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Abstract. We study the critical behavior of the component sizes for the configuration model when the tail of the degree distribution
of a randomly chosen vertex is a regularly-varying function with exponent τ − 1, where τ ∈ (3,4). The component sizes are shown
to be of the order n(τ−2)/(τ−1)L(n)−1 for some slowly-varying function L(·). We show that the re-scaled ordered component sizes
converge in distribution to the ordered excursions of a thinned Lévy process. This proves that the scaling limits for the component
sizes for these heavy-tailed configuration models are in a different universality class compared to the Erdős–Rényi random graphs.
Also the joint re-scaled vector of ordered component sizes and their surplus edges is shown to have a distributional limit under a strong
topology. Our proof resolves a conjecture by Joseph (Ann. Appl. Probab. 24 (2014) 2560–2594) about the scaling limits of uniform
simple graphs with i.i.d. degrees in the critical window, and sheds light on the relation between the scaling limits obtained by Joseph
and in this paper, which appear to be quite different. Further, we use percolation to study the evolution of the component sizes and
the surplus edges within the critical scaling window, which is shown to converge in finite dimension to the augmented multiplicative
coalescent process introduced by Bhamidi et al. (Probab. Theory Related Fields 160 (2014) 733–796). The main results of this paper
are proved under rather general assumptions on the vertex degrees. We also discuss how these assumptions are satisfied by some of the
frameworks that have been studied previously.

Résumé. Nous étudions le comportement critique des tailles des composantes du modèle de configuration lorsque la queue de la loi du
degré d’un sommet choisi uniformément au hasard est une fonction à variation régulière d’exposant τ −1, où τ ∈ (3,4). Nous montrons
que les tailles des composantes sont d’ordre n(τ−2)/(τ−1)L(n)−1 où L(·) est une fonction à variation lente. Nous montrons également
que les tailles des composantes, une fois ordonnées et remises à l’échelle, convergent en loi vers les longueurs ordonnées des excursions
d’un processus de Lévy raréfié. Ceci montre que les limites d’échelle des tailles des composantes pour ces modèles de configuration à
queue lourde sont dans une classe d’universalité différente des graphes aléatoires d’Erdős–Rényi. De plus nous montrons que le vecteur
de ces tailles de composantes remises à l’échelle et de leurs excès respectifs convergent en loi pour une topologie forte. Notre approche
résout une conjecture de Joseph (Ann. Appl. Probab. 24 (2014) 2560–2594) sur les limites d’échelle de graphes simples uniformes à
degrés i.i.d. dans la fenêtre critique, et met en lumière les relations entre les limites d’échelle obtenues par Joseph et celles considérées
dans cet article, qui se révèlent très différentes. Par ailleurs, nous utilisons un modèle de percolation pour étudier l’évolution des tailles
des composantes et des arêtes en excès à l’intérieur de la fenêtre critique, dont nous montrons qu’elle converge au sens des marginales
de dimension finie vers le coalescent multiplicatif augmenté introduit par Bhamidi et al. (Probab. Theory Related Fields 160 (2014)
733–796). Les résultats principaux de cet article sont montrés sous des hypothèses assez générales sur les degrés des sommets, et nous
discutons des situations déjà considérées où ces hypothèses sont vérifiées.
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1. Introduction

Most random graph models posses a phase-transition property: there is a model-dependent parameter θ and a critical
value θc such that whenever θ > θc, the largest component of the graph contains a positive proportion of vertices with
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high probability (w.h.p.) and when θ ≤ θc, the largest component is of smaller order than the size of the graph w.h.p.
The random graph is called critical when θ = θc. The study of critical random graphs started in the 1990s with the
works of Bollobás [18], Łuczak [37], Janson et al. [31] and Aldous [4] for Erdős–Rényi random graphs. A large body of
subsequent work in [9,10,14,22,33,40,41,47] showed that the behavior of a wide array of random graphs at criticality is
universal in the sense that certain graph properties do not depend on the precise description of the model. One of these
universal features is that the scaling limit of the large component sizes, for many graph models, is identical to that of the
Erdős–Rényi random graphs. All these universality results are obtained under the common assumption that the degree
distribution is light-tailed, i.e., the asymptotic degree distribution has sufficiently large moments. For critical configuration
models, a finite third-moment condition proves to be crucial [22]. However, empirical studies of real-world networks from
various fields including physics, biology, computer science [3,7,24,35,43,44] show that the degree distribution is often
heavy-tailed and of power-law type. A first work towards understanding the critical behavior in the heavy-tailed network
models is [15], which showed that, for rank-one inhomogeneous random graphs, when the weight distribution follows a
power-law with exponent τ ∈ (3,4), the component sizes and the scaling limits turn out to be quite different from that of
the Erdős–Rényi random graph. This revealed an entirely new universality class for the phase transition of heavy-tailed
random graphs. In this paper, we study the configuration model with heavy-tailed power-law degrees. The configuration
model is the canonical model for generating a random multi-graph with a prescribed degree sequence. This model was
introduced by Bollobás [17] to generate a uniform simple d-regular graph on n vertices, when dn is even. The idea
was later generalized to general degree sequences by Molloy and Reed [39] and others. We will denote the multi-graph
generated by the configuration model on the vertex set [n] = {1, . . . , n} with the degree sequence d by CMn(d). The
configuration model, conditioned on simplicity, yields a uniform simple graph with the same degree sequence, which
explains its popularity.

Our main contribution. Let Dn be the degree of a uniformly chosen vertex, independently of the random graph CMn(d).
The main goal of this paper is to obtain various asymptotic results for the component sizes of CMn(d) when P(Dn ≥ k) ∼
L0(k)/kτ−1 for some τ ∈ (3,4) and L0(·) a slowly-varying function (here ∼ denotes an unspecified approximation that
will be defined in more detail below). In fact, under a general set of assumptions (see Assumptions 1 and 2), we prove the
following:

(1) The largest connected components are of the order n(τ−2)/(τ−1)L(n)−1 and the width of the scaling window is of the
order n(τ−3)/(τ−1)L(n)−2 for some slowly-varying function L(·).

(2) The joint distribution of the re-scaled component sizes and the surplus edges converges in distribution to a suitable
limiting random vector in a strong topology. It turns out that the scaling limits for the re-scaled ordered component
sizes can be described in terms of the ordered excursions of a certain thinned Lévy process that only depends on the
asymptotics of the high-degree vertices, which is also the case in [15]. Further, the scaling limits for the surplus edges
can be described by Poisson random variables with the parameters being the areas under the excursions of the thinned
Lévy process.

(3) The results hold conditioned on the graph being simple, thus solving [33, Conjecture 8.5] in this case.
(4) The scaling limits also hold for the graphs obtained by performing critical percolation on a supercritical graph. The

percolation clusters can be coupled in a natural way using the Harris coupling. This enables us to study the evolution
of the component sizes and the surplus edges as a dynamic process in the critical window. The evolution of the
component sizes and surplus edges is shown to converge to a version of the augmented multiplicative coalescent
process that was first introduced in [10]. In fact, our results imply that there exists a version of the augmented
multiplicative coalescent process whose one-dimensional distribution can be described by the excursions of a thinned
Lévy process and a Poisson process with the intensity being proportional to the thinned Lévy process, which is also
novel.

Thus, this paper provides a detailed understanding about the critical component sizes and surplus edges for the heavy-
tailed graphs in the critical window. Before stating our main results precisely, we introduce some notation and concepts.

1.1. The model

Consider n vertices labeled by [n] := {1,2, . . . , n} and a non-increasing sequence of degrees d = (di)i∈[n] such that �n =∑
i∈[n] di is even. For notational convenience, we suppress the dependence of the degree sequence on n. The configuration

model on n vertices having degree sequence d is constructed as follows:

Equip vertex j with dj stubs, or half-edges. Two half-edges create an edge once they are paired. Thus, an edge is a pair
of half-edges. Initially we have �n =∑i∈[n] di unpaired half-edges. Pick any one half-edge and pair it with a uniformly
chosen half-edge from the remaining unpaired half-edges and keep repeating the above procedure until all the unpaired
half-edges are exhausted.
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Note that the graph constructed by the above procedure may contain self-loops or multiple edges. It can be shown that
conditionally on CMn(d) being simple, the law of such graphs is uniform over all possible simple graphs with degree
sequence d [45, Proposition 7.13]. It was further shown in [29] that, under very general assumptions, the asymptotic
probability of the graph being simple is positive.

1.2. Definition and notation

We use the standard notation of
P−→, and

d−→ to denote convergence in probability and in distribution, respectively. The
topology needed for the convergence in distribution will always be specified unless it is clear from the context. We often
use the Bachmann–Landau notation O(·), o(·) for large n asymptotics of real numbers. The notation An ∼ Bn will be
used to say that An/Bn → 1. We say that a sequence of events (En)n≥1 occurs with high probability (w.h.p.) with respect
to the probability measures (Pn)n≥1 when Pn(En) → 1. Define fn = OP(gn) when (|fn|/|gn|)n≥1 is tight; fn = oP(gn)

when fn/gn
P−→ 0 w.h.p.; fn = �P(gn) if both fn = OP(gn) and gn = OP(fn). For a random variable X and a distribution

F , we write X ∼ F to denote that X has distribution F . Denote

�
p
↓ :=

{
x = (x1, x2, x3, . . .) : x1 ≥ x2 ≥ x3 ≥ · · · and

∞∑
i=1

x
p
i < ∞

}
(1.1)

with the p-norm metric d(x,y) = (
∑∞

i=1 |xi − yi |p)1/p . Let �2↓ × N
∞ denote the product topology of �2↓ and N

∞ with
N

∞ denoting the sequences on N endowed with the product topology. Define also

U↓ :=
{(

(xi, yi)
)∞
i=1 ∈ �2↓ ×N

∞ :
∞∑
i=1

xiyi < ∞ and yi = 0 whenever xi = 0 ∀i

}
(1.2)

with the metric

dU
(
(x1,y1), (x2,y2)

) :=
( ∞∑

i=1

(x1i − x2i )
2

)1/2

+
∞∑
i=1

|x1iy1i − x2iy2i |. (1.3)

Further, let U0↓ ⊂U↓ be given by

U
0↓ := {((xi, yi)

)∞
i=1 ∈U↓ : if xk = xm, k ≤ m, then yk ≥ ym

}
. (1.4)

Let (U0↓)k denote the k-fold product space of U0↓. For any z ∈ U↓, ord(z) will denote the element of U
0↓ obtained by

suitably ordering the coordinates of z.
We often use the boldface notation X for the process (X(s))s≥0, unless stated otherwise. D[I,E] will denote the space

of càdlàg functions from an interval I to the metric space E = (E,d) equipped with the Skorohod J1-topology. Consider a
decreasing sequence θ = (θ1, θ2, . . .) ∈ �3↓ \ �2↓. Denote Ii (s) := 1{ξi≤s} where ξi ∼ Exp(θi/μ) independently, and Exp(r)

denotes the exponential distribution with rate r . Consider the process

S̄λ∞(t) =
∞∑
i=1

θi

(
Ii (t) − (θi/μ)t

)+ λt, (1.5)

for some λ ∈ R, μ > 0, and define the reflected version of S̄λ∞(t) by

refl
(
S̄λ∞(t)

)= S̄λ∞(t) − min
0≤u≤t

S̄λ∞(u). (1.6)

The process of the form (1.5) was termed thinned Lévy processes in [15] (see also [2,48]), since the summands are
thinned versions of Poisson processes. For any function f ∈D[0,∞), define

¯
f (x) = infy≤x f (y). D+[0,∞) is the subset

of D[0,∞) consisting of functions with positive jumps only. Note that
¯
f is continuous when f ∈D+[0,∞). An excursion

of a function f ∈ D+[0, T ] is an interval (l, r) such that

min
{
f (l−), f (l)

}=
¯
f (l) =

¯
f (r) = min

{
f (r−), f (r)

}
and f (x) >

¯
f (r), ∀x ∈ (l, r) ⊂ [0, T ]. (1.7)
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Excursions of a function f ∈ D+[0,∞) are defined similarly. We will use γ to denote an excursion, as well as the length
of the excursion γ , to simplify notation.

Also, define the counting process N to be the Poisson process that has intensity refl(S̄λ∞(t)) at time t conditionally on
(S̄λ∞(u))u≤t . Formally, N is characterized as the counting process for which

N(t) −
∫ t

0
refl
(
S̄λ∞(u)

)
du (1.8)

is a martingale. We use the notation N(γ ) to denote the number of marks in the interval γ .
Finally, we define a Markov process (Z(s))s∈R on D(R,U0↓), called the augmented multiplicative coalescent (AMC)

process. Think of a collection of particles in a system with X(s) describing their masses and Y(s) describing an additional
attribute at time s. Let K1,K2 > 0 be constants. The evolution of the system takes place according to the following rule
at time s:

� For i �= j , at rate K1Xi(s)Xj (s), the ith and j th components merge and create a new component of mass Xi(s)+Xj(s)

and attribute Yi(s) + Yj (s).
� For any i ≥ 1, at rate K2X

2
i (s), Yi(s) increases to Yi(s) + 1.

Of course, at each event time, the indices are re-organized to give a proper element of U0↓. This process was first introduced
in [10] to study the joint behavior of the component sizes and the surplus edges over the critical window. In [10], the
authors extensively study the properties of the standard version of AMC, i.e., the case K1 = 1, K2 = 1/2 and showed in
[10, Theorem 3.1] that this is a (nearly) Feller process, a property that will play a crucial rule in the final part of this paper.

Remark 1. Notice that the summation term in (1.5), after replacing θi by μθi , is of the form

V θ (s) = μα
∞∑
i=1

(
θi1{ξi≤s} − θ2

i s
)
, (1.9)

where ξi ∼ Exp(θi) independently over i and θ ∈ �3↓ \�2↓. Therefore, by [5, Lemma 1], the process refl(S̄λ∞) has no infinite
excursions almost surely and only finitely many excursions of length at least δ, for any δ > 0.

1.3. Main results for critical configuration models

Throughout this paper we will use the shorthand notation

α = 1/(τ − 1), ρ = (τ − 2)/(τ − 1), η = (τ − 3)/(τ − 1), (1.10a)

an = nαL(n), bn = nρ
(
L(n)

)−1
, cn = nη

(
L(n)

)−2
, (1.10b)

where τ ∈ (3,4) and L(·) is a slowly-varying function. We state our results under the following assumptions:

Assumption 1. Fix τ ∈ (3,4). Let d = (d1, . . . , dn) be a degree sequence such that the following conditions hold:

(i) (High-degree vertices) For any fixed i ≥ 1,

di

an

→ θi, (1.11)

where θ = (θ1, θ2, . . .) ∈ �3↓ \ �2↓.
(ii) (Moment assumptions) Let Dn denote the degree of a vertex chosen uniformly at random from [n], independently of

CMn(d). Then, Dn
d−→ D, for some integer-valued random variable D and

1

n

∑
i∈[n]

di → μ := E[D], 1

n

∑
i∈[n]

d2
i → E

[
D2], lim

K→∞ lim sup
n→∞

a−3
n

n∑
i=K+1

d3
i = 0. (1.12)

(iii) (Critical window) For some λ ∈ R,

νn(λ) :=
∑

i∈[n] di(di − 1)∑
i∈[n] di

= 1 + λc−1
n + o

(
c−1
n

)
. (1.13)
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(iv) Let n1 be the number of vertices of degree-one. Then n1 = �(n), which is equivalent to assuming that
P(D = 1) > 0.

Note that Assumption 1(i)–(ii) implies lim infn→∞ E[D3
n] = ∞. The following three results hold for any CMn(d)

satisfying Assumption 1:

Theorem 1. Consider CMn(d) with the degrees satisfying Assumption 1. Denote the ith-largest cluster of CMn(d) by
C(i). Then,

(
b−1
n |C(i)|

)
i≥1

d−→ (
γi(λ)

)
i≥1, (1.14)

with respect to the �2↓-topology where γi(λ) is the length of the ith largest excursion of the process S̄λ∞, while bn and the
constants λ, μ are defined in (1.10b) and Assumption 1.

Theorem 2. Consider CMn(d) with the degrees satisfying Assumption 1. Let SP(C(i)) denote the number of surplus
edges in C(i) and Zn := ord(b−1

n |C(i)|,SP(C(i)))i≥1, Z := ord(γi(λ),N(γi(λ)))i≥1. Then, as n → ∞,

Zn
d−→ Z (1.15)

with respect to the U
0↓ topology, where N is defined in (1.8).

Theorem 3. The results in Theorem 1 and Theorem 2 also hold for CMn(d) conditioned on simplicity.

Remark 2. The only previous work to understand the critical behavior of the configuration model with heavy-tailed
degrees was by Joseph [33] where the degrees were assumed to be an i.i.d. sample from an exact power-law distribution
and the results were obtained for the component sizes of CMn(d) (as in Theorem 1). We will see that Assumption 1 is
satisfied for i.i.d. degrees in Section 2.2. Thus, a quenched version (conditional on the degrees) of [33, Theorem 8.3]
follows from our results. Further, if the degrees are chosen approximately as the weights chosen in [15], then our results
continue to hold. This sheds light on the relation between the scaling limits in [15] and [33] (see Remark 11). Moreover,
Theorem 3 resolves [33, Conjecture 8.5].

Remark 3. The conclusions of Theorems 1, 2, and 3 hold for more general functionals of the components. Suppose
that each vertex i has a weight wi associated to it and let Wi denote the total weight of the component C(i), i.e., Wi =∑

k∈C(i)
wk . Then, under some regularity conditions on the weight sequence w = (wi)i∈[n], in Section 8 we will show that

the scaling limit for Zw
n := ord(b−1

n Wi ,SP(C(i)))i≥1 is given by Z = ord(κγi(λ),N(γi(λ)))i≥1, where the constant κ is
given by κ = limn→∞

∑
i∈[n] diwi/

∑
i∈[n] di . Observe that, for wi = 1{di=k}, Wi gives the asymptotic number of vertices

of degree k in the ith largest component.

Remark 4. It might not be immediate why we should work with Assumption 1. We will see in Section 2.1 that Assump-
tion 1 is satisfied by the degree sequences in some important and natural cases. The reason to write the assumptions in
this form is to make the properties of the degree distribution explicit (e.g. in terms of moment conditions and the asymp-
totics of the highest degrees) that jointly lead to this universal critical limiting behavior. We explain the significance of
Assumption 1 in more detail in Section 3.

1.4. Percolation on heavy-tailed configuration models

Percolation refers to deleting each edge of a graph independently with probability 1 − p. Consider percolation on a
configuration model CMn(d) under the following assumptions:

Assumption 2.

(i) Assumption 1(i), and (ii) hold for the degree sequence and CMn(d) is super-critical, i.e.,

νn =
∑

i∈[n] di(di − 1)∑
i∈[n] di

→ ν = E[D(D − 1)]
E[D] > 1. (1.16)
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(ii) (Critical window for percolation) The percolation parameter pn satisfies

pn = pn(λ) := 1

νn

(
1 + λc−1

n + o
(
c−1
n

))
for some λ ∈ R. (1.17)

Let CMn(d,pn(λ)) denote the graph obtained through percolation on CMn(d) with bond retention probability pn(λ).
The following result gives the asymptotics for the ordered component sizes and the surplus edges for CMn(d,pn(λ)):

Theorem 4. Consider CMn(d,pn(λ)) satisfying Assumption 2. Let S̃λ∞ denote the process in (1.5) with θi replaced by
θi/

√
ν, let C

p

(i) denote the ith largest component of CMn(d,pn) and let Zp
n (λ) := ord(b−1

n |C p

(i)|,SP(C
p

(i)))i≥1, Zp(λ) :=
ord((ν1/2γ̃i (λ),N(γ̃i(λ)))i≥1, where γ̃i (λ) is the largest excursion of S̃λ∞. Then, for any λ ∈ R, as n → ∞,

Zp
n (λ)

d−→ Zp(λ) (1.18)

with respect to the U
0↓ topology.

Now, consider a graph CMn(d) satisfying Assumption 2(i). To any edge (ij) between vertices i and j (if any), associate
an independent uniform[0,1] random variable U(ij). Note that the graph obtained by keeping only those edges satisfying
U(ij) ≤ pn(λ) is distributed as CMn(d,pn(λ)). This construction naturally couples the graphs (CMn(d,pn(λ)))λ∈R using
the same set of uniform random variables. This is known as the Harris coupling. Our next result shows that the evolution of
the component sizes and the surplus edges of CMn(d,pn(λ)), as λ varies, can be described by a version of the augmented
multiplicative coalescent process described in Section 1.2:

Theorem 5. Suppose that Assumption 2 holds, and �n/n = μ + o(n−ζ ) for some η < ζ < 1/2. Fix any k ≥ 1, −∞ <

λ1 < · · · < λk < ∞. Then, there exists a version AMC = (AMC(λ))λ∈R of the augmented multiplicative coalescent such
that, as n → ∞,

(
Zp

n (λ1), . . . ,Zp
n (λk)

) d−→ (
AMC(λ1), . . . ,AMC(λk)

)
(1.19)

with respect to the (U0↓)k topology, where at each λ, AMC(λ) is distributed as the limiting object in (1.18).

Remark 5. Theorem 5 also holds when E[D3
n] → E[D3] < ∞ with α = η = 1/3, ρ = 2/3 and L(n) = 1. This improves

[22, Theorem 3.7], which was proved only for the cluster sizes.

Remark 6. Theorem 5, in fact, shows that there exists a version of the AMC process whose distribution at each fixed λ

can be described by the excursions of a thinned Lévy process and an associated Poisson process. This did not appear in
[10,20], since the scaling limits in those settings were described in terms of the excursions of a Brownian motion with
negative parabolic drift.

Remark 7. The additional assumption in Theorem 5 about the asymtotics �n/n is required only in one place for Propo-
sition 24 and the rest of the proof works under Assumption 2 only. That is why we have separated this assumption from
the set of conditions in Assumption 2. It is worthwhile mentioning that the condition is minor, e.g., we will see that this
condition is satisfied under the two widely studied set ups in Section 2.1.

Remark 8. As we will see in Section 10, the proof of Theorem 5 can be extended to more general functionals of the
components. For example, the evolution of the number of degree k vertices along with the surplus edges can also be
described by an AMC process. The key idea here is that these component functionals become approximately proportional
to the component sizes in the critical window and thus the scaling limit for the component functionals becomes a constant
multiple of the scaling limit for the component sizes.

2. Important examples

2.1. Power-law degrees with small perturbation

As discussed in the introduction, our main goal is to obtain results for the critical configuration model with P(Dn ≥ k) ∼
L0(k)k−(τ−1) for some τ ∈ (3,4). Here, we consider such an example and show that the conditions of Assumption 1 are
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satisfied. Thus, the results in Section 1.3 hold for CMn(d) in the following set-up that is closely related to the model
studied in [15] for rank-1 inhomogeneous random graphs.

Fix τ ∈ (3,4). Suppose that F is the distribution function of a discrete non-negative random variable D such that

G(x) = 1 − F(x) = CF L0(x)

xτ−1
, (2.1)

where L0(·) is a slowly-varying function so that the tail of the distribution is decaying like a regularly-varying function.
Recall that the inverse of a locally bounded non-increasing function f :R→ R is defined as f −1(x) := inf{y : f (y) ≤ x}.
Therefore, using [16, Theorem 1.5.12],

G−1(x) = C
1/(τ−1)
F L(1/x)

x1/(τ−1)

(
1 + o(1)

)
as x → 0, (2.2)

where L(·) is another slowly-varying function. Note that [16, Theorem 1.5.12] is stated for positive exponents only. Since
our exponent is negative, the asymptotics in (2.2) holds for x → 0. Suppose that the random variable D is such that

ν = E[D(D − 1)]
E[D] = 1. (2.3)

Define the degree sequence dλ by taking the degree of the ith vertex to be

di = di(λ) := G−1(i/n) + δi,n(λ), (2.4)

where the δi,n(λ)’s are non-negative integers satisfying the asymptotic equivalence

δi,n(λ) ∼ λG−1(i/n)c−1
n , as n → ∞. (2.5)

The δi,n(λ)’s are chosen in such a way that Assumption 1(iv) is satisfied. Fix any K ≥ 1. Notice that (2.2) and (2.5) imply
that, for all large enough n (independently of K), the first K largest degrees (di)i∈[K] satisfy

di =
(

nαCα
F L(n/i)

iα

)(
1 + λc−1

n + o
(
c−1
n

))
. (2.6)

Therefore, dλ satisfies Assumption 1(i) with θi = (CF /i)α . The next two lemmas verify Assumption 1(ii), (iii):

Lemma 6. The degree sequence dλ defined in (2.4) satisfies Assumption 1(ii).

Proof. Note that, by (2.6), d2
1 = o(n). Also, since G−1 is non-increasing

∫ 1

0
G−1(x)dx − d1

n
≤ 1

n

∑
i∈[n]

G−1(i/n) ≤
∫ 1

0
G−1(x)dx. (2.7)

Therefore,

1

n

∑
i∈[n]

di = 1

n

∑
i∈[n]

G−1(i/n)
(
1 + O

(
c−1
n

))= ∫ 1

0
G−1(x)dx + O(d1/n) + O

(
c−1
n

)= E[D] + O
(
b−1
n

)
. (2.8)

Similarly,
∑

i∈[n] d2
i = nE[D2] + O(d2

1 ) = nE[D2] + o(n). To prove the condition involving the third-moment, we use
Potter’s theorem [16, Theorem 1.5.6]. First note that 3α − 1 = (4 − τ)/(τ − 1) > 0 since τ ∈ (3,4). Fix 0 < δ < α − 1/3
and A > 1 and choose C = C(δ,A) such that for all i ≤ nC−1, L(n/i)/L(n) < Aiδ . Therefore, (2.2) implies

a−3
n

∑
i>K

d3
i ≤ A

∑
i>K

i−3α+3δ + sup1≤x≤C L(x)3

L(n)3

∑
i>nC−1

i−3α. (2.9)

From our choice of δ, −3α + 3δ < −1 and therefore
∑

i≥1 i−3α+3δ < ∞. By [16, Lemma 1.3.2], sup1≤x≤C L(x)3 < ∞.
Moreover,

∑
i>nC−1 i−3α = O(n1−3α) and 1 − 3α < 0. Thus, the proof follows by first taking n → ∞ and then K →

∞. �
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Lemma 7. The degree sequence dλ defined in (2.4) satisfies Assumption 1(iii), i.e., there exists λ0 ∈R such that

νn(λ) = 1 + (λ + λ0)c
−1
n + o

(
c−1
n

)
. (2.10)

Proof. Firstly, Lemma 6 guarantees the convergence of the second moment of the degree sequence. However, (2.10) is
more about obtaining sharper asymptotics for νn(λ). We use similar arguments as in [15, Lemma 2.2]. Denote νn := νn(0).
Note that νn(λ) = νn(1 + λc−1

n ) + o(c−1
n ), so it is enough to verify that

νn = 1 + λ0c
−1
n + o

(
c−1
n

)
. (2.11)

Consider di(0) as given in (2.4) with λ = 0. Lemma 6 implies

νn =
∑

i∈[n] di(0)2

nE[D] − 1 + o
(
c−1
n

)
. (2.12)

Fix any K ≥ 1. We have

∫ 1

K/n

G−1(u)2 du − d2
K

n
≤ 1

n

n∑
i=K+1

d2
i ≤

∫ 1

K/n

G−1(u)2 du. (2.13)

Now by (2.4), d2
K/n = �(K−2αL(n/K)2n−η). Therefore,

ν − νn = 1

E[D]

(
K∑

i=1

∫ i/n

(i−1)/n

G−1(u)2 du − 1

n

K∑
i=1

d2
i

)
+ O

(
K−2αL(n/K)2n−η

)
. (2.14)

Again, using (2.4),

1

n

K∑
i=1

d2
i = n−η

K∑
i=1

(
CF

i

)2α

L(n/i)2 + o
(
c−1
n

)= c−1
n

K∑
i=1

(
CF

i

)2α

+ ε(cn,K), (2.15)

where the last equality follows using the fact that L(·) is a slowly-varying function. Note that the error term ε(cn,K) in
(2.15) satisfies limn→∞ cnε(cn,K) = 0 for each fixed K ≥ 1. Again,

K∑
i=1

∫ i/n

(i−1)/n

G−1(u)2 du = n−η

K∑
i=1

∫ i

i−1

(
CF

u

)2α

L(n/u)2 du + o
(
c−1
n

)

= c−1
n

K∑
i=1

∫ i

i−1

(
CF

u

)2α

du + ε′(cn,K), (2.16)

where limn→∞ cnε
′(cn,K) = 0 for each fixed K ≥ 1. Thus combining (2.14), (2.15), and (2.16) and first letting n → ∞

and then K → ∞, we get

lim
n→∞ cn(νn − ν) = λ0, (2.17)

where

λ0 = − C2α
F

E[D]
∞∑
i=1

(∫ i

i−1
u−2α du − i−2α

)
. (2.18)

Using Euler–Maclaurin summation [26, page 333] it can be seen that λ0 is finite which completes the proof. �

Remark 9. Note that if we add approximately cnc−1
n (c > 0 is a constant) ones in the degree sequence given in (2.4), then

we end up with another configuration model for which limn→∞ cn(νn − ν) = ζ ′ with ζ > ζ ′. Similarly, deleting cnc−1
n

ones from the degree sequence increases the new ζ value. This gives an obvious way to perturb the degree sequence in
such a way that the configuration model is in different locations within the critical scaling window. In our proofs, we will
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only use the precise asymptotics of the high-degree vertices. Thus, a small (suitable) perturbation in the degrees of the
low-degree vertices does not change the scaling behavior fundamentally, except for a change in the location inside the
scaling window.

Remark 10. If ν in (2.3) is larger than one, then the degree sequence satisfies Assumption 2. Therefore, the results for
critical percolation also hold in this setting. (2.8) implies that the additional assumption in Theorem 5 is also satisfied.

2.2. Random degrees sampled from a power-law distribution

We now consider the set-up discussed in [33]. Let �1, . . . ,�n be i.i.d. samples from a distribution F , where F is defined
in (2.1). Therefore, the asymptotic relation in (2.2) holds. Consider the random degree sequence d where di = �(i),
�(i) being the ith order statistic of (�1, . . . ,�n). We show that d satisfies Assumption 1 almost surely under a suitable
coupling. We use a coupling from [19, Section 13.6]. Let (E1,E2, . . .) be an i.i.d. sequence of unit rate exponential
random variables and let �i :=∑i

j=1 Ej . Let

d̄i = G−1(�i/�n+1). (2.19)

It can be checked that (d1, . . . , dn)
d= (d̄1, . . . , d̄n) and therefore we will ignore the bar in the subsequent notation. Note

that, by the strong law of large numbers, �n+1/n
a.s.−→ 1. Thus, for each fixed i ≥ 1, �n+1/(n�i)

a.s.−→ 1/�i . Using (2.2),
we see that d satisfies Assumption 1(i) almost surely under this coupling with θi = (CF /�i)

α . To see that θ ∈ �3↓ \ �2↓
almost surely, we need to show that

P

( ∞∑
i=1

�−3α
i < ∞

)
= 1, P

( ∞∑
i=1

�−2α
i = ∞

)
= 1. (2.20)

(2.20) follows easily from the observations 2α < 1 < 3α and �i/i
a.s.−→ 1 as i → ∞.

Next, the first two conditions of Assumption 1(ii) are trivially satisfied by d almost surely using the strong law of large
numbers. To see the third condition, using (2.20), and �n+1/n

a.s.−→ 1, we can use arguments identical to (2.9) to show that
limK→∞ lim supn→∞ a−3

n

∑
i>K d3

i = 0 on the event {∑∞
i=1 �−3α

i < ∞} ∩ {�n+1/n → 1}. Thus, we have shown that the
third condition of Assumption 1(ii) holds almost surely.

To see Assumption 1(iii), an argument similar to Lemma 7 can be carried out to prove that

lim
n→∞ cn(νn − ν)

a.s.−→ �0, (2.21)

where

�0 := − C2α
F

E[D]
∞∑
i=1

(∫ �i

�i−1

u−2α du − �−2α
i

)
. (2.22)

Therefore, the results in Section 1.3 hold conditionally on the degree sequence if we assume the degrees to be an i.i.d.
sample from a distribution of the form (2.1). For the percolation results, notice that the additional condition in Theorem 5
is a direct consequence of the convergence rates of sums of i.i.d. sequence of random variables [34, Corollary 3.22].

Remark 11. Let us recall the limiting object obtained in [33, Theorem 8.1] and compare this with the limiting object
S̄�0∞ , defined in (1.5) with θi = (CF /�i)

α and �0 given by (2.22). We will prove an analogue of [33, Theorem 8.1]
in Theorem 8. Although we use a different exploration process from [33], the fact that the component sizes are huge
compared to the number of cycles in a component, one can prove Theorem 8 for the exploration process in [33] also. This
will indirectly imply that Joseph’s limiting object obeys the law of S̄�0∞ , averaged out over the �-values. This is counter
intuitive, given the vastly different descriptions of the two processes; for example our process does not have independent
increments. We do not have a direct way to prove the above mentioned claim.

3. Discussion

Assumptions on the degree distribution. Let us now briefly explain the significance of Assumption 1. Unlike the finite
third-moment case [22], the high-degree vertices dictate the scaling limit in Theorem 1 and therefore it is essential to
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fix their asymptotics through Assumption 1(i). Assumption 1(iii) defines the critical window of the phase transition
and Assumption 1(iv) is reminiscent of the fact that a configuration model with negligibly small amount of degree-one
vertices is always supercritical. Assumption 1(ii) states the finiteness of the first two moments of the degree distribution
and fixes the asymptotic order of the third-moment. The order of the third-moment is crucial in our case. The derivation
of the scaling limits for the components sizes is based on the analysis of a walk which encodes the information about
the component sizes in terms of the excursions above its past minima [4,14,15,22,41]. Now, the increment distribution
turns out to be the size-biased distribution with the sizes being the degrees. Therefore, the third-moment assumption
controls the variance of the increment distribution. Another viewpoint is that the components can be locally approximated
by a branching process Xn with the variance of the same order as the third moment of the degree distribution. Thus
Assumption 1(ii) controls the order of the survival probability of Xn, which is intimately related to the asymptotic size of
the largest components.

Connecting the barely subcritical and supercritical regimes. The barely subcritical (supercritical) regime corresponds to
the case when νn(λn) = 1 + λnc

−1
n for some λn → −∞ (λn → ∞) and λn = o(cn). Janson [27] showed that the size

of the kth largest cluster for a subcritical configuration model (i.e., the case νn → ν and ν < 1) is dk/(1 − ν) (see [27,
Remark 1.4]). In [11], we show that this is indeed the case for the entire barely subcritical regime, i.e., the size of the
kth largest cluster is dk/(1 − νn(λn)) = �(bn|λn|−1). In the barely supercritical case, the giant component can be locally
approximated by a branching process Xn having variance of the order a3

n/n and the size of the giant component is of
the order nρn, where ρn is the survival probability of Xn [46]. The asymptotic size of the giant component turns out to
be �(bn|λn|). Therefore, the fact that the sizes of the maximal components in the critical scaling window are �(bn) for
λn = �(1) proves a continuous phase transition property for the configuration model within the whole critical regime.

Percolation. The main reason to study percolation in this paper is to understand the evolution of the component sizes and
the surplus edges over the critical window in Theorem 5. It turns out that a precise characterization of the evolution of the
percolation clusters is necessary to understand the minimal spanning tree of the giant component with i.i.d. continuous
weights on each edge [1]. Also, since the percolated configuration model is again a configuration model [25,28], the
natural way to study the evolution of the clusters sizes of configuration models over the critical window is through
percolation.

Universality. The limiting object in Theorem 1 is identical to that in [15, Theorem 1.1] for rank-one inhomogeneous
random graphs. Thus, CMn(d) with regularly-varying tails lies in the domain of attraction of the new universality class
studied in [15]. This is again confirming the predictions made by statistical physicists that the nature of the phase transition
does not depend on the precise details of the model. Our scaling limit fits into the general class of limits predicted in [5].
In the notation of [5, (6)], the scaling limits CMn(d), under Assumption 1, give rise to the case κ = 0. To understand
this, let us discuss some existing works. In [4,6,14,22,33], the limiting component sizes are described by the excursions
of a Brownian motion with a parabolic drift. All these models have a common property: if the component sizes in the
barely subcritical regime are viewed as masses then (i) these masses merge as approximate multiplicative coalescents in
the critical window, and (ii) each individual mass is negligible/“dust” compared to the sum of squares of the masses in
the barely subcritical regime. Indeed, (ii) has been established in [4, (10)], [6, (4)]. In the case of [15] and this paper, the
barely subcritical component sizes do not become negligible due to the existence of the high-degree vertices (see [15,
Theorem 1.3]). As discussed in [5, Section 1.4], these large barely subcritical clusters can be thought of as nuclei, not
interacting with each other and “sweeping up the smaller clusters in such a way that the relative masses converge”. It
will be fascinating to find a class of random graphs, used to model real-life networks, that has both the nuclei and a good
amount of dust in the barely subcritical regime, so that the scaling limits predicted by [5] can be observed in complete
generality.

Component sizes and the width of the critical window. We have already discussed how the width of the scaling window
and the order of the maximal degrees should lead the asymptotic size of the components to be of the order bn. For the finite
third-moment case, the size of the largest component is of the order n2/3 � bn. We do not have an intuitive explanation to
explain the reduced sizes of the components except for the fact that a similar property is true for the survival probability of
a slightly supercritical branching process. The width of the critical window decreases by a factor of L(n)−2 as compared
to [15] if the size of the high-degree vertices increases by a factor of L(n) (see (1.10b)). Indeed, an increase in the degrees
of the high-degree vertices is expected to start the merging of the barely subcritical nuclei earlier, resulting in an increase
in the width of the critical window. The fact that the width decreases by a factor of L(n)−2 comes out of our calculations.

Open problems.

(i) A natural question is to study what the component sizes, viewed as metric spaces, look like. Recently, [13] studied
this problem for rank-1 inhomogeneous random graphs for heavy-tailed weights. In [11,12], we show that the metric
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space structure of CMn(d) is in the same universality class of the rank-one inhomogeneous model, as shown in [13].
This is the first step in understanding the minimal spanning tree problem (see [1]) for CMn(d).

(ii) As discussed in Section 2.2 (see Remark 11), it will be interesting to get a direct proof of the fact that the limiting
object in [33, Theorem 8.1] is obtained by averaging the distribution of S�0∞ over the collections (�i)i≥1.

(iii) We have only shown the finite-dimensional convergence in Theorem 5. It is an open question to obtain a suitable
tightness criterion that would imply the process level convergence of the vector of component sizes and surplus
edges over the whole critical window.

Overview of the proofs. The proofs of Theorems 1 and 2 consist of two important steps. First, we define an exploration
algorithm on the graph that explores one edge of the graph at each step. The algorithm produces a walk, that we call
exploration process, that encodes the information about the number of edges in the explored components in terms of
the hitting times to its past minima. In Section 4, the exploration process, suitably rescaled, is shown to converge. The
surplus edges in the components are asymptotically negligible compared to the component sizes; these two facts together
give us the finite-dimensional scaling limit of the re-scaled component sizes. The proof of Theorem 1 follows from the
asymptotics of the susceptibility function in Section 5. The joint convergence of the component sizes and surplus edges
is proved by verifying a uniform tightness condition on the surplus edges in Section 6. Then, in Section 7, we exploit
the idea that the large components are explored before any self-loops or multiple edges are created and conclude the
proof of Theorem 3. The proof of Theorem 4 is completed by showing that the percolated configuration model is again
a configuration model satisfying Assumption 1. Section 10 is devoted to the proof of Theorem 5 which exploits different
properties of the augmented multiplicative coalescent process.

4. Convergence of the exploration process

We start by describing how the connected components in the graph can be explored while generating the random graph
simultaneously:

Algorithm 1 (Exploring the graph). Consider the configuration model CMn(d). The algorithm carries along vertices
that can be alive, active, exploring and killed, and half-edges that can be alive, active or killed. We sequentially explore
the graph as follows:

(S0) At stage i = 0, all the vertices and the half-edges are alive but none of them are active. Also, there are no exploring
vertices.

(S1) At each stage i, if there is no active half-edge at stage i, choose a vertex v proportional to its degree among the alive
(not yet killed) vertices and declare all its half-edges to be active and declare v to be exploring. If there is an active
vertex but no exploring vertex, then declare the smallest vertex to be exploring.

(S2) At each stage i, take an active half-edge e of an exploring vertex v and pair it uniformly to another alive half-edge f .
Kill e, f . If f is incident to a vertex v′ that has not been discovered before, then declare all the half-edges incident
to v′ active (if any), except f . If degree(v′) = 1 (i.e. the only half-edge incident to v′ is f ) then kill v′. Otherwise,
declare v′ to be active and larger than all other vertices that are alive. After killing e, if v does not have another
active half-edge, then kill v also.

(S3) Repeat from (S1) at stage i + 1 if not all half-edges are already killed.

Algorithm 1 gives a breadth-first exploration of the connected components of CMn(d). Define the exploration process
by

Sn(0) = 0, Sn(l) = Sn(l − 1) + d(l)Jl − 2, (4.1)

where Jl is the indicator that a new vertex is discovered at time l and d(l) is the degree of the new vertex chosen at
time l when Jl = 1. Suppose Ck is the kth connected component explored by the above exploration process and define
τk = inf{i : Sn(i) = −2k}. Then Ck is discovered between the times τk−1 + 1 and τk , and τk − τk−1 − 1 gives the total
number of edges in Ck . Call a vertex discovered if it is either active or killed. Let Vl denote the set of vertices discovered
up to time l and In

i (l) := 1{i∈Vl}. Note that

Sn(l) =
∑
i∈[n]

diIn
i (l) − 2l =

∑
i∈[n]

di

(
In

i (l) − di

�n

l

)
+ (νn(λ) − 1

)
l. (4.2)



1526 S. Dhara et al.

Recall the notation in (1.10b). Define the re-scaled version S̄n of Sn by S̄n(t) = a−1
n Sn(�bnt�). Then, by Assumption 1(iii),

S̄n(t) = a−1
n

∑
i∈[n]

di

(
In

i (tbn) − di

�n

tbn

)
+ λt + o(1). (4.3)

Note the similarity between the expressions in (1.5) and (4.3). We will prove the following:

Theorem 8. Consider the process S̄n := (S̄n(t))t≥0 defined in (4.3) and recall the definition of S̄λ∞ := (S̄λ∞(t))t≥0 from
(1.5). Then,

S̄n
d−→ S̄λ∞ (4.4)

with respect to the Skorohod J1-topology.

The proof of Theorem 8 is completed by showing that the summation term in (4.3) is predominantly carried by the first
few terms and the limit of the first few terms gives rise to the limiting process given in (1.5). Fix K ≥ 1 to be large. Denote
by Fl the sigma-field containing the information generated up to time l by Algorithm 1. Also, let ϒl denote the set of
time points up to time l when a component was discovered and υl = |ϒl |. Note that we have lost 2(l − υl) half-edges by
time l. Thus, on the set {In

i (l) = 0},

P
(
In

i (l + 1) = 1 | Fl

)=
{

di

�n−2(l−υl)−1 if l /∈ ϒl,

di

�n−2(l−υl)
otherwise.

(4.5)

Let �n(T ) = �n − 2T bn + 1. Then, uniformly over l ≤ T bn,

P
(
In

i (l + 1) = 1 | Fl

)≤ di

�n(T )
on the set

{
In

i (l) = 0
}
. (4.6)

Also, In
i (l + 1) − In

i (l) = 0 on the set {In
i (l) = 1}. Denote MK

n (l) = a−1
n

∑
i∈[n] di(In

i (l) − di

�n(T )
l). Then,

E
[
MK

n (l + 1) − MK
n (l) | Fl

]= E

[
n∑

i=K+1

a−1
n di

(
In

i (l + 1) − In
i (l) − di

�n(T )

) ∣∣∣Fl

]

=
n∑

i=K+1

a−1
n di

(
E
[
In

i (l + 1) | Fl

]
1{In

i (l)=0} − di

�n(T )

)
≤ 0. (4.7)

Thus (MK
n (l))

T bn

l=1 is a supermartingale. Further, (4.5) implies that, uniformly for all l ≤ T bn,

P
(
In

i (l) = 0
)≤ (1 − di

�n

)l

. (4.8)

Thus, Assumption 1(ii) gives

∣∣E[MK
n (l)

]∣∣= a−1
n

n∑
i=K+1

di

(
di

�n(T )
l − P

(
In

i (l) = 1
))

≤ a−1
n

n∑
i=K+1

di

∣∣∣∣1 −
(

1 − di

�n

)l

− di

�n

l

∣∣∣∣+ a−1
n l

∑
i∈[n]

d2
i

(
1

�n(T )
− 1

�n

)

≤ l2

2�2
nan

n∑
i=K+1

d3
i + o(1)

≤ T 2n2ρn3αL(n)3

2�2
nL(n)2nαL(n)

(
a−3
n

n∑
i=K+1

d3
i

)
+ o(1) = C

(
a−3
n

n∑
i=K+1

d3
i

)
+ o(1), (4.9)
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for some constant C > 0, where we have used the fact that

a−1
n l

∑
i∈[n]

d2
i

(
1

�n(T )
− 1

�n

)
= O

(
n2ρ+1−α−2/L(n)3)= O

(
n(τ−4)/(τ−1)/L(n)3)= o(1), (4.10)

uniformly for l ≤ T bn. Therefore, uniformly over l ≤ T bn,

lim
K→∞ lim sup

n→∞
∣∣E[MK

n (l)
]∣∣= 0. (4.11)

Now, note that for any (x1, x2, . . .), 0 ≤ a + b ≤ xi and a, b > 0 one has
∏R

i=1(1 − a/xi)(1 − b/xi) ≥∏R
i=1(1 − (a +

b)/xi). Thus, by (4.5), for all l ≥ 1 and i �= j ,

P
(
In

i (l) = 0,In
j (l) = 0

)≤ P
(
In

i (l) = 0
)
P
(
In

j (l) = 0
)

(4.12)

and therefore In
i (l) and In

j (l) are negatively correlated. Observe also that, uniformly over l ≤ T bn,

Var
(
In

i (l)
)≤ P

(
In

i (l) = 1
)≤ l∑

l1=1

P(vertex i is first discovered at stage l1) ≤ ldi

�n(T )
. (4.13)

Therefore, using the negative correlation in (4.12), uniformly over l ≤ T bn,

Var
(
MK

n (l)
)≤ a−2

n

n∑
i=K+1

d2
i Var

(
In

i (l)
)≤ l

�n(T )a2
n

n∑
i=K+1

d3
i ≤ Ca−3

n

n∑
i=K+1

d3
i , (4.14)

for some constant C > 0 and by using Assumption 1(ii) again,

lim
K→∞ lim sup

n→∞
Var
(
MK

n (l)
)= 0, (4.15)

uniformly for l ≤ T bn. Now we can use the super-martingale inequality [42, Lemma 2.54.5] stating that for any super-
martingale (M(t))t≥0, with M(0) = 0,

εP
(

sup
s≤t

∣∣M(s)
∣∣> 3ε

)
≤ 3E

[∣∣M(t)
∣∣]≤ 3

(∣∣E[M(t)
]∣∣+√Var

(
M(t)

))
. (4.16)

Using (4.11), (4.14), and (4.16), together with the fact that (−MK
n (l))

T bn

l=1 is a super-martingale, we get, for any ε > 0,

lim
K→∞ lim sup

n→∞
P

(
sup

l≤T bn

∣∣MK
n (l)

∣∣> ε
)

= 0. (4.17)

Define the truncated exploration process

S̄K
n (t) = a−1

n

K∑
i=1

di

(
In

i (tbn) − di

�n

tbn

)
+ λt. (4.18)

Define In
i (tbn) = In

i (�tbn�) and recall that Ii (s) := 1{ξi≤s} where ξi ∼ Exp(θi/μ).

Lemma 9. Fix any K ≥ 1. As n → ∞,

(
In

i (tbn)
)
i∈[K],t≥0

d−→ (
Ii (t)

)
i∈[K],t≥0. (4.19)

Proof. By noting that (In
i (tbn))t≥0 are indicator processes, it is enough to show that

P
(
In

i (tibn) = 0 ∀i ∈ [K])→ P
(
Ii (ti ) = 0 ∀i ∈ [K])= exp

(
−μ−1

K∑
i=1

θi ti

)
, (4.20)
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for any t1, . . . , tK ∈ R. Now,

P
(
In

i (mi) = 0,∀i ∈ [K])= ∞∏
l=1

(
1 −

∑
i≤K:l≤mi

di

�n − �(l)

)
, (4.21)

where the �(l) term arises from the expression in (4.5) and we note that υl ≤ l. Taking logarithms on both sides of (4.21)
and using the fact that l ≤ maxmi = �(bn) we get

P
(
In

i (mi) = 0 ∀i ∈ [K])= exp

(
−

∞∑
l=1

∑
i≤K:l≤mi

di

�n

+ o(1)

)
= exp

(
−
∑

i∈[K]

dimi

�n

+ o(1)

)
. (4.22)

Putting mi = tibn, Assumption 1(i), (ii) gives

midi

�n

= θi ti

μ

(
1 + o(1)

)
. (4.23)

Hence (4.23), and (4.22) complete the proof of Lemma 9. �

Proof of Theorem 8. The proof of Theorem 8 now follows from (4.3), (4.17) and Lemma 9 by first taking the limit as
n → ∞ and then taking the limit as K → ∞. �

For future purposes, we also describe the scaling limit of the reflected process:

Theorem 10. Recall the definition of refl(S̄λ∞) from (1.6). As n → ∞,

refl(S̄n)
d−→ refl

(
S̄λ∞
)
. (4.24)

Proof. This follows from Theorem 8 and the fact that the reflection is Lipschitz continuous with respect to the Skorohod
J1-topology (see [49, Theorem 13.5.1]). �

5. Convergence of component sizes

In this section, we complete the proof of Theorem 1. First, we prove a tail summability condition that ensures that the
vector of ordered component sizes is tight in �2↓. This also implies that Algorithm 1 explores the large components
before time T bn for large T . Next, we show that the function mapping an element of D[0,∞) to its largest excursions is
continuous on a special subset A of D[0,∞) and the process refl(S̄∞) has sample paths in A almost surely. Therefore,
Theorem 8 gives the scaling limit of the number of edges in the components ordered as a non-increasing sequence.
Finally, we show that the number of surplus edges discovered up to time T bn are negligible and thus the convergence of
the component sizes in Theorem 1 follows.

5.1. Tightness of the component sizes

The following proposition establishes a uniform tail summability condition that is required for the tightness of the (scaled)
ordered vector of component size with respect to the �2↓ topology:

Proposition 11. For any ε > 0,

lim
K→∞ lim sup

n→∞
P

(∑
i>K

|C(i)|2 > εb2
n

)
= 0. (5.1)

Roughly speaking, the proof is based on the fact that the graph, obtained by removing a large number of high-degree
vertices, yields a graph that approaches subcriticality. More precisely, we prove Lemma 12 below to complete the proof
of Proposition 11. This fact is not true for the finite third-moment setting [22]. However, since the large-degree vertices
guide the scaling behavior in the infinite third-moment case, the observation in Lemma 12 saves some computational
complexity, and gives a different proof of the �2↓ tightness than the aproach with size-biased point processes originally
proposed in [4].
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Lemma 12. Consider CMn(d) satisfying Assumption 1. Let G[K] be the random graph obtained by removing all edges
attached to vertices 1, . . . ,K and let d ′ be the obtained degree sequence. Suppose Vn is a random vertex of G[K] chosen
independently of the graph and let C [K](Vn) be the corresponding component. Let {C [K]

(i) : i ≥ 1} be the components of

G[K], ordered according to their sizes. Then,

lim
K→∞ lim sup

n→∞
c−1
n E

[∣∣C [K](Vn)
∣∣]= 0. (5.2)

Consequently, for any ε > 0,

lim
K→∞ lim sup

n→∞
P

(∑
i≥1

∣∣C [K]
(i)

∣∣2 > εb2
n

)
= 0. (5.3)

Proof. We make use of a result due to Janson [30] regarding bounds on the susceptibility functions for the configuration
model. In fact, [30, Lemma 5.2] shows that, for any configuration model CMn(d) with νn < 1,

E
[∣∣C (Vn)

∣∣]≤ 1 + E[Dn]
1 − νn

. (5.4)

Now, conditional on the set of removed half-edges, G[K] is still a configuration model with some degree sequence d ′ with
d ′
i ≤ di for all i ∈ [n] \ [K] and d ′

i = 0 for i ∈ [K]. Further, the criticality parameter ν
[K]
n of G[K] satisfies

ν[K]
n =

∑
i∈[n] d ′

i (d
′
i − 1)∑

i∈[n] d ′
i

≤
∑

i∈[n] di(di − 1) −∑K
i=1 di(di − 1)

�n − 2
∑K

i=1 di

= νn − C1n
2α−1L(n)2

∑
i≤K

θ2
i = νn − C1c

−1
n

∑
i≤K

θ2
i (5.5)

for some constant C1 > 0. Since θ /∈ �2↓, K can be chosen large enough such that ν
[K]
n < 1 uniformly for all n. Also∑

i∈[n] d ′
i = �n + o(n) for each fixed K . Let EK [·] denote the conditional expectation, conditioned on the set of removed

half-edges. Using (5.4) on G[K], we get

EK

[∣∣C [K](Vn)
∣∣]≤ C2

1 − ν
[K]
n

≤ C2

1 − νn + C1c
−1
n

∑
i≤K θ2

i

≤ C2cn

−λ + C1
∑

i≤K θ2
i

, (5.6)

for some constant C2 > 0. Using the fact that θ /∈ �2↓, this concludes the proof of (5.2). The proof of (5.3) follows from
(5.2) by using the Markov inequality and the observation that

E

[∑
i≥1

∣∣C [K]
(i)

∣∣2]= nE
[∣∣C [K](Vn)

∣∣], (5.7)

as well as b2
n = ncn by (1.10b). �

Proof of Proposition 11. Denote the sum of squares of the component sizes excluding the components containing ver-
tices 1,2, . . . ,K by SK . Note that∑

i>K

|C(i)|2 ≤ SK ≤
∑
i≥1

∣∣C [K]
(i)

∣∣2. (5.8)

Thus, Proposition 11 follows from Lemma 12. �

5.2. Large components are explored early

As remarked at the beginning of Section 5, an important consequence of Proposition 11 is that after time �(bn), Algo-
rithm 1 does not explore large components. The precise statement needed to complete our proof is given below. This is an
essential ingredient to conclude the convergence of the component sizes from the convergence of the exploration process
since Theorem 8 only gives information about the components explored on the time scale of the order bn.
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Lemma 13. Let C ≥T
max be the largest among those components which are started exploring after time T bn by Algorithm 1.

Then, for any ε > 0,

lim
T →∞ lim sup

n→∞
P
(∣∣C ≥T

max

∣∣> εbn

)= 0. (5.9)

Proof. Define the event A n
K,T := {all the vertices of [K] are explored before time T bn}. Recall the definition of C [K]

(i)

from Lemma 12. Firstly, note that

P
(∣∣C ≥T

max

∣∣> εbn,A
n
K,T

)≤ P

(∑
i≥1

∣∣C [K]
(i)

∣∣2 > ε2b2
n

)
. (5.10)

Moreover, using (4.5) and the fact that djbn = �(n), we get

P
((

A n
K,T

)c)= P
(∃j ∈ [K] : j is not explored before T bn

)

≤
K∑

j=1

P(j is not explored before T bn)

≤
K∑

j=1

(
1 − dj

�n − �(T bn)

)T bn

≤
K∑

j=1

e−CT , (5.11)

where C > 0 is a constant that may depend on K . Now, by (5.10),

P
(∣∣C ≥T

max

∣∣> εbn

)≤ P

(∑
i≥1

∣∣C [K]
(i)

∣∣2 > ε2b2
n

)
+ P

((
A n

K,T

)c)
. (5.12)

The proof follows by taking lim supn→∞, limT →∞, limK→∞ respectively and using (5.3), (5.11). �

5.3. Sample path properties

Recall the definition of an excursion from (1.7). Define the set of excursions of a function f by

E := {(l, r) : (l, r) is an excursion of f
}
. (5.13)

We also denote the set of excursion end-points by Y , i.e.,

Y := {r > 0 : (l, r) ∈ E
}
. (5.14)

Definition 1. A function f ∈ D+[0, T ] is said to be good if the following holds:

(a) Y does not have an isolated point and the complement of
⋃

(l,r)∈E (l, r) has Lebesgue measure zero;
(b) f does not attain a local minimum at any point of Y .

Remark 12. We claim that if a function f ∈ D+[0, T ] is good, then f is continuous on Y . To see this, fix any δ > 0 and
denote the set of excursions of length at least δ by Eδ . Let r be the excursion endpoint of an excursion in Eδ and suppose
that f (r) > f (r−). Thus, there is no excursion endpoint in (r − δ, r). Moreover, since f is right-continuous, there exists
δ′ > 0 such that f (x) > f (r−) + ε for all x ∈ (r, r + δ′), where ε = (f (r) − f (r−))/2 > 0. Thus there is no excursion
endpoint on (r − δ, r + δ′) and thus r is an isolated point contradicting Definition 1. We conclude that f is continuous at
excursion endpoints of the excursions in Eδ , and since δ > 0 is arbitrary the claim is established.

Let Li (f ) be the length of the ith largest excursion of f and define �m :D+[0, T ] →R
m by

�m(f ) = (L1(f ),L2(f ), . . . ,Lm(f )
)
. (5.15)

Note that �m(·) is well-defined for any good function defined in Definition 2.
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Lemma 14. Suppose that f ∈ D+[0, T ] is good. Then, �m is continuous at f with respect to the subspace topology on
D+[0, T ] induced by the Skorohod J1-topology.

Proof. We extend the arguments of [40, Proposition 22]. The proof here is for m = 1 and similar arguments hold for
m > 1. Let L denote the set of continuous functions � : R+ → R+ that are strictly increasing and �(0) = 0, �(T ) = T .
Suppose E1 = (l, r) is the longest excursion of f on [0, T ], thus �1(f ) = r − l. For any ε > 0 (small), choose δ > 0 such
that

f (x) > min
{
f (r−), f (r)

}+ δ ∀x ∈ (l + ε, r − ε). (5.16)

Let ‖ · ‖ denote the sup-norm on [0, T ]. Take any sequence of functions fn ∈D+[0, T ] such that fn → f , i.e., there exists
{�n}n≥1 ⊂ L such that for all large enough n,

‖fn ◦ �n − f ‖ <
δ

6
and ‖�n − I‖ < ε, (5.17)

where I is the identity function. Now, by Remark 12, f is continuous at r . This implies that f (r−) = f (r), and using
(5.16) and (5.17), for all large enough n,

fn(y) > fn ◦ �n(r) + 2δ

3
∀y ∈ (l + 2ε, r − 2ε). (5.18)

Further, using the continuity of f at r , fn(r) → f (r) and thus, for all sufficiently large n,

∣∣fn ◦ �n(r) − fn(r)
∣∣≤ ∣∣fn ◦ �n(r) − f (r)

∣∣+ ∣∣fn(r) − f (r)
∣∣< δ

3
. (5.19)

Hence, (5.18) implies that, for all sufficiently large n,

fn(y) > fn(r) + δ

3
∀y ∈ (l + 2ε, r − 2ε). (5.20)

Thus, for any ε > 0, we have

lim inf
n→∞ �1(fn) ≥ r − l − 4ε = �1(f ) − 4ε. (5.21)

Now we turn to a suitable upper bound on lim supn→∞ �1(fn). First, we claim that one can find r1, . . . , rk ∈ Y such
that r1 ≤ �1(f ) + ε, T − rk < �1(f ) + ε, and ri − ri−1 ≤ �1(f ) + ε, ∀i = 2, . . . , k. The claim is a consequence of
Definition 1(a). Now, Definition 1(b) implies that for any small ε > 0, there exists δ > 0 and xi ∈ (ri , ri + ε) such that
f (ri) − f (xi) > δ ∀i. Again, since ri is a continuity point of f , fn(ri) → f (ri). Thus, using (5.17), for all large enough
n,

fn(ri) − fn

(
�n(xi)

)
>

δ

2
. (5.22)

Now, �n(xi) ∈ (ri , ri + 2ε) for all sufficiently large n, since xi ∈ (ri , ri + ε). Thus, for all large enough n, there exists a
point zn

i ∈ (ri , ri + 2ε) such that

fn(ri) − fn

(
zn
i

)
>

δ

2
. (5.23)

Also the function fn only has positive jumps and
¯
fn(ri) →

¯
f (ri), as

¯
fn is continuous, where we recall that

¯
f (x) =

infy≤x f (y). Therefore, fn must have an excursion ending point in (ri , ri + 2ε) for all large enough n. Also, using the
fact that the complement of

⋃
(l,r)∈E (l, r) has Lebesgue measure zero, f has an excursion endpoint r0

i ∈ (li − ε, li). The

previous argument shows that fn has to have an excursion endpoint in (r0
i , r0

i + 2ε) and thus in (li − ε, li + 2ε), for all
large n. Therefore, for any ε > 0,

lim sup
n→∞

�1(fn) ≤ �1(f ) + 3ε. (5.24)

Hence the proof follows from (5.21) and (5.24). �
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Remark 13. For f ∈ D+[0, T ], let Ai (f ) denote the area under the excursion Li (f ). Let (fn)n≥1 be a sequence of
functions on f ∈D+[0,∞) such that fn → f , with respect to the Skorohod J1-topology, where f is good. Then, (5.17),
(5.21) and (5.24) also implies that (A1(fn), . . . ,Am(fn)) converges to (A1(f ), . . . ,Am(f )), for any m ≥ 1.

Definition 2. A stochastic process X ∈ D+[0,∞) is said to be good if

(a) the sample paths are good almost surely when restricted to [0, T ], for every fixed T > 0;
(b) X does not have an infinite excursion almost surely;
(c) for any ε > 0, X has only finitely many excursions of length more than ε almost surely.

Lemma 15. The thinned Lévy process S̄λ∞ defined in (1.5) is good.

Proof. Let us make use of the properties of the process S̄λ∞ that were established in [5]. S̄λ∞ satisfies Definition 2(b), (c)
by [5, (8)]. The fact that the excursion endpoints of S̄λ∞ do not have any isolated points almost surely follows directly from
[5, Proposition 14(d)]. Further, [5, Proposition 14(b)] implies that, for any u > 0, P(S̄λ∞(u) = infu′≤u S̄λ∞(u′)) = 0. Taking
the integral with respect to the Lebesgue measure and interchanging the limit by using Fubini’s theorem, we conclude
that almost surely

∫ T

0
1{S̄λ∞(u)=infu′≤u S̄λ∞(u′)} du = 0, (5.25)

which verifies Definition 1(a). Next, in order to verify Definition 1(b), let r ∈ R be any excursion end-point of S̄λ∞. It is
enough to show that

inf
{
t > 0 : S̄λ∞(r + t) − S̄λ∞(r) < 0

}= 0, almost surely. (5.26)

Let Vr = {i : Ii (r) = 1}. Thus conditional on the sigma-field σ(S̄λ∞(s) : s ≤ r), the process (S̄λ∞(r + t) − S̄λ∞(r))t≥0 is
distributed as Ŝλ∞ given by

Ŝλ∞(t) =
∑
i /∈Vr

θi

(
Ii (t) − (θi/μ)t

)+ λt. (5.27)

Now, let L be the Lévy process defined as

L(t) =
∑
i /∈Vr

θi

(
Ni (t) − (θi/μ)t

)+ λt, (5.28)

where (Ni (t))t≥0 is a Poisson process with rate θi which are independent for different i. Via the natural coupling that
states Ii (t) ≤ Ni (t), we can assume that Ŝλ∞(t) ≤ L(t) for all t > 0. Using [8, Theorem VII.1],

inf
{
t > 0 : L(t) < 0

}= 0, almost surely, (5.29)

and thus, (5.26) follows, and the proof is complete. �

5.4. Finite-dimensional convergence

As described in Section 4, the excursion lengths of the exploration process S̄n give the total number of edges in the
explored components. Lemma 16 below estimates the number of surplus edges in the components explored upto time
�(bn). This enables us to compute the scaling limits for the component sizes using the results from the previous section
and complete the proof of Theorem 1.

Lemma 16. Let Nλ
n (k) be the number of surplus edges discovered up to time k and N̄λ

n (u) = Nλ
n (�ubn�). Then, as

n → ∞,

(
S̄n, N̄λ

n

) d−→ (
S̄λ∞,N

)
, (5.30)

where N is the counting process defined in (1.8).
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Proof. We write Nλ
n (l) =∑l

i=2 ξi , where ξi = 1{Vi=Vi−1}. Let Ai denote the number of active half-edges after stage i

while implementing Algorithm 1. Note that

P(ξi = 1|Fi−1) = Ai−1 − 1

�n − 2i − 1
= Ai−1

�n

(
1 + O(i/n)

)+ O
(
n−1), (5.31)

uniformly for i ≤ T bn for any T > 0. Therefore, the instantaneous rate of change of the re-scaled process N̄λ
n at time t ,

conditional on the past, is

bn

A�tbn�
nμ

(
1 + o(1)

)+ o(1) = 1

μ
refl
(
S̄n(t)

)(
1 + o(1)

)+ o(1). (5.32)

We first argue that, for any fixed u > 0,(
N̄λ

n (u)
)
n≥1 is tight in R+. (5.33)

Fix ε > 0. Using Theorem 10, and the fact that the supremum of a process is continuous with respect to the Skorohod
J1-topology [49, Theorem 13.4.1], we can choose K ≥ 1 large enough so that

lim sup
n→∞

P

(
sup

i≤�ubn�
Ai > Kan

)
< ε. (5.34)

Fix times 0 < l1 < · · · < lm ≤ �ubn�, and let A(l1, . . . , lm) denote the event that the surplus edges appear at times
l1, . . . , lm and Alj −1 ≤ Kan for all j ∈ [m]. Then,

P

(�ubn�∑
i=2

ξi ≥ m, and sup
i≤�ubn�

Ai ≤ Kan

)

≤
∑

0<l1<···<lm≤�ubn�
P
(
A(l1, . . . , lm)

)

≤
∑

0<l1<···<lm≤�ubn�
E
[
P(surplus created at lm|Flm−1)1{Alm−1≤Kan}1A(l1,...,lm−1)

]

≤ Kan

�n − 2�ubn� + 1

∑
0<l1<···<lm≤�ubn�

P
(
A(l1, . . . , lm−1)

)
. (5.35)

Continuing the iteration in the last step, it follows that

P

(�ubn�∑
i=2

ξi ≥ m, and sup
i≤�ubn�

Ai ≤ Kan

)
≤ (1 + o(1)

)(Kan

�n

)m �ubn� · · · (�ubn� − m + 1)

m! , (5.36)

which tends to zero in the iterated limit limm→∞ lim supn→∞. An application of (5.34) now yields (5.33).
Next, let S′

n be the process obtained by discarding the points where a surplus edge was added. More precisely, if
ζl = Sn(l) − Sn(l − 1), then we can define S′

n(l) = S′
n(l − 1) + ζ ′

l , where

ζ ′
l = ζkl

, with kl = inf{j > kl−1 : ζj �= −2}, k0 = 0. (5.37)

Let S̄ ′
n(t) = a−1

n S′
n(�tbn�). Also, let dJ1,T denote the metric for the Skorohod J1-topology on D([0, T ],R). We claim

that, for any T > 0 and ε > 0,

lim
n→∞P

(
dJ1,T

(
S̄′

n, S̄n

)
> ε
)= 0. (5.38)

First, let 1 ≤ l1 < · · · < lK ≤ �T bn� denote the times where the surplus edges have occurred. Also, let A be the good
event that lj + 1 < lj+1 for all j ≤ K , i.e., none of the surplus edges occur in consecutive steps. Note that

P

(
Ac ∩

{
sup

i≤�T bn�
Ai ≤ Kan

})
≤ T bn

(
Kan

�n

)2

= O
(
b−1
n

)
, (5.39)
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and thus using (5.34), P(Ac) → 0. We now restrict ourselves to A. Putting l0 = 0 and lK+1 = �T bn� + 1, let

�n(l) =

⎧⎪⎨
⎪⎩

l + j − 1 for lj−1 < l < lj ,

lj + j − 1 for l = lj − 0.5,

lj + j for l = lj .

(5.40)

�n(t) is obtained by linearly interpolating between the values specified by (5.40). Also, note that the definition of �n

works well on A, and on Ac, we define �n(t) = t . Using (5.33) and (5.39) it immediately follows that

sup
l≤T bn

∣∣�n(l) − l
∣∣= oP(bn). (5.41)

Moreover, the occurrence of each surplus edge causes |S′
n(l) − Sn(�n(l))| to increase by at most 2, so that

sup
l≤T bn

∣∣S′
n(l) − Sn

(
�n(l)

)∣∣= oP(an). (5.42)

Then, (5.38) follows by combining (5.41) and (5.42). We now proceed to complete the proof of Lemma 16. Let us start by
setting up some notation for the rest of the proof. Fix T > 0, k ≥ 0 and let SurpT = {l1, . . . , lk} be the surplus generation
times, where 1 ≤ l1 < l2 < · · · < lk ≤ �T bn� + k. Let (zl)l≤�T bn�+k be a sequence of integers such that zli = −2 and
zl ≥ −1 for l /∈ {l1, . . . , lk}. Thus (zl)l≤�T bn�+k represents the increments of a sample path of Sn which has explored k

surplus edges, and SurpT is the set of times when surplus edges are found. Next, (z′
l )l≤�T bn� denote the sequence obtained

from (zl)l≤�T bn�+k by deleting the −2’s. Thus, (z′
l )l≤�T bn� corresponds to the increments of a sample path of S′

n. Recall
that ζl = Sn(l) − Sn(l − 1). Thus,

P

(
Nλ

n

(�T bn� + k
)= k

∣∣∣ (S′
n(l)
)
l≤�T bn� =

(∑
j≤l

z′
j

)
l≤�T bn�

,Nλ
n

(�T bn� + k
)≤ ωn

)

=
∑

1≤l1<···<lk≤T bn+k

P

⎛
⎜⎜⎝surplus occurs only at times l1, . . . , lk

∣∣∣∣∣
(
S′

n(l)
)
l≤T bn

=
(∑

j≤l

z′
j

)
l≤�T bn�

,

Nλ
n

(�T bn� + k
)≤ ωn

⎞
⎟⎟⎠

=
∑

1≤l1<···<lk≤T bn+k

P(ζl = zl, for all 1 ≤ l ≤ �T bn� + k)

P((S′
n(l))l≤T bn = (

∑
j≤l z

′
j )l≤�T bn�,Nλ

n (�T bn� + k) ≤ ωn)
. (5.43)

Define m1 = #{i ∈ [n] : di = z1 + 2}, and for l /∈ SurpT , we denote ml = #{i ∈ [n] : di = zl + 2} − #{j < l : zj = zl}.
Thus, ml gives the number of degree zl + 2 vertices in the system at time l, which are potential candidates to cause a
jump of zl at time l. Next, let al denote the number of active half-edges at time l when the exploration process takes the
path (zl)l≤�T bn�+k , and a′

l = S′
n(l) − minj<l S

′
n(j). Now,

P
(
ζl = zl,∀l ≤ �T bn� + k

)=
∏

l /∈SurpT
ml ×∏k

j=1(alj −1 − 1)

(�n − 1)(�n − 3) · · · (�n − 2�T bn� − 2k + 1)

=
∏

l /∈SurpT
ml ×∏k

j=1(alj −1 − 1)

(�n − 1) · · · (�n − 2�T bn� + 1)
× (1 + o(1)

) k∏
j=1

a′
lj −1

�n

, (5.44)

where the o(1) term above is uniform in k ≤ ωn = logn. Thus,

(5.43) = (1 + o(1)
) ∑

1≤l1<···<lk≤�T bn�+k

∏k
j=1

a′
lj −1

�k
n∑ωn

r=0

∑
1≤l1<···<lr≤�T bn�+r

∏r
j=1

a′
lj −1

�r
n

=: (1 + o(1)
) βn,k∑∞

r=0 βn,r

, (5.45)

where βn,r = 0 for r > ωn. Now, Theorem 8 together with (5.38) also implies that S̄′
n

d−→ Sλ∞ with respect to the Skorohod
J1-topology. Since the reflection of a process is continuous in Skorohod J1-topology (see [49, Lemma 13.5.1]) it also



Heavy-tailed configuration models at criticality 1535

follows that refl(S̄′
n)

d−→ refl(Sλ∞). Thus,

(
(βn,r )r≥0,

(
S̄′

n(u)
)
u≤T

) d−→
((

1

r!
(

1

μ

∫ T

0
refl
(
S̄λ∞(u)

)
du

)r)
r≥0

,
(
S̄λ∞(u)

)
u≤T

)
, (5.46)

where the convergence of (βn,r )r≥0 holds with respect to the product topology on R
∞. Next, let us ensure that

∑∞
r=0 βn,r

in (5.43) converges to the desired quantity. To this end, consider a probability space where the convergence of (5.46)
holds almost surely. On this space, supl≤T bn+k refl(S′

n(l)) ≤ 2(supl≤T bn+k S′
n(l) + ωn) =: Xn(T ), and thus

βn,r ≤ (T bn + ωn)
r

r!
Xn(T )r

�r
n

. (5.47)

Since a−1
n supl≤T bn+k S′

n(l) converges, an application of Dominated Convergence Theorem yields that

∑
r≥0

βn,r
a.s.−→

∑
r≥0

1

r!
(

1

μ

∫ T

0
refl
(
S̄λ∞(u)

)
du

)r

= exp

(
1

μ

∫ T

0
refl
(
S̄λ∞(u)

)
du

)
. (5.48)

Next, for bounded continuous functions φ1 : D([0, T ],R) →R and φ2 :N→ R,

E
[
φ1
((

S̄′
n(u)

)
u≤T

)
φ2
(
N̄λ

n (T )
)]

= o(1) +E
[
φ1
((

S̄′
n(u)

)
u≤T

)
φ2
(
N̄λ

n (T )
)
1{Nλ

n (�T bn�+k)≤ωn}
]

= o(1) +E

[
φ1
((

S̄′
n(u)

)
u≤T

)
1{Nλ

n (�T bn�+k)≤ωn} × (1 + o(1)
)∑k≥0 φ2(k)βn,k∑

r≥0 βn,r

]

= o(1) +E

[
φ1
((

S̄′
n(u)

)
u≤T

)×
∑

k≥0 φ2(k)βn,k∑
r≥0 βn,r

]
→ E

[
φ1
((

S̄λ∞(u)
)
u≤T

)
φ2
(
N(T )

)]
, (5.49)

where N(T ), conditionally on (S̄λ∞(u))u≤T , is distributed as Poisson( 1
μ

∫ T

0 refl(S̄λ∞(u))du). We have used (5.33) in the
third step, and the final step follows by combining (5.46) and (5.48). Hence, we have shown that, for any T > 0,

((
S̄′

n(u)
)
u≤T

, N̄λ
n (T )

) d−→ ((
S̄λ∞(u)

)
u≤T

,N(T )
)
. (5.50)

Next, let Un
1 < Un

2 < · · · denote the location of surplus edges in the process Sn. Then, using (5.44) yields

P
(
Un

j = lj , for all j ∈ [k] | (S̄′
n(u)

)
u≤T

, N̄λ
n (T ) = k

)

= (1 + o(1)
) 1

�k
n

∏k
j=1(Alj − 1)∑

1≤l′1<···<l′k≤�T bn�+k
1
�k
n

∏k
j=1(Al′j − 1)

. (5.51)

From this, it can be seen that the law of b−1
n (Un

j )j∈[k], conditionally on (S̄′
n(u))u≤T , and N̄λ

n (T ) = k, converges to the

order-statistics of k i.i.d. random variables with density
1{u∈[0,T ]} refl(S̄λ∞(u))∫ T

0 refl(S̄λ∞(u))du
. Now, combining (5.50), (5.51) together with

(5.38) completes the proof of Lemma 16. �

Remark 14. In [22] and an earlier version of the paper, we concluded the proof of Lemma 16 from the convergence
of compensators only. We thank Lorenzo Federico and Tim Hulshof for pointing out a gap in this argument. Indeed,
for Erdős–Rényi random graphs [4] or rank-one inhomogeneous random graphs [14,15], showing the convergence of
compensators suffices using [21, Theorem 1] since the surplus edges can be added independently after we have observed
the whole exploration process. However, this is not true for the configuration model because the surplus edges occur
precisely at places with jumps −2. For this reason, we have modified the proof and the identical argument also completes
the proof in [22, Lemma 5.16].

Theorem 17. For any m ≥ 1, as n → ∞,

b−1
n

(|C(1)|, |C(2)|, . . . , |C(m)|
) d−→ (

γ1(λ), γ2(λ), . . . , γm(λ)
)

(5.52)

with respect to the product topology, where γi(λ) is the ith largest excursion of S̄∞ defined in (1.5).
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Proof. Fix any m ≥ 1. Let C T
(i) be the ith largest component explored by Algorithm 1 up to time T bn. Denote by Dord,T

(i)

the ith largest value of (
∑

k∈C T
(i)

dk)i≥1. Let g : Rm �→ R be a bounded continuous function. By Lemma 15, the sample

paths of S̄∞ are almost surely good. Thus, using Theorem 8, Lemma 14 gives

lim
n→∞E

[
g
(
(2bn)

−1(Dord,T
(1) ,Dord,T

(2) , . . . ,Dord,T
(m)

))]= E
[
g
(
γ T

1 (λ), γ T
2 (λ), . . . , γ T

m (λ)
)]

, (5.53)

where γ T
i (λ) is the ith largest excursion of S̄∞ restricted to the time interval [0, T ]. Now the support of the joint distri-

bution of (γ T
i (λ))i≥1 is concentrated on {(x1, x2, . . .) : x1 > x2 > · · · }. Thus, using Lemma 16, it follows that

lim
n→∞E

[
g
(
b−1
n

(∣∣C T
(1)

∣∣, ∣∣C T
(2)

∣∣, . . . , ∣∣C T
(m)

∣∣))]= E
[
g
(
γ T

1 (λ), γ T
2 (λ), . . . , γ T

m (λ)
)]

. (5.54)

Since Sλ∞ satisfies Definition 2(b), (c), it follows that

lim
T →∞E

[
g
(
γ T

1 (λ), γ T
2 (λ), . . . , γ T

m (λ)
)]= E

[
g
(
γ1(λ), γ2(λ), . . . , γm(λ)

)]
. (5.55)

Finally, using Lemma 13, the proof of Theorem 17 is completed by (5.54) and (5.55). �

Proof of Theorem 1. The proof of Theorem 1 follows directly from Theorem 17 and Proposition 11. �

6. Convergence in the U
0
↓ topology

The goal of this section is to prove the joint convergence of the component sizes and the surplus edges as described in
Theorem 2. We start with a preparatory lemma:

Lemma 18. The convergence in (1.15) holds with respect to the �2↓ ×N
∞ topology.

Proof. Note that Lemma 13 already states that we do not see large components being explored after the time T bn for
large T > 0. Thus the proof is a consequence of Lemmas 14, 16, Remark 13 and Theorem 1. �

Recall the definition of the metric dU from (1.3). Using Lemma 18, it now remains to obtain a uniform summability
condition on the tail of the sum of products of the scaled component sizes and the surplus edges:

Proposition 19. For any ε > 0,

lim
δ→0

lim sup
n→∞

P

( ∑
i:|C(i)|≤δbn

|C(i)| × SP(C(i)) > εbn

)
= 0. (6.1)

Proof of Theorem 2. First (Xni, Yni)i≥1
d−→ (Xi, Yi)i≥1 in U

0↓-topology if the following three conditions hold:

(i) (Xni, Yni)
k
i=1

d−→ (Xi, Yi)
k
i=1 for all k ≥ 1.

(ii) limδ→0 lim supn→∞ P(
∑

i:Xni≤δ X2
ni > ε) = 0, for any ε > 0.

(iii) limδ→0 lim supn→∞ P(
∑

i:Xni≤δ XniYni > ε) = 0, for any ε > 0.

To see this, note that ‖(Xni, Yni)i≥1‖U0 = ‖(Xni)i≥1‖2 +∑i XniYni , where ‖ · ‖U0 denotes the norm induced by met-
ric in (1.3). Conditions (i) and (ii) together implies that (‖(Xni)i≥1‖2)n≥1 is tight, and (i) and (iii) together implies that
(
∑

i XniYni)n≥1 is tight. Thus under (i)–(iii), ((Xni, Yni)i≥1)n≥1 is tight in U
0↓-topology, and the finite dimensional con-

vergence in (i) yields that (Xni, Yni)i≥1
d−→ (Xi, Yi)i≥1 in U

0↓-topology.
To complete the proof of Theorem 2, note that Lemma 18 yields conditions (i) and (ii), and Proposition 19 yields

condition (iii). Thus the proof follows. �

The remainder of this section is devoted to the proof of Proposition 19. The following estimate will be the crucial
ingredient to complete the proof of Proposition 19. The proof of Lemma 20 is postponed to Appendix B since this uses
similar ideas as used in [22].
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Lemma 20. Assume that lim supn→∞ cn(νn − 1) < 0. Let Vn denote a vertex chosen uniformly at random, independently
of the graph CMn(d) and let C (Vn) denote the component containing Vn. Let δk = δk−0.12. Then, for δ > 0 sufficiently
small,

P
(
SP
(
C (Vn)

)≥ K,
∣∣C (Vn)

∣∣ ∈ (δKbn,2δKbn)
)≤ C

√
δ

anK1.1
(6.2)

where C is a fixed constant independent of n, δ, K .

Proof of Proposition 19 using Lemma 20. First consider the case λ < 0. Fix any ε, δ > 0. Note that

P

( ∑
|C(i)|≤δbn

|C(i)| × SP(C(i)) > εbn

)

≤ 1

εbn

E

[ ∞∑
i=1

|C(i)| × SP(C(i))1{|C(i)|≤δbn}

]

= an

ε
E
[
SP
(
C (Vn)

)
1{|C (Vn)|≤δbn}

]

= an

ε

∞∑
k=1

∑
i≥log2(1/(k0.12δ))

P(SP
(
C (Vn)

)≥ k,
∣∣C (Vn)

∣∣ ∈ (2−(i+1)k−0.12bn,2−ik−0.12bn]
)

≤ C

ε

∞∑
k=1

1

k1.1

∑
i≥log2(1/(k0.12δ))

2−i/2 ≤ C

ε

∞∑
k=1

√
δ

k1.04
= O(

√
δ). (6.3)

The third step in (6.3) follows using

E
[
SP
(
C (Vn)

)
1{|C (Vn)|≤δbn}

]
=

∞∑
k=1

∑
j≥k

P
(
SP
(
C (Vn)

)= j,
∣∣C (Vn)

∣∣≤ δbn

)

=
∞∑

k=1

∑
j≥k

∑
i≥log2(1/(k0.12δ))

P
(
SP
(
C (Vn)

)= j,
∣∣C (Vn)

∣∣ ∈ (2−(i+1)k−0.12bn,2−ik−0.12bn

])
, (6.4)

and the second-last step in (6.3) follows from Lemma 20. The proof of Proposition 19 now follows for λ < 0.
Next, consider the case λ > 0. Fix a large integer R ≥ 1 such that λ −∑R

i=1 θ2
i < 0. This can be done because θ /∈ �2↓.

Using (5.10), for any δ > 0, it is possible to choose T > 0 such that for all sufficiently large n,

P(all the vertices 1, . . . ,R are explored within time T bn) > 1 − δ. (6.5)

Let Te denote the first time after T bn when we finish exploring a component. By Theorem 8, (b−1
n Te)n≥1 is a tight

sequence. Let G∗
T denote the graph obtained by removing the components explored up to time Te. Then, G∗

T is again a
configuration model conditioned on its degrees. Let ν∗

n denote the value of the criticality parameter for G∗. Note that

∑
i /∈VTe

di ≥ �n − 2T bn =⇒
∑

i /∈VTe

di = �n + oP(n), (6.6)

and thus conditionally on FTe and the fact that (1, . . . ,R) are explored within time T bn,

ν∗
n ≤

∑
i∈[n] di(di − 1) −∑R

i=1 di(di − 1)∑
i /∈VTe

di

− 1 = 1 + c−1
n

(
λ −

R∑
i=1

θ2
i

)
+ o
(
c−1
n

)
. (6.7)
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Therefore, combining (6.5), (6.7), we can use Lemma 20 on G∗
T since cn(ν

∗
n − 1) < 0. Thus, if C ∗

(i) denotes the ith largest
component of G∗

T , then

lim
T →∞ lim

δ→0
lim sup
n→∞

P

( ∑
i:|C ∗

(i)
|≤δbn

∣∣C ∗
(i)

∣∣× SP
(
C ∗

(i)

)
> εbn

)
= 0. (6.8)

To conclude the proof for the whole graph CMn(d) (with λ > 0), let

KT
n := {i : |C(i)| ≤ δbn, |C(i)| is explored before the time Te

}
.

Note that

∑
i∈KT

n

|C(i)| × SP(C(i)) ≤
(∑

i∈KT
n

|C(i)|2
)1/2

×
(∑

i∈KT
n

SP(C(i))
2
)1/2

≤
( ∑

i:|C(i)|≤δbn

|C(i)|2
)1/2

× SP(Te), (6.9)

where SP(t) is the number of surplus edges explored up to time tbn and we have used the fact that
∑

i∈KT
n

SP(C(i))
2 ≤

(
∑

i∈KT
n

SP(C(i)))
2 ≤ SP(Te)

2. From Lemma 16 and the �2↓ tightness in Theorem 1, we can conclude that for any T > 0,

lim
δ→0

lim sup
n→∞

P

(∑
i∈KT

n

|C(i)| × SP(C(i)) > εbn

)
= 0. (6.10)

The proof is now complete for the case λ > 0 by combining (6.8) and (6.10). �

7. Proof for simple graphs

In this section, we give a proof of Theorem 3. Let Ps(·) (respectively Es[·]) denote the probability measure (re-
spectively the expectation) conditionally on the graph CMn(d) being simple. For any process X on D([0,∞),R),
we define XT := (X(t))t≤T . Thus the truncated process XT is D([0, T ],R)-valued. Now, by [29, Theorem 1.1],
lim infn→∞ P(CMn(d) is simple) > 0. This fact ensures that, under the conditional measure Ps , (b−1

n |C(i)|)i≥1 is tight
with respect to the �2↓-topology. Therefore, to conclude Theorem 3, it suffices to show that the exploration process S̄n,
defined in (4.3), has the same limit (in distribution) under Ps as obtained in Theorem 8 so that the finite-dimensional
limit of (b−1

n |C(i)|)i≥1 remains unchanged under Ps . Thus, it is enough to show that for any bounded continuous function
f : D([0, T ],R) �→R,

∣∣E[f (S̄T
n

)]−Es

[
f
(
S̄T

n

)]∣∣→ 0. (7.1)

Let �′
n := �n − 2T bn − d1 + 1. We first estimate the number of multiple edges or self-loops discovered in the graph up to

time T bn. Let vl denote the exploring vertex in the breadth-first exploration given by Algorithm 1, and let dvl
denote the

degree of vl . Note that, uniformly over l ≤ T bn, any half-edge of vl creates a self-loop with probability at most dvl
/�′

n.
Thus, the expected number of self-loops attached to vl , conditionally on Fl−1, is at most d2

vl
/�′

n. Moreover, the expected
number of multiple edge attached to vl , conditionally on Fl−1, is at most

dvl
(dvl

− 1)
∑

i∈[n] di(di − 1)

�′
n(�

′
n − 1)

= (1 + o(1)
)d2

vl

�′
n

, (7.2)

where we have used that νn = 1 + o(1). Therefore,

E
[
#{self-loops or multiple edges discovered while vl is exploring} | Fl−1

]≤ 3d2
vl

�′
n

. (7.3)
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Thus, for any T > 0,

E
[
#{self-loops or multiple edges discovered up to time T bn}

]
≤ 3

�′
n

E

[∑
i∈[n]

d2
i In

i (T bn)

]
= 3

�′
n

E

[
K∑

i=1

d2
i In

i (T bn)

]
+ 3

�′
n

E

[
n∑

i=K+1

d2
i In

i (T bn)

]
, (7.4)

where In
i (l) = 1{i∈Vl}. Now, using Assumption 1(i), for every fixed K ≥ 1,

3

�′
n

E

[
K∑

i=1

d2
i In

i (T bn)

]
≤ 3

�′
n

K∑
i=1

d2
i → 0, (7.5)

since 2α − 1 < 0. Moreover, recall from (4.6) that P(In
i (T bn) = 1) ≤ T bndi/�

′
n. Therefore, for some constant C > 0,

3

�′
n

E

[
n∑

i=K+1

d2
i In

i (T bn)

]
≤ 3T bn

�′2
n

n∑
i=K+1

d3
i ≤ C

(
a−3
n

n∑
i=K+1

d3
i

)
, (7.6)

which, by Assumption 1(ii), tends to zero if we first take lim supn→∞ and then take limK→∞. Consequently, for any fixed
T > 0, as n → ∞,

P(at least one self-loop or multiple edge is discovered before time T bn) → 0. (7.7)

Now,

E
[
f
(
S̄T

n

)
1{CMn(d) is simple}

]
= E

[
f
(
S̄T

n

)
1{no self-loops or multiple edges found after time T bn}

]+ o(1)

= E
[
f
(
S̄T

n

)
P(no self-loops or multiple edges found after time T bn|FT bn)

]+ o(1), (7.8)

Define Te = inf{l ≥ T bn : a component is finished exploring at time l}. Using the fact that (b−1
n Te)n≥1 is a tight sequence,

the limit of the expected number of self-loops or multiple edges discovered between time T bn and Te is again zero. As in
the proof of Proposition 19, consider the graph G∗, obtained by removing the components obtained up to time Te. Thus,
G∗ is a configuration model, conditioned on its degree sequence. Let ν∗

n be the criticality parameter of G∗. Then, we claim

that ν∗
n

P−→ 1. To see this note that
∑

i /∈VTe
di = �n + oP(n). Further, note that by Assumption 1(ii) (4.5), for any t > 0,

lim sup
n→∞

E

[
a−2
n

∑
i∈[n]

d2
i In

i (tbn)

]
≤ lim sup

n→∞
a−2
n tbn

∑
i∈[n] d3

i

�n − 2tbn

< ∞, (7.9)

which implies that
∑

i /∈VTe
d2
i =∑i∈[n] d2

i + oP(n) and thus the claim is proved. Since the degree distribution has finite
second moment, using [45, Theorem 7.11] we get

P
(
G∗ is simple | FTe

) P−→ e−3/4. (7.10)

Now using (7.8), (7.10) and the dominated convergence theorem, we conclude that

E
[
f
(
S̄T

n

)
1{CMn(d) is simple}

]= E
[
f
(
S̄T

n

)]
P(CMn(d) is simple) + o(1). (7.11)

Therefore, (7.1) follows and the proof of Theorem 3 is complete.

8. Scaling limits for component functionals

Suppose that vertex i has an associated weight wi . The total weight of the component C(i) is denoted by Wi =∑k∈C(i)
wk .

The goal of this section is to derive the scaling limits for (Wi )i≥1 when the weight sequence satisfies some regularity
conditions:
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Assumption 3. The weight sequences w = (wi)i∈[n] satisfies

(i)
∑

i∈[n] wi = O(n), and limn→∞ 1
�n

∑
i∈[n] diwi = μw .

(ii) max{∑i∈[n] diw
2
i ,
∑

i∈[n] d2
i wi} = O(a3

n).

Theorem 21. Consider CMn(d) satisfying Assumption 1 and a weight sequence w satisfying Assumption 3. Denote
Zw

n = ord(b−1
n Wi ,SP(C(i)))i≥1 and Zw := ord(μwγi(λ),N(γi))i≥1, where γi(λ), and N(γi) are defined in Theorem 2.

As n → ∞,

Zw
n

d−→ Zw, (8.1)

with respect to the U
0↓ topology.

The proof Theorem 21 can be decomposed into two main steps: the first one is to obtain the finite-dimensional limits
of Zw

n and secondly to prove the U
0↓ convergence. The finite-dimensional limit is a consequence of the fact that the total

weight of the clusters is approximately equal to the cluster sizes. The argument for the tightness with respect to the U
0↓

topology is similar to Propositions 11 and 19 and therefore we only provide a sketch with pointers to all the necessary
ingredients. Recall that In

i (l) = 1{i∈Vl}, where Vl is the set of discovered vertices by Algorithm 1 upto time l.

Lemma 22. Under Assumptions 1, 3, for any T > 0,

sup
u≤T

∣∣∣∣∑
i∈[n]

wiIn
i (ubn) −

∑
i∈[n] diwi

�n

ubn

∣∣∣∣= OP(an). (8.2)

Consequently, for each fixed i ≥ 1,

Wi = μw|C(i)| + oP(bn). (8.3)

Proof. Fix any T > 0. Let �n(T ) = �n − 2T bn + 1. Define

Wn(l) =
∑
i∈[n]

wiIn
i (l) −

∑
i∈[n] diwi

�n(T )
l. (8.4)

The goal is to use the supermartingale inequality (4.16) in the same spirit as in the proof of (4.17). Firstly, observe from
(4.6) that

E
[
Wn(l + 1) − Wn(l) | Fl

]= E

[∑
i∈[n]

wi

(
In

i (l + 1) − In
i (l)

) ∣∣∣Fl

]
−
∑

i∈[n] diwi

�n(T )

=
∑
i∈[n]

wiE
[
In

i (l + 1) | Fl

]
1{In

i (l)=0} −
∑

i∈[n] diwi

�n(T )
≤ 0, (8.5)

uniformly over l ≤ T bn and therefore, (Wn(l))
T bn

l=1 is a supermartingale. Using (4.8), we compute

∣∣E[Wn(l)
]∣∣= ∑

i∈[n]
wi

(
di

�n

− P
(
In

i (l) = 1
))

≤
∑
i∈[n]

wi

(
1 −

(
1 − di

�n

)l

− di

�n

l

)
+ l
∑
i∈[n]

wi

(
di

�n(T )
− di

�n

)

≤ 2(2T bn)
2

∑
i∈[n] d2

i wi

�n(T )2
= O

(
b2
na

3
n/n2)= O(an), (8.6)

uniformly over l ≤ T bn. Also, using (4.12), (4.13), and Assumption 3(ii),

Var
(
Wn(l)

)≤ ∑
i∈[n]

w2
i var

(
In

i (l)
)≤ T bn

∑
i∈[n] diw

2
i

�n(T )
= O

(
a2
n

)
, (8.7)
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uniformly over l ≤ T bn. Using (4.16), (8.6) and (8.7), we conclude the proof of (8.2). The proof of (8.3) follows using
Lemma 13 and simply observing that an = o(bn). �

Proof of Theorem 21. Lemma 22 ensures the finite-dimensional convergence in (8.1). Thus, the proof is complete if we
can show that, for any ε > 0

lim
K→∞ lim sup

n→∞
P

(∑
i>K

W 2
i > εb2

n

)
= 0, (8.8a)

and

lim
δ→0

lim sup
n→∞

P

( ∑
|C(i)|≤δbn

Wi × SP(C(i)) > εbn

)
= 0. (8.8b)

The arguments for proving (8.8a) and (8.8b) are similar to Propositions 11 and 19 and thus we only sketch a brief outline.
Denote �w

n =∑i∈[n] wi . The main ingredient to the proof of Proposition 11 is Lemma 12, and the proof of Lemma 12
uses the fact that the expected sum of squares of the cluster sizes can be written in terms of susceptibility functions in (5.7)
and then we made use of the estimate for the susceptibility function in (5.4). Let V ′

n denote a vertex chosen according to
the distribution (wi/�

w
n )i∈[n], independently of the graph. Notice that

E

[∑
i≥1

W 2
i

]
= �w

n E
[
W
(
V ′

n

)]
. (8.9)

Now, [30, Lemma 5.2] can be extended using an identical argument to compute the weight-based susceptibility function
in the right hand side of (8.9). See Lemma 35 given in Appendix A. The proof of (8.8b) can also be completed using an
identical argument as in the proof of Proposition 19 by observing that

P

( ∑
|C(i)|≤δbn

Wi × SP(C(i)) > εbn

)
≤ �w

n

εbn

E
[
SP
(
C
(
V ′

n

))
1{|C (V ′

n)|≤δbn}
]
. (8.10)

Moreover, an analog of Lemma 20 also holds for V ′
n (see Appendix B), and the proof of (8.8b) can now be completed in

an identical manner as in the proof of Proposition 19. �

While studying percolation in the next section, we will need an estimate for the proportion of degree-one vertices in
the large components. In fact, an application of Theorem 21, yields the following result about the degree composition of
the largest clusters:

Corollary 23. Consider CMn(d) satisfying Assumption 1. Let vk(G) denote the number of vertices of degree k in the
graph G. Then, for any fixed i ≥ 1,

vk(C(i)) = krk

μ
|C(i)| + oP(bn), (8.11)

where rk = P(D = k). Denote Zk
n = ord(b−1

n vk(C(i)),SP(C(i)))i≥1, Zk := ord(
krk
μ

γi(λ),N(γi))i≥1, where γi(λ), and
N(γi) are defined in Theorem 2. As n → ∞,

Zk
n

d−→ Zk, (8.12)

with respect to the U
0↓ topology.

Proof. The proof follows directly from Theorem 21 by putting wi = 1{di=k}. The fact that this weight sequence satisfies
Assumption 3 with μw = krk/μ is a consequence of Assumption 1. �
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9. Percolation

In this section, we study critical percolation on the configuration model for fixed λ ∈ R and complete the proof of Theo-
rem 4. As discussed earlier, CMn(d,p) is obtained by first constructing CMn(d) and then deleting each edge with prob-
ability 1 − p, independently of each other, and of the graph CMn(d). An interesting property of the configuration model
is that CMn(d,p) is also distributed as a configuration model conditional on the degrees [25]. The rough idea here is to
show that the degree distribution of CMn(d,pn(λ)) satisfies Assumption 1, where pn(λ) is given by Assumption 2. This
allows us to invoke Theorem 2 and complete the proof of Theorem 4. Recall from Assumption 2 that ν = limn→∞ νn > 1,
and pn = pn(λ) = ν−1

n (1 + λc−1
n ). We start by describing an algorithm due to Janson [28] that is easier to work with:

Algorithm 2 (Construction of CMn(d,pn)). Initially, vertex i has di half-edges incident to it. For each half-edge e, let
ve be the vertex to which e is incident.

(S1) With probability 1 −√
pn, one detaches e from ve and associates e to a new vertex v′ of degree-one. Color the new

vertex red. This is done independently for every existing half-edge and we call this whole process explosion. Let
n+ be the number of red vertices created by explosion and ñ = n + n+. Denote the degree sequence obtained from
the above procedure by d̃ = (d̃i)i∈[ñ], i.e., d̃i ∼ Bin(di,

√
pn) for i ∈ [n] and d̃i = 1 for i ∈ [ñ] \ [n];

(S2) Construct CMñ(d̃) independently of (S1);
(S3) Delete all the red vertices and the edges attached to them.

It was also shown in [28] that the obtained multigraph has the same distribution as CMn(d,p) if we replace (S3) by

(S3′) instead of deleting red vertices, choose n+ degree-one vertices uniformly at random without replacement, indepen-
dently of (S1) and (S2), and delete them.

Remark 15. Notice that Algorithm 2(S1) induces a probability measure P
n
p on N

∞. Denote their product measure by
Pp . In words, for different n, (S1) is carried out independently. All the almost sure statements about the degrees in this
section will be with respect to the probability measure Pp .

Let us first show that d̃ also satisfies Assumption 1(ii). Note that the total number of half-edges remains unchanged
during the explosion in Algorithm 2(S1) and therefore

∑
i∈[ñ] d̃i =∑i∈[n] di and by Assumption 2(i),

1

n

∑
i∈[ñ]

d̃i → μ Pp-a.s. (9.1)

This verifies the first moment condition in Assumption 1(ii) for the percolated degree sequence Pp a.s. Let Iij := the in-
dicator of the j th half-edge corresponding to vertex i being kept after the explosion. Then Iij ∼ Ber(

√
pn) independently

for i ∈ [n], j ∈ [di]. Let

I := (Iij )j∈[di ],i∈[n] and f1(I) :=
∑
i∈[n]

d̃i (d̃i − 1). (9.2)

Note that f1(I) =∑i∈[ñ] d̃i (d̃i − 1) since the degree-one vertices do not contribute to the sum. One can check that by
changing the status of one half-edge corresponding to vertex k we can change f1 by at most 2(dk + 1). Therefore an
application of [32, Corollary 2.27] yields

Pp

(∣∣∣∣∑
i∈[n]

d̃i (d̃i − 1) − pn

∑
i∈[n]

di(di − 1)

∣∣∣∣> t

)
≤ 2 exp

(
− t2

2
∑

i∈[n] di(di + 1)2

)
. (9.3)

Now by Assumption 2(i),
∑

i∈[n] d3
i = O(a3

n). If we set t = n1−εc−1
n , then t2/(

∑
i∈[n] d3

i ) is of the order nα−2ε/L(n).
Thus, choosing ε < α/2, using (9.3) and the Borel–Cantelli lemma we conclude that∑

i∈[n]
d̃i (d̃i − 1) = pn

∑
i∈[n]

di(di − 1) + o
(
nc−1

n

)
Pp-a.s. (9.4)

Thus, using Assumption 2, the second moment condition in Assumption 1(ii) is verified for the percolated degree sequence
Pp a.s. Let d̃(i) denote the ith largest value of (d̃i)i∈[ñ]. The third-moment condition in Assumption 1(ii) is obtained by
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noting that d̃i ≤ di for all i ∈ [n] and

lim
K→∞ lim sup

n→∞
a−3
n

ñ∑
i=K+1

d̃3
(i) ≤ lim

K→∞ lim sup
n→∞

a−3
n

ñ∑
i=K+1

d̃3
i

≤ lim
K→∞ lim sup

n→∞
a−3
n

(
n∑

i=K+1

d̃3
i + n+

)

≤ lim
K→∞ lim sup

n→∞
a−3
n

(
n∑

i=K+1

d3
i + n+

)
→ 0 Pp a.s., (9.5)

where we have used Assumption 2(i) and the fact that a−3
n n+ → 0, Pp a.s., which follows by observing that n+ ∼

Bin(�n,1 − √
pn), and an � n1/3 for τ ∈ (3,4). To see that d̃ satisfies Assumption 1(iii) note that by (9.4),∑

i∈[ñ] d̃i (d̃i − 1)∑
i∈[ñ] d̃i

= pn

∑
i∈[n] di(di − 1)∑

i∈[n] di

+ o
(
c−1
n

)= 1 + λc−1
n + o

(
c−1
n

)
Pp a.s., (9.6)

where the last step follows from Assumption 2(ii). Assumption 1(iv) is trivially satisfied by d̃ . Finally, in order to verify
Assumption 1(i), it suffices to show that

d̃(i)

an

→ θi
√

p, Pp a.s., (9.7)

where p = 1/ν. Recall that d̃i ∼ Bin(di,
√

pn). A standard concentration inequality for the binomial distribution [32,
(2.9)] yields that, for any 0 < ε ≤ 3/2,

P
(|d̃i − di

√
pn| > εdi

√
pn

)≤ 2exp
(−ε2di

√
pn/3

)
, (9.8)

and using the Borel–Cantelli lemma it follows that Pp almost surely, d̃i = di
√

pn(1 + o(1)) for all fixed i. Moreover, an
application of (9.5) yields that

lim
K→∞ lim sup

n→∞
a−3
n max

i>K
d̃3
i = 0. (9.9)

Now, since θ is an ordered vector, the proof of (9.7) follows.
To summarize, the above discussion in (9.1), (9.4), (9.5), and (9.7) yields that the degree sequence d̃ satisfies all the

conditions in Assumption 1. Therefore, Theorem 2 can be applied to CMñ(d̃). Denote by C̃(i) the ith largest component
of CMñ(d̃). Let Z̃n = ord(b−1

n |C̃(i)|,SP(C̃(i))i≥1 and Z̃ := ord(γ̃i(λ),N(γ̃i))i≥1, where γi(λ), and N(γi) are defined in
Theorem 4. Now, Theorem 2 implies

Z̃n
d−→ Z̃, (9.10)

with respect to the U
0↓ topology.

Since the percolated degree sequence satisfies Assumption 1 Pp-a.s., (8.11) holds for C̃(i) also. Let vd
1 (C̃(i)) be the

number of degree-one vertices of C̃(i) which are deleted while creating the graph CMn(d,pn) from CMñ(d̃). Recall that
ñ1 is the number of degree-one vertices left after Algorithm 2(S2). Since the vertices are to be chosen uniformly from all
degree-one vertices as described in (S3′),

vd
1 (C̃(i)) = n+

ñ1
v1(C̃(i)) + oP(bn) = n+

ñ1

ñ1

�n

|C̃(i)| + oP(bn) = n+
�n

|C̃(i)| + oP(bn)

= μ(1 − √
p

n
) + o(1)

μ + o(1)
|C̃(i)| + oP(bn) = (1 − √

pn)|C̃(i)| + oP(bn), (9.11)

where the penultimate equality follows by observing that n+ ∼ Bin(�n,1 − √
pn). Now, notice that by removing degree-

one vertices, the components are not broken up, so the vector of component sizes for percolation can be obtained by
just subtracting the number of red vertices from the component sizes of CMñ(d̃). Moreover, the removal of degree-one
vertices does not effect the surplus edge counts. Therefore, the proof of Theorem 4 is complete by using Corollary 23.
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10. Convergence to AMC

Let us give an overview of the organization of this section: In Section 10.1, we discuss an alternative dynamic construction
that approximates the percolated graph process, coupled in a natural way. This construction enables us to compare the
coupled percolated graphs with a dynamic construction. Then, we describe a modified system that evolves as an exact
augmented multiplicative coalescent and the rest of the section is devoted to comparing the exact augmented multiplicative
coalescent and the corresponding quantities for the graphs generated by the dynamic construction. For all the results in
this section, we assume that the assumptions of Theorem 5 hold.

10.1. The dynamic construction and the coupling

Let us consider graphs generated dynamically as follows:

Algorithm 3. Let s1(t) be the total number of unpaired or open half-edges at time t , and �n be an inhomogeneous
Poisson process with rate s1(t) at time t .

(S0) Initially, s1(0) = �n, and Gn(0) is the empty graph on vertex set [n].
(S1) At each event time of �n, choose two open half-edges uniformly at random and pair them. The graph Gn(t) is

obtained by adding this edge to Gn(t−). Decrease s1(t) by two. Continue until s1(t) becomes zero.

Notice that Gn(∞) is distributed as CMn(d) since an open half-edge is paired with another uniformly chosen open
half-edge. The next proposition ensures that the graph process generated by Algorithm 3 sandwiches the graph process
(CMn(d,pn(λ)))λ∈R. This result was proved in [22, Proposition 8.4]. The proof is identical under Assumption 2 and
therefore is omitted here. Define

tn(λ) = 1

2
log

(
νn

νn − 1

)
+ 1

2(νn − 1)

λ

cn

. (10.1)

Proposition 24. Fix −∞ < λ� < λ� < ∞. There exists a coupling such that with high probability

Gn

(
tn(λ) − εn

)⊂ CMn

(
d,pn(λ)

)⊂ Gn

(
tn(λ) + εn

)
, ∀λ ∈ [λ�,λ

�
]
, (10.2a)

and

CMn

(
d,pn(λ) − εn

)⊂ Gn

(
tn(λ)

)⊂ CMn

(
d,pn(λ) + εn

)
, ∀λ ∈ [λ�,λ

�
]
, (10.2b)

where εn = cn−γ0 , for some η < γ0 < 1/2 and where the constant c does not depend on λ.

We next prove an important consequence of Proposition 24 which says that the rescaled component sizes and surplus
edges for CMn(d,pn(λ)) and Gn(tn(λ)) are close in U

0↓. This allows us to focus our attention to Gn(tn(λ)) in the subse-
quent analysis. From here onward, we augment λ to a predefined notation to emphasize the dependence on λ. Let C(i)(λ)

and C
p

(i)(λ) denote respectively the ith largest component of CMn(d,pn(λ)) and Gn(tn(λ)). Also, let Zn(λ) and Zp
n (λ)

denote the vectors (b−1
n |C(i)(λ)|,SP(C(i)(λ)))i≥1 and (b−1

n |C p

(i)(λ)|,SP(C
p

(i)(λ)))i≥1 respectively, ordered as an element

of U0↓. Recall the definition of the metric dU from (1.3).

Proposition 25. Under the coupling in Proposition 24, as n → ∞, dU(Zn(λ),Zp
n (λ))

P−→ 0 for any λ ∈R.

We first prove the following elementary fact that will be crucial in our analysis:

Fact 1. P(∀i ≥ 1 : γi+1 < γi) = 1, where γi denotes the length of the ith largest excursion in (1.5).

Proof. It is enough to show that, with probability one, no two excursions of a process in (1.5) have the same length. For
any rational q , let e(q) be the excursion containing q . Thus it is enough to show that for two rationals q1, q2,

P
(
e(q1) �= e(q2),but

∣∣e(q1)
∣∣= ∣∣e(q2)

∣∣)= 0. (10.3)
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Without loss of generality, suppose that e(q1) appears earlier than e(q2). Let Vq2 = {i : Ii (q2) = 1}. Thus conditional on
the sigma-field σ(S̄λ∞(s) : s ≤ q2), the process (S̄λ∞(q2 + t) − S̄λ∞(q2))t≥0 is distributed as Ŝλ∞ given by

Ŝλ∞(t) =
∑

i /∈Vq2

θi

(
Ii (t) − (θi/μ)t

)+ λt. (10.4)

Therefore, the process in (10.4) again has the form (1.5). Now, for any x > 0, the probability that |e(q2)| = x, conditionally
on σ(S̄λ∞(s) : s ≤ q2) and |e(q1)| = x, is zero using Lemma 36 from Appendix C. This concludes the proof of Fact 1. �

Proof of Proposition 25. Let C
p,+
(i) (λ) (respectively, C

p,−
(i) (λ)) denote the ith largest component of CMn(d,pn(λ) + εn)

(respectively, CMn(d,pn(λ) − εn)) where we have chosen εn according to Proposition 24. Let Zp,+
n (λ) (respectively,

Zp,−
n (λ)) denote the vector (b−1

n |C p.+
(i) (λ)|,SP(C

p,+
(i) (λ)))i≥1 (respectively, (b−1

n |C p.−
(i) (λ)|,SP(C

p,−
(i) (λ)))i≥1), ordered

as an element of U0↓. Using Theorem 4, both Zp,+
n (λ) and Zp,−

n (λ) have the same scaling limit.
Next, for any K ≥ 1,

lim
n→∞P

(
C

p,−
(i) (λ) ⊂ C

p,+
(i) (λ),∀i ≤ K

)= 1. (10.5)

If C
p,−
(1) (λ) is not contained in C

p,+
(1) (λ), then |C p,−

(1) (λ)| ≤ |C p,+
(j) (λ)| for some j ≥ 2, which implies that |C p,−

(1) (λ)| ≤
|C p,+

(2) (λ)|. Suppose that there is a subsequence (n0k)k≥1 along which

lim
n0k→∞P

(∣∣C p,−
(1) (λ)

∣∣≤ ∣∣C p,+
(2) (λ)

∣∣)> 0. (10.6)

If (10.6) yields a contradiction, then (10.5) is proved for K = 1. To this end, first note that (b−1
n (|C p,−

(i) (λ)|,
|C p,+

(i) (λ)|)i≥1)n≥1 is tight in (�2↓)2. Thus taking a subsequence (nk)k≥1 ⊂ (n0k)k≥1 along which the random vector
converges, it follows that

b−1
nk

(∣∣C p,−
(i) (λ)

∣∣, ∣∣C p,+
(i) (λ)

∣∣)
i≥1

d−→ (γi, γ̄i )i≥1 in
(
�2↓
)2

, (10.7)

where (γi)i≥1
d= (γ̄i)i≥1. Thus, along the subsequence (nk)k≥1,

lim
nk→∞P

(∣∣C p,−
(1) (λ)

∣∣≤ ∣∣C p,+
(2) (λ)

∣∣)= P(γ1 ≤ γ̄2). (10.8)

Fact 2. For all i ≥ 1, γi = γ̄i almost surely.

Proof. Under the coupling in Proposition 24,
∑

j≤i |C p,−
(j) (λ)| ≤ ∑

j≤i |C p,+
(j) (λ)| and therefore P(

∑
j≤i γj ≤∑

j≤i γ̄j ) = 1, for each fixed i ≥ 1. In particular, γ1 ≤ γ̄1. But, since γ1, γ̄1 have the same distribution, it must be
the case that γ1 = γ̄1 almost surely. Inductively, we can prove that γi = γ̄i almost surely. �

Thus, using Fact 2, (10.8) reduces to

lim
nk→∞P

(∣∣C p,−
(1) (λ)

∣∣≤ ∣∣C p,+
(2) (λ)

∣∣)= P(γ1 ≤ γ2) = P(γ1 = γ2) = 0, (10.9)

where the last equality follows from Fact 1. Now, (10.9) contradicts (10.6), and thus (10.5) follows for K = 1.
For K ≥ 2, we can use a similar argument to show that, with high probability,

⋃
i≤K C

p,−
(i) (λ) ⊂⋃i≤K C

p,+
(i) (λ). Now,

if both C
p,−
(1) (λ) and C

p,−
(2) (λ) are contained in C

p,+
(1) (λ), then |C p,+

(1) (λ)| ≥ |C p,−
(1) (λ)| + |C p,−

(2) (λ)|, which occurs with

probability tending to zero. This follows using Fact 2 and P(γ̄1 ≥ γ1 + γ2) = P(γ1 ≥ γ1 + γ2) = 0. Thus, C
p,−
(2) (λ) ⊂

C
p,+
(2) (λ) with high probability and we can use similar arguments to conclude (10.5) for i ≤ K .

Next, we show that, for any K ≥ 1,

lim
n→∞P

(
C

p,−
(i) (λ) ⊂ C(i)(λ) ⊂ C

p,+
(i) (λ),∀i ≤ K

)= 1. (10.10)

If C(1)(λ) is not contained in C
p,+
(1) (λ), then |C(1)(λ)| ≤ |C p,+

(2) (λ)|. However, since |C p,−
(1) (λ)| ≤ |C(1)(λ)|, it follows

that |C p,−
(1) (λ)| ≤ |C p,+

(2) (λ)|. Now, one can repeat identical argument as in (10.5) to prove that C(i)(λ) ⊂ C
p,+
(i) (λ) for all
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i ≤ K with high probability. Moreover, since CMn(d,pn(λ) − εn) ⊂ Gn(tn(λ)) and C
p,−
(i) (λ) ⊂ C

p,+
(i) (λ) for all i ≤ K

with high probability, it must also be the case that C
p,−
(i) (λ) ⊂ C(i)(λ) ⊂ C

p,+
(i) (λ) for all i ≤ K with high probability.

Thus we conclude (10.10).
Similarly, one can also show that

lim
n→∞P

(
C

p,−
(i) (λ) ⊂ C

p

(i)(λ) ⊂ C
p,+
(i) (λ),∀i ≤ K

)= 1. (10.11)

Finally, since Zp,−
n (λ) and Zp,+

n (λ) have the same distributional limit, it follows using (10.5) that, for all i ≤ K ,

∣∣C p,+
(i) (λ)

∣∣− ∣∣C p,−
(i) (λ)

∣∣= oP(bn) and SP
(
C

p,+
(i) (λ)

)− SP
(
C

p,−
(i) (λ)

) P−→ 0. (10.12)

Thus, (10.10) and (10.11) yields

∣∣∣∣C p

(i)(λ)
∣∣− ∣∣C(i)(λ)

∣∣∣∣= oP(bn) and
∣∣SP
(
C

p

(i)(λ)
)− SP

(
C(i)(λ)

)∣∣ P−→ 0. (10.13)

Moreover, (Zp
n (λ))n≥1 is tight in U

0↓, and since both (Zp,−
n (λ))n≥1 and (Zp,+

n (λ))n≥1 are tight in U
0↓, it also follows that

(Zn(λ))n≥1 is tight in U
0↓.

Let πk,Tk : U0↓ �→ U
0↓ be the functions such that for z = ((xi, yi))i≥1, πk(z) consists of only (xi, yi) for i ≤ k and

zeroes in other coordinates, and Tk(z) consists only of (xi, yi) for i > k. Thus,

dU
(
Zp

n (λ),Zn(λ)
)≤ dU

(
πK

(
Zp

n (λ)
)
,πK

(
Zn(λ)

))+ ∥∥TK

(
Zp

n (λ)
)∥∥

U
+ ∥∥TK

(
Zn(λ)

)∥∥
U
. (10.14)

For each fixed K ≥ 1 the first term in the right hand side of (10.14) converges in probability to zero by (10.13). Also,
using the tightness of both (Zn(λ))n≥1 and (Zp

n (λ))n≥1 with respect to the U
0↓ topology, it follows that for any ε > 0,

lim
K→∞ lim

n→∞P
(∥∥TK

(
Zn(λ)

)∥∥
U

> ε
)= lim

K→∞ lim
n→∞P

(∥∥TK

(
Zp

n (λ)
)∥∥

U
> ε
)= 0. (10.15)

Thus, the proof of Proposition 25 now follows. �

Let us now describe the evolution of the components under the dynamic construction Algorithm 3. We write C(i)(λ)

for the ith largest component of Gn(tn(λ)) and define

Oi (λ) = # open half-edges in C(i)(λ). (10.16)

Think of Oi (λ) as the mass of the component C(i)(λ). Let Zo
n(λ) denote the vector of the number of open half-edges

(re-scaled by bn) and surplus edges of Gn(tn(λ)), ordered as an element of U0↓. For a process X, we will write X[λ�,λ
�]

to denote the restricted process (X(λ))λ∈[λ�,λ�]. Let �o
n(λ) =∑i≥1 Oi (λ). Note that

�o
n(λ) = nμ(ν − 1)

ν

(
1 + oP(1)

)
. (10.17)

Indeed, (10.17) follows from Lemma 37 in Appendix D, and
∑

i∈[n] di(di −1)/�n → ν. Observe that during the evolution
of the graph process generated by Algorithm 3 in the time interval [tn(λ), tn(λ + dλ)], the ith and j th (i > j ) largest
components merge at rate

2Oi (λ)Oj (λ) × 1

�o
n(λ) − 1

× 1

2(νn − 1)cn

≈ ν

μ(ν − 1)2

(
b−1
n Oi (λ)

)(
b−1
n Oj (λ)

)
, (10.18)

and create a component with open half-edges Oi (λ) +Oj (λ) − 2 and surplus edges SP(C(i)(λ)) + SP(C(j)(λ)). Also, a
surplus edge is created in C(i)(λ) at rate

Oi (λ)
(
Oi (λ) − 1

)× 1

�o
n(λ) − 1

× 1

2(νn − 1)cn

≈ ν

2μ(ν − 1)2

(
b−1
n Oi (λ)

)2
, (10.19)

and C(i)(λ) becomes a component with surplus edges SP(C(i)(λ)) + 1 and open half-edges Oi (λ) − 2. Thus Zo
n[λ�,λ

�]
does not evolve as an AMC process but it is close. The fact that two half-edges are killed after pairing makes that the
masses (the number of open half-edges) of the components and the system deplete. If there were no such depletion of
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mass, then the vector of open half-edges, along with the surplus edges, would in fact merge as an augmented multiplica-
tive coalescent. Let us define the modified process [22, Algorithm 7] that in fact evolves as augmented multiplicative
coalescent:

Algorithm 4. Initialize Ḡn(tn(λ�)) = Gn(tn(λ�)). Let O denote the set of open half-edges in the graph Gn(tn(λ�)), s̄1 =
|O| and �̄n denote a Poisson process with rate s̄1. At each event time of the Poisson process �̄n, select two half-edges
from O and create an edge between the corresponding vertices. However, the selected half-edges are kept alive, so that
they can be selected again. Denote the resulting graph by Ḡn(tn(λ)).

Remark 16. The only difference between Algorithms 3 and 4 is that the paired half-edges are not discarded and thus
more edges are created by Algorithm 4. Thus, there is a natural coupling between the graphs generated by Algorithms 3
and 4 such that Gn(tn(λ)) ⊂ Ḡn(tn(λ)) for all λ ∈ [λ�,λ

�], with probability one. In the subsequent part of this section, we
will always work under this coupling. The extra edges that are created by Algorithm 4 will be called bad edges.

In the subsequent part of this paper, we will augment a predefined notation with a bar to denote the corresponding
quantity for Ḡn(tn(λ)). Denote βn = (s̄1(νn −1)cn)

1/2 and let Z̄o,scl
n (λ) denote the vector ord(β−1

n Ōi (λ),SP(C̄(i)(λ)))i≥1.
Using an argument identical to (10.18) and (10.19), it follows that Z̄o,scl

n [λ�,λ
�] evolves as a standard augmented multi-

plicative coalescent. Note that there exists a constant c > 0 such that βn = cbn(1 + oP(1)), and therefore the scaling limit
of any finite-dimensional distributions of Z̄o

n[λ�,λ
�] can be obtained from Z̄o,scl

n [λ�,λ
�].

10.1.1. Multiplicative coalescent with mass and weight
To deduce the scaling limits involving the components sizes, let us consider a dynamic process that additionally tracks
the evolution of some weights of components. Initially, the system consists of particles (possibly infinitely many) where
particle i has mass xi and weight zi . Think of the xi ’s as the number of open half-edges, and zi ’s as the component sizes.
Let (Xi(t),Zi(t))i≥1 denote masses, and weights at time t . We always order (Zi(t))i≥1 in a decreasing manner. The
dynamics of the system is described as follows: At time t ,

� particles i and j coalesce at rate Xi(t)Xj (t) and create a particle with mass Xi(t) + Xj(t), weight Zi(t) + Zj (t).

For x,z ∈ �2↓, we denote the vector (Zi(t))i≥1 by MC2(x,z, t). We will need the following theorem:

Theorem 26. Suppose that (xn,zn) → (x,x) in �2 × �2↓. Then, for any t ≥ 0,

MC2(xn,zn, t)
d−→ MC2(x,x, t). (10.20)

Proof. For xn = (xn
i )i≥1 and zn = (zn

i )i≥1, let w+
n = ord(xn

i ∨ zn
i ), w−

n = ord(xn
i ∧ zn

i ), where ord denotes the decreasing
ordering of the elements. Notice that w+

n → x, and w−
n → x in �2↓. Using the Feller property of the multiplicative

coalescent [4, Proposition 5], it follows that

MC2
(
w+

n ,w+
n , t
) d−→ MC2(x,x, t) and MC2

(
w−

n ,w−
n , t
) d−→ MC2(x,x, t), (10.21)

with respect to the �2↓ topology. Suppose that MC2(w
+
n ,w+

n , t) and MC2(w
−
n ,w−

n , t) are coupled through the subgraph
coupling (see [4, page 838]). Under the subgraph coupling, (10.21) yields

∥∥MC2
(
w+

n ,w+
n , t
)∥∥2

2 − ∥∥MC2
(
w−

n ,w−
n , t
)∥∥2

2
P−→ 0. (10.22)

Moreover,

∥∥MC2
(
w−

n ,w−
n , t
)∥∥2

2 ≤ ∥∥MC2(xn,zn, t)
∥∥2

2 ≤ ∥∥MC2
(
w+

n ,w+
n , t
)∥∥2

2. (10.23)

Hence, using [4, Lemma 17], under the subgraph coupling,

∥∥MC2
(
w+

n ,w+
n , t
)− MC2(xn,zn, t)

∥∥2
2 ≤ ∥∥MC2

(
w+

n ,w+
n , t
)∥∥2

2 − ∥∥MC2(xn,zn, t)
∥∥2

2
P−→ 0, (10.24)

and thus the proof of (10.20) follows. �
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10.2. Asymptotics for the open half-edges

The following lemma shows that the number of open half-edges in Gn(tn(λ)) is approximately proportional to the com-
ponent sizes. This will enable us to apply Theorem 26 for deducing the scaling limits of the required quantities for the
graph Ḡn(tn(λ)). Let O(i)(λ) to denote the ith largest number in the sequence (Oj (λ))j≥1. Also recall that Zo

n(λ) denotes
the vector (Oi (λ),SP(C(i)(λ)))i≥1, ordered as an element of U0↓.

Lemma 27. There exists a constant κ > 0 such that, for any i ≥ 1,

Oi (λ) = κ
∣∣C(i)(λ)

∣∣+ oP(bn). (10.25)

Also, for any fixed K ≥ 1,

lim
n→∞P

(
Oi (λ) =O(i)(λ),∀i ≤ K

)
. (10.26)

Further, (Zo
n(λ))n≥1 is tight in U

0↓.

Proof. Let dλ = (dλ
k )k∈[n] be the degree sequence of Gn(tn(λ)). Now, conditionally on dλ, Gn(tn(λ)) is distributed as a

configuration model. We apply Theorem 21 with wi being the number of open half-edges incident to vertex i. To this
end, it is enough to show that Assumption 3 holds with high probability. Since wi ≤ di and dλ

i ≤ di , Assumption 3 (ii)
is obvious. Thus it is enough to show that

∑
i∈[n] dλ

i wi/
∑

i∈[n] dλ
i converges in probability to some constant. This can

be verified using the differential equation method. See Appendix D for details. Thus, (10.25) follows from (8.3). The
U

0↓-tightness also follows from Theorem 21.
Next, we prove (10.26). Using (8.8a), for any ε, η > 0, there exists M = M(ε,η) ≥ 1 such that

P

(∑
i>M

Oi (λ)2 > εb2
n

)
< η. (10.27)

Now, if O1(λ) �=O(1)(λ), then there exists a j ≥ 2 such that O1(λ) ≤Oj (λ). Thus,

P
(
O1(λ) �=O(1)(λ)

)≤ P
(∃2 ≤ j ≤ M :O1(λ) ≤ Oj (λ)

)+ P
(∃j > M :O1(λ) ≤ Oj (λ)

)
. (10.28)

Using (10.25) and Theorem 4 together with Proposition 25, it follows that (b−1
n Oi (λ))i≤M converge in distribution to

(γi)i∈[M], where γi denotes the ith largest excursion length of a process of the form (1.5). An application of Fact 1 yields

lim
n→∞P

(∃2 ≤ j ≤ M :O1(λ) ≤Oj (λ)
)≤ P(γ1 ≤ γ2) = P(γ1 = γ2) = 0. (10.29)

Moreover,

P
(∃j > M : O1(λ) ≤Oj (λ)

)≤ P

(
b−2
n

∑
i>M

Oi (λ)2 > b−2
n O1(λ)2

)

≤ P
(
b−1
n O1(λ) ≤ ε

)+ P

(∑
i>M

Oi (λ)2 > εb2
n

)
. (10.30)

The limsup as n → ∞ of the first term is at most P(γ1 ≤ ε). Since the distribution of γ1 does not have an atom at zero,
P(γ1 ≤ ε) can be taken to be at most η by choosing ε > 0 sufficiently small. Combining (10.29) and (10.30) yields that
P(O1(λ) �=O(1)(λ)) ≤ 2η for all sufficiently large n. Similarly,

P
(
O2(λ) �=O(2)(λ) and O1(λ) =O(1)(λ)

)≤ P
(∃j ≥ 3 : O2(λ) ≤ Oj (λ)

)+ P
(
O2(λ) =O1(λ)

)
. (10.31)

Both of these terms can be bounded using similar arguments as above. The proof for bounding P(Oi (λ) �= O(i)(λ)) for
i ≥ 2 is similar. �

For an element z = (xi, yi)i≥1 ∈ U
0↓ and a constant c > 0, denote cz = (cxi, yi)i≥1. Thus, Lemma 27 states that, for

each fixed λ, Zo
n(λ) is close to κZn(λ). The following result states that formally:
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Corollary 28. For each fixed λ, as n → ∞, dU(Zo
n(λ), κZn(λ))

P−→ 0.

Proof. Using Lemma 27, the proof follows using identical arguments as shown after (10.13) in the proof of Proposi-
tion 25. �

10.3. Comparison between the dynamic construction and the modified process

The goal of this section is to prove that for large components, the modified construction does not change the number
of open half-edges, component sizes and surplus edges considerably. To this end, recall Algorithm 4 and the associated
notation. Thus C̄(i)(λ) is the ith largest component of Ḡn(tn(λ)), and Ōi (λ) is the number of open half-edges in C̄(i)(λ).
Note that we stop discarding the open half-edges in Algorithm 4, so that Ōi (λ) counts the number of open half-edges
associated to vertices at time tn(λ�). Also, Ō(i)(λ) and O(i)(λ) denote the ith largest numbers in the sequences (Ōj (λ))j≥1
and (Oj (λ))j≥1 respectively.

Proposition 29. For each fixed i ≥ 1, as n → ∞,

(a) Ō(i)(λ) −Oi (λ) = oP(bn),

(b) SP(C̄(i)(λ)) − SP(C(i)(λ))
P−→ 0.

Comparison of component sizes
We start by showing that the component sizes and open half-edges in Gn(tn(λ)) and Ḡn(tn(λ)) have identical distributional
limit:

Lemma 30. For any λ > λ�, the sequences (b−1
n Ō(i)(λ))i≥1 and (b−1

n |C̄(i)(λ)|)i≥1 converges in distribution with respect
to the �2↓-topology, and the distributional limits are identical to those of (b−1

n Oi (λ))i≥1 and (b−1
n |C(i)(λ)|)i≥1 respectively.

Proof. Let ξ(θ , λ) denote the ordered vector of excursion lengths of the process (1.5) by putting μ = 1. Recall the
discussion after Algorithm 4 that, if βn = (s̄1(νn −1)cn)

1/2 = cbn(1+oP(1)), then ((β−1
n Ō(i)(λ))i≥1)λ>λ� evolves exactly

as a standard multiplicative coalescent.
Now, using Lemma 27, together with Proposition 24 and the scaling limit from Theorem 4, we know that

(
β−1

n

∣∣Oi (λ)
∣∣)

i≥1
d−→ ξ(c1θ , c2λ), (10.32)

with respect to the �2-topology, for some constants c1, c2 > 0. Here we have used the fact from Lemma 27 that
Oi (λ) = O(i)(λ) with high probability for each fixed i ≥ 1. Also, to adjust a multiplicative

√
ν factor in the scaling

limit in Theorem 4, we are using the fact that, for η1, η2 > 0, θ ∈ �3↓ \ �2↓ and λ ∈ R, ξ(η1θ , η2λ)
d= 1

η1
ξ(θ ,

η2

η2
1
λ). Thus,

in particular, (β−1
n |Oi (λ�)|)i≥1

d−→ ξ(c1θ , c2λ�). Using [5, Theorem 2], there exists a version of the standard multiplica-
tive coalescent (MC1(λ))−∞<λ<∞ process such that MC1(λ) has the same distribution as ξ(c1θ , c2λ). Using the Feller
property of the multiplicative coalescent [4, Proposition 5], it follows that

(
β−1

n

∣∣Ō(i)(λ)
∣∣)

i≥1
d−→ ξ(c1θ , c2λ), (10.33)

with respect to the �2↓-topology. For the component sizes, one can use (10.20) and (10.25) to conclude the proof. �

Next we show that with high probability the largest components of Gn(tn(λ)) contain those of Ḡn(tn(λ)):

Lemma 31. For any K ≥ 1,

lim
n→∞P

(
C(i)(λ) ⊂ C̄(i)(λ),∀i ≤ K

)= 1. (10.34)

Proof. Under the coupling in described in Remark 16, and using Lemma 30, the proof is identical to the proof of (10.5).
We omit further details. �

Proof of Proposition 29(a). Let AK denote the event in (10.34). On AK , O1(λ) ≤ Ō1(λ) ≤ Ō(1)(λ). Using the fact from
Lemma 30 that b−1

n Ō(1)(λ) and b−1
n O1(λ) have the same scaling limit, it follows that Ō(1)(λ)−O1(λ) = oP(bn). Thus, the

proof for i = 1 follows by applying Lemma 31. For i ≥ 2, note that on AK ,
∑

j≤i Oj (λ) ≤∑j≤i Ōj (λ) ≤∑j≤i Ō(j)(λ).
Using this relation the proof can be completed inductively as before by applying Lemmas 30 and 31. �
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Comparison of surplus edges
Next, we compare the surplus edges. Using Lemma 31, it follows that SP(C(i)(λ)) ≤ SP(C̄(i)(λ)) with high probability
for each fixed i ≥ 1. Let BSP(λ) denote the total number of surplus edges created during the formation of some bad edges.
Then, with high probability,

SP
(
C̄(i)(λ)

)≤ SP
(
C(i)(λ)

)+ BSP(λ) +
∑

j �=i:C(j)(λ)⊂C̄(i)(λ)

SP
(
C(j)(λ)

)
. (10.35)

Thus, it is enough to show that the last two terms converge in probability to zero. We first bound BSP(λ):

Lemma 32. For any λ ≥ λ�, BSP(λ)
P−→ 0.

Proof. Before going into the proof, recall Algorithms 3 and 4 and all the definitions therein. We write C > 0 for a generic
constant whose value can be different in different lines. Firstly, let Bi (λ) denote the number of open half-edges in C̄(i)(λ)

that caused the creation of at least one edge in [λ�,λ). We refer to these as bad half-edges since pairing one of them again
would give rise to a bad edge. Let B(λ) be the corresponding vector obtained by ordering them as an element of �2↓. We
will show that

sup
λ′∈[λ�,λ]

b−1
n

∥∥B(λ′)∥∥
2 = b−1

n

∥∥B(λ)
∥∥

2
P−→ 0. (10.36)

For any fixed K ≥ 1, define the event AK that C(i)(λ) ⊂ C̄(i)(λ) for all i ≤ K . Then P(AK) → 1, by Lemma 31. On
the event AK , one can bound Bi (λ) ≤ Ōi (λ) − Oi (λ) for all i ≤ K and Bi (λ) ≤ Ōi (λ) for all i > K . Further, on AK ,∑

j≤i Oj (λ) ≤∑j≤i Ōj (λ) ≤∑j≤i Ō(j)(λ) for all i ≤ K . Now, by Lemma 30, (b−1
n Ō(i)(λ))i≥1 and (b−1

n Oi (λ))i≥1

have the same distributional limit. Therefore, b−1
n Oj (λ) and b−1

n Ōj (λ) have the same distributional limits for all j ≤ K .
Moreover, since (b−1

n Ō(i)(λ))i≥1 converges in �2↓, we can choose K sufficiently large so that
∑

i>K Ōi (λ)2 < εb2
n with

probability at most ε, for any ε > 0. Thus, (10.36) follows.
For any semi-martingale (Yt )t≥0, we write D(Yt ) for its compensator. Let us now turn to the asymptotics of BSP(λ).

Note that BSP(λ) has jump size at most 1. Moreover, a surplus is bad if at least one of the end-points is bad. There-
fore,

D
(
BSP(λ)

)≤ C

∫ λ

λ�

∑
i≥1 Ōi (λ

′)Bi (λ
′)

s̄1cn

dλ′. (10.37)

The Cauchy–Schwarz inequality together with Theorem 26 and (10.36) shows that D(BSP(λ)) = oP(1). We next
use Lenglart inequality [36] which says that, for any non-negative process (Xt )t≥0 with X0 = 0, and ε, δ >

0,

P

(
sup

s∈[0,t]
Xs > ε

)
≤ E[min{D(Xt ), δ}]

ε
+ P

(
D(Xt ) > ε

)
. (10.38)

Finally, using (10.38) together with D(BSP(λ)) = oP(1), implies the required statement for bad surplus edges. �

Next, we bound the final term in (10.35). Suppose that, at time λ�, we have colored the components (C(i)(λ�))i∈[M]
blue, say, and then let Algorithms 3 and 4 evolve. Additionally, we color all the components blue that get connected
to one of the blue components during the evolution. Let CM(λ), C̄M(λ) denote the union of all such blue components in
Gn(tn(λ)) and Ḡn(tn(λ)). We track the surplus edges in C̄M(λ) that were created when a bad edge caused some component
with a surplus edge to merge with a component in C̄M(λ). Let FM(λ) denote the number of times when such surplus edges
were created upto time λ (note that FM(λ) does not count the total number of these unwanted surplus edges). We show
that FM(λ) is zero with high probability.

Lemma 33. For any λ ≥ λ� and M ≥ 1, FM(λ)
P−→ 0.
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Proof. The argument is similar to Lemma 32. Let IM := {i : C̄(i)(λ) ⊂ C̄M(λ)}. Then, the rate at which FM(λ) increases
by 1 is given by

D
(
FM(λ)

)≤ C

∫ λ

λ�

(∑
i∈IM

Bi (λ
′)
∑

j /∈IM :SP(C̄(j)(λ
′))≥1 Ōj (λ

′)
s̄1cn

+
∑

i∈IM
Ōi (λ

′)
∑

j /∈IM :SP(C̄(j)(λ
′))≥1 Bj (λ

′)
s̄1cn

)
dλ′. (10.39)

Let us write the two terms above by (I ) and (II) respectively. Then, using the fact that |IM | ≤ M ,

(I ) ≤ Cb2
n

s̄1cn

∫ λ

λ�

b−2
n

∑
i≤M

Bi

(
λ′)×∑

j≥1

Ōj

(
λ′)SP

(
C̄(j)

(
λ′))dλ′ P−→ 0, (10.40)

where the last step follows using (10.36), s̄1cn = OP(b2
n), and the U

0↓ tightness of (Z̄o
n(λ

′))n≥1. The last statement is a
consequence of the near-Feller property of the augmented multiplicative coalescent [10, Theorem 3.1]. Similarly,

(II) ≤ Cb2
n

s̄1cn

∫ λ

λ�

b−2
n

∑
i≤M

Ōi

(
λ′)×∑

j≥1

Bi

(
λ′)SP

(
C̄(j)

(
λ′))dλ′ P−→ 0, (10.41)

where we have used that b−1
n

∑
j≥1 Bi (λ

′)SP(C̄(j)(λ
′)) P−→ 0, which can be proved using identical arguments as in the

proof of (10.36) and the U0↓ tightness of (Z̄o
n(λ

′))n≥1. Now we conclude the proof using Lenglart’s inequality similarly as
in the proof of Lemma 32. �

The following is the last ingredient that will be needed in the proof:

Lemma 34. Fix any λ > λ�. For any ε > 0, and K ≥ 1, there exists M = M(ε,K,λ) such that

lim sup
n→∞

P
(
C̄(1)(λ), . . . , C̄(K)(λ) are not contained in C̄M(λ)

)≤ ε. (10.42)

Proof. Recall that IM = {i : C̄(i)(λ) ⊂ C̄M(λ)}. If C̄(i0)(λ) is not contained in C̄M(λ) for some i0 ≤ K , then that would
imply that

∑
i /∈IM

|C̄(i)(λ)|2 ≥ |C̄(i0)(λ)|2 is not negligible. Thus, it is enough to show that, for any ε > 0, there exists M

such that

lim sup
n→∞

P

(∑
i /∈IM

∣∣C̄(i)(λ)
∣∣2 > εb2

n

)
≤ ε. (10.43)

For any M ≥ 1, consider the merging dynamics of Algorithm 4, where at time λ�, all the components (C̄(i)(λ�))i∈[M]
are removed. We refer to the above evolution as the M-truncated system. We augment a previously defined notation with
a superscript > M to denote the corresponding quantity for the M-truncated system. We assume that the M-truncated
system and the modified system are coupled in a natural way such that at each event time of the modified truncated system,
an edge is created in the M-truncated system if both the half-edges are selected from the outside of

⋃M
i=1 C̄(i)(λ�). Under

this coupling,∑
i /∈IM

∣∣C̄(i)(λ)
∣∣2 ≤

∑
i≥1

∣∣C̄ >M
(i) (λ)

∣∣2. (10.44)

Now, (Z̄n(λ�))n≥1 is tight in U
0↓. Thus, the �2↓-norm of (b−1

n |C̄(i)(λ�)|)i>M can be made aritrarily small. Therefore, using
the Feller property of the multiplicative coalescent process,

lim
M→∞ lim sup

n→∞
P

(∑
i≥1

∣∣C̄ >M
(i) (λ)

∣∣2 > εb2
n

)
= 0, (10.45)

the proof of (10.43) now follows using (10.44). �
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Proof of Proposition 29(b). Recall the expression in the right hand side of (10.35). The second term goes to zero in
probability using Lemma 32 and the third term goes to zero in probability using Lemmas 33 and 34. Thus the proof
follows. �

10.4. Proof of Theorem 5

We now have all the ingredients to complete the proof of Theorem 5. Take λ� = λ1.
Recall that, for an element z = (xi, yi)i≥1 ∈U

0↓ and a constant c > 0, we denote cz = (cxi, yi)i≥1. Recall the definition

of Zo
n(λ) after (10.16). Denote βn = (s̄1(νn − 1)cn)

1/2 and let Zo,scl
n (λ) = β−1

n bnZo
n(λ). We define Z̄o

n(λ) and Z̄o,scl
n (λ)

analogously for the modified graph Ḡn(tn(λ)). Thus, for any λ ∈R,

Z̄o,scl
n (λ)

d−→ cκZ(λ), (10.46)

where bnβ
−1
n

P−→ c (see Lemma 37), κ is as in Corollary 28, and Z(λ) is given by Theorem 4. (10.46) follows by applying
Theorem 4, Corollary 28, Proposition 29, together with Proposition 24 and (10.26).

Next, we had argued after Remark 16 that (Z̄o,scl
n (λ))λ∈[λ�,λ�] evolves as a standard augmented multiplicative coales-

cent. Let (Tλ)λ∈R denote the semigroup associated to the standard augmented multiplicative coalescent process. Using
the near-Feller property for the augmented multiplicative coalescent [10, Theorem 3.1], it follows from (10.46) that

(
Z̄o,scl

n (λ1), Z̄o,scl
n (λ2)

) d−→ (
cκZ(λ1),Tλ2−λ1

(
cκZ(λ1)

))
. (10.47)

Define T ′
λ = Tλ/(cκ)2 . Applying Proposition 29, it follows that

(
Zo

n(λ1),Zo
n(λ2)

) d−→ (
κZ(λ1), κT ′

λ2−λ1

(
Z(λ1)

))
. (10.48)

Corollary 28 yields that

(
Zn(λ1),Zn(λ2)

) d−→ (
Z(λ1),T ′

λ2−λ1

(
Z(λ1)

))
. (10.49)

Repeating the above argument inductively, there exists a version of the augmented multiplicative coalescent AMC =
(AMC(λ))λ∈R, with the semigroup given by (T ′

λ)λ∈R, such that for any k ≥ 1

(
Zn(λ1), . . . ,Zn(λk)

) d−→ (
AMC(λ1), . . . ,AMC(λk)

)
. (10.50)

Moreover, the scaling limit in Theorem 2 shows that T ′
λ−λ1

(Z(λ1)) and Z(λ) have the same distribution. This ensures that
there exists a version of the augmented multiplicative coalescent whose distribution at each fixed time λ is identical to
Z(λ). Finally, the proof of Theorem 5 is completed by using Proposition 25.

Appendix A: Path counting

In this section, we derive a generalization of [30, Lemma 5.1] by extending the argument therein. Let V ′
n denote the

vertex chosen according to the distribution Gn on [n], independently of the graph. We will later take Gn to be the uniform
distribution on [n], and the size-biased distribution with the sizes being proportional to the degrees. Also, let D′

n denote
the degree of V ′

n, Dn denote the degree of a uniformly chosen vertex (independently of the graph) and C (v) denote the
connected component containing v.

Lemma 35. Let w = (wi)i∈[n] be a weight sequence and consider CMn(d) such that νn < 1. Then,

E

[ ∑
i∈C (V ′

n)

wi

]
≤ E[wV ′

n
] + E[D′

n]E[DnwVn]
E[Dn](1 − νn)

. (A.1)

Proof. Consider all possible paths of length l starting from V ′
n and the w-value at the end of those paths. If we sum over

all such paths together with a sum over all possible l, then we obtain an upper bound on
∑

i∈C (V ′
n) wi . Write Ev[·] for the
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expectation conditional on V ′
n = v. Thus,

Ev

[ ∑
i∈C (V ′

n)

wi

]
≤ wv + dv

∑
l≥1

∑
x1,...,xl

xi �=xj ,∀i �=j

∏l−1
i=1 dxi

(dxi
− 1)dxl

wxl

(�n − 1) · · · (�n − 2l + 1)
. (A.2)

Now, using the exactly same arguments as [30, Lemma 5.1], it follows that

E

[ ∑
i∈C (V ′

n)

wi

]
≤ E[wV ′

n
] + E[D′

n]E[DnwVn]
E[Dn]

∑
l≥1

νl−1
n , (A.3)

and this completes the proof. �

Appendix B: Proof of Lemma 20

Proof. The proof is an adaptation of the proof of [22, Lemma 20]. Let V ′
n denote the vertex chosen according to the

distribution Gn on [n], independently of the graph and let D′
n denote the degree of V ′

n. Suppose that lim supn→∞ E[D′
n] <

∞. We use a generic constant C to denote a positive constant independent of n, δ, K . Consider the graph exploration
described in Algorithm 1, but now we start by choosing vertex V ′

n at Stage 0 and declaring all its half-edges active. The
exploration process is still given by (4.1) with Sn(0) = D′

n. Note that C (V ′
n) is explored when Sn hits zero. For H > 0,

let

γ := inf
{
l ≥ 1 : Sn(l) ≥ H or Sn(l) = 0

}∧ (2δKbn). (B.1)

Note that

E
[
Sn(l + 1) − Sn(l) | (In

i (l)
)n
i=1

]= ∑
i∈[n]

diP
(
i /∈ Vl , i ∈ Vl+1 | (In

i (l)
)n
i=1

)− 2

=
∑

i /∈Vl
d2
i

�n − 2l − 1
− 2 ≤

∑
i∈[n] d2

i

�n − 2l − 1
− 2

:= λc−1
n + o

(
c−1
n

)+ 2l + 1

�n − 2l − 1
×
∑

i∈[n] d2
i

�n

≤ 0 (B.2)

uniformly over l ≤ 2δKbn for all small δ > 0 and large n, where the last step follows from the fact that λ < 0. Therefore,
{Sn(l)}2δKbn

l=1 is a super-martingale. The optional stopping theorem now implies

E
[
D′

n

]≥ E
[
Sn(γ )

]≥ HP
(
Sn(γ ) ≥ H

)
. (B.3)

Thus,

P
(
Sn(γ ) ≥ H

)≤ E[D′
n]

H
. (B.4)

Put H = anK
1.1/

√
δ. To simplify the writing, we write Sn[0, t] ∈ A to denote that Sn(l) ∈ A, for all l ∈ [0, t]. Notice that

P
(
SP
(
C
(
V ′

n

))≥ K,
∣∣C (V ′

n

)∣∣ ∈ (δKbn,2δKbn)
)

≤ P
(
Sn(γ ) ≥ H

)+ P
(
SP
(
C
(
V ′

n

))≥ K,Sn[0,2δKbn] < H,Sn[0, δKbn] > 0
)
. (B.5)

Now,

P
(
SP
(
C
(
V ′

n

))≥ K,Sn[0,2δKbn] < H,Sn[0, δKbn] > 0
)

≤
∑

1≤l1<···<lK≤2δKbn

P
(
surpluses occur at times l1, . . . , lK, Sn[0,2δKbn] < H,Sn[0, δKbn] > 0

)

=
∑

1≤l1<···<lK≤2δKbn

E[1{0<Sn[0,lK−1]<H,SP(lK−1)=K−1}Y ], (B.6)
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where

Y = P
(
Kth surplus occurs at time lK, Sn[lK,2δKbn] < H,Sn[lK, γ ] > 0 | FlK−1

)
≤ CK1.1an

�n

√
δ

≤ CK1.1

bn

√
δ

. (B.7)

Therefore, using induction, (B.5) yields

P
(
SP
(
C
(
V ′

n

))≥ K,Sn[0,2δKbn] < H,Sn[0, δKbn] > 0
)

≤ C

(
K1.1

√
δbn

)K
(2δbn)

K−1

K0.12(K−1)(K − 1)!
2δKbn∑
l1=1

P
(∣∣C (V ′

n

)∣∣≥ l1
)≤ C

δK/2

K1.1bn

E
[∣∣C (V ′

n

)∣∣], (B.8)

where we have used the fact that #{1 ≤ l2, . . . , lK ≤ 2δbn} = (2δbn)
K−1/(K − 1)! and Stirling’s approximation for (K −

1)!, as well as 2e
√

δ < 1 in the last step. Since λ < 0, we can use Lemma 35 to conclude that for all sufficiently large n

E
[∣∣C (V ′

n

)∣∣]≤ Ccn, (B.9)

for some constant C > 0 and we get the desired bound for (B.5). The proof of Lemma 20 is now complete. �

Appendix C: Non-atomic distribution for the excursion process

Below we prove the scaling limit of the exploration process (4.1) has a density at each fixed time. This was proved in [15,
Lemma 3.5] for θi = i−α . However, the argument does not generalize directly for general θ ∈ �3↓ \ �2↓. Below we give a
proof for the general case θ :

Lemma 36. Let S(t) =∑∞
i=1 θi(Ii (t)− θi t), where ξi ∼ Exp(θi) independently, and θ = (θ1, θ2, . . .) ∈ �3↓ \ �2↓. Then the

distribution of St has no atoms for all t > 0.

Proof. Let φt (v) = E[eivS(t)] for v ∈ R. Then,

φt (v) =
∞∏

j=1

e−ivθ2
j t(1 + (eivθj − 1

)(
1 − e−θj t

))
. (C.1)

Therefore,

∣∣φt (v)
∣∣2 ≤

∞∏
j=1

∣∣1 + (cos(vθj ) − 1
)(

1 − e−tθj
)+ i

(
1 − e−tθj

)
sin(vθj )

∣∣2

=
∞∏

j=1

((
cos(vθj ) + e−tθj

(
1 − cos(vθj )

))2 + (1 − e−tθj
)2 sin2(vθj )

)

=
∞∏

j=1

(
e−2tθj

(
1 − 2 cos(vθj )

)+ 2e−tθj cos(vθj ) + (1 − e−tθj
)2)

=
∞∏

j=1

(
1 − 2e−tθj

(
1 − e−tθj

)(
1 − cos(vθj )

))

≤ e−∑∞
j=1 2e−tθj (1−e−tθj )(1−cos(vθj ))

, (C.2)

where in the last step we have used the fact that 1−x ≤ e−x for all x > 0. Let j0(v, t) ≥ 1 be such that max{|v|θj , tθj } ≤ 1
for all j ≥ j0(v, t). Now, for j ≥ j0(v, t), we have that e−tθj ≥ e−1, (1−e−tθj ) ≥ tθj /2 and 1−cos(vθj ) ≥ 2

π
v2θ2

j . Thus,

∣∣φt (v)
∣∣≤ e− 2t

eπ v2∑
j≥j0(v,t) θ3

j . (C.3)
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Let jv = j0(v, t) and g(|v|) :=∑j≥jv
θ3
j . Since t is fixed, we have ignored t in the notation here. We need the following

facts about g:

Fact 3. The function g : [0,∞) �→ (0,∞) is non-increasing and left continuous. Further,
∫∞

0 g(v)dv = ∞.

Proof. The non-increasingness and left continuity follow easily from the definition. Let C0 = ∑∞
j=1 θ3

j and f (x) =
C

−1/3
0 θj for j − 1 ≤ x < j and f (x) = 0 for x < 0. Let X be a random variable with density function f 3. Then

∫ ∞

0
P

(
1

f (X)C
1/3
0

≥ v

)
dv = E

[
1

f (X)C
1/3
0

]
= C

−1/3
0

∫ ∞

0
f 2(x)dx = C−1

0

∞∑
j=1

θ2
j = ∞. (C.4)

Moreover,

∫ ∞

0
P

(
1

f (X)C
1/3
0

≥ v

)
dv =

∞∑
j=1

C−1
0 θ3

j 1{ 1
θj

≥v} = C−1
0 g(v), (C.5)

for v ≥ t . Thus,
∫∞

0 g(v)dv = ∞. �

Fact 4. For every M > 0, there exists Tn = Tn(M) ↗ ∞ such that

lim
n→∞

1

Tn

�
({

0 ≤ u ≤ Tn : u2g(u) ≤ M
})= 0, (C.6)

where � denotes the Lebesgue measure.

Proof. Assume the contrary, i.e., there exists ε > 0 and T0 > 0 such that

1

T
�
({

0 ≤ u ≤ T : u2g(u) ≤ M
})≥ ε, ∀T ≥ T0. (C.7)

Thus, for any T ≥ T0,

uT := sup
{
0 ≤ u ≤ T : u2g(u) ≤ M

}≥ εT . (C.8)

Since g is left continuous, u2
T g(uT ) ≤ M and thus

T 2g(T ) ≤ T 2g(uT ) ≤ T 2M

u2
T

≤ M

ε2
, (C.9)

where in the first step, we have used that g is non-decreasing from Fact 3. Thus g(T ) ≤ M/(εT )2 for all T ≥ T0 and
therefore

∫∞
0 g(v)dv < ∞, which contradicts Fact 3. �

Continuing to the proof of Lemma 36, note that for any a ∈ R and M > 0, and Tn chosen according to Fact 4,

P
(
S(t) = a

)= lim
T →∞

1

2T

∫ T

−T

e−ivaφt (v)dv = lim
n→∞

1

2Tn

∫ Tn

−Tn

e−ivaφt (v)dv

≤ lim sup
n→∞

1

2Tn

∫ Tn

−Tn

e− 2t
eπ v2g(|v|) dv = lim sup

n→∞
1

Tn

∫ Tn

0
e− 2t

eπ v2g(v) dv

≤ lim sup
n→∞

1

Tn

�
({

0 ≤ u ≤ Tn : u2g(u) ≤ M
})+ e− 2t

eπ M = e− 2t
eπ M, (C.10)

where in the third step we have used (C.3), and the last-but-one step follows from Fact 4. Since M > 0 is arbitrary,
P(S(t) = a) = 0 and the proof follows. �



1556 S. Dhara et al.

Appendix D: Evolution of moments in the dynamic construction

Let wi(t) denote the number of unpaired/open half-edges incident to vertex i at time t in Algorithm 3. Let s1(t) denote
the total number of unpaired half-edges at time t . Denote also s2(t) =∑i∈[n] wi(t)

2, sd,w(t) =∑i∈[n] diwi(t). Further,
we write μn = �n/n.

Lemma 37. Under Assumption 1, the quantities supt≤T | 1
n
s1(t) − μne−2t |, supt≤T | 1

n
s2(t) − μne−4t (νn + e2t )|,

supt≤T | 1
n
sd,w(t) − μn(1 + νn)e−2t | are all OP(n−1/2), for any T > 0.

Proof. The proof uses the differential equation method [50]. Notice that, after each ring of an exponential clock in Algo-
rithm 3, s1(t) decreases by two. Let Y denote a unit rate Poisson process. Using the random time change representation
[23],

s1(t) = �n − 2Y

(∫ t

0
s1(u)du

)
= �n + Mn(t) − 2

∫ t

0
s1(u)du, (D.1)

where Mn is a martingale. Now, the quadratic variation of Mn satisfies 〈Mn〉(t) ≤ 4t�n = O(n), which implies that
supt≤T |Mn(t)| = OP(

√
n). Moreover, notice that the function f (t) = μne−2t satisfies f (t) = μn − 2

∫ t

0 f (u)du. There-
fore,

sup
t≤T

∣∣∣∣1ns1(t) − μne−2t

∣∣∣∣≤ sup
t≤T

|Mn(t)|
n

+ 2
∫ T

0
sup
t≤u

∣∣∣∣1ns1(t) − μne−2t

∣∣∣∣du. (D.2)

Using Grőnwall’s inequality [38, Proposition 1.4], it follows that

sup
t≤T

∣∣∣∣1ns1(t) − μne−2t

∣∣∣∣≤ e2T sup
t≤T

|Mn(t)|
n

= OP

(
n−1/2), (D.3)

as required. For s2(t), note that if half-edges corresponding to vertices i and j are paired, s2 changes by −2wi − 2wj + 2
and if two half-edges corresponding to i are paired, s2 changes by −4wi + 4. Thus,

∑
i∈[n]

wi(t)
2 =

∑
i∈[n]

d2
i + M ′

n(t) +
∫ t

0

∑
i �=j

wi(u)wj (u)(−2wi(u) − 2wj(u) + 2)

s1(u) − 1
du

+
∫ t

0

∑
i∈[n]

wi(u)(wi(u) − 1)(−4wi(u) + 4)

s1(u) − 1
du

= nμn(1 + νn) + M ′
n(t) +

∫ t

0

(−4s2(u) + 2s1(u)
)

du + O(1), (D.4)

where M ′
n is a martingale with quadratic variation given by 〈M ′

n〉(t) = O(n). Again, an estimate equivalent to (D.3)
follows using Grőnwall’s inequality. Notice also that when a clock corresponding to vertex i rings and it is paired to
vertex j , then sd,w decreases by di + dj . Thus,

sd,w(t) =
∑
i∈[n]

d2
i + M ′′

n (t) −
∫ t

0

∑
i �=j

wi(u)wj (u)(di + dj )

s1(u) − 1
du −

∫ t

0

∑
i∈[n]

wi(u)(wi(u) − 1)2di

s1(u) − 1
du

= nμn(1 + νn) + M ′′
n (t) − 2

∫ t

0
sd,w(u)du, (D.5)

where M ′′
n is a martingale with quadratic variation given by 〈M ′′

n 〉(t) ≤ 2t
∑

i∈[n] d2
i = O(n). We can now apply Grőn-

wall’s inequality as before. The proof of Lemma 37 is now complete. �
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