefit from
the smoothing effects of a non-degenerate semi-group, especially if we keep in mind that one of our goals is to handle
Lipschitz continuous sources.

5.1. Proof of Theorem 4

Under (CUE) or (CR), it is well known that the Poisson equation (2.5) that we now recall:

∀x ∈Rd, Aϕ(x)= f (x)− ν(f ),

admits a unique solution centered w.r.t. ν and with linear growth, in W 2
p,loc(R

d ,R) for any p > 1 under (CUE) (see [37]),

or in C3,β(Rd,R) under (CR) (see Proposition A.8 in [35]). In both cases, we have the following representation:

ϕ(x)=−
∫
R+

(
Ptf (x)− ν(f )

)
dt where Ptf (x) := E

[
f
(
Y

0,x
t

)]
(5.1)

and Y
0,x
t solves (1.1) with Y

0,x
0 = x. To comply with the framework of the above Theorems 5 and 6, the first step is to

establish a pointwise gradient control.

5.1.1. Gradient control
Under (CUE) or (CR) we manage to obtain pointwise gradient bounds for ϕ. In our current confluent setting, these
estimates are obtained through controls on the tangent flow, again without any a priori uniform ellipticity condition of
type (UE).

Lemma 6 (Pointwise Gradient Bounds). Assume that (CUE) or (CR) holds. Then

‖∇ϕ‖∞ ≤ [f ]1
α

,

with α as in (Dp
α ).

Proof. Gradient Control in the Confluent framework. Assume now that (Dp
α ) holds. Observe that, as soon as (R1,β ) holds,

it is well known that that ∇xY
0,x
t is well defined and belongs to L2(P), see [20]. Hence, for t > 0, i ∈ �1, d�:

∂xiE
[
f
(
Y

0,x
t

)]= E
[〈∇f (

Y
0,x
t

)
, ∂xi Y

0,x
t

〉]
,

∂xi Y
0,x
t = ei +

∫ t

0
Db

(
Y 0,x
s

)
∂xi Y

0,x
s ds +

d∑
j=1

∫ t

0
Dσ·j

(
Y 0,x
s

)
∂xi Y

0,x
s dW

j
s ,

where ei stands for the ith canonical vector and Db,Dσ·j ∈Rd ⊗R
d .
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Let p ∈ (1,2] be given such that (Dp
α ) holds. Considering the mapping y ∈ R

d �→ |y|p , where | · | stands for the
Euclidean norm of Rd , it is easily seen from Itô’s formula that:

∣∣∂xi Y 0,x
t

∣∣p = 1+ p

∫ t

0

〈
∂xi Y

0,x
s

|∂xi Y 0,x
s |

,Db
(
Y 0,x
s

) ∂xi Y
0,x
s

|∂xi Y 0,x
s |

〉∣∣∂xi Y 0,x
s

∣∣p ds
+ p

d∑
j=1

∫ t

0

〈
∂xi Y

0,x
s

|∂xi Y 0,x
s |

,Dσ·j
(
Y 0,x
s

) ∂xi Y
0,x
s

|∂xi Y 0,x
s |

〉∣∣∂xi Y 0,x
s

∣∣p dWj
s

+ p

2

d∑
j=1

∫ t

0

( |Dσ·j (Y 0,x
s )∂xi Y

0,x
s |2

|∂xi Y 0,x
s |2

+ (p− 2)
|〈∂xi Y 0,x

s ,Dσ·j (Y 0,x
s )∂xi Y

0,x
s 〉|2

|∂xi Y 0,x
s |4

)
× ∣∣∂xi Y 0,x

s

∣∣p ds
= exp

(
p

∫ t

0

〈
∂xi Y

0,x
s

|∂xi Y 0,x
s |

,Db
(
Y 0,x
s

) ∂xi Y
0,x
s

|∂xi Y 0,x
s |

〉
ds

)
× E(M)t

× exp

(
p

2

d∑
j=1

∫ t

0

( |Dσ·j (Y 0,x
s )∂xi Y

0,x
s |2

|∂xi Y 0,x
s |2

+ (p− 2)
|〈∂xi Y 0,x

s ,Dσ·j (Y 0,x
s )∂xi Y

0,x
s 〉|2

|∂xi Y 0,x
s |4

)
ds

)
, (5.2)

where (Mt)t≥0 := (p
∑d

j=1

∫ t

0 〈
∂xi Y

0,x
s

|∂xi Y 0,x
s |

,Dσ·j (Y 0,x
s )

∂xi Y
0,x
s

|∂xi Y 0,x
s |
〉dWj

s )t≥0 is a square integrable martingale with bounded

integrand and E(M)t := exp(Mt − 1
2 〈M〉t ) denotes the associated Doléans exponential martingale. From condition (Dp

α ),
we thus get:∣∣∂xi Y 0,x

t

∣∣p ≤ exp(−αpt)× E(M)t . (5.3)

We eventually derive:∫ +∞
0

∣∣E[〈∇f (
Y

0,x
t

)
, ∂xi Y

0,x
t

〉]∣∣dt ≤ [f ]1 ∫ +∞
0

E
[∣∣∂xi Y 0,x

t

∣∣p]1/p
dt ≤ [f ]1

∫ +∞
0

exp(−αt) dt = [f ]1
α

.

From the above control and equation (5.1), we thus derive:

∀i ∈ �1, d�,∀x ∈Rd,
∣∣∂xi ϕ(x)∣∣≤ [f ]1α

. (5.4)

Similarly, for any x ∈Rd , ∇ϕ(x)= ∫ +∞
0 E[(∇Y 0,x

t )∗∇f (Y t,x
0 )]dt where ∇Y 0,x

t = ( ∂x1Y
0,x
t ··· ∂xd Y 0,x

t ) so that

(∇Y 0,x
t )∗ =

⎛⎜⎝(∂x1Y
0,x
t )∗
...

(∂xd Y
0,x
t )∗

⎞⎟⎠ .

Hence, recalling that | · | stands for the Euclidean norm, |∇ϕ(x)| ≤ ∫ +∞
0 E[‖(∇Y 0,x

t )∗‖|∇f (Y 0,x
t )|]dt where we re-

call that for A ∈ R
d ⊗ R

d , ‖A‖ := sup|z|≤1,z∈Rd |Az| denotes the operator (or spectral) matrix norm. Thus, |∇ϕ(x)| ≤
‖∇f ‖∞

∫ +∞
0 E[‖(∇Y 0,x

t )∗‖p]1/p dt = ‖∇f ‖∞
∫ +∞

0 E[‖∇Y 0,x
t ‖p]1/p dt . Now,∥∥∇Y 0,x

t

∥∥= sup
|z|≤1

∣∣∇Y 0,x
t z

∣∣.
For any z ∈ R

d , |z| ≤ 1, setting Z
0,x,z
t := ∇Y 0,x

t z, one has the following dynamics for the R
d -valued process

(Z
0,x,z
s )s∈[0,t]:

Z
0,x,z
t := z+

∫ t

0
Db

(
Y 0,x
s

)
Z0,x,z
s ds +

d∑
j=1

∫ t

0
Dσ·j

(
Y 0,x
s

)
Z0,x,z
s dW

j
s .
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Hence, we derive similarly to (5.3) that |Z0,x,z
t |p ≤ |z|p exp(−pαt)E(Mt), where E(Mt) does not depend on z. Write

now,

E
[∥∥∇Y 0,x

t

∥∥p]1/p = E

[
sup
|z|≤1

∣∣Z0,x,z
t

∣∣p]1/p ≤ E

[
sup
|z|≤1
|z|p exp(−pαt)E(Mt)

]1/p ≤ exp(−αt). (5.5)

This eventually proves the claim ‖∇ϕ‖∞ := supx∈Rd |∇ϕ(x)| ≤ ‖∇f ‖∞α
. �

5.1.2. Additional smoothness
– Theorem 4 can be derived under (CR), by iterating computations similar to the ones performed in Lemma 6. On the

other hand, to have the required smoothness, since we cannot expect some smoothing effect from a non-degenerate
diffusion coefficient, we have to impose that b, σ , f themselves lie in C3,β(Rd ,R) and the restriction on the variations
of σ which ensures exponential integrability in time for the expectations of the iterated tangent flows, see Lemma A.8
in [35] for details (see the parallel between the above condition on Dσ and assumption (ACp) appearing p. 559 in
[35]).

– Proving Theorem 4 under (CUE) requires more sophisticated tools (Schauder estimates for operators with unbounded
coefficients).

Proof of Theorem 4 under (CUE). Let us begin with the scalar case. For d = 1, set for any x ∈R,

v(x) := −
∫ +∞

0
dt E

[
�
(
Y

0,x
t

)
∂xY

0,x
t

]
= −

∫ +∞
0

dt E

[
�
(
Y

0,x
t

)
exp

(∫ t

0
b′
(
Y 0,x
s

)
ds

)
E
(∫ t

0
σ ′

(
Y 0,x
s

)
dWs

)]
, (5.6)

where for any y ∈R, �(y) := ∂yf (y). We observe that ∂xϕ(x)= v(x). Also, from our assumptions on f , b, σ , we have

that �,b′, σ ′ ∈ C0,β
b (Rd ,R). Theorems 2.4-2.6 in Krylov and Priola, [24] then yield the existence of a unique solution to

the PDE:

Ãw(x)+ b′(x)w(x)=�(x), where Ãw(x)=Aw(x)+ σσ ′(x)w′(x), (5.7)

belonging to C2,β
b (Rd ,R) and such that the following Schauder estimate holds:

∃C ≥ 1, ‖w‖2,β ≤C
(
1+ ‖�‖0,β

)
, (5.8)

where ‖ · ‖2,β and ‖ · ‖0,β are the associated norms of the Hölder spaces C2,β
b and C0,β

b defined in (1.7). Indeed, from
(Dp

α ), we get that b′(x)≤−α < 0 and the potential in (5.7) has the good sign. From (5.6) and the Girsanov theorem, we
also get:

v(x)=−
∫ +∞

0
dt E

[
�
(
Ỹ

0,x
t

)
exp

(∫ t

0
b′
(
Ỹ 0,x
s

)
ds

)]
,

where dỸ
0,x
s = (b(Ỹ

0,x
s )+σσ ′(Ỹ 0,x

s )) ds+σ(Ỹ
0,x
s ) dWs . Note that Ỹ has generator Ã. A simple identification procedure,

similar to the proof of Theorem II.1.1 in Bass [5] then gives v =w. The result follows from (5.8). Let us emphasize that
this is a quite deep and involved result for unbounded coefficients.

In the multi-dimensional setting, recalling the technical condition that for all i ∈ �1, d�, j ≥ i, �i,j (x) =
�i,j (xi, . . . , xd), we have that differentiating formally the PDE (2.5) in the space variable xi, i ∈ �1, d� yields that
∂xi ϕ = vi should satisfy:

Ãwi(x)+ ∂xi bi(x)wi(x) = �i(x)−
∑

j∈�1,d�\{i}
∂xi bj (x)vj (x)

− 1

2

∑
j∈�1,i−1�

∂xi�j,j (x)∂xj vj (x)−
∑

j∈�1,i−1�

∑
k∈�j+1,d�\{i}

∂xi�j,k(x)∂xj vk(x), (5.9)
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with �i(x) := ∂xi f (x) and

Ãwi(x) :=Awi(x)+ 1

2
∂xi�i,i(x)∂xiwi(x)+

∑
j∈�1,d�\{i}

∂xi�i,j (x)∂xj wi(x).

We would now like to enter the previous framework of Schauder estimates. To do so, we first observe from (Dp
α ) and

the Cauchy–Schwarz inequality that ∂xi bi(x) ≤−α < 0. Consider now i = 1 in (5.9). From our current assumptions on
f , b and the previous computations on the gradient for the multi-dimensional case, it remains to prove �̃1(x) :=�1(x)−∑

j �=1 ∂x1bj (x)vj (x) ∈ C0,β
b (Rd ,R). This will be the case, once we will have proved that ∇ϕ is β-Hölder continuous,

which is a priori not direct. This property is assumed for the remaining of the proof and shown below. In particular, it
leads to the restriction concerning the variations of σ when d > 1. Hence, Theorems 2.4–2.6 in Krylov and Priola, [24]
still apply and give that there exists a unique solution w1 ∈ C2,β

b (Rd,R) to (5.9) which also satisfies:

∃C ≥ 1,‖w1‖2,β :=
∑

α,|α|∈�0,2�

∥∥Dαw1
∥∥∞ + [

D(2)w1
]
β
≤ C

(
1+ ‖�̃1‖0,β

)=: C̄(
(LV), (R1,β), (UE)

)
. (5.10)

The identification w1 = ∂x1ϕ = v1 is standard. The control (5.10) allows to iterate, since it gives that ∇w1 =
(∂x1v1, . . . , ∂xd v1) = (∂x1,x1ϕ1, . . . , ∂xd ,x1ϕ) is β-Hölder. We thus get by induction, from the specific chosen struc-
ture on σ and by Theorems 2.4-2.6 in Krylov and Priola, [24], that for each i ∈ �1, d� there exists a unique solution
wi ∈ C2,β

b (Rd ,R) to (5.9) such that:

∃C ≥ 1, ‖wi‖2,β ≤C
(
1+ ‖�̃i‖β

)=: C̄(
(LV), (R1,β), (UE)

)
,

�̃i(x) :=�i(x)−
∑

j∈�1,d�\{i}
∂xi bj (x)vj (x)−

1

2

∑
1≤ j < i,

k ∈ �1, d� \ {i}

∂xi�j,k(x)∂xj vk(x).
(5.11)

The Lipschitz property of the mapping x �→ 〈∇ϕ(x), b(x)〉 is eventually derived following the procedure described in
Remark 7. �

Remark 12 (Structure of σ ). We emphasize that the structure condition on σ assumed in Theorem 4 under (CUE) is
mainly technical. It is of course always verified in dimension d = 1. For d > 1 it is motivated by the fact that, differentiat-
ing (2.5) without this assumption yields to consider a system of coupled linear PDEs with growing coefficients for which
the Schauder estimates have not been established yet. Following the existing literature for Schauder estimates for systems
(see e.g. Boccia [8]), we think that the results of Krylov and Priola should extend to this case. This would allow to get rid
of the indicated condition. Here, the condition simply allows to decouple the system.

Let us mention too that the results by Priola [40] could also be a starting point to investigate the smoothness of the
Poisson problem for degenerate kinetic models.

These aspects will concern further research.

Additional Smoothness continued: β-Hölder continuity of the gradient through pathwise analysis. We control here,
under (Dp

α ), p ∈ (1,2] and (R1,β ), β ∈ (0,1], the β-Hölder modulus of continuity of the gradient. We will progressively
see how the restrictions on Dσ come out. For (x, x′) ∈R2d , write for each i ∈ �1, d�:

∣∣∂xi ϕ(x)− ∂xi ϕ
(
x′
)∣∣ = ∣∣∣∣∫ +∞

0

(
E
[〈∇f (

Y
0,x
t

)
, ∂xi Y

0,x
t

〉]−E
[〈∇f (

Y
0,x′
t

)
, ∂xi Y

0,x′
t

〉])
dt

∣∣∣∣
≤

∣∣∣∣∫ +∞
0

([∇f ]βE[∣∣Y 0,x
t − Y

0,x′
t

∣∣β ∣∣∂xi Y 0,x
t

∣∣]+ ‖∇f ‖∞E
[∣∣∂xi Y 0,x

t − ∂xi Y
0,x′
t

∣∣])dt∣∣∣∣
=: (Gβ

1 +G
β

2

)(
x, x′

)
. (5.12)

Let us first deal with the expectation in G
β

1 . Namely, write

E
[∣∣Y 0,x

t − Y
0,x′
t

∣∣β ∣∣∂xi Y 0,x
t

∣∣]≤ E
[∣∣Y 0,x

t − Y
0,x′
t

∣∣p̄β] 1
p̄E

[∣∣∂xi Y 0,x
t

∣∣q̄] 1
q̄ , p̄, q̄ > 1, p̄−1 + q̄−1 = 1.

Take now p̄β = q̄ ⇐⇒ p̄ = 1+β
β

, q̄ = 1+ β which leads to the same integrability constraints on the flows.
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If β + 1≤ p in (Dp
α ), then we readily get similarly to (5.3) that E[|∂xi Y 0,x

t |q̄ ]
1
q̄ ≤ exp(−αt).

If now β + 1 >p, as soon as (D1+β
ᾱ ) holds for some ᾱ > 0, which is actually the case provided that

‖Dσ‖2∞ ≤
2α

1+ β − p
, (5.13)

for q̄ = 1+β , we again get similarly to (5.3) that E[|∂xi Y 0,x
t |q̄ ]

1
q̄ ≤ exp(−ᾱt). On the other hand, the mean value theorem

yields:

E
[∣∣Y 0,x

t − Y
0,x′
t

∣∣p̄β] 1
p̄ ≤ ∣∣x − x′

∣∣βE[∫ 1

0
dλ

∥∥∇Y 0,x′+λ(x−x′)
t

∥∥p̄β] 1
p̄

≤ ∣∣x − x′
∣∣β(∫ 1

0
dλE

[∥∥∇Y 0,x′+λ(x−x′)
t

∥∥p̄β]) 1
p̄

≤ ∣∣x − x′
∣∣β[exp(−αβt)I1+β≤p + exp(−ᾱβt)I1+β>p

]
,

exploiting (5.5) for the last inequality provided that (5.13), which in turn implies that (D1+β
ᾱ ) for some ᾱ > 0, holds if

1+ β > p. Plugging these bounds in (5.12) gives that:

∀(x, x′) ∈ (
R

d
)2
,

∣∣Gβ

1

(
x, x′

)∣∣≤ [∇f ]β
(1+ β)

[
I1+β≤p

α
+ I1+β>p

ᾱ

]∣∣x − x′
∣∣β. (5.14)

We already see that, when 1+ β > p, for the parameter p of the initial confluence condition (Dp
α ), a first constraint on

the variations of σ , namely (5.13) appears.
Let us now turn to G

β

2 . Following the expansion of (5.2) write:

∣∣∂xi Y 0,x
t − ∂xi Y

0,x′
t

∣∣2 = 2
∫ t

0

〈
∂xi Y

0,x
s − ∂xi Y

0,x′
s ,Db

(
Y 0,x
s

)
∂xi Y

0,x
s −Db

(
Y 0,x′
s

)
∂xi Y

0,x′
s

〉
ds

+ 2
d∑

j=1

∫ t

0

〈
∂xi Y

0,x
s − ∂xi Y

0,x′
s ,Dσ·j

(
Y 0,x
s

)
∂xi Y

0,x
s −Dσ·j

(
Y 0,x′
s

)
∂xi Y

0,x′
s

〉
dW

j
s

+
d∑

j=1

∫ t

0

∣∣Dσ·j
(
Y 0,x
s

)
∂xi Y

0,x
s −Dσ·j

(
Y 0,x′
s

)
∂xi Y

0,x′
s

∣∣2 ds.
Let u(t) := E|∂xi Y 0,x

t − ∂xi Y
0,x′
t |2, t ≥ 0. First note that u(0)= 0. Taking now the expectation and interchanging expec-

tation and time integration yields

u(t)=
∫ t

0
E�s ds,

where (�t )t≥0 is a pathwise continuous process clearly determined by the terms inside the above time integrals. One
readily checks that, t �→ E�s is continuous so that u is continuously differentiable and satisfies

u′(t) = 2E
〈
∂xi Y

0,x
t − ∂xi Y

0,x′
t ,Db

(
Y

0,x
t

)
∂xi Y

0,x
t −Db

(
Y

0,x′
t

)
∂xi Y

0,x′
t

〉
+

d∑
j=1

E
∣∣Dσ·j

(
Y

0,x
t

)
∂xi Y

0,x
t −Dσ·j

(
Y

0,x′
t

)
∂xi Y

0,x′
t

∣∣2.
Using the Young inequality for a parameter ε ∈ (0,1], small enough and to be chosen further, we derive:

u′(t) ≤ 2E

[〈
∂xi Y

0,x
t − ∂xi Y

0,x′
t

|∂xi Y 0,x
t − ∂xi Y

0,x′
t | ,Db

(
Y

0,x
t

) ∂xi Y
0,x
t − ∂xi Y

0,x′
t

|∂xi Y 0,x
t − ∂xi Y

0,x′
t |

〉∣∣∂xi Y 0,x
t − ∂xi Y

0,x′
t

∣∣2
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+
∫ t

0

∥∥Db
(
Y

0,x
t

)−Db
(
Y

0,x′
t

)∥∥∣∣∂xi Y 0,x′
t

∣∣∣∣∂xi Y 0,x
t − ∂xi Y

0,x′
t

∣∣]

+E

[
(1+ ε)

d∑
j=1

∣∣∣∣Dσ·j
(
Y

0,x
t

) ∂xi Y
0,x
t − ∂xi Y

0,x′
t

|∂xi Y 0,x
t − ∂xi Y

0,x′
t |

∣∣∣∣2∣∣∂xi Y 0,x
t − ∂xi Y

0,x′
t

∣∣2

+ (
1+ ε−1) d∑

j=1

∥∥Dσ·j
(
Y

0,x
t

)−Dσ·j
(
Y

0,x′
t

)∥∥2∣∣∂xi Y 0,x′
t

∣∣2].
From this computation, the point is now to make the confluence condition (Dp

α ) appear and to separate the components
for which we will exploit the β-Hölder continuity, namely Db, (Dσ·j )j∈�1,n�. To do so we first observe that:

〈
∂xi Y

0,x
t − ∂xi Y

0,x′
t

|∂xi Y 0,x
t − ∂xi Y

0,x′
t |

,Db
(
Y

0,x
t

) ∂xi Y
0,x
t − ∂xi Y

0,x′
t

|∂xi Y 0,x
t − ∂xi Y

0,x′
t |

〉
+ 1

2

d∑
j=1

(∣∣∣∣Dσ·j
(
Y

0,x
t

) ∂xi Y
0,x
t − ∂xi Y

0,x′
t

|∂xi Y 0,x
t − ∂xi Y

0,x′
t |

∣∣∣∣2)

≤−α + (2− p)
1

2
‖Dσ‖2∞ =−α̃,

where we suppose from now on that

−α̃ := −α + (2− p)
1

2
‖Dσ‖2∞ < 0 ⇐⇒ ‖Dσ‖2∞ <

2α

2− p
. (5.15)

Hence,

u′(t) ≤ 2E

[(
−α̃ + ε

2
‖Dσ‖2∞

)∣∣∂xi Y 0,x
t − ∂xi Y

0,x′
t

∣∣2]
+ 2E

[∥∥Db
(
Y

0,x
t

)−Db
(
Y

0,x′
t

)∥∥∣∣∂xi Y 0,x′
t

∣∣∣∣∂xi Y 0,x
t − ∂xi Y

0,x′
t

∣∣]
+E

[(
1+ ε−1) d∑

j=1

∥∥Dσ·j
(
Y

0,x
t

)−Dσ·j
(
Y

0,x′
t

)∥∥2∣∣∂xi Y 0,x′
t

∣∣2].
Using now again the Young inequality, with η ∈ (0,1] small enough, for the middle term of the above r.h.s., we obtain:

u′(t) ≤ 2

(
−α̃+ ε

2
‖Dσ‖2∞ +

η

2

)
E
[∣∣∂xi Y 0,x

t − ∂xi Y
0,x′
t

∣∣2]
+ η−1

E
[∥∥Db

(
Y

0,x
t

)−Db
(
Y

0,x′
t

)∥∥2∣∣∂xi Y 0,x′
t

∣∣2]
+ (

1+ ε−1) d∑
j=1

E
[∥∥Dσ·j

(
Y

0,x
t

)−Dσ·j
(
Y

0,x′
t

)∥∥2∣∣∂xi Y 0,x′
t

∣∣2]
≤ 2

(
−α̃+ ε

2
‖Dσ‖2∞ +

η

2

)
E
[∣∣∂xi Y 0,x

t − ∂xi Y
0,x′
t

∣∣2]
+ η−1[Db]2βE

[∣∣Y 0,x
t − Y

0,x′
t

∣∣2β ∣∣∂xi Y 0,x′
t

∣∣2]+ (
1+ ε−1)[Dσ ]2βE

[∣∣Y 0,x
t − Y

0,x′
t

∣∣2β ∣∣∂xi Y 0,x′
t

∣∣2]. (5.16)

Denote:

−α̃ε,η,σ := −α̃+ ε

2
‖Dσ‖2∞ +

η

2
< 0,

for ε, η small enough. Setting for every t ≥ 0,

r(t) := η−1[Db]2βE
[∣∣Y 0,x

t − Y
0,x′
t

∣∣2β ∣∣∂xi Y 0,x′
t

∣∣2]+ (
1+ ε−1)Dσ ]2βE

[∣∣Y 0,x
t − Y

0,x′
t

∣∣2β ∣∣∂xi Y 0,x′
t

∣∣2],
hence equation (5.16) can be regarded as an ordinary differential inequation:

u′(t)≤−2α̃ε,η,σ u(t)+ r(t), u(0)= 0.
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We derive from the Gronwall lemma that

u(t)= E
[∣∣∂xi Y 0,x

t − ∂xi Y
0,x′
t

∣∣2]≤ exp(−2α̃ε,η,σ t)

∫ t

0
exp(2α̃ε,η,σ s)r(s) ds.

Reproducing as well the computations that led to (5.14), we derive:

u(t) ≤ Cη,ε,β

∣∣x − x′
∣∣2β ∫ t

0
exp

(−2α̃ε,η,σ (t − s)
)(

E
[∣∣∂xi Y 0,x′

s

∣∣2(1+β)] 1
1+β

+
∫ 1

0
dλE

[∥∥∇Y 0,x′+λ(x−x′)
s

∥∥2(1+β)] β
1+β

)
ds.

From the analysis leading to (5.3), (5.5) we now derive:

E
[∣∣∂xi Y 0,x

t − ∂xi Y
0,x′
t

∣∣2]
≤ Cη,ε,β

2

∣∣x − x′
∣∣2β exp(−2α̃ε,η,σ t)

[
exp(2(α̃ε,η,σ − α̃2(1+β))t)

α̃ε,η,σ − α̃2(1+β)
+ exp(2(α̃ε,η,σ − βα̃2(1+β))t)

α̃ε,η,σ − βα̃2(1+β)

]
,

and

−α̃2(1+β) ≤−α+
(
2(1+ β)− p

)1

2
‖Dσ‖2∞.

Thus, α̃2(1+β) < 0 as soon as

‖Dσ‖2∞ <
2α

2(1+ β)− p
, (5.17)

which is precisely the restriction on the variations of σ appearing in (CUE) when d > 1, then α̃2(1+β) > 0 and:

E
[∣∣∂xi Y 0,x

t − ∂xi Y
0,x′
t

∣∣2]≤ C̄η,ε,β

∣∣x − x′
∣∣2β exp(−α̃2(1+β)t).

This last control then gives the expected bound for the β-Hölder modulus of the gradient. Namely, from (5.12), (5.14),

[∂xi ϕ]β <
[∇f ]β
(1+ β)

[
I1+β≤p

α
+ I1+β>p

ᾱ

]
+ ‖∇f ‖∞C̄η,ε,β

α̃2(1+β)
.

5.2. Proof of the practical results of Section 2.3

We first begin with the proof of the

5.2.1. Slutsky like Theorem 6
We keep here for simplicity the generic notation ‖ · ‖ for any admissible matrix norm according to the assumptions of the
theorem. We first write:

P

[√

n

νn(f )− ν(f )√
νn(‖σ‖2)

≥ a

]
= P

[
νn(Aϕ)≥ a√


n

√
νn

(‖σ‖2
)]

. (5.18)

We then proceed similarly to Theorem 8, with an exponential Bienaymé–Tchebychev inequality, for any λ > 0 we have:

P

[√

n

νn(f )− ν(f )√
νn(‖σ‖2)

≥ a

]

≤ E

[
exp

(
− aλ√


n

√
νn

(‖σ‖2
))

exp
(
λνn(Aϕ)

)]
= exp

(
− aλ√


n

√
ν
(‖σ‖2

))
E

[
exp

(
− aλ√


n

[√
νn

(‖σ‖2
)−√

ν
(‖σ‖2

)])
exp

(
λνn(Aϕ)

)]
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= exp

(
− aλ√


n

√
ν
(‖σ‖2

))
E

[
exp

(
− aλ√


n

νn(‖σ‖2)− ν(‖σ‖2)√
νn(‖σ‖2)+√

ν(‖σ‖2)

)
exp

(
λνn(Aϕ)

)]

= exp

(
− aλ√


n

√
ν
(‖σ‖2

))
E

[
exp

(
− aλ√


n

νn(Aϑ)√
νn(‖σ‖2)+√

ν(‖σ‖2)

)
exp

(
λνn(Aϕ)

)]
.

By the Hölder inequality, for p̃, q̃ > 1, such that 1
p̃
+ 1

q̃
= 1:

P

[√

n

νn(f )− ν(f )√
νn(‖σ‖2)

≥ a

]

≤ exp

(
− aλ√


n

√
ν
(‖σ‖2

))[
E exp

(
− ap̃λ√


n

νn(Aϑ)√
νn(‖σ‖2)+√

ν(‖σ‖2)

)]1/p̃[
E exp

(
λq̃νn(Aϕ)

)]1/q̃
.

The proof of Theorem 8 yields:

P

[√

n

νn(f )− ν(f )√
νn(‖σ‖2)

≥ a

]
≤Rn exp

(
− aλ√


n

√
ν
(‖σ‖2

))
exp

(
ρq̃λ2


n

Ãn + ρ3q̃3λ4

(ρ − 1)
n

B̃n

)

×
(
E exp

(
− ap̃λ√


n

νn(Aϑ)√
νn(‖σ‖2)+√

ν(‖σ‖2)

))1/p̃

, (5.19)

where we recall from identity (4.5):

Ãn = q[ϕ]21ν(‖σ‖2)

2
+ en and B̃n = q3[ϕ]41

4

(
q̄‖σ‖2∞[ϑ]21

2
+ ēn

)
.

Also, Rn→
n

1 denotes a “generic” remainder. Observe that thanks to the bounds of Theorem 4 (stated in the above

Lemma 6), we get:

Ãn ≤ q[f ]21ν(‖σ‖2)

2α
+ en. (5.20)

Let us now handle the remainder [E exp(− ap̃λ√

n

νn(Aϑ)√
νn(‖σ‖2)+

√
ν(‖σ‖2)

)]1/p̃ :

[
E exp

(
− ap̃λ√


n

νn(Aϑ)√
νn(‖σ‖2)+√

ν(‖σ‖2)

)]1/p̃

=
[
E

(
exp

[
− ap̃λ√


n

νn(Aϑ)√
νn(‖σ‖2)+√

ν(‖σ‖2)

)
(1νn(Aϑ)≥0 + 1νn(Aϑ)<0))

]1/p̃

≤
([

E exp

(
ap̃2λ√


n

νn(Aϑ)√
ν(‖σ‖2)

)]1/p̃

P
[
νn(Aϑ)≥ 0

]1/q̃

+
[
E exp

(
−ap̃2λ√


n

νn(Aϑ)√
ν(‖σ‖2)

)]1/p̃

P
[
νn(Aϑ) < 0

]1/q̃
)1/p̃

.

Let us mention that we introduced the above partition in order to get a sharper constant in the final inequality, 1 below
instead of 2, which would follow getting rid of the indicator functions. Now, by Theorem 2 we easily get:

E

[
exp

(
− ap̃λ√


n

νn(Aϑ)√
νn(‖σ‖2)+√

ν(‖σ‖2)

)]1/p̃

≤Rn exp

(
a2p̃2


nν(‖σ‖2)

λ2


n

(‖σ‖2∞‖∇ϑ‖2∞
2

+ en

))[
P
[
νn(Aϑ)≥ 0

]1/q̃ + P
[
νn(Aϑ) < 0

]1/q̃]1/p̃
. (5.21)
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We choose p̃ := p̃(n)→+∞, such that p̃2a2


n
→ 0, and so (P[νn(Aϑ) ≥ 0]1/q̃ + P[νn(Aϑ) < 0]1/q̃ )1/p̃ ≤ 21/p̃ → 1.

Moreover, exploiting again that for the Gaussian regime, p̃2a2


n
→ 0, we obtain by (5.19) and (5.21):

P

[√

n

νn(f )− ν(f )√
νn(‖σ‖2)

≥ a

]
≤Rn exp

(
− aλ√


n

√
ν
(‖σ‖2

))
exp

(
ρq̃λ2


n

(Ãn + en)+ ρ3q̃3λ4

(ρ − 1)
n

B̃n

)
. (5.22)

From identity (5.22), the optimization over λ is similar to the one performed in the proof of Theorem 8. This yields the
deviation bound (2.10). The non-asymptotic confidence interval in (2.11) is derived as for Theorem 5 from the gradient
bounds of Theorem 4 and (2.10).

5.3. Regularization of Lipschitz sources

We assume here that assumptions (C2), (LV), (UE) are in force. We suppose as well that the following smoothness holds
for b, σ :

(Rb,σ ) Regularity and Structure. We assume that there exists β ∈ (0,1) such that b, σ in (1.1) belong to C1,β(Rd ,Rd) and
C1,β
b (Rd,Rd ⊗R

d) respectively. Also, for each (i, j) ∈ �1, d�2, �i,j (x)=�i,j (xi∧j , . . . , xd).
Importantly, we are interested, under assumptions (C2), (LV), (UE), (Rb,σ ), in giving controls for the estimation of

ν(f ) when the source f is simply Lipschitz continuous. This is indeed the natural framework for the source which can
be handled through functional inequality techniques, see [9,30].

To comply with our previous framework, namely to exploit the smoothness result of Theorem 4 under (CUE), we need
to regularize the source. Let η be a mollifier (i.e. a non-negative compactly supported function such that

∫
Rd η(x)dx = 1).

Define for δ > 0, ηδ(x)= 1
δd
η( x

δ
). We regularize f introducing fδ := f  ηδ where  stands for the convolution on R

d .
From usual estimates, we obtain:

∃Cη > 0,∀x ∈Rd,
∣∣fδ(x)− f (x)

∣∣≤ Cηδ[f ]1,
∀β ∈ (0,1), [∇fδ]β ≤ Cη[f ]1δ−β.

(5.23)

We emphasize here that we will choose β later in order to be compatible with a certain range of step sequences. We
assume for simplicity that θ ∈ (1/3,1] (no bias). Recall that we want to investigate:

P
[√


n

(
νn(f )− ν(f )

)≥ a
]= P

[(
νn(fδ)− ν(fδ)

)+Rn,δ(f )≥ a√

n

]
,

Rn,δ(f ) :=
[(
νn(f )− ν(f )

)− (
νn(fδ)− ν(fδ)

)]
.

(5.24)

From (5.23), one readily gets:∣∣Rn,δ(f )
∣∣≤ 2Cηδ[f ]1. (5.25)

On the other hand, the coefficients b, σ and the source fδ satisfy assumption (R1,β ) (observe indeed that the mollified
function fδ ∈ C1,β(Rd ,R)). Hence, Theorem 4 yields that there exists a unique solution ϕδ ∈C3,β(Rd ,R) to the equation:

Aϕδ = fδ − ν(fδ). (5.26)

Observe from the proof of Theorem 4 under (CUE) (see equations (5.4) and (5.11)) and (5.23) that:

‖∇ϕδ‖∞ ≤ α−1[f ]1, ∀β ∈ (0,1),∃Cβ > 0,∀i ∈ {1,2},[
ϕ
(i)
δ

]
1 ≤Cβ

(
1+ ‖∇fδ‖Cβ

)≤ Cβδ
−β,

[
ϕ
(3)
δ

]
β
≤ Cβδ

−β,[〈∇ϕδ, b〉]1 ≤ Cβδ
−β.

(5.27)

Now, from (5.26) the deviation in (5.24) rewrites:

P
[√


n

(
νn(f )− ν(f )

)≥ a
]= P

[
νn(Aϕδ)+Rn,δ(f )≥ a√


n

]
. (5.28)
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From (5.25), the term Rn,δ(f ) can be seen as a remainder as soon as a√

n
 2Cηδ[f ]1 ≥ |Rn,δ(f )|. On the other hand,

the deviations of νn(Aϕδ) can be analyzed as above, reproducing the proofs of Theorems 2 and 8, replacing the bounds
on ([ϕ(i)]1)i∈{1,2}, [ϕ(3)]β appearing therein by those of equation (5.27). Precisely, we get from (5.25), similarly to (3.18)
(replacing the controls on ϕ by those on ϕδ in the proofs of Lemmas 3 and 5):

P

[∣∣νn(Aϕδ)+Rn,δ(f )
∣∣≥ a√


n

]
≤ 2

[
E exp

(
−qλn


n

Mn

)] 1
q

exp

(
− aλn√


n

(
1−
√

n2Cη[f ]1δ

a

))

× exp

(
λ2
n

2
np
+ p(aδn)

2

2

)
exp

(3pC2
V,ϕλ

2
n

cV 
2
n

+ cV

p

)(
I 1
V

) 1
2p

× exp

(
Cδ

3.14
pλ2

n(

(2)
n )2


2
n

)(
I 1
V

) 1
4p × exp

(
Cδ

3.15
pλ2

n(

(2)
n )2


2
n

)(
I 1
V

) 1
4p , (5.29)

where Cδ
3.15 := Cβδ

−2β (C
√
CV )2

cV
and Cδ

3.14 :=
‖σ‖4∞C2

βδ
−2β

4
CV

cV
precisely correspond to the modifications of the constants

C3.15 = 2 (C
√
CV )2

cV
with C = 1

2 (‖∇ϕ‖∞[b]1+ [〈∇ϕ,b〉]1) and C3.14 = ‖σ‖
4∞[ϕ(2)]21

4
CV

cV
introduced in the proof of Lemma 5

when replacing ‖D2ϕ‖∞ by ‖D2ϕδ‖∞ ≤ Cβδ
−β and [〈∇ϕ,b〉]1 ≤ C by [〈∇ϕδ, b〉]1 ≤Cβδ

−βC. Similarly,

aδn :=
[ϕ(3)

δ ]β‖σ‖(3+β)∞ E[|U1|3+β ]
(1+ β)(2+ β)(3+ β)



(

3+β
2 )

n√

n

≤ Cβδ
−β‖σ‖(3+β)∞ E[|U1|3+β ]

(1+ β)(2+ β)(3+ β)



(

3+β
2 )

n√

n

,

is obtained from the definition of an in Lemma 3 replacing [ϕ(3)]β by [ϕ(3)
δ ]β . From the above equation and Lemma 2 we

get similarly to (3.18):

P

[∣∣νn(f )− ν(f )
∣∣≥ a√


n

]
= P

[∣∣νn(Aϕδ)+Rn,δ(f )
∣∣≥ a√


n

]

≤ 2
(
I 1
V

) 1
p exp

(
cV

p
+ p(aδn)

2

2

)
exp

(
− a2

2q‖σ‖2∞‖∇ϕδ‖2∞

(
1−
√

n4Cη[f ]1δ

a

− 1

q‖σ‖2∞‖∇ϕδ‖2∞

{
p


n

(6C2
V,ϕ

cV
+ 2

[
Cδ

3.14 +Cδ
3.15

](

(2)
n

)2
)
+ 1

p

}))
,

where Cη > 0 is defined in (5.23). The Young inequality yields that for any εn > 0:

P

[∣∣νn(f )− ν(f )
∣∣≥ a√


n

]

≤ 2
(
I 1
V

) 1
p exp

(
cV

p
+ p(aδn)

2

2
+ ε−1

n 
nδ
2
)

exp

(
− a2

2q‖σ‖2∞‖∇ϕδ‖2∞

×
(

1− 1

q‖σ‖2∞‖∇ϕδ‖2∞

{
2εnC

2
η[f ]21 +

p


n

(6C2
V,ϕ

cV
+ 2

[
Cδ

3.14 +Cδ
3.15

](

(2)
n

)2
)
+ 1

p

}
︸ ︷︷ ︸

=:dδn

))
. (5.30)

We now want to let p := p(n)→
n
+∞, εn→

n
0 so that the associated contributions in the above equation can be viewed

as remainders. From the previous definitions of Cδ
3.15, Cδ

3.14, we see that, to achieve this goal, two constraints need to be
fulfilled: namely, we must choose δ, p such that

ε−1
n 
nδ

2→
n

0 and p
(
aδn

)2→
n

0.
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If θ ∈ (1/2,1] there exists β ∈ (0,1) such that 

(

3+β
2 )

n ≤ C. In that case: aδn ≤ C√

n

δ−β = 

−( 1

2 (1−β)−βε)
n →

n
0 for δ =



−( 1

2+ε)
n and ε <

1−β
2β . Taking p := p(n) = 


( 1
2 (1−β)−βε)

n yields p(aδn)
2 →

n
0. On the other hand, εn = 
−εn also yields

ε−1
n 
nδ

2 = 
−εn →n 0.

For θ ∈ (1/3,1/2), 

(

3+β
2 )

n diverges for any β ∈ (0,1), we then have 

(

3+β
2 )

n√

n
≤ Cn

1
2−θ(1+ β

2 ). Hence, there exists β ∈
(0,1) such that 


(
3+β

2 )

n√

n
≤ Cn

1
2−θ(1+ β

2 )→
n

0. However, taking δ = 

−( 1

2+ε)
n , which seems to be an almost “necessary”

choice to satisfy the first constraint ε−1
n 
nδ

2→
n

0, yields:

aδn � δ−β 

(

3+β
2 )

n√

n

� n(1+β)(
1
2−θ)+εβ(1−θ)→

n
+∞,

so that the second constraint cannot be fulfilled. This means that the regularization induces a constraint on the time steps
which must not be too large. In other words, under the sole Lipschitz assumption on the source f , the fastest convergence
regime is out of reach.

Summing up the previous computations, we complete the proof of Theorem 7.

6. Applications

6.1. Non-asymptotic deviation bounds in the almost sure CLT

Let (Un)n≥1 be an i.i.d sequence of centered d-dimensional random variables with unit covariance matrix. We define the
sequence of normalized partial sums by Z0 = 0 and

Zn :=
∑n

k=1 Uk√
n

, n≥ 1.

The almost sure Central Limit Theorem (denoted from now on a.s. CLT) describes how the weighted sum of the renor-
malized sums Zn which appear in the usual asymptotic CLT, behaves viewed as a random measure. Precisely, it states
that setting for k ≥ 1, γk = 1/k:

νZn :=
1


n

n∑
k=1

γkδZk

w, a.s.−→
n

G, G(dx) := exp

(
−|x|

2

2

)
dx

(2π)d/2
. (6.1)

The above convergence had been established in [25], as a by-product of their results concerning the approximation of
invariant distributions, under the minimal moment condition Ui ∈ L2(P), thus weakening the initial assumptions by
Brosamler and Schatte (see [11] and [42]). The underlying idea is to use a reformulation of the dynamics of (Zn)n≥0 in
terms of a discretization scheme appearing as a perturbation of (S). One indeed easily checks that, for n≥ 0:

Zn+1 =Zn − γn+1

2
Zn +√γn+1Un+1 + rnZn, rn :=

√
1− 1

n+ 1
− 1+ 1

2(n+ 1)
=O

(
1

n2

)
. (6.2)

Thus, the sequence (Zn)n≥0 appears as a perturbed Euler scheme with decreasing step γn = 1
n

of the Ornstein–Uhlenbeck
process dXt =− 1

2Xt dt + dWt whose invariant distribution is G. Then the regular Euler scheme

Xn+1 =Xn − γn+1

2
Xn +√γn+1Un+1, (6.3)

satisfies (1.3) with ν = G. The a.s. weak convergence (6.1) established in [25] follows as a consequence of the (fast
enough) convergence of Zn towards Xn as n goes to infinity.

Moreover, this rate is fast enough to guarantee that the sequence νZn satisfies the conclusion of Theorem 1 point (a)

(when γn = 1
n
,


(2)
n√

n
→
n

0), i.e. its convergence rate is ruled by a CLT at rate
√

log(n). In fact this holds under a lower

moment assumption U1 ∈ L3(P).



Non-asymptotic Gaussian estimates for ergodic approximations 1599

Let us mention that the convergence rates related to the a.s. CLT had already been investigated by several authors.
Let us quote among relevant works, Csörgő and Horváth [13], for real valued i.i.d. random variables, Chaâbane and
Maâouia [12], who investigate the convergence rate of the strong quadratic law of large numbers for some extensions
to vector-valued martingales, and Heck [19], for large deviation results. As an application of our previous results, we
will derive some new non-asymptotic Gaussian deviation bounds for the a.s. CLT, when the involved random variables
(Un)n≥1 satisfy (GC). We insist here that the sub-Gaussianity of the innovations is crucial to get a non-asymptotic
Gaussian deviation bound. The result readily extends to the wider class of innovations satisfying the general sub-Gaussian
exponential deviation inequality (1.4). Also, we slightly weaken the regularity assumptions needed on the function f in
[25] for the associated a.s. CLT to hold.

6.1.1. Non-asymptotic deviation bounds
Theorem 9. Assume the innovation sequence (Un)n≥1 satisfies (GC) and let f be a Lipschitz continuous function such
that G(f )= ∫

Rd f (x)G(dx)= 0. Then, there exist two explicit monotonic sequences cn ≤ 1≤ Cn, n≥ 1, with limn Cn =
limn cn = 1 such that for all a > 0 and n≥ 1:

P
[√

log(n)+ 1
∣∣νZn (f )∣∣≥ a

]≤ 2Cn exp

(
−cn a2

2‖∇ϕ‖2∞

)
, (6.4)

where ϕ denotes the solution of the Poisson equation:

∀x ∈Rd,
1

2
�ϕ(x)− 1

2
x · ∇ϕ(x)= f (x), (6.5)

which, under the current assumptions, is unique and belongs to W 2
p,loc(R

d ,R), for any p > 1, with ‖∇ϕ‖∞ ≤ 2[f ]1.

Proof. For (Zn)n≥0 as in (6.2), and (Xn)n≥0 as in (6.3) we introduce:

�n := Zn −Xn.

With the definition of νZn in (6.1), write νZn (f )= 1

n

∑n
k=1 γkf (Zk−1). We also have similarly νXn (f ) := 1


n

∑n
k=1 γk ×

f (Xk−1). For any λ > 0, we derive similarly to (3.9) (see as well (5.29)) and with the notations of (5.24):

P
[√


n

∣∣νZn (f )∣∣≥ a
]

= P

[√

n

∣∣∣∣∣ 1


n

n∑
k=1

γk
(
f (Zk−1)− f (Xk−1)

)+ νXn (f )

∣∣∣∣∣≥ a

]

≤ P

[√

n

∣∣∣∣∣ 1


n

n∑
k=1

γk
(
f (Zk−1)− f (Xk−1)

)+ νXn (Aϕδ)+Rn,δ(f )

∣∣∣∣∣≥ a

]

≤ 2 exp

(
− λa√


n

(
1− 2

√

nCη[f ]1δ

a

))(
E exp

(
p̄[f ]1λν�n

(| · |))) 1
p̄

(
E exp

(
−qq̄λ


n

Mn

)) 1
qq̄

×
(
E exp

(
2pq̄λ


n

(|Ln| + |Ḡn|
))) 1

2pq̄
(
E exp

(
4pq̄λ


n

|D2,b,n|
)) 1

4pq̄
(
E exp

(
4pq̄λ


n

|D2,�,n|
)) 1

4pq̄

(6.6)

for q̄, q ∈ (1,+∞), p̄ = q̄
q̄−1 , p = q

q−1 . Also, ϕδ corresponds to the solution of the Poisson equation (6.5) obtained

replacing f by its mollified version fδ . Now, we need the following lemma to control ν�n (| · |) := 1

n

∑n
k=1 γk|�k−1|.

Lemma 7. There is a non-negative constant C6.7 such that for any λ > 0:

E exp
(
λν�n

(| · |))= E exp

(
λ


n

n∑
k=1

γk|�k−1|
)
≤ exp

(
C6.7λE[|U1|]
( 3

2 )
n


n

+ C2
6.7λ

2

(3)
n

2
2
n

)
. (6.7)

For clarity, we postpone the proof to the end of the current section.
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On the other hand, from Section 5.3 we have that ϕδ ∈ C3,β(Rd,R) for any β ∈ (0,1). We derive from (6.6), (6.7)

similarly to the proof of Theorem 7 by setting λ̄n := a
√

n

qq̄‖∇ϕ‖2∞
, recalling that ‖∇ϕ‖∞ = ‖∇ϕδ‖∞:

P
[√


n

∣∣νZn (f )∣∣≥ a
] ≤ 2 exp

(
− a2

2qq̄‖∇ϕδ‖2∞

(
1− 4

√

nCη[f ]1δ

a

))
exp

(
C6.7λ̄n[f ]1E[|U1|]
( 3

2 )
n


n

)

× exp

(
C2

6.7p̄[f ]21λ̄2
n


(3)
n

2
2
n

)(
I 1
V

) 1
pq̄ exp

(
cV

pq̄
+ p(aδn)

2

2q̄

)

× exp

(
λ̄2
n

(
pq̄

(3C2
V,ϕ

cV 
2
n

+ [
Cδ

3.14 +Cδ
3.15

] (
(2)
n )2


2
n

)
+ 1

2pq̄

))

≤ 2
(
I 1
V

) 1
pq̄ exp

(
cV

pq̄
+ p(aδn)

2

2q̄
+ ε−1

n 
nδ
2
)

× exp

(
− a2

2qq̄‖∇ϕ‖2∞

(
1− dδ

n −
p̄

qq̄‖∇ϕ‖2∞
[f ]21C2

6.7(

(3)
n +E[|U1|]2(
( 3

2 )
n )2)


n

))
,

for εn > 0 and dδ
n as in (5.30). Choose again (pn)n≥1 and δ as in Section 5.3 so that qn→

n
1, dδ

n→n 0 with the indicated

monotonicity for n large enough. We can now take p̄ := p̄n→
n
+∞ such that p̄


n
→
n

0. The above inequality then gives

the result up to a direct modification of the sequences (Cn)n≥1, (cn)n≥1. �

Proof of Lemma 7. The definition of �n implies:

�n+1 =�n

(
1− γn+1

2

)
+ rnZn,

where we recall from (6.2) that rn :=
√

1− 1
n+1 − 1+ 1

2(n+1) = O( 1
n2 ). In particular, there exists C̄1 > 0 such that for

each n≥ 1,

|rn| ≤ C̄1

n2
. (6.8)

Setting now ρ0 = 1 and for n≥ 1:

ρn :=
[

n∏
k=1

(
1− γk

2

)]−1

=
n∏

k=1

2k

2k− 1
,

a direct induction on �n yields:

�n = 1

ρn

n∑
k=1

rkρkZk = 1

ρn

n∑
k=1

rkρk

(
k∑

l=1

Ul√
k

)
= 1

ρn

n∑
l=1

(
n∑

k=l

rkρk√
k

)
Ul. (6.9)

Also, from the Wallis formula ρn ∼n

√
πn, which implies that there exists C̄2 ≥ 1 such that for each n≥ 1:

C̄−1
2

√
n≤ ρn ≤ C̄2

√
n. (6.10)

We now get from (6.9) and the Fubini theorem:


nν
�
n

(| · |)= n∑
k=1

γk|�k−1| ≤
n∑

k=1

γk

ρk−1

k−1∑
l=1

(
k−1∑
m=l

|rm|ρm√
m

)
|Ul | =

n−1∑
l=1

[
n∑

k=l+1

γk

ρk−1

(
k−1∑
m=l

|rm|ρm√
m

)]
|Ul |. (6.11)

Combining (6.8) and (6.10), we get that there exist constants C̄3, C̄4 > 0 such that for each k ∈ �l + 1, n�.

γk

ρk−1

k−1∑
m=l

|rm|ρm√
m
≤ C̄3

k3/2l
,

n∑
k=l+1

γk

ρk−1

k−1∑
m=l

|rm|ρm√
m
≤ C̄4

l3/2
. (6.12)
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Plugging this inequality in (6.11), we derive:

ν�n
(| · |)≤ 1


n

n−1∑
l=1

[
n∑

k=l+1

γk

ρk−1

k−1∑
m=l

|rm|ρm√
m

]
|Ul | ≤ C̄4


n

n−1∑
l=1

|Ul |
l3/2

. (6.13)

For any λ > 0, equation (6.13) and the Gaussian concentration property (GC) of the innovation entail:

E exp
(
λν�n

(| · |)) ≤ n−1∏
k=1

E exp

(
C̄4λ


nk
3
2

|Uk|
)
≤

n−1∏
k=1

exp

(
C̄4λ


nk
3
2

E
[|U1|

]+ 1

2

(
C̄4λ


nk
3
2

)2)

= exp

(
C̄4λE[|U1|]
( 3

2 )
n


n

+ C̄2
4λ

2

(3)
n

2
2
n

)
.

This completes the proof. �

6.2. Numerical results

We present in this section numerical results associated with the computation of the empirical measure νn illustrating our
previous theorems.

6.2.1. Sub-Gaussian tails
We first consider d = r = 1. Also, for simplicity, the innovations (Ui)i≥1 and X0 are Bernoulli variables with P(U1 =
−1)= P(U1 =−1)= 1

2 . We illustrate here Theorem 2 taking b(x)=− x
2 , and σ(x)= cos(x) in (1.1). This is a (weakly)

hypoelliptic example. Indeed, setting for x ∈R, X1(x)= cos(x)∂x and X0(x)=− x
2 ∂x , we have span{X1, [X1,X0]} =R.

We choose as well to compute νn(Aϕ) for ϕ(x)= x + ε cos(x) for ε = 0.01, and ϕ(x)= cos(x). The function ϕ is here
given. The assumptions of Theorems 3 and 8 (for the coboundary condition on ~σ~2−ν(~σ~2)) follow from Theorem 18
in Rotschild and Stein [41] (up to the introduction of a suitable partition of unity). From Theorem 2, for steps of the form
(γk)k≥1 = (k−θ )k≥1, θ ∈ [1/3,1] (corresponding to β = 1 in Theorem 2), the function

a ∈R+ �→ gn,θ (a) :=
{

log(P[|√
nνn(Aϕ)| ≥ a]), θ ∈ (1/3,1],
log(P[|√
nνn(Aϕ)+ (Bn,1 −E1

n)| ≥ a]), θ = 1/3,

is such that for a > an := an(θ) where for θ ∈ (1/3,1], an(θ)= 0 and for θ = 1/3, an(θ)= [ϕ
(3)]β‖σ‖(3+β)∞ E[|U1|3+β ]
(1+β)(2+β)(3+β)



(

3+β
2 )

n√

n

:

gn,θ (a)≤−cn (a − an)
2

2‖σ‖2∞‖∇ϕ‖2∞
+ log(2Cn).

We plot in Figure 1 the curves of gn,θ for θ varying as θj = 1
3 + (1− 1

3 )
j
5 , for j ∈ �1,5�, ϕ(x) = x + ε cos(x) and in

Figure 2 the curve of gn,θ for θ = θ0 = 1
3 and ϕ(x)= cos(x). The simulations have been performed for n= 5× 104 in

Figure 1, n= 5× 106 in Figure 2, and the probability estimated by Monte Carlo simulation for MC = 104 realizations
of the random variable |√
nνn(Aϕ)| in the unbiased case and in the biased case of the random variable |√
nνn(Aϕ)+
(Bn,1 − E1

n)
M |, where (Bn,1 − E1

n)
M is obtained from Bn,1 − E1

n replacing the integral over [0,1], that needs to be
evaluated at every time step, by a quantization of the uniform law on [0,1] with M = 10 points. We refer to [18] or [32]
for details on quantization. We point out that this is one drawback that appears to obtain the fastest convergence rate, the
bias needs to be estimated and therefore the function ϕ in some sense known (since the approximation of the bias requires
to compute its derivatives). The corresponding 95% confidence intervals have size at most of order 0.016. To compare

with, we also introduce the functions Sn,θ (a) := − (a−an(θ))2

2‖σ‖2∞‖∇ϕ‖2∞
, Sn,θ,c(a) := − (a−an(θ))2

2νnc (σ 2)‖∇ϕ‖2∞
, Sn,θ,A(a) := − (a−an(θ))2

2νnc (|σ∇ϕ|2)
and the optimal concentration P(λmin)(n, θ, a,ρ), obtained in Remark 11, optimizing numerically in ρ. The quantities
νnc (σ

2), νnc (|σ∇ϕ|2) in the previous expressions actually correspond to the numerical estimation, for nc = 104 and
(γ c

k )k≥1 = (k−θc )k≥1 with θc = 1
3 +10−3, of ν(σ 2), ν(|σ∇ϕ|2) appearing respectively in the sharper concentration bound

of Theorem 8 when σ 2 − ν(σ 2) is a coboundary and in the asymptotic Theorem 1. In the unbiased case of Figure 1, we
plot the maximum in j of the (Sn,θj )j∈�1,5�, (Sn,θj ,c)j∈�1,5�, (Sn,θj ,A)j∈�1,5�, (P (λmin)(n, θj , a, ρ))j∈�1,5� corresponding
to j = 1. The associated curves are denoted by Sn, Sn,c , Sn,A and P(λmin)(n).
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Fig. 1. Unbiased Case. Plot of a �→ gn,θ (a), for (θk)k∈�1,5� , with ϕ(x)= x + ε cos(x), ε = 0.01.

Fig. 2. Biased Case. Plot of a �→ gn,θ (a), for θ0 = 1
3 , with ϕ(x)= σ(x)= cos(x).

Figures 1 and 2 correspond to the unbiased and biased cases respectively. In the unbiased case, we observe that the
curves almost overlay, the optimal deviation rate P(λmin) is very close to the empirical data. It is also below the numerical
estimation of the asymptotic threshold given by Sn,θ,A which is, for our considered example, almost indistinguishable
from the coboundary Sn,θ,c (indeed, since ε = 0.01, ‖∇ϕ‖2∞ ≤ 1 + ε2 and ν(σ 2)‖∇ϕ‖2∞ " ν(|σ∇ϕ|2)) and far below
from the bounds of Sn,θ . In the biased case, P(λmin) stays very close to the theoretical asymptotic bound given by Sn,θ,A

up to a certain deviation level a, namely for a ∈ [0,0.5]. It then remains the best bound provided by our results. In
this example, the improvement associated with Sn,θ,c is also notable. It is precisely because the source term has a more
oscillating gradient that we have also considered a larger running time, corresponding to n= 106, for the empirical curves.
For this choice, we see relatively good agreement w.r.t. to the asymptotic deviation bounds of Sn,θ0,A.

Figures 3 and 4 thus illustrate that the explicit optimal rate of Remark 11 seems rather appropriate to capture the
deviations of the empirical random measures.

We eventually plot below the deviation curves with source ϕ(x) = cos(x) adding a last curve obtained replacing in
the formula for P(λmin) of Remark 11 the ‖∇ϕ‖2∞ν(σ 2) by ν(|σ∇ϕ|2). For practical purposes, this last quantity is again
estimated numerically with the same previous parameters. Even if the analysis of Theorem 8 cannot be extended to justify
such a choice, the empirical evidence is rather striking.
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Fig. 3. Plot of a �→ gn,θ (a), for (θk)k∈�1,5� , with ϕ(x)= σ(x)= cos(x).

6.2.2. Slutsky like result
In this paragraph, we illustrate our results from Theorem 6, which can be viewed as an extension of the usual Slustky’s
Lemma to our current framework, for a multidimensional process, precisely for r = d = 2 in the case β ∈ (0,1). In
order to converge as fast as possible without bias, we take θ = 1

2+β + 1
1000 . We also choose a model which satisfies the

assumptions of Theorem 4 under (CUE) and Lemma 6. We consider:

f (x)= |x|
1+β

1+ |x|β , b(x)=
(−4x1 + 6x2
−5x1 − 5x2

)
, σσ ∗(x)=

(
cos(x1+x2)

2 + 1 sin(x1) sin(x2)
4

sin(x1) sin(x2)
4 1− sin(x2)

2

)
.

Remark that the non-degeneracy condition (UE) is fulfilled by � = σσ ∗, as well as the condition set in Theorem 4 under
(CUE), �i,j (x)=�i,j (xi, . . . , xd), for all 1≤ i ≤ j ≤ d . Furthermore, from the Cholesky decomposition, we write:

σ(x)=
⎛⎜⎝
√

cos(x1+x2)
2 + 1 0

sin(x1) sin(x2)

4
√

cos(x1+x2)
2 +1

√
− sin(x1)

2 sin(x2)
2

16(
cos(x1+x2)

2 +1)
+ 1− sin(x2)

2

⎞⎟⎠ .

Let us check that (Dp
α ) is satisfied. Firstly, remark that Db+Db∗

2 is a constant matrix whose eigenvalues are {−
√

2+9
2 ,

√
2−9
2 }.

Direct computations yield that, for all x ∈Rd , ξ ∈Rd :〈
Db(x)+Db(x)∗

2
ξ, ξ

〉
+ 1

2

r∑
j=1

∣∣Dσ·j (x)ξ
∣∣2 ≤−3.085|ξ |2.

It can be checked similarly that the condition ‖Dσ‖2∞ ≤ 2α
2(1+β)−p is satisfied for α = 3.085 and β = 0.5 which we

consider below. Also, the condition (R1,β ) clearly holds. In other words, all assumptions of Theorem 6 are in force. We
set for the following plot:

gσn (a)= logP
[√


n|νn(f )| ≥ a
]
, Sσ (a)=− a2α2

2[f ]21
,

with α = 3.085, and [f ]1 = 1.
Unlike in the previous simulations, we do not know here the value of ν(f ). In fact, in Section 6.2.1 we had chosen

to compute the deviation of Aϕ from 0= ν(Aϕ). Here, we estimate from the ergodic theorem ν(f ), taking β = 0.5, by
νnc (f )≈ 0.71308 for nc = 5 · 105. Running MC = 102 samples, we find that the size of the associated 95% confidence
interval is 3.208 · 10−4. Finally, the simulations are performed for n = 5 × 104, and the probability is calculated by
Monte Carlo algorithm for MC = 103 realizations. The maximum size of the associated 95% confidence interval is
4.75054 · 10−5. The innovations are Gaussian random variables.
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Fig. 4. Plot of a �→ gn(a) with f (x)= |x|β
1+|x|β , β = 0.5.

In Figure 4, we observe that the curve Sσ stays above gσn as proved in Theorem 6. However, remark that the graphs
are quite spaced. This can be explained, among other things, by the difference between ν(‖σ‖2)

[f ]1
α

and the asymptotic
variance ν(|σ ∗∇ϕ|2). Furthermore we have represented Sσ which is a kind of asymptotic version of P(λmin(n)) in the
previous plots.
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