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Abstract. In this paper, we are interested in the following problem: find a curve f minimizing the quantity E[mint∈[0,1] ‖X−f (t)‖2],
where X is a random variable, under a length constraint. This question is known in the probability and statistical learning context as
length-constrained principal curves optimization, as introduced in (IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 281–297), and it
also corresponds to a version of the “average-distance problem” studied in the calculus of variation and shape optimization community
(Ann. Sc. Norm. Super. Pisa Cl. Sci. II (4) (2003) 631–678; Progr. Nonlinear Differential Equations Appl. 51 (2002) 41–65).

We investigate the theoretical properties satisfied by a principal curve f : [0,1] → Rd with length at most L, associated to a
probability distribution with second-order moment. We suppose that the probability distribution is not supported on the image of a
curve with length L. Studying open as well as closed optimal curves, we show that they have finite curvature. We also derive an Euler–
Lagrange equation. This equation is then used to show that a length-constrained principal curve in two dimensions has no multiple
point. Finally, some examples of optimal curves are presented.

Résumé. Dans cet article, nous nous intéressons au problème suivant : étant donné une variable aléatoire X, trouver une courbe f

minimisant la quantité E[mint∈[0,1] ‖X − f (t)‖2], sous contrainte de longueur. Dans le contexte des probabilités et de l’apprentissage
statistique, cette question est connue sous le nom d’optimisation de courbes principales avec contrainte de longueur, selon la définition
introduite dans (IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 281–297) ; elle correspond également à une version du « problème
de distance moyenne » étudié dans la communauté de calcul des variations et d’optimisation de formes (Ann. Sc. Norm. Super. Pisa Cl.
Sci. II (4) (2003) 631–678 ; Progr. Nonlinear Differential Equations Appl. 51 (2002) 41–65).

Nous étudions les propriétés théoriques vérifiées par une courbe principale f : [0,1] → Rd de longueur au plus L, associée à une
loi de probabilité ayant un moment d’ordre deux. Nous faisons l’hypothèse que la loi de probabilité n’est pas à support dans l’image
d’une courbe de longueur L. Etudiant des courbes optimales ouvertes ou fermées, nous montrons qu’elles ont une courbure finie.
Nous obtenons également une équation d’Euler–Lagrange. Cette équation est ensuite utilisée pour montrer qu’une courbe principale
de longueur contrainte en dimension deux n’a pas de point multiple. Enfin, nous présentons quelques exemples de courbes optimales.
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1. Introduction

1.1. Context of the problem and motivation

We focus on the problem:

find a curve f : [0,1] → Rd minimizing the quantity

E
[
d(X, Imf )2] =

∫
d(x, Imf )2 dμ(x),

over all curves with length L(f ), such that L(f ) ≤ L.

(1)
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Fig. 1. Two examples of principal curves with length constraint: (a) Uniform distribution over the square [0,1]2. (b) Standard Gaussian distribution.

Here, d(·, ·) is the Euclidean distance from a point to a set, Imf is the image of f , and X is some random vector with
distribution μ, taking its values in Rd . As an illustration, two examples of length-constrained principal curves, fitted via
a stochastic gradient descent algorithm, are presented in 1. This corresponds to principal curves with length constraint,
as described in [27]. These authors show that there exists indeed a minimizer whenever X is square integrable. Observe
that such a length constraint makes perfectly sense in the empirical case, that is in the statistical framework, when the
random vector is replaced by a data cloud. Indeed, from a practical point of view, it is essential to appropriately tune some
parameter reflecting the complexity of the curve, in order to achieve a trade-off between a curve passing through all data
points and a too rough one. The parameter selection issue was addressed in this statistical context for instance in [4,19]
and [22].

Originally, principal curves were introduced in [23], with a different definition, based on the so-called self-consistency
property. In this point of view, a curve f is said to be self-consistent for a random vector X with finite second moment if
it satisfies:

f
(
tf (X)

) = E
[
X|tf (X)

]
a.s.,

where the projection index tf is given by

tf (x) = max arg min
t

∥∥x − f (t)
∥∥.

The self-consistency property may be interpreted as follows: each point on the curve is the average of the mass of the
probability distribution projecting there (for more details about the notion of self-consistency, see [40]). Some regularity
assumptions are made in addition: the principal curve is required to be smooth (C∞), it does not intersect itself, and
has finite length inside any ball in Rd . The existence of principal curves designed according to this definition cannot be
proved in general (see [14,15] for results obtained in the case of some particular distributions in two dimensions), which
is the main motivation for the least-square minimization definition proposed in [27].

Note that several other principal curve definitions, as well as algorithms, were proposed in the literature [12,16,22,
34,38,41,42]. Note also that principal curves, in their empirical version, have many applications in various areas (see for
example [20,23] for applications in physics, [26,37] in character and speech recognition, [3,5,16,17,39] in mapping and
geology, [10,11,16] in natural sciences, [9] in pharmacology, and [13,43] in medicine, for the study of cardiovascular
disease or cancer).

1.2. Description of our results

In this paper, we consider general distributions, assuming only that X has a second order moment, and search for a curve
which is optimal for problem (1). We deal with open curves (with endpoints), as well as closed curves (f (0) = f (1)).
Throughout, we will assume that the length-constraint is effective, that is the support of X is not the image of a curve
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with length less than or equal to L. In this context, we prove that a minimizing curve cannot be self-consistent. We
also show that, for an optimal curve, the set of points with several different projections of the curve, called ridge set in
studies about the “average-distance problem” (see Section 1.3), or ambiguity points in the principal curves literature, is
negligible for the distribution of X. Then, we establish that an optimal curve is right- and left-differentiable everywhere
and has bounded curvature. Moreover, we obtain a first order Euler–Lagrange equation: we show that there exist λ > 0
and a random variable t̂ taking its values in [0,1] such that ‖X − f (t̂)‖ = d(X, Imf ) a.s. and

E
[
X − f (t̂)|t̂ = t

]
mt̂(dt) = −λf ′′(dt), (2)

where mt̂ stands for the distribution of t̂ . To obtain that λ �= 0, we use the fact that an optimal curve is not self-consistent.
Formula (2) allows us to propose in dimension d = 2 a proof of the injectivity of an open principal curve as well as of a
closed principal curve restricted to [0,1).

1.3. Comparison with previous results

Our framework is related to the constrained problem:

minimize
∫
Rd

d(x,�)p dμ(x) over compact connected sets � such that H1(�) ≤ L. (3)

Here, H� denotes �-dimensional Hausdorff measure. A connected question is the minimization of the penalized version
of the criterion:∫

Rd

d(x,�)p dμ(x) + λH1(�). (4)

This issue, called in the calculus of variations and shape optimization community “average-distance problem” or,
for p = 1, “irrigation problem”, has been introduced in [7,8] (see also the survey [29], and the references therein).
Considering a compactly supported distribution, the penalized form is studied for connected sets, with p = 1, in [30], and
for curves, with p ≥ 1, in [31]. In the first article, the authors prove that a minimizer is a tree made of a finite union of
curves with finite length, and they provide a bound on the total curvature of these curves. In the second one, they show
existence of a curve minimizing the penalized criterion∫

Rd

d(x, Imf )p dμ(x) + λL(f ). (5)

They give a bound on the curvature of the minimizer, and prove that, in two dimensions, if p ≥ 2 or the distribution μ has
a bounded density with respect to Lebesgue measure, a minimizing curve is injective.

For the penalized irrigation problem (4), under the assumption that the distribution μ, with compact support, does
not charge the sets that have finite Hd−1 measure, which is true for instance if it has a density with respect to Lebesgue
measure, an Euler–Lagrange equation is obtained for p = 1 in [6], whereas [28] uses arguments involving endpoints to
derive one in the case of the constrained version (3), in R2, under the same assumption on μ. This assumption implies
that X is almost surely different from its projection on the curve, which is required for differentiability when p = 1, and,
moreover, it is used to ensure negligibility of the ridge set.

For the constrained problem (3), if �∗ denotes a minimizer and
∫
Rd d(x,�)p dμ(x) > 0, it is shown in [35] that

H1(�∗) = L. A similar result in our context is stated in Corollary 3.1 below.
Another related setting is the “lazy travelling salesman problem” of [36]: in R2, taking for μ an empirical distribution

and considering closed curves, the authors study the penalized problem (5) for p = 2 (with λL(f ) replaced by λL2(f )).
They show that for λ large enough, the problem is reduced to a convex optimization.

Recall that we study in this manuscript the constrained problem (1), for open or closed curves. In our context, the
distribution of X is not required to be compactly supported, and we do not need to assume that μ does not charge the
sets with finite Hd−1 measure to derive an Euler–Lagrange equation. Indeed, our proof does not rely on the fact that the
ridge set is negligible. Besides, we prove that ambiguity points are actually negligible, which implies in particular that,
for a given optimal curve, the Lagrange multiplier λ in equation (2) only depends on the curve f . We decided to focus
on the case p = 2 for which we can state the more complete results. In particular, we are only able to show the default of
self-consistency of an optimal curve when p = 2. As already mentioned, this is a key point to get the main result. Observe
that it would be interesting to define a counterpart of the default of self-consistency when considering other values of p.
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1.4. Organization of the paper

Our document is organized as follows. Section 2 introduces relevant notation and recalls some basic facts about length-
constrained principal curves. In Section 3, negligibility of ambiguity points is given in Proposition 3.1, and the main result
is stated in his complete form in Theorem 3.1.

Injectivity results are presented in 4. Finally, we give in Section 5 explicit examples of optimal curves.

2. Definitions and notation

For d ≥ 1, the space Rd is equipped with the standard Euclidean norm, denoted by ‖ · ‖. The associated inner product
between two elements u and v is denoted by 〈u,v〉. Let H1 denotes the 1-dimensional Hausdorff measure in Rd .

For x ∈Rd , A ⊂Rd , let d(x,A) = infy∈A ‖x −y‖ denote the distance from point x to set A. For r > 0, let B(x, r) and
B̄(x, r) denote, respectively, the open and the closed balls with center x and radius r . Also, let ∂A stand for the boundary
of A, Card(A) for its cardinality, and diam(A) = supx,y∈A ‖x − y‖ for its diameter.

For every x ∈ Rd , let xj be its j th component, for j = 1, . . . , d , that is x = (x1, . . . , xd). For every x = (x1, . . . , xd) ∈
Rd , we set ‖x‖∞ = max1≤i≤d |xj |.

Let (�,F,P) be a probability space and X a random vector on (�,F,P) with values in Rd , such that E[‖X‖2] < ∞.
We will consider curves, that are continuous functions

f : [0,1] →Rd

t �→ (
f 1(t), . . . , f d(t)

)
.

For such a curve f : [0,1] → Rd , let L(f ) ∈ [0,∞] denote its length, defined by

L(f ) = sup
n∑

i=1

∥∥f (ti) − f (ti−1)
∥∥, (6)

where the supremum is taken over all possible subdivisions 0 = t0 ≤ · · · ≤ tn = 1, n ≥ 1 (see, e.g., [1]). Let Imf denote
the image of f .

Let

�(f ) = E
[
d(X, Imf )2],

and, for L ≥ 0,

G(L) = min
{
�(f ),f ∈ CL

}
,

where, in the sequel, CL will denote either one of the following sets of curves:{
f ∈ [0,1] → Rd,L(f ) ≤ L

}
,{

f ∈ [0,1] → Rd,L(f ) ≤ L,f (0) = f (1)
}
.

Curves belonging to the latter set are closed curves. Note that G is well-defined. Indeed, the existence of an open curve
f with L(f ) ≤ L achieving the infimum of the criterion �(f ) is shown in [27], and the same proof applies for closed
curves.

It will be useful to rewrite G(L), for every L ≥ 0, as the minimum of the quantity

E
[‖X − X̂‖2]

over all possible random vectors X̂ taking their values in the image Imf of a curve f ∈ CL.

Remark 1. If f : [0,1] → Rd is Lipschitz with constant L, its length is at most L. This follows directly from the
definition of the length (6). Conversely, if the curve f : [0,1] → Rd has length L(f ) ≤ L, then there exists a curve with
the same image which is Lipschitz with constant L. Indeed, a curve with finite length may be parameterized by arc-length
(1-Lipschitz) (see, e.g., [1, Theorem 2.1.4]).
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Remark 2. Let L ≥ 0. Suppose that X̂ satisfies G(L) = E[‖X − X̂]‖2]. Writing

E
[‖X − X̂‖2] = E

[∥∥X − X̂ −E[X − X̂]∥∥2]+ ∥∥E[X] −E[X̂]∥∥2
,

we see that, necessarily,

E[X] = E[X̂], (7)

since, otherwise, the criterion could be made strictly smaller by replacing X̂ by the translated variable X̂ +E[X]−E[X̂],
which contradicts the optimality of X̂.

Observe that (7) remains true in a more general setting, as soon as the constraint corresponds to a quantity invariant by
translation.

3. Main results and proofs

3.1. Negligibility of the ridge set

Given a curve f : [0,1] → Rd , consider the set

Pf (x) = {
y ∈ Imf,‖x − y‖ = d(x, Imf )

} = B̄
(
x, d(x, Imf )

)∩ Imf.

If Pf (x) has cardinality at least 2, x is called an ambiguity point in the principal curves literature (see [23]). Properties
of the set of such points, named ridge set in the shape optimization community, have been studied for instance in [32].
In particular, the ridge set is measurable. Using property (7), it may be shown that the ridge set of an optimal curve
for X is negligible for the distribution of X. Section 3.3 below presents the proof of this result, as well as the proof of
measurability, provided for the sake of completeness.

Proposition 3.1. Let f ∈ CL be an optimal curve for X (�(f ) = G(L)).

1. The set Af = {x ∈ Rd,Card(Pf (x)) ≥ 2} of ambiguity points is measurable.
2. The set Af is negligible for the distribution of X.

Remark 3. The fact that the ridge set is negligible for the distribution of X may be extended to the context of computing
optimal trees under H1 constraint. Indeed, the result relies on property (7), and H1 measure is translation invariant.

3.2. Main theorem and comments

Recall that a signed measure on (�,F) is a function m : F → R such that m(∅) = 0 and m is σ -additive, that is
m(

⋃
k≥1 Ak) = ∑

k≥1 m(Ak) for any sequence (Ak)k≥1 of pairwise disjoint sets. For an Rd -valued signed measure m on
[0,1], that is m = (m1, . . . ,md), where each mj is a signed measure, and for g : [0,1] → Rd a measurable function, we
will use the following notation:

∫ 〈g(t),m(dt)〉 = ∑d
j=1

∫
gj (t)mj (dt).

A probability space (�̃, F̃, P̃) will be called an extension of (�,F,P) if there exists a random vector X̃ defined on
(�̃, F̃, P̃), with the same distribution μ as X. For simplicity, we still denote this random vector by X throughout the
paper.

Theorem 3.1. Let L > 0 such that G(L) > 0 and let f ∈ CL such that �(f ) = G(L). Then, L(f ) = L. Assuming that f

is L-Lipschitz, we obtain that

• f is right-differentiable on [0,1), ‖f ′
r (t)‖ = L for all t ∈ [0,1),

• f is left-differentiable on (0,1], ‖f ′
�(t)‖ = L for all t ∈ (0,1],

and there exists a unique signed measure f ′′ on [0,1] (with values in Rd ) such that

• f ′′((s, t]) = f ′
r (t) − f ′

r (s) for all 0 ≤ s ≤ t < 1,
• f ′′([0,1]) = 0.

In the case CL = {f : [0,1] → Rd,L(f ) ≤ L}, we also have

• f ′′({0}) = f ′
r (0),

• f ′′({1}) = −f ′
�(1).
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Moreover, there exists a unique λ > 0 and, there exists a random variable t̂ with values in [0,1], defined on an extension
(�̃, F̃, P̃) of the probability space (�,F,P), such that

• ‖X − f (t̂)‖ = d(X, Imf ) a.s.,
• for every bounded Borel function g : [0,1] →Rd ,

E
[〈
X − f (t̂), g(t̂)

〉] = −λ

∫
[0,1]

〈
g(t), f ′′(dt)

〉
. (8)

Remark 4. Let mt̂ |X denote the conditional distribution of t̂ given X. Then, equation (8) can be written in the following
form: ∫

Rd

∫
[0,1]

〈
x − f (t), g(t)

〉
mt̂ |X(x, dt) dμ(x) = −λ

∫
[0,1]

〈
g(t), f ′′(dt)

〉
.

Remark 5. Whenever the function g is absolutely continuous, an integration by parts (see for instance [24, Theo-
rem 21.67 & Remarks 21.68]) shows that equation (8) may also be written

E
[〈
X − f (t̂), g(t̂)

〉] = λ

∫ 1

0

〈
g′(t), f ′

r (t)
〉
dt. (9)

To see this, let us write

f ′′([0,1])g(1) = f ′′({0})g(0) +
∫

(0,1]
〈
g(t), f ′′(dt)

〉+ ∫
(0,1]

〈
g′(s), f ′′([0, s])〉ds.

Since f ′′([0,1]) = 0, we have

0 =
∫

[0,1]
〈
g(t), f ′′(dt)

〉+ ∫
(0,1]

〈
g′(s), f ′

r (s)
〉
ds,

which, combined with (8), implies the announced formula (9).

Remark 6. If the curve f has an angle at t , which means that f ′
r (t) �= f ′

�(t), we see that

E
[(

X − f (t̂)
)
1{t̂=t}

] = −λf ′′({t}) = λ
(
f ′

�(t) − f ′
r (t)

) �= 0.

So, at an angle, P(t̂ = t) > 0.
Besides, when CL = {f : [0,1] → Rd,L(f ) ≤ L}, we have

E
[(

X − f (t̂)
)
1{t̂=0}

] = −λf ′′({0}) = −λf ′
r (0),

which cannot be zero, since f ′
r (0) has norm L > 0. This implies that P(t̂ = 0) > 0.

Remark 7. Regarding the random variable t̂ , let us mention that t̂ is unique almost surely whenever the curve is injective
since f (t̂) is unique almost surely (it is the case in dimension d ≤ 2; see Section 4). In general, it is worth pointing out
that Theorem 3.1 does not ensure that it is a function of X, as (X, t̂) is, in fact, obtained as a limit in distribution of (X, t̂n)

for some sequence (t̂n)n≥1. Besides, note that we do not know whether λ depends on the curve f .

Remark 8 (Principal curves in dimension 1). Let CL = {f : [0,1] → Rd,L(f ) ≤ L}. It may be of interest to consider
the simplest case of dimension 1, where the problem may be solved entirely and explicitly Assume that X is a real-valued
random variable, and that, for some length L > 0, G(L) > 0. Consider an optimal curve f with length L(f ) ≤ L. Using
Corollary 3.1 below, we have that, in fact, L(f ) = L, so that the image of f is given by an interval [a, a + L]. In this
context, solving directly the length-constrained principal curve problem in dimension 1 leads to minimizing in a the
quantity

�(a) := E
[
d(X, Imf )2] = E

[
(X − a)21{X<a}

]+E
[
(X − a − L)21{X>a+L}

]
.

The function � is differentiable in a, with derivative given by

�′(a) = 2E
[
(a − X)1{X<a}

]+ 2E
[
(a + L − X)1{X>a+L}

]
.
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Moreover, �′ admits a right-derivative �′′
r (a) = 2(P(X < a) +P(X > a + L)), which is positive since G(L) > 0 implies

that we do not have X ∈ [a, a + L] almost surely. Hence, � is strictly convex, which shows that the minimizing a is
unique, so that the image of the principal curve f is also uniquely defined.

Besides, observe that equation (8) from Theorem 3.1 takes the following form in dimension 1: for every bounded Borel
function g : [0,1] →Rd ,

E
[
(X − a)1{X<a}g(0)

]+E
[
(X − a − L)1{X>a+L}g(1)

] = λL
(
g(1) − g(0)

)
.

In particular, we get

E
[
(X − a)1{X<a}

] = −λL,

E
[
(X − a − L)1{X>a+L}

] = λL,

which characterizes λ. Let us stress that we directly see in this case that λ > 0, since, otherwise X ∈ [a, a + L] almost
surely, which contradicts the fact that G(L) > 0.

3.3. Proof of Proposition 3.1

1. Note that

A = {
x ∈ Rd,Card

(
B̄
(
x, d(x, Imf )

)∩ Imf
) ≥ 2

}
= {

x ∈ Rd,diam
(
B̄
(
x, d(x, Imf )

)∩ Imf
)
> 0

}
=Rd \ {

x ∈ Rd,diam
(
B̄
(
x, d(x, Imf )

)∩ Imf
) = 0

}
.

For every x ∈Rd , we may write

diam
(
B̄
(
x, d(x, Imf )

)∩ Imf
) = lim

n→∞ diam
(
B
(
x, d(x, Imf ) + 1/n

)∩ Imf
)
.

Since f is continuous, f ([0,1] ∩ Q) is dense in Imf . For every n ≥ 1, the countable set B(x, d(x, Imf ) + 1/n) ∩
f ([0,1] ∩Q) is dense in B(x, d(x, Imf )+ 1/n)∩ Imf , so that both sets have the same diameter. Yet, it can be easily
checked that the diameter of a countable set is measurable, and finally, we obtain that the set A of ambiguity points is
measurable.

2. To begin with, we prove that, for every j = 1, . . . , d , it is possible to construct a random vector X̂ with values in Imf

such that ‖X − X̂‖ = d(X, Imf ) a.s., and

X̂j = maxπj

(
B̄
(
X,d(X, Imf )

)∩ Imf
)
.

Here, πj stands for the projection onto direction j , that is, for x = (x1, . . . , xd) ∈ Rd , πj (x) = xj . Let {t1, t2, . . . } be
an enumeration of the countable set [0,1] ∩ Q. Let ε > 0, x ∈ Rd . First, note that the set {t ∈ [0,1],‖f (t) − x‖ <

d(x, Imf ) + ε} is open. It is nonempty since the distance from x to the closed set Imf is attained. We deduce from
this that Card({t ∈ [0,1] ∩Q,‖f (t) − x‖ ≤ d(x, Imf ) + ε}) = ∞. Let us define the sequence (kn

ε (x))m∈N by

k1
ε (x) = min

{
k : ∥∥f (tk) − x

∥∥ ≤ d(x, Imf ) + ε
}

km+1
ε (x) = min

{
k > km

ε (x) : ∥∥f (tk) − x
∥∥ ≤ d(x, Imf ) + ε

}
, m ∈N.

Let j ∈ {1, . . . , d}. We set

p∗(x) = min
{
p ≥ 1, f j (tkp

ε (x)) ≥ sup
m∈N

f j (tkm
ε (x)) − ε

}
.

We define X̂ε(x) = f (t
k
p∗(x)
ε (x)

), which is a measurable choice. Notice that, since {f j (tkm
ε (x)),m ∈ N} = πj (B̄(x,

d(x, Imf ) + ε) ∩ f ([0,1] ∩Q)) is dense in πj (B̄(x, d(x, Imf ) + ε) ∩ Imf ), both sets have the same supremum.
Let

�ε(x) = πj

(
B̄
(
x, d(x, Imf ) + ε

)∩ Imf
)
, �(x) = πj

(
B̄
(
x, d(x, Imf )

)∩ Imf
)
.
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The limit of X̂
j
ε (x) is given by limε→0 max�ε(x). Yet, note that, for every ε, �(x) ⊂ �ε(x) so that

max�(x) ≤ max�ε(x). (10)

Moreover, if ε is small enough, then for all y ∈ �ε(x), d(y,�(x)) ≤ η(ε), where η tends to 0 with ε, and, thus,

max�ε(x) ≤ max�(x) + η(ε). (11)

Combining inequalities (10) and (11), we obtain that limε→0 max�ε(x) = max�(x).
Set εn = 1/n. Up to an extraction, we may assume that (X̂εn(X),X) converges in distribution to (X̂,X) as n → ∞.

The random vector X̂ satisfies ‖X − X̂‖ = d(X, Imf ) and X̂j = max�(X).
Similarly, as may be seen by replacing X by −X, there exists a random vector Ŷ with values in Imf such that

‖X − Ŷ‖ = d(X, Imf ) a.s., and

Ŷ j = minπj

(
B̄
(
X,d(X, Imf )

)∩ Imf
)
.

Now, we use this result to show that A is negligible for the distribution of X. Assume that P(Card(Pf (X)) ≥ 2) > 0.
There exists a first coordinate j such that P(Card(πj (Pf (X))) ≥ 2) > 0. Then, it is possible to construct X̂j and Ŷ j

such that P(X̂j ≥ Ŷ j ) = 1 and P(X̂j > Ŷ j ) > 0. Yet, by property (7), E[X̂] = E[X] = E[Ŷ ], and, in particular,
E[X̂j ] = E[Ŷ j ], which leads to a contradiction. Thus, P(Card(Pf (X)) = 1) = 1.

In the next sections, we present two lemmas, which are important both independently and for obtaining the main result
Theorem 3.1.

3.4. Properties of the function G

The first lemma is about the monotonicity and continuity properties of the function G. Observe that G is nonincreasing,
since {f : [0,1] → Rd,L(f ) ≤ L1} ⊂ {f : [0,1] → Rd,L(f ) ≤ L2} when L1 < L2, so that G(L2) ≤ G(L1).

Lemma 3.1.

1. The function G is continuous.
2. The function G is strictly decreasing over [0,L0), where L0 = inf{L ≥ 0,G(L) = 0} ∈R+ ∪ {∞}.

In particular, Lemma 3.1 admits the next useful corollary.

Corollary 3.1. For L > 0, if G(L) > 0 and f ∈ CL is such that �(f ) = G(L), then L(f ) = L.

Proof. If L(f ) < L, then Lemma 3.1 would imply G(L(f )) > G(L) = �(f ), which contradicts the definition of G. �

Proof of Lemma 3.1. 1. Set L ≥ 0. Let us show that G is continuous at the point L. Let (Lk)k∈N be a sequence in R+
converging to L, with Lk �= L for all k ∈ N. Let f ∈ CL be such that �(f ) = G(L), and let X̂ stands for a random vector
taking its values in Imf such that ‖X − X̂‖ = d(X, Imf ) a.s. For every k ∈ N, let fk : [0,1] → Rd be a curve such that
L(fk) ≤ Lk , �(fk) = G(Lk) and ‖fk(t) − fk(t

′)‖ ≤ Lk|t − t ′| for t, t ′ ∈ [0,1].
Observe that the sequence (G(Lk))k∈N is bounded since E[‖X‖2] < ∞. Let us show that G(L) is the unique limit point

of this sequence. Let γ : N → N be any increasing function. Our purpose is to show that the sequence (G(Lγ (k)))k∈N
converges to G(L).

Let us check that the fk are equi-uniformly continuous and that the sequence (fk(0)) is bounded. Since the se-
quence (Lk)k∈N is bounded, say by L′, the fk are Lipschitz with common Lipschitz constant L′, and, thus, they are
equi-uniformly continuous. For every k ∈ N, t ∈ [0,1], we have ‖fk(t)‖ ≥ ‖fk(0)‖ − L′t ≥ ‖fk(0)‖ − L′. Thus, if there
exists an increasing function κ : N → N such that ‖fκ(k)(0)‖ → ∞, one has G(Lκ(k)) → ∞, which is impossible since
G(Lk) ≤ E[‖X‖2] < ∞. So, the sequence (fk(0))k∈N is bounded.

Consequently, there exists an increasing function σ : N → N such that the subsequence (fσ◦γ (k))k∈N converges uni-
formly to some function ϕ : [0,1] →Rd . Note that the curve ϕ is L-Lipschitz, since for all t, t ′,∥∥ϕ(t) − ϕ

(
t ′
)∥∥ ≤ ∥∥ϕ(t) − fσ◦γ (k)(t)

∥∥+ ∥∥fσ◦γ (k)(t) − fσ◦γ (k)

(
t ′
)∥∥− ∥∥fσ◦γ (k)

(
t ′
)− ϕ

(
t ′
)∥∥

≤ ∥∥ϕ(t) − fσ◦γ (k)(t)
∥∥+ Lσ◦γ (k)

∣∣t − t ′
∣∣− ∥∥fσ◦γ (k)

(
t ′
)− ϕ

(
t ′
)∥∥,
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which implies, taking the limit as k → ∞, ‖ϕ(t) − ϕ(t ′)‖ ≤ L|t − t ′|. We have L(ϕ) ≤ limk→∞ Lk = L. Now, observe
that

min
t

∥∥X − fσ◦γ (k)(t)
∥∥2 − min

t

∥∥X − ϕ(t)
∥∥2

=
(

min
t

∥∥X − fσ◦γ (k)(t)
∥∥− min

t

∥∥X − ϕ(t)
∥∥)(min

t

∥∥X − fσ◦γ (k)(t)
∥∥+ min

t

∥∥X − ϕ(t)
∥∥)

≤ ∥∥ϕ(t∗)− fσ◦γ (k)

(
t∗
)∥∥(∥∥X − fσ◦γ (k)

(
t∗
)∥∥+ ∥∥X − ϕ

(
t∗
)∥∥),

where ‖X − ϕ(t∗)‖ = mint ‖X − ϕ(t)‖. Since E[‖X‖2] < ∞ and fσ◦γ (k) converges uniformly to ϕ, this shows that
�(fσ◦γ (k)) converges to �(ϕ).

Finally, let us check that �(ϕ) = G(L). If L = 0, then for every k, Lk ≥ L, thus �(fσ◦γ (k)) = G(fσ◦γ (k)) ≤ G(0) for
every k. Consequently, �(ϕ) ≤ G(0), which implies �(ϕ) = G(0) since ϕ has length 0. If L > 0, note that, for every k,
Lk

L
X̂ is a random vector with values in Lk

L
Imf since X̂ is taking its values in Imf . Moreover, Lk

L
f has length at most Lk

since f has length L. Thus, for every k,

E

[∥∥∥∥X − Lσ◦γ (k)

L
X̂

∥∥∥∥
2]

≥ G(Lσ◦γ (k)) = �(fσ◦γ (k))

taking the limit as k → ∞, we obtain

E
[‖X − X̂‖2] ≥ �(ϕ),

which means that �(ϕ) = G(L) since L(ϕ) ≤ L.
2. We have to show that G is strictly decreasing as long as the length constraint is effective (that is G(L) > 0). Let

us prove that for 0 ≤ L1 < L2, we have G(L2) < G(L1) if G(L1) > 0. Let f : [0,1] → Rd such that L(f ) ≤ L1 and
�(f ) = G(L1). For t0 ∈ [0,1] and r > 0, we define Ẑt0,r by⎧⎪⎨

⎪⎩
ẐJ

t0,r
= f J (t0) + r ∧ (XJ − f J (t0))1{XJ ≥f J (t0)} + (−r) ∨ (XJ − f J (t0))1{XJ <f J (t0)},

where J = min{i : |Xi − f i(t0)| = ‖X − f (t0)‖∞},
Ẑi

t0,r
= f i(t0) if i �= J, i = 1, . . . , d.

Observe that Ẑt0,r takes its values in

C(t0, r) =
d⋃

j=1

{
x ∈Rd : xi = f i(t0) for i �= j,

∣∣xj − f j (t0)
∣∣ ≤ r

}

(see Figure 2). Indeed, all coordinates of Ẑt0,r are equal to the corresponding coordinate of f (t0) apart from the J th
coordinate, that is the first coordinate for which the distance between X and f (t0) is the largest one. Let us check that
|ẐJ

t0,r
− f J (t0)| ≤ r .

If XJ ≥ f J (t0), either ẐJ
t0,r

− f J (t0) = r , or ẐJ
t0,r

− f J (t0) = XJ − f J (t0) ≤ r .

If XJ < f J (t0), either f J (t0) − ẐJ
t0,r

= r , or f J (t0) − ẐJ
t0,r

= f J (t0) − XJ ≤ r .

Then, letting again X̂ be a random vector with values in Imf such that ‖X − X̂‖ = d(X, Imf ) a.s., we set

X̂t0,r = X̂1{‖X−X̂‖≤‖X−Ẑt0,r‖} + Ẑt0,r1{‖X−X̂‖>‖X−Ẑt0,r‖}.

Since ‖X − Ẑt0,r‖2 = ‖X − f (t0)‖2 − ‖X − f (t0)‖2∞ + (‖X − f (t0)‖∞ − r)2+,

‖X − X̂‖2 − ‖X − X̂t0,r‖2

= [‖X − X̂‖2 − ‖X − Ẑt0,r‖2]
+

= [‖X − X̂‖2 − ∥∥X − f (t0)
∥∥2 + ∥∥X − f (t0)

∥∥2
∞ − (∥∥X − f (t0)

∥∥∞ − r
)2
+
]
+

≥ [‖X − X̂‖2 − ∥∥X − f (t0)
∥∥2 + ∥∥X − f (t0)

∥∥2
∞ − (∥∥X − f (t0)

∥∥∞ − r
)2]

+
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Fig. 2. Example in R2, illustrating the support of Ẑt0,r .

= [‖X − X̂‖2 − ∥∥X − f (t0)
∥∥2 + 2r

∥∥X − f (t0)
∥∥∞ − r2]

+

= [∥∥f (t0) − X̂
∥∥2 + 2

〈
X − f (t0), f (t0) − X̂

〉+ 2r
∥∥X − f (t0)

∥∥∞ − r2]
+

= [−∥∥f (t0) − X̂
∥∥2 + 2

〈
X − X̂, f (t0) − X̂

〉+ 2r
∥∥X − f (t0)

∥∥∞ − r2]
+

≥
[
−∥∥f (t0) − X̂

∥∥2 + 2
〈
X − X̂, f (t0) − X̂

〉+ 2r√
d

∥∥X − f (t0)
∥∥− r2

]
+

since for every x ∈Rd ,‖x‖ ≤ √
d‖x‖∞

≥
[
−∥∥f (t0) − X̂

∥∥2 + 2
〈
X − X̂, f (t0) − X̂

〉+ 2r√
d

‖X − X̂‖ − r2
]

+
since ‖X − X̂‖ ≤ ∥∥X − f (t0)

∥∥.

Besides, X̂t0,r takes its values in Imf ∪ C(t0, r), which is the image of a curve with length at most L1 + 4dr , so that
E[‖X − X̂t0,r‖2] ≥ G(L1 + 4dr).

Thus,

G(L1) ≥ G(L1 + 4dr) +E

[[
−∥∥f (t0) − X̂

∥∥2 + 2
〈
X − X̂, f (t0) − X̂

〉+ 2r√
d

‖X − X̂‖ − r2
]

+

]
. (12)

Since G(L1) > 0, P(‖X − X̂‖ > 0) > 0, thus there exist δ > 0 and K < ∞ such that η := P(K ≥ ‖X − X̂‖ ≥ δ) > 0.
Recall that, for all (t, t ′), we have ‖f (t) − f (t ′)‖ ≤ L1|t − t ′|. Then, for every p ≥ 1, there exists k, 1 ≤ k ≤ p, such

that ‖X̂ − f ( k
p
)‖ ≤ L1

p
and so, we have

p∑
k=1

1{‖X̂−f ( k
p

)‖≤ L1
p

} ≥ 1.

Thus,

p∑
k=1

P

(
K ≥ ‖X − X̂‖ ≥ δ,

∥∥∥∥X̂ − f

(
k

p

)∥∥∥∥ ≤ L1

p

)
≥ η.

Consequently, for every p ≥ 1, there exists tp ∈ [0,1] such that

P

(
K ≥ ‖X − X̂‖ ≥ δ,

∥∥X̂ − f (tp)
∥∥ ≤ L1

p

)
≥ η

p
> 0.
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According to (12), we obtain

G(L1) ≥ G(L1 + 4dr) +E

[
−∥∥f (tp) − X̂

∥∥2 + 2
〈
X − X̂, f (tp) − X̂

〉+ 2r√
d

‖X − X̂‖ − r2
]

+

≥ G(L1 + 4dr) +E

[
1{K≥‖X−X̂‖≥δ,‖X̂−f (tp)‖≤ L1

p
}

(
−L2

1

p2
− 2KL1

p
+ 2rδ√

d
− r2

)]

≥ G(L1 + 4dr) + η

p

(
−L2

1

p2
− 2KL1

p
+ 2rδ√

d
− r2

)
.

Now, choosing r > 0 such that 2rδ√
d

− r2 > 0 and L1 + 4dr ≤ L2, we finally obtain, taking p large enough,

G(L1) > G(L1 + 4dr) ≥ G(L2). �

3.5. Default of self-consistency

The next lemma states that a principal curve with length ≤ L does not satisfy the so-called self-consistency property,
provided that the constraint is effective, that is G(L) > 0.

Lemma 3.2. Let L > 0 such that G(L) > 0, and let f ∈ CL be such that �(f ) = G(L). If X̂ is a random vector with
values in Imf such that ‖X − X̂‖ = d(X, Imf ) a.s., then P(E[X|X̂] �= X̂) > 0.

Proof. First of all, observe that L(f ) = L since G(L) > 0, according to Corollary 3.1. Assume that E[X|X̂] = X̂ a.s..
For ε ∈ [0,1], we set X̂ε = (1 − ε)X̂. Then,

‖X − X̂ε‖2 = ‖X − X̂ + εX̂‖2 = ‖X − X̂‖2 + ε2‖X̂‖2 + 2ε〈X − X̂, X̂〉.
Since E[X|X̂] = X̂ a.s., E[X − X̂|X̂] = 0 a.s., and thus, E[〈X − X̂, X̂〉] = E[〈E[X − X̂|X̂], X̂〉] = 0, so that

E
[‖X − X̂ε‖2] = E

[‖X − X̂‖2]+ ε2E
[‖X̂‖2]. (13)

The random vector X̂ε is taking its values in the image of (1 − ε)f , which has length (1 − ε)L. Observe that

E
[‖X̂‖2] < ∞, (14)

since E[‖X‖2] < ∞ and

E
[‖X̂‖2] ≤ 2E

[‖X − X̂‖2]+ 2E
[‖X‖2]

≤ 2E
[∥∥X − f (0)

∥∥2]+ 2E
[‖X‖2]

≤ 6E
[‖X‖2]+ 4

∥∥f (0)
∥∥2

.

We will show that, adding to (1−ε)f a curve with length εL, it is possible to build Ŷε with E[‖X− Ŷε‖2] < E[‖X−X̂‖2],
which contradicts the optimality of f .

For ε ∈ [0,1], let fε = (1 − ε)f . We then define X̂ε,t0,r as the variable X̂t0,r corresponding to fε . More precisely,
similarly to the proof of Lemma 3.1, we define, for t0 ∈ [0,1] and r > 0, the random vector Ẑε,t0,r , with values in

C(t0, r) =
d⋃

j=1

{
x ∈Rd : xi = f i

ε (t0) for i �= j,
∣∣xj − f j

ε (t0)
∣∣ ≤ r

}
,

by ⎧⎪⎨
⎪⎩

ẐJ
ε,t0,r

= f J
ε (t0) + r ∧ (XJ − f J

ε (t0))1{XJ ≥f J
ε (t0)} + (−r) ∨ (XJ − f J

ε (t0))1{XJ <f J
ε (t0)},

where J = min{i : |Xi − f i
ε (t0)| = ‖X − fε(t0)‖∞},

Ẑi
ε,t0,r

= f i
ε (t0) if i �= J, i = 1, . . . , d.
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We set

X̂ε,t0,r = X̂1{‖X−X̂ε‖≤‖X−Ẑε,t0,r‖} + Ẑε,t0,r1{‖X−X̂ε‖>‖X−Ẑε,t0,r‖}.

By the same calculation as in the proof of Lemma 3.1, we obtain

‖X − X̂ε‖2 − ‖X − X̂ε,t0,r‖2 ≥
[
−∥∥fε(t0) − X̂ε

∥∥2 + 2
〈
X − X̂ε, fε(t0) − X̂ε

〉

+ 2r√
d

∥∥X − fε(t0)
∥∥− r2

]
+
.

Since ‖X − fε(t0)‖ ≥ ‖X − f (t0)‖ − ε‖f (t0)‖ ≥ ‖X − X̂‖ − ε‖f (t0)‖, we get

‖X − X̂ε‖2 − ‖X − X̂ε,t0,r‖2 ≥
[
−(1 − ε)2

∥∥f (t0) − X̂
∥∥2 + 2(1 − ε)

〈
X − X̂ε, f (t0) − X̂

〉

+ 2r√
d

‖X − X̂‖ − 2r√
d

ε
∥∥f (t0)

∥∥− r2
]

+
.

Thus,

E
[‖X − X̂ε‖2 − ‖X − X̂ε,t0,r‖2|X̂]
≥

[
−∥∥f (t0) − X̂

∥∥2 + 2(1 − ε)
〈
E[X|X̂] − X̂ε, f (t0) − X̂

〉+ 2r√
d
E
[‖X − X̂‖|X̂]− 2r√

d
ε
∥∥f (t0)

∥∥− r2
]

+

=
[
−∥∥f (t0) − X̂

∥∥2 + 2(1 − ε)
〈
εX̂, f (t0) − X̂

〉+ 2r√
d
E
[‖X − X̂‖|X̂]− 2r√

d
ε
∥∥f (t0)

∥∥− r2
]

+

≥
[
−∥∥f (t0) − X̂

∥∥2 − 2ε‖X̂‖∥∥f (t0) − X̂
∥∥+ 2r√

d
E
[‖X − X̂‖|X̂]− 2r√

d
ε
∥∥f (t0)

∥∥− r2
]

+
. (15)

Besides, since G(L) > 0, there exist δ > 0, K < ∞, such that

η = P
(‖X̂‖ ≤ K,E

[‖X − X̂‖|X̂] ≥ δ
)
> 0.

Moreover, for every p ≥ 1,
∑p

k=1 1{‖X̂−f ( k
p

)‖≤ L
p

} ≥ 1 since f is L-Lipschitz. Consequently,

p∑
k=1

P

(
‖X̂‖ ≤ K,E

[‖X − X̂‖|X̂] ≥ δ,

∥∥∥∥X̂ − f

(
k

p

)∥∥∥∥ ≤ L

p

)
≥ η.

Hence, setting

Ap =
{
‖X̂‖ ≤ K,E

[‖X − X̂‖|X̂] ≥ δ,

∥∥∥∥X̂ − f

(
k

p

)∥∥∥∥ ≤ L

p

}
,

we see that there exists tp ∈ [0,1] such that P(Ap) ≥ η
p

. From (15), we get

E
[‖X − X̂ε‖2 − ‖X − X̂ε,tp,r‖2]
≥ E

[
1Ap

[
−∥∥f (tp) − X̂

∥∥2 − 2ε‖X̂‖∥∥f (tp) − X̂
∥∥+ 2r√

d
E
[‖X − X̂‖|X̂]− 2r√

d
ε
∥∥f (tp)

∥∥− r2
]

+

]

≥ P(Ap)

[
−L2

p2
− 2εKL

p
+ 2rδ√

d
− 2rεM√

d
− r2

]
,
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where M = supt∈[0,1] ‖f (t)‖. Since X̂ε,tp,r takes its values in fε([0,1]) ∪ C(ε, tp, r), which is the image of a curve with
length at most (1 − ε)L + 4dr , then choosing r such that 4dr = εL, we have

E
[‖X − X̂

ε,tp, εL
4d

‖2] ≤ E
[‖X − X̂ε‖2]− η

p

(
−L2

p2
− 2KLε

p
+ Lδε

2d3/2
− MLε2

2d3/2
− L2ε2

16d2

)

= E
[‖X − X̂‖2]+ ε2E

[‖X̂‖2]+ ηL2

p3
+ 2ηKLε

p2
− ηLδε

2d3/2p
+ ηMLε2

2d3/2p
− ηL2ε2

16d2p
,

using (13). Then, taking ε = ρ
p

, we get

E
[‖X − X̂ ρ

p
,tp,

ρL
4dp

‖2] ≤ E
[‖X − X̂‖2]+ ρ2

p2
E
[‖X̂‖2]+ ηL2

p3
+ 2ηKLρ

p3
− ηLδρ

2d3/2p2
+ ηMLρ2

2d3/2p3
− ηL2ρ2

16d2p3
.

If ρ is small enough, then ρ2E[‖X̂‖2] − ηLδρ

2d3/2 < 0. Then, taking p large enough, this leads to a random vector Ŷ , with

values in the image of a curve with length at most L, such that E[‖X − Ŷ‖2] < E[‖X − X̂‖2]. �

Equipped with lemmas 3.1 and 3.2, we can present the proof of the main result.

3.6. Proof of Theorem 3.1

To obtain a length-constrained principal curve, we have to minimize a function which may not be differentiable. We
propose to build a discrete approximation of the principal curve f , using a chain of points vn

1 , . . . , vn
n , n ≥ 1, in Rd .

For every n ≥ 1, linking the points yields a polygonal curve fn. The properties of the principal curve f will be shown
by passing to the limit. The chain of points is obtained by minimizing a k-means-like criterion, which is differentiable,
under a length-constraint This criterion is based on the distances from the random vector X to the n points and not to the
corresponding segments of the polygonal line fn, which allows to simplify the computation of the gradients.

We have chosen to present the proof for open curves, that is in the case CL = {ϕ : [0,1] → Rd,L(ϕ) ≤ L}. It adapts
straightforwardly to the case of closed curves, which turns out to be even simpler since there are no endpoints and so all
points of the curve play the same role. Note that the normalization factor “n − 1” below becomes “n” in the closed curve
context.

First insight into the proof
To facilitate understanding, we sketch the proof in a simpler case. Assume that X has a density with respect to Lebesgue
measure, and consider a polygonal line fn with vertices vn

1 , . . . , vn
n obtained by minimizing under length constraint the

criterion

F 0
n (x1, . . . , xn) = E

[
min

1≤i≤n
‖X − xi‖2

]
. (16)

For h = (h1, . . . , hn) ∈ (Rd)n, ∇F 0
n .h = ∑n

i=1 E[−2〈X − X̂n, hi〉1{X̂=vn
i }], where X̂ is such that ‖X − X̂‖ =

min1≤j≤n ‖X − vn
i ‖. For differentiability, it is convenient to write the length constraint as follows:

(n − 1)

n∑
i=2

‖xi − xi−1‖2 ≤ L2.

Let t̂n be defined by t̂n = i−1
n−1 on the event {X̂ = vn

i }. For a test function g, set hi = g( i−1
n−1 ) for i = 1, . . . , n. Then, we

obtain the Euler–Lagrange equation

E
[〈
X − fn(t̂n), g(t̂n)

〉] = −λn

∫
[0,1]

〈
g(t), f ′′

n (dt)
〉
. (17)

Up to an extraction, fn converges uniformly to an optimal curve and t̂n converges in distribution. Using the default
of self-consistency (3.2), it may be shown that every limit point of the sequence (λn)n≥1 is positive. Together with the
discrete Euler–Lagrange equation (17), this allows to prove that f ′′

n converges weakly to a signed measure f ′′. Finally,
the desired Euler–Lagrange equation is obtained as the limit of (17).
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Complete proof
Let us now start the complete proof of the theorem.

First, some notation is in order. Let Z be a standard d-dimensional Gaussian vector, independent of X. Let (ζn), (ηn)

and (εn) be sequences of positive real numbers such that

ζn =O(1/n), ηn =O(1/n), nεn → ∞, εn → 0.

We also introduce i.i.d. random vectors ξn
1 , . . . , ξn

n , independent of X and Z, with same distribution as a centered random
vector ξ with compactly supported density, such that ‖ξ‖ ≤ ηn.

We will construct a sequence of polygonal lines converging to the optimal curve f by linking points vn
1 , . . . , vn

n

obtained by minimization of a criterion generalizing (16). Proving differentiability in this case is a little more involved in
this case.

To begin with, since the random vector X is not assumed to have a density with respect to Lebesgue measure, we
convolve it with a Gaussian random vector: we define, for n ≥ 1, Xn = X + ζnZ. So, X is approximated by a sequence
(Xn)n≥1 of continuous random variables.

For 1 ≤ i ≤ n, let

tni := i − 1

n − 1
.

In order to be able to prove results which are true for any optimal curve f , we have to ensure that the points vn
1 , . . . , vn

n ,
n ≥ 1 are located on this curve f . To this aim, we add to the criterion (16) a penalty proportional to

n∑
i=1

∥∥xi − f
(
tni
)∥∥2

.

With this penalty, we cannot affirm any more that the xi ’s are pairwise distinct. To overcome this difficulty, a random
vector ξn

i is added to each xi : the points xi + ξn
i , approximating the xi ’s, are almost surely pairwise distinct.

The desired chain of points is then defined, for n ≥ 1, by minimizing in x = (x1, . . . , xn) ∈ (Rd)n the criterion

Fn(x1, . . . , xn) = E

[
min

1≤i≤n

∥∥Xn − xi − ξn
i

∥∥2
]
+ εn

n∑
i=1

∥∥xi − f
(
tni
)∥∥2

, (18)

under the constraint

(n − 1)

n∑
i=2

‖xi − xi−1‖2 ≤ L2. (19)

Lemma 3.3. There exists (vn
1 , . . . , vn

n) ∈ (Rd)n, satisfying

(n − 1)

n∑
i=2

∥∥vn
i − vn

i−1

∥∥2 ≤ L2,

such that

Fn

(
vn

1 , . . . , vn
n

) = min

{
Fn(x1, . . . , xn); (n − 1)

n∑
i=2

‖xi − xi−1‖2 ≤ L2

}
.

Let X̂x
n be such that X̂x

n ∈ {x1 + ξn
1 , . . . , xn + ξn

n } and

∥∥Xn − X̂x
n

∥∥ = min
1≤i≤n

∥∥Xn − xi − ξn
i

∥∥ (20)

almost surely. In the sequel, X̂n will stand for X̂
(vn

1 ,...,vn
n)

n .

Lemma 3.4. supn≥1 Fn(v
n
1 , . . . , vn

n) < ∞.
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We define the sequence (fn)n≥1 of polygonal lines approximating f , where each fn : [0,1] →Rd , n ≥ 1, is given by

fn(t) = vn
i + (n − 1)

(
t − tni

)(
vn
i+1 − vn

i

)
, tni ≤ t ≤ tni+1,1 ≤ i ≤ n − 1.

This function fn is absolutely continuous and we have f ′
n(t) = (n−1)(vn

i+1 −vn
i ) for t ∈ (tni , tni+1). Using the definition

of f ′
n, we obtain the following regularity properties of fn.

Lemma 3.5. For n ≥ 1, the curve fn satisfies:

1. L(fn) ≤ L.
2. For all t, t ′ ∈ [0,1], ‖fn(t) − fn(t

′)‖ ≤ L
√|t − t ′|.

Asymptotically, the penalty term ensuring that the points vn
1 , . . . , vn

n , n ≥ 1 belong to the curve f can be neglected.

Lemma 3.6. There exists c ≥ 0 such that, for all n ≥ 1,

εn

n∑
i=1

∥∥vn
i − f

(
tni
)∥∥2 ≤ c

n
.

Lemma 3.7. The sequence (fn)n≥1 converges uniformly to the curve f .

Let t̂n = tni on the event {X̂n = vn
i + ξn

i }, 1 ≤ i ≤ n. Note that the sequence (t̂n)n≥1 is bounded. Thus, up to extending
the probability space (�,F,P), and extracting a subsequence, we may assume that (Xn, t̂n) converge in distribution to a
tuple (X, t̂). This implies the next result.

Lemma 3.8. There exists a random variable t̂ with values in [0,1], defined on an extension of the probability space
(�,F,P), such that∥∥X − f (t̂)

∥∥ = d(X, Imf ) a.s.

In order to be able to state a first order Euler–Lagrange equation for the criterion (18), we show that the quantity
E[min1≤i≤n ‖Xn − xi − ξn

i ‖2] is differentiable at xi . Recall the definition (20) of X̂x
n .

Lemma 3.9. The function (x1, . . . , xn) �→ E[min1≤i≤n ‖Xn −xi − ξn
i ‖2] is differentiable, and, for 1 ≤ i ≤ n, the gradient

with respect to xi is given by

∂

∂xi

E

[
min

1≤j≤n

∥∥Xn − xj − ξn
j

∥∥2
]

= −2E
[(

Xn − X̂x
n

)
1{X̂x

n=xi+ξi }
]
.

The Lagrange multiplier method then leads to the next system of equations satisfied by vn
1 , . . . , vn

n .

Lemma 3.10. For n ≥ 1, there exists a Lagrange multiplier λn ≥ 0 such that⎧⎪⎪⎨
⎪⎪⎩

−E[(Xn − X̂n)1{X̂n=vn
i +ξn

i }] + εn(v
n
i − f (tni )) + λn(n − 1)(vn

i − vn
i−1 − (vn

i+1 − vn
i )) = 0, 2 ≤ i ≤ n − 1,

−E[(Xn − X̂n)1{X̂n=vn
1 +ξn

1 }] + εn(v
n
1 − f (0)) − λn(n − 1)(vn

2 − vn
1 ) = 0,

−E[(Xn − X̂n)1{X̂n=vn
n+ξn

n }] + εn(v
n
n − f (1)) + λn(n − 1)(vn

n − vn
n−1) = 0.

Lemma 3.11. If λ is a limit point of the sequence (λn)n≥1, then λ ∈ (0,∞].

Hence, up to an extraction, we may assume that the sequence (λn)n≥1 converges to a limit λ ∈ (0,∞].
Let δ� denote the Dirac mass at �. For every n ≥ 2, we define f ′′

n on [0,1] by

f ′′
n = (n − 1)

[
n−1∑
i=2

(
vn
i+1 − vn

i − (
vn
i − vn

i−1

))
δtni

+ (
vn

2 − vn
1

)
δ0 − (

vn
n − vn

n−1

)
δ1

]
, (21)

which is a vector-valued signed measure.
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Lemma 3.12. The sequence (f ′′
n )n≥1 converges weakly to a signed measure f ′′ on [0,1], with values in Rd , which is the

second derivative of f . The following regularity properties hold:

• f is right-differentiable on [0,1), ‖f ′
r (t)‖ = L for all t ∈ [0,1),

• f is left-differentiable on (0,1], ‖f ′
�(t)‖ = L for all t ∈ (0,1],

• f ′′((s, t]) = f ′
r (t) − f ′

r (s) for all 0 ≤ s ≤ t < 1,
• f ′′([0,1]) = 0.
• f ′′({0}) = f ′

r (0),
• f ′′({1}) = −f ′

�(1).

These properties imply in particular that λ is finite.

Lemma 3.13. We have λ < ∞.

Finally, collecting all the results allows to derive the Euler–Lagrange equation.

Lemma 3.14. For every bounded Borel function g : [0,1] → Rd ,

E
[〈
X − f (t̂), g(t̂)

〉] = −λ

∫
[0,1]

〈
g(t), f ′′(dt)

〉
.

Moreover, λ depends only on the curve f .

Proof of Lemma 3.3. Since E[‖Xn‖2] ≤ 2E[‖X‖2] + 2dζ 2
n < ∞ and E[‖ξ‖2] ≤ η2

n < ∞, Fn takes its values in [0,∞)

and is continuous. The constraint (19) defines a nonempty closed set Dn. Since

lim‖x1‖+···+‖xn‖→∞
(x1,...,xn)∈Dn

Fn(x1, . . . , xn) = ∞,

the optimization problem reduces thus to minimizing a continuous function on a compact set. �

Proof of Lemma 3.4. Recall that, for all t, t ′ ∈ [0,1], ‖f (t) − f (t ′)‖ ≤ L|t − t ′|. Hence, we have

(n − 1)

n∑
i=2

∥∥f (
tni
)− f

(
tni−1

)∥∥2 ≤ L2,

and consequently, we may consider (x1, . . . , xn) = (f (tn1 ), . . . , f (tnn )). We see that

Fn

(
vn

1 , . . . , vn
n

) ≤ E
[∥∥Xn − f (0) − ξn

1

∥∥2]
≤ 2E

[∥∥Xn − ξn
1

∥∥2]+ 2
∥∥f (0)

∥∥2

≤ 2E
[‖X‖2]+ 2dζ 2

n + 2η2
n + 2

∥∥f (0)
∥∥2

. �

Proof of Lemma 3.5. By definition of f ′
n, and using that vn

1 , . . . , vn
n satisfy constraint (19), we have

∫ 1

0

∥∥f ′
n(t)

∥∥2
dt =

n−1∑
i=1

(n − 1)2
∥∥vn

i+1 − vn
i

∥∥2 × 1

n − 1
= (n − 1)

n−1∑
i=1

∥∥vn
i+1 − vn

i

∥∥2 ≤ L2.

Hence,

L(fn) ≤
(∫ 1

0

∥∥f ′
n(t)

∥∥2
dt

)1/2

≤ L,

and for all t, t ′ ∈ [0,1],
∥∥fn(t) − fn

(
t ′
)∥∥ =

∥∥∥∥
∫ 1

0
1[t∧t ′,t∨t ′]f ′

n(u) du

∥∥∥∥ ≤ L

√∣∣t − t ′
∣∣. �
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Proof of Lemma 3.6. The aim is to show that there exists c ≥ 0 such that, for all n ≥ 1,

εn

n∑
i=1

∥∥vn
i − f

(
tni
)∥∥2 ≤ c

n
.

The following upper bound will be useful:∣∣∣ min
1≤i≤n

∥∥Xn − f
(
tni
)− ξn

i

∥∥− min
1≤i≤n

∥∥X − f
(
tni
)∥∥∣∣∣ ≤ ζn‖Z‖ + ηn.

By definition of (vn
1 , . . . , vn

n), since (f (tn1 ), . . . , f (tnn )) satisfies constraint (19) as already mentioned in the proof of
Lemma 3.4, we may write

Fn

(
vn

1 , . . . , vn
n

) ≤ E

[
min

1≤i≤n

∥∥Xn − f
(
tni
)− ξn

i

∥∥2
]
.

Observe that∣∣∣ min
1≤i≤n

∥∥Xn − f
(
tni
)− ξn

i

∥∥− min
t∈[0,1]

∥∥X − f (t)
∥∥∣∣∣

≤
∣∣∣ min
1≤i≤n

∥∥Xn − f
(
tni
)− ξn

i

∥∥− min
1≤i≤n

∥∥X − f
(
tni
)∥∥∣∣∣+ ∣∣∣ min

1≤i≤n

∥∥X − f
(
tni
)∥∥− min

t∈[0,1]
∥∥X − f (t)

∥∥∣∣∣
≤ ζn‖Z‖ + ηn + L

n − 1
,

so that

min
1≤i≤n

∥∥Xn − f
(
tni
)− ξn

i

∥∥2 ≤ min
t∈[0,1]

∥∥X − f (t)
∥∥2 +

(
ηn + ζn‖Z‖ + L

n − 1

)2

+ 2

(
ηn + ζn‖Z‖ + L

n − 1

)
min

t∈[0,1]
∥∥X − f (t)

∥∥.

Consequently, there exists c1 ≥ 0, such that

Fn

(
vn

1 , . . . , vn
n

) ≤ G(L) + c1

n
.

Besides,

Fn

(
vn

1 , . . . , vn
n

) = E

[
min

1≤i≤n

∥∥Xn − fn

(
tni
)− ξn

i

∥∥2
]
+ εn

n∑
i=1

∥∥fn

(
tni
)− f

(
tni
)∥∥2

,

and, writing∣∣∣ min
1≤i≤n

∥∥Xn − fn

(
tni
)− ξn

i

∥∥2 − min
1≤i≤n

∥∥X − fn

(
tni
)∥∥2

∣∣∣
≤

∣∣∣ min
1≤i≤n

∥∥Xn − fn

(
tni
)− ξn

i

∥∥− min
1≤i≤n

∥∥X − fn

(
tni
)∥∥∣∣∣× (

min
1≤i≤n

∥∥Xn − fn

(
tni
)− ξn

i

∥∥+ min
1≤i≤n

∥∥X − fn

(
tni
)∥∥)

≤ (
ζn‖Z‖ + ηn

)(
ζn‖Z‖ + ηn + 2 min

1≤i≤n

∥∥X − fn

(
tni
)∥∥)

= (
ζn‖Z‖ + ηn

)2 + 2
(
ζn‖Z‖ + ηn

)
min

1≤i≤n

∥∥X − fn

(
tni
)∥∥,

we obtain

Fn

(
vn

1 , . . . , vn
n

) ≥ E

[
min

1≤i≤n

∥∥X − fn

(
tni
)∥∥2

]
−E

[(
ζn‖Z‖ + ηn

)2]− 2
(
ζnE

[‖Z‖]+ ηn

)
E

[
min

1≤i≤n

∥∥X − fn

(
tni
)∥∥]

+ εn

n∑
i=1

∥∥fn

(
tni
)− f

(
tni
)∥∥2



On principal curves with a length constraint 2125

≥ E

[
min

t∈[0,1]
∥∥X − fn(t)

∥∥2
]
− ζ 2

nE
[‖Z‖2]− η2

n − 2ηnζnE
[‖Z‖]

− 2
(
ζnE

[‖Z‖]+ ηn

)
E

[
min

1≤i≤n

∥∥X − fn

(
tni
)∥∥]+ εn

n∑
i=1

∥∥fn

(
tni
)− f

(
tni
)∥∥2

≥ G(L) − c2

n
+ εn

n∑
i=1

∥∥fn

(
tni
)− f

(
tni
)∥∥2

,

for some constant c2 ≥ 0. Indeed, L(fn) ≤ L according to point 1 in Lemma 3.5, which allows to lower bound
E[mint∈[0,1] ‖X − fn(t)‖2] by G(L), and moreover, E[min1≤i≤n ‖X − fn(t

n
i )‖] is bounded since (fn)n≥1 is uniformly

bounded and E[‖X‖2] < ∞. Thus, there exists a constant c3 such that G(L) − c3
n

+ εn

∑n
i=1 ‖fn(t

n
i ) − f (tni )‖2 ≤

G(L) + c3
n

, which shows that εn

∑n
i=1 ‖fn(t

n
i ) − f (tni )‖2 ≤ 2c3

n
. �

Proof of Lemma 3.7. Point 2 in Lemma 3.5 and Lemma 3.6, together with the assumption nεn → ∞, imply that the
sequence (fn)n≥1 converges uniformly to the curve f . �

Proof of Lemma 3.8. For every n ≥ 1,

∣∣∣∥∥Xn − fn(t̂n)
∥∥− min

1≤i≤n

∥∥Xn − fn

(
tni
)∥∥∣∣∣

≤
∣∣∣∥∥Xn − fn(t̂n)

∥∥− min
1≤i≤n

∥∥Xn − fn

(
tni
)− ξn

i

∥∥∣∣∣+ ∣∣∣ min
1≤i≤n

∥∥Xn − fn

(
tni
)− ξn

i

∥∥− min
1≤i≤n

∥∥Xn − fn

(
tni
)∥∥∣∣∣

≤
∣∣∣∣∣∥∥Xn − fn(t̂n)

∥∥−
n∑

i=1

∥∥Xn − fn(t̂n) − ξn
i

∥∥1{X̂n=fn(tni )+ξn
i }

∣∣∣∣∣+ ηn

≤
n∑

i=1

∣∣∥∥Xn − fn(t̂n)
∥∥− ∥∥Xn − fn(t̂n) − ξn

i

∥∥∣∣1{X̂n=fn(tni )+ξn
i } + ηn

≤ 2ηn,

Hence, we obtain

∥∥X − f (t̂)
∥∥ = min

t∈[0,1]
∥∥X − f (t)

∥∥ a.s. �

Proof of Lemma 3.9. For x = (x1, . . . , xn) ∈ (Rd)n and ω ∈ �, we set

Gn(x,ω) := min
1≤i≤n

∥∥Xn(ω) − xi − ξn
i (ω)

∥∥2
.

For every x, since the distribution of Xn gives zero measure to affine hyperplanes of Rd and the vectors xi +ξn
i , 1 ≤ i ≤ n,

are mutually distinct P(dω) almost surely, we have P(dω) almost surely,

Gn(x,ω) =
n∑

i=1

∥∥Xn(ω) − xi − ξn
i (ω)

∥∥21{‖Xn(ω)−xi−ξn
i (ω)‖<minj �=i ‖Xn(ω)−xj −ξn

j (ω)‖}.

For every x ∈ (Rd)n, P(dω) almost surely, y �→ Gn(y,ω) is differentiable at x and for 1 ≤ i ≤ n,

∂

∂xi

Gn(x,ω) = −2
(
Xn(ω) − xi − ξn

i (ω)
)
1{‖Xn(ω)−xi−ξn

i (ω)‖<minj �=i ‖Xn(ω)−xj −ξn
j (ω)‖}.

= −2
(
Xn(ω) − X̂x

n(ω)
)
1{X̂x

n(ω)=xi+ξn
i (ω)}.
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For every u = (u1, . . . , un) ∈ (Rd)n, we set ‖u‖ = (
∑n

i=1 ‖ui‖2)1/2. Let x(k) = (x
(k)
1 , . . . , x

(k)
n ) be a sequence tending to

x = (x1, . . . , xn) ∈ (Rd)n as k tends to infinity. Then,

[
Gn

(
x(k),ω

)− Gn(x,ω) −
n∑

i=1

〈
∂

∂xi

Gn(x,ω), x
(k)
i − xi

〉]
× 1

‖x(k) − x‖

converges P(dω) almost surely to 0 as k tends to infinity. Moreover,

∣∣Gn(x, ·) − Gn

(
x(k), ·)∣∣

=
(

min
1≤i≤n

∥∥Xn − xi − ξn
i

∥∥+ min
1≤i≤n

∥∥Xn − x
(k)
i − ξn

i

∥∥)∣∣∣ min
1≤i≤n

∥∥Xn − xi − ξn
i

∥∥− min
1≤i≤n

∥∥Xn − x
(k)
i − ξn

i

∥∥∣∣∣
≤ 2

(‖Xn‖ + ηn + ‖x1‖ + ∥∥x(k)
1

∥∥) max
1≤i≤n

∥∥xi − x
(k)
i

∥∥,
so that

|Gn(x, ·) − Gn(x
(k), ·)|

‖x − x(k)‖ ≤ C
(‖Xn‖ + 1

)
,

where C is a constant which does not depend on k. Similarly, we have, for 1 ≤ i ≤ n,

∥∥∥∥ ∂

∂xi

Gn(x, ·)
∥∥∥∥ ≤ C′(‖Xn‖ + 1

)
,

where C′ does not depend on k, and, thus,

1

‖x − x(k)‖

∣∣∣∣∣
n∑

i=1

〈
∂

∂xi

Gn(x, ), x
(k)
i − xi

〉∣∣∣∣∣ ≤ C′(‖Xn‖ + 1
)∑n

i=1 ‖x(k)
i − xi‖

‖x − x(k)‖
≤ C′√n

(‖Xn‖ + 1
)
.

Since E[‖Xn‖] < ∞, the result follows from Lebesgue’s dominated convergence theorem. �

Proof of Lemma 3.10. By Lemma 3.9, we obtain that Fn is differentiable, and for 1 ≤ i ≤ n, the gradient with respect
to xi is given by

∂

∂xi

Fn(x1, . . . , xn) = −2E
[(

Xn − X̂x
n

)
1{X̂x

n=xi+ξn
i }
]+ 2εn

(
xi − f

(
tni
))

, 1 ≤ i ≤ n.

Consequently, considering the minimization of Fn under the length constraint (19), there exists a Lagrange multiplier
λn ≥ 0 such that

⎧⎪⎪⎨
⎪⎪⎩

−2E[(Xn − X̂n)1{X̂n=vn
i +ξn

i }] + 2εn(v
n
i − f (tni )) + 2λn(n − 1)(vn

i − vn
i−1 − (vn

i+1 − vn
i )) = 0, 2 ≤ i ≤ n − 1,

−2E[(Xn − X̂n)1{X̂n=vn
1 +ξn

1 }] + 2εn(v
n
1 − f (0)) − 2λn(n − 1)(vn

2 − vn
1 ) = 0,

−2E[(Xn − X̂n)1{X̂n=vn
n+ξn

n }] + 2εn(v
n
n − f (1)) + 2λn(n − 1)(vn

n − vn
n−1) = 0,

that is,

⎧⎪⎪⎨
⎪⎪⎩

−E[(Xn − X̂n)1{X̂n=vn
i +ξn

i }] + εn(v
n
i − f (tni )) + λn(n − 1)(vn

i − vn
i−1 − (vn

i+1 − vn
i )) = 0, 2 ≤ i ≤ n − 1,

−E[(Xn − X̂n)1{X̂n=vn
1 +ξn

1 }] + εn(v
n
1 − f (0)) − λn(n − 1)(vn

2 − vn
1 ) = 0,

−E[(Xn − X̂n)1{X̂n=vn
n+ξn

n }] + εn(v
n
n − f (1)) + λn(n − 1)(vn

n − vn
n−1) = 0. �
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Proof of Lemma 3.11. Let g : [0,1] → Rd be an absolutely continuous function such that
∫ 1

0 ‖g′(t)‖2 dt < ∞. For
n ≥ 1, we may write

E
[〈
Xn − fn(t̂n), g(t̂n)

〉]
=

n∑
i=1

〈
E
[(

Xn − X̂n + ξn
i

)
1{X̂n=vn

i +ξn
i }
]
, g

(
tni
)〉

=
n∑

i=1

〈
E
[
(Xn − X̂n)1{X̂n=vn

i +ξn
i }
]
, g

(
tni
)〉+ n∑

i=1

〈
E
[
ξn
i 1{X̂n=vn

i +ξn
i }
]
, g

(
tni
)〉

=
n∑

i=1

〈
E
[
ξn
i 1{X̂n=vn

i +ξn
i }
]
, g

(
tni
)〉+ εn

n∑
i=1

〈
vn
i − f

(
tni
)
, g

(
tni
)〉

+ λn(n − 1)

[
−〈

vn
2 − vn

1 , g(0)
〉+ n−1∑

i=2

〈
vn
i − vn

i−1 − (
vn
i+1 − vn

i

)
, g

(
tni
)〉+ 〈

vn
n − vn

n−1, g(1)
〉]

=
n∑

i=1

〈
E
[
ξn
i 1{X̂n=vn

i +ξn
i }
]
, g

(
tni
)〉+ εn

n∑
i=1

〈
vn
i − f

(
tni
)
, g

(
tni
)〉

+ λn(n − 1)

[
n−2∑
i=1

〈
vn
i+1 − vn

i , g
(
tni+1

)〉− n−1∑
i=2

〈
vn
i+1 − vn

i , g
(
tni
)〉− 〈

vn
2 − vn

1 , g(0)
〉+ 〈

vn
n − vn

n−1, g(1)
〉]

=
n∑

i=1

〈
E
[
ξn
i 1{X̂n=vn

i +ξn
i }
]
, g

(
tni
)〉

+ εn

n∑
i=1

〈
vn
i − f

(
tni
)
, g

(
tni
)〉+ λn(n − 1)

n−1∑
i=1

〈
vn
i+1 − vn

i , g
(
tni+1

)− g
(
tni
)〉
. (22)

Note first that∣∣∣∣∣
n∑

i=1

〈
E
[
ξn
i 1{X̂n=vn

i +ξn
i }
]
, g

(
tni
)〉∣∣∣∣∣ ≤ ηn‖g‖∞

n∑
i=1

E[1{X̂n=vn
i +ξn

i }] = ηn‖g‖∞. (23)

Then,∣∣∣∣∣εn

n∑
i=1

〈
vn
i − f

(
tni
)
, g

(
tni
)〉∣∣∣∣∣ ≤ εn

n∑
i=1

∥∥vn
i − f

(
tni
)∥∥‖g‖∞

≤ εn

(
n∑

i=1

∥∥vn
i − f

(
tni
)∥∥2

)1/2√
n‖g‖∞

≤ √
cεn‖g‖∞, (24)

according to Lemma 3.6. Regarding the last term, we may write

∣∣∣∣∣(n − 1)

n−1∑
i=1

〈
vn
i+1 − vn

i , g
(
tni+1

)− g
(
tni
)〉∣∣∣∣∣ ≤ (n − 1)

[
n−1∑
i=1

∥∥vn
i+1 − vn

i

∥∥2
n−1∑
i=1

∥∥g(tni+1

)− g
(
tni
)∥∥2

]1/2

≤ L
√

n − 1

[
n−1∑
i=1

∥∥∥∥
∫ tni+1

tni

g′(t) dt

∥∥∥∥
2
]1/2

≤ L

[∫ 1

0

∥∥g′(t)
∥∥2

dt

]1/2

.
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Thus, if h :Rd →Rd is continuously differentiable, we have

∣∣E[〈Xn − fn(t̂n), h
(
fn(t̂n)

)〉]∣∣ ≤ √
cεn‖h‖∞ + λnL

[∫ 1

0

∥∥∇h
(
fn(t)

)
, f ′

n(t)
∥∥2

dt

]1/2

≤ √
cεn‖h‖∞ + λnL sup

t∈[0,1]

∥∥∇h
(
fn(t)

)∥∥[∫ 1

0

∥∥f ′
n(t)

∥∥2
dt

]1/2

≤ √
cεn‖h‖∞ + λnL

2 sup
t∈[0,1]

∥∥∇h
(
fn(t)

)∥∥.
Recall that (Xn, t̂n) is assumed to converge to (X, t̂). Since εn → 0 and (fn)n≥1 is uniformly bounded, we see that λ = 0
would imply that

E
[〈
X − f (t̂), h

(
f (t̂)

)〉] = 0,

so that E[X −f (t̂)|f (t̂)] = 0 a.s. by density of continuously differentiable functions since h is an arbitrary such function.
This contradicts Lemma 3.2. �

Proof of Lemma 3.12. For an Rd -valued signed measure m = (m1, . . . ,md) on [0,1], we set

‖m‖ =
(

d∑
j=1

∥∥mj
∥∥2

TV

)1/2

, (25)

where ‖mj‖TV denotes the total variation norm of mj . Recall that

f ′′
n = (n − 1)

[
n−1∑
i=2

(
vn
i+1 − vn

i − (
vn
i − vn

i−1

))
δtni

+ (
vn

2 − vn
1

)
δ0 − (

vn
n − vn

n−1

)
δ1

]
.

Thanks to the Euler–Lagrange system of equations obtained in Lemma 3.10, we may write

λn × ∥∥f ′′
n

∥∥ ≤ λn

n∑
i=1

∥∥f ′′
n

({
tni
})∥∥

≤
n∑

i=1

∥∥E[(Xn − X̂n)1{X̂n=vn
i +ξn

i }
]∥∥+ εn

n∑
i=1

∥∥vn
i − f

(
tni
)∥∥

≤ E
[‖Xn − X̂n‖

]+ εn

√
n

(
n∑

i=1

∥∥vn
i − f

(
tni
)∥∥2

)1/2

≤ Fn

(
vn

1 , . . . , vn
n

)1/2 + εn

√
n

(
n∑

i=1

∥∥vn
i − f

(
tni
)∥∥2

)1/2

.

Consequently, using Lemma 3.4 and Lemma 3.6, εn → 0 and limn→∞ λn = λ ∈ (0,∞], we obtain that supn≥1 ‖f ′′
n ‖ < ∞,

that is, the sequence of signed measures (f ′′
n )n≥1 is uniformly bounded in total variation norm. Hence, it is relatively

compact for the topology induced by the bounded Lipschitz norm defined for every signed measure m by

‖m‖BL = sup

{∥∥∥∥
∫

g(x)m(dx)

∥∥∥∥,‖g‖∞ ≤ 1, sup
t �=x

|g(x) − g(t)|
|x − t | ≤ 1

}
.

Let us show that the sequence (f ′′
n )n≥1 converges weakly to some signed measure. Let ν be a limit point of (f ′′

n )n≥1.
There exists an increasing function σ : N→ N, such that, for every (s, t) such that ν({s}) = ν({t}) = 0,

f ′′
σ(n)

(
(s, t]) → ν

(
(s, t]), (26)

f ′′
σ(n)

([0, t]) → ν
([0, t]), f ′′

σ(n)

([0, t)
) → ν

([0, t)
)
. (27)
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Since, for 0 ≤ s ≤ t < 1, f ′′
n ((s, t]) = f ′

n,r (t) − f ′
n,r (s), we have, for 0 ≤ t < 1,

fn(t) = fn(0) + tf ′
n,r (0) +

∫ t

0
f ′′

n

(
(0, u])du.

Note that f ′
n,r (0) = f ′′

n ({0}), so that the fact that supn≥1 ‖f ′′
n ‖ < ∞ implies in particular that (f ′

n,r (0))n≥1 is bounded.
Thus, up to an extraction, by (26), all terms converge: there exists a vector v ∈Rd , such that, for 0 ≤ t < 1,

f (t) = f (0) + tv +
∫ t

0
ν
(
(0, u])du.

Consequently, v = f ′
r (0), and, for 0 ≤ s ≤ t < 1,

ν
(
(s, t]) = f ′

r (t) − f ′
r (s).

In other words, the signed measure ν is the second derivative of f in the distribution sense, called hereafter f ′′, and
(f ′′

n )n≥1 converges weakly to f ′′.
Observe, on the definition (21), that f ′′

n ([0,1]) = 0, so that f ′′([0,1]) = 0.
We have, for t such that f ′′({t}) = 0,

f ′′
n

([0, t]) → f ′′([0, t]), f ′′
n

([0, t)
) → f ′′([0, t)

)
.

Hence, since, for t ∈ [0,1), f ′′
n ([0, t]) = f ′

n,r (t), and t �→ f ′′([0, t]) is right-continuous, f ′
r (t) = f ′′([0, t]) for t ∈ [0,1).

Similarly, for t ∈ (0,1], f ′′
n ([0, t)) = f ′

n,�(t), and t �→ f ′′([0, t)) is left-continuous, so that f ′
�(t) = f ′′([0, t)) for t ∈

(0,1].
Recall that f is L-Lipschitz. Moreover, according to Corollary 3.1, L(f ) = L since G(L) > 0. Thus, we have

‖f ′
r (t)‖ = L dt-a.e., and, since f ′

r is right-continuous, this implies that ‖f ′
r (t)‖ = L for all t ∈ [0,1). Similarly, we

obtain that ‖f ′
�(t)‖ = L for all t ∈ (0,1]. �

Proof of Lemma 3.13. Observe that f ′′ �= 0. Indeed, we have, for example, f ′′({0}) = f ′
r (0), with ‖f ′

r (0)‖ = L > 0.
Yet, λ = ∞ would imply f ′′ = 0 since supn≥1(λn × ‖f ′′

n ‖) < ∞. �

Proof of Lemma 3.14. Clearly, it suffices to consider the case where the test function g is continuous. Using equation
(22) and the upper bounds (23) and (24) in the proof of Lemma 3.11, we obtain, for n ≥ 2,∣∣∣∣∣E[〈Xn − fn(t̂n), g(t̂n)

〉]− λn(n − 1)

n−1∑
i=1

〈
vn
i+1 − vn

i , g
(
tni+1

)− g
(
tni
)〉∣∣∣∣∣ ≤ (ηn + c

√
εn)‖g‖∞,

and besides

λn(n − 1)

n−1∑
i=1

〈
vn
i+1 − vn

i , g
(
tni+1

)− g
(
tni
)〉 = −λn

∫
[0,1]

〈
g(t), f ′′

n (dt)
〉
.

Thus, passing to the limit, we see that f satisfies equation (8).
Finally, the uniqueness of λ follows from the uniqueness of X̂ (Proposition 3.1), and the fact that

E
[〈X − X̂, X̂〉] = λ

∫ 1

0

∥∥f ′
r (s)

∥∥2
ds = λL2

obtained thanks to equation (9) in Remark 5. �

4. An application: Injectivity of f

In this section, we present an application of formula (8) of Theorem 3.1. We will use this first order condition to show in
dimension d = 2 that an open optimal curve is injective, and a closed optimal curve restricted to [0,1) is injective, except
in the case where its image is a segment. To obtain the result, we follow arguments exposed in [31] in the frame of the
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penalized problem, for open curves. The main difference is the fact that we have at hand the Euler–Lagrange equation,
which allows to simplify the proof.

Again, we consider L > 0 such that G(L) > 0 and a curve f ∈ CL such that �(f ) = G(L), which is L-Lipschitz. We
let t̂ be defined as in Theorem 3.1. The random vector f (t̂) will sometimes be denoted by X̂. Recall that ‖X − X̂‖ =
d(X, Imf ) a.s. by Theorem 3.1.

To prove the injectivity of f , we will need several preliminary lemmas. Let us point out that Lemma 4.1 to Lemma 4.5
below are valid for every d ≥ 1.

First of all, we state the next lemma, which will be useful in the sequel, providing a lower bound on the curvature of
any closed arc of f . Recall that the total variation of a signed measure ν is defined by

‖ν‖ =
(

d∑
j=1

∥∥νj
∥∥2

TV

)1/2

,

where ‖νj‖TV denotes the total variation norm of νj . For a Borel set A ⊂ [0,1], f ′′
A denotes the vector-valued signed

measure defined by f ′′
A(B) = f ′′(A ∩ B) for all Borel set B ⊂ [0,1].

Lemma 4.1. If 0 ≤ a < b ≤ 1 and f (a) = f (b), then ‖f ′′
(a,b]‖ ≥ L.

Proof. Let us write

0 = f (b) − f (a) =
∫ b

a

f ′
r (t) dt

=
∫ b

a

[
f ′

r (0) +
∫

(0,t]
f ′′(ds)

]
dt = (b − a)f ′

r (0) +
∫

(0,b]
(
b − (s ∨ a)

)
f ′′(ds)

= (b − a)f ′
r (0) + (b − a)f ′′((0, a])+

∫
(a,b]

(b − s)f ′′(ds)

= (b − a)f ′
r (a) +

∫
(a,b]

(b − s)f ′′(ds).

Thus,
∫
(a,b]

b−s
b−a

f ′′(ds) = −f ′
r (a), which implies ‖f ′′

(a,b]‖ ≥ ‖f ′
r (a)‖ = L. �

As a first step toward injectivity, we now show that, if a point is multiple, it is only visited finitely many times.

Lemma 4.2. For every t ∈ [0,1], the set f −1({f (t)}) is finite.

Proof. Let t ∈ [0,1]. Suppose that f −1({f (t)}) is infinite. Then, for all k ≥ 1, there exist t0, t1, . . . , tk ∈ f −1({f (t)})
such that 0 ≤ t0 < t1 < · · · < tk ≤ 1. So, by Lemma 4.1, ‖f ′′‖ ≥ ∑k

i=1 ‖f ′′
(ti−1,ti ]‖ ≥ kL, which contradicts the fact that f

has finite curvature. �

In the case CL = {ϕ : [0,1] → Rd,L(ϕ) ≤ L}, the endpoints of the curve f cannot be multiple points.

Lemma 4.3. Let CL = {ϕ : [0,1] →Rd ,L(ϕ) ≤ L}. We have f −1({f (0)}) = {0} and f −1({f (1)}) = {1}.
Proof. Observe that, by symmetry, we only need to prove the first statement since the second one follows then by
considering the curve t �→ f (1− t). Assume that the set f −1({f (0)}) has cardinality at least 2. Thanks to Lemma 4.2, we
may consider t0 = min{t > 0 : f (t) = f (0)}. For x ∈ Imf , we set t̂ (x) = inf{t ∈ [0,1], f (t) = x}. For every ε ∈ (0, t0),
we let

X̂ε = f (t̂ ∨ ε)1{t̂>0} + f (0)1{t̂=0}.

With this definition, the random vector X̂ε takes its values in f ([ε,1]) ∪ {f (0)}, that is in f ([ε,1]) since f (t0) = f (0)

and ε < t0. Thus, X̂ε

1−ε
takes its values in f ([ε,1])

1−ε
, which is the image of a curve with length at most L. Consequently, by

optimality of f , we have

E

[∥∥∥∥X − X̂ε

1 − ε

∥∥∥∥
2]

≥ E
[‖X − X̂‖2].
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Besides, we may write

∥∥∥∥X − X̂ε

1 − ε

∥∥∥∥
2

=
∥∥∥∥X − X̂ + X̂ − X̂ε

1 − ε

∥∥∥∥
2

= ‖X − X̂‖2 +
∥∥∥∥X̂ − X̂ε

1 − ε

∥∥∥∥
2

+ 2

〈
X − X̂, X̂ − X̂ε

1 − ε

〉

= ‖X − X̂‖2 + 1

(1 − ε)2
‖X̂ − X̂ε − εX̂‖2 + 2

1 − ε

(〈X − X̂, X̂ − X̂ε〉 − ε〈X − X̂, X̂〉).
As ‖X̂ − X̂ε‖ ≤ Lε since f is L-Lipschitz, we get

E
[‖X̂ − X̂ε − εX̂‖2] ≤ 2L2ε2 + 2ε2E

[‖X̂‖2] = 2
(
L2 +E

[‖X̂‖2])ε2.

Note that E[‖X̂‖2] < ∞ by the same argument as in (14). Moreover, thanks to equation (9) in Remark 5, we have

E
[〈X − X̂, X̂〉] = λ

∫ 1

0

∥∥f ′
r (s)

∥∥2
ds = λL2. (28)

Furthermore, X̂ − X̂ε = (f (t̂) − f (ε))1{0<t̂≤ε}, so that equation (8) implies

E
[〈X − X̂, X̂ − X̂ε〉

] = −λ

∫
[0,1]

〈(
f (t) − f (ε)

)
1{0<t≤ε}, f ′′(dt)

〉
.

Hence,

∣∣E[〈X − X̂, X̂ − X̂ε〉
]∣∣ ≤ λ

d∑
j=1

∫
(0,ε]

∣∣f j (t) − f j (ε)
∣∣∣∣(f ′′)j ∣∣(dt)

≤ λLε

d∑
j=1

∣∣(f ′′)j ∣∣((0, ε]),
where |(f ′′)j | stands for the total variation of the signed measure (f ′′)j . Finally, we obtain

E

[∥∥∥∥X − X̂ε

1 − ε

∥∥∥∥
2]

≤ E
[‖X − X̂‖2]+ 2

(
L2 +E

[‖X̂‖2])ε2 + λLερ(ε) − 2ε

1 − ε
λL2,

where ρ(ε) tends to 0 as ε → 0. This inequality shows that, for ε small enough, E[‖X − X̂ε

1−ε
‖2] < E[‖X − X̂‖2], which

contradicts the optimality of f . �

For an open curve, there exists a multiple point which is the last multiple point.

Lemma 4.4. Let CL = {ϕ : [0,1] → Rd,L(ϕ) ≤ L}. There exists δ > 0 such that for every t ∈ [1 − δ,1],
f −1({f (t)}) = {t}.

Proof. Otherwise, we can build sequences (tk)k≥1 and (sk)k≥1 such that tk → 1 and f (tk) = f (sk), with sk �= tk for all
k ≥ 1. Up to extraction of a subsequence, we may assume that (sk) converges to a limit s ∈ [0,1]. Hence, we have f (s) =
f (1), which implies s = 1 by Lemma 4.3. Up to another extraction, we may consider that the intervals [sk ∧ tk, sk ∨ tk],
k ≥ 1, are mutually disjoint. Finally, using Lemma 4.1, we obtain∥∥f ′′∥∥ ≥

∑
k≥1

∥∥f ′′
(sk∧tk,sk∨tk]

∥∥ = ∞,

which yields a contradiction since we have shown that an optimal curve has finite curvature. �

Now, we show that the two branches of the curve are necessarily tangent at a multiple point.



2132 S. Delattre and A. Fischer

Lemma 4.5.

(i) If there exist 0 < t0 < t1 < 1 such that f (t0) = f (t1), then f ′
�(t0) = f ′

r (t0) = −f ′
r (t1) = −f ′

�(t1).
(ii) In the case CL = {ϕ : [0,1] → Rd ,L(ϕ) ≤ L,ϕ(0) = ϕ(1)}, if there exists 0 < t < 1 such that f (t) = f (0), then

f ′
�(t) = f ′

r (t) = −f ′
r (0) = −f ′

�(1).

Proof. First, we show that point (ii) follows from point (i). Let t ∈ (0,1) such that f (t) = f (0). Define the curve
g by g(s) = f (s + t/2) for s ∈ [0,1 − t/2] and g(s) = f (s + t/2 − 1) for s ∈ [1 − t/2,1]. Clearly, g is a closed
curve, �(g) = �(f ) and g is L-Lipschitz. Moreover, one has: g(t/2) = g(1 − t/2), g′

r (t/2) = f ′
r (t), g′

�(t/2) = f ′
�(t),

g′
r (1 − t/2) = f ′

r (0) and g′
�(1 − t/2) = f ′

�(1). Consequently, if (i) holds true for g, one deduces (ii).
It remains to show point (i). Suppose that f ′

�(t0) �= f ′
r (t0). Let γ ∈ (0,1] and ε > 0. We introduce the random vectors

X̂0,γ = (1 + γ )X̂ and

X̂ε,γ = (1 + γ )
[
X̂1t̂∈[0,t0−ε)∪(t0+ε,1]∪{t0} + hε(t̂)1t̂∈[t0−ε,t0+ε]\{t0}

]
,

where hε(t) = (
f (t0+ε)−f (t0−ε)

2ε
(t − (t0 − ε)) + f (t0 − ε)).

Let us write

E
[‖X − X̂0,γ ‖2] = E

[‖X − X̂‖2]+E
[‖X̂ − X̂0,γ ‖2]+ 2E

[〈X − X̂, X̂ − X̂0,γ 〉]
= E

[‖X − X̂‖2]+ γ 2E
[‖X̂‖2]− 2E

[〈X − X̂, γ X̂〉]
= E

[‖X − X̂‖2]+ γ 2E
[‖X̂‖2]− 2γ λL2. (29)

For the last equality, we used equation (28).
Note that X̂ε,γ = X̂0,γ + (1 + γ )(hε(t̂) − f (t̂))1t̂∈[t0−ε,t0+ε]\{t0} and that ‖hε(t̂) − f (t̂)‖ ≤ 4εL. So, we have

E
[‖X − X̂ε,γ ‖2] = E

[‖X − X̂0,γ ‖2]+ (1 + γ )2E
[∥∥hε(t̂) − f (t̂)

∥∥21t̂∈[t0−ε,t0+ε]\{t0}
]

+ 2(1 + γ )E
[〈
X − X̂0,γ ,

(
hε(t̂) − f (t̂)

)
1t̂∈[t0−ε,t0+ε]\{t0}

〉]
= E

[‖X − X̂0,γ ‖2]+O
(
ε2)+ o(ε). (30)

Indeed, P([t0 − ε, t0 + ε] \ {t0}) tends to 0 as ε tends to 0. Besides, the random vector X̂ε,γ is taking its values in the
image of a curve of length

Lε,γ := (1 + γ )
(
L(1 − 2ε) + ∥∥f (t0 + ε) − f (t0 − ε)

∥∥).
Yet, since f ′

�(t0) �= f ′
r (t0), if ε is small enough, there exists α ∈ [0,1) such that

∥∥f (t0 + ε) − f (t0 − ε)
∥∥2 = ∥∥f (t0 + ε) − f (t0) + f (t0) − f (t0 − ε)

∥∥2

= ε2
[∥∥∥∥f (t0 + ε) − f (t0)

ε

∥∥∥∥
2

+
∥∥∥∥f (t0) − f (t0 − ε)

ε

∥∥∥∥
2

+ 2

〈
f (t0 + ε) − f (t0)

ε
,
f (t0) − f (t0 − ε)

ε

〉]
.

≤ ε2(2L2 + 2L2α
)
.

Hence, ‖f (t0 + ε) − f (t0 − ε)‖ < εL
√

2(1 + α), and, thus,

Lε,γ ≤ (1 + γ )
(
L − 2εL + εL

√
2(1 + α)

) = (1 + γ )(L − ηε),

where η > 0. Let γ = ηε
L

. Then, for ε small enough, we get Lε,γ ≤ L − (ηε)2

L
< L and, using equations (29) and (30), we

have E[‖X − X̂ε,γ ‖2] < E[‖X − X̂‖2]. This contradicts the optimality of f . So, f ′
�(t0) = f ′

r (t0). Similarly, we obtain that
f ′

�(t1) = f ′
r (t1). Finally, consider the curve g, defined by

g(t) =
{

f (t) if t ∈ [0, t0] ∪ [t1,1],
f (t0 + t1 − t) if t ∈ (t0, t1).
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This definition means that g has the same image as f but the arc between t0 and t1 is traveled along in the reverse
direction. Since g, having the same image and length as f , is an optimal curve, which satisfies g(t0) = g(t1), we have
g′

�(t0) = g′
r (t0) and g′

�(t1) = g′
r (t1). On the other hand, by the definition of g, we know that f ′(t0) = g′

�(t0) = −g′
�(t1)

and f ′(t1) = g′
r (t1) = −g′

r (t0). Hence, f ′(t0) = −f ′(t1). �

We introduce the set

D = {
t ∈ [0,1) | Card

(
f −1({f (t)

})∩ [0,1
)
) ≥ 2

}
.

Lemma 4.6. If f (t), t ∈ (0,1), is a multiple point of f : [0,1] → R2, then t cannot be right- or left-isolated: for all
t ∈ D ∩ (0,1), for all ε > 0, (t, t + ε) ∩ D �=∅ and (t − ε, t) ∩ D �=∅.

Proof. Let t0 ∈ D ∩ (0,1). Assume that there exists ε > 0 such that (t0, t0 + ε) ∩ D = ∅ or (t0 − ε, t0) ∩ D = ∅. We
will show that this leads to a contradiction. Without loss of generality, up to considering t �→ f (1 − t), we assume that
(t0 − ε, t0) ∩ D =∅. Let t1 ∈ [0,1) such that t0 �= t1 and f (t0) = f (t1). By Lemma 4.5, one has f ′

�(t0) = −f ′
r (t1).

Let

y = f ′
r (t1)

L

and define the functions α and β by

α(t) = 〈
f (t) − f (t1), y

〉
for t ∈ [t1, t1 + ε)

β(t) = 〈
f (t) − f (t0), y

〉
for t ∈ (t0 − ε, t0].

Notice, since f (t0) = f (t1), that α and β are restrictions, to [t1, t1 + ε) and (t0 − ε, t0] respectively, of the same function.
Nevertheless, this notation α, β were chosen for readability.

The functions α and β satisfy the following properties:

• α is right-differentiable and α′
r (t) = 〈f ′

r (t), y〉 for every t ∈ [t1, t1 + ε). Since α′
r (t1) = L > 0 and α′

r is right-
continuous, there exists δ ∈ (0, ε), such that α′

r (t) ≥ δL for every t ∈ [t1, t1 + δ].
• β is left-differentiable and β ′

�(t) = 〈f ′
�(t), y〉 for every t ∈ (t0 −ε, t0]. Since β ′

�(t0) = −L < 0 and β ′
� is left-continuous,

there exists δ′ ∈ (0, ε) such that β ′
�(t) ≤ −δ′L for every t ∈ [t0 − δ′, t0].

Without loss of generality, we may assume that δ′ = δ, since it suffices to pick the smallest of both values to have the
properties on α′

r and β ′
�. In particular, we see that

• α is a bijection from [t1, t1 + δ] onto its image α([t1, t1 + δ]) = [0, a], where a := α(t1 + δ) > 0,
• β is a bijection from [t0 − δ, t0] onto its image β([t0 − δ, t0]) = [0, b], where b := β(t0 − δ) > 0.

We denote by α−1 and β−1 their inverse functions.
Let z ∈ R2 be such that ‖z‖ = 1 and 〈z, y〉 = 0. For every t ∈ (t1, α

−1(b)], we have 〈f (t) − f (β−1(α(t))), y〉 = 0.
Then, we may write f (t) − f (β−1(α(t))) = 〈f (t) − f (β−1(α(t))), z〉z. Moreover, for t ∈ (t1, α

−1(b)], since there are
no further multiple point before t0, f (t) − f (β−1(α(t))) �= 0. Thus, there exists σ ∈ {−1,1} such that

f (t) − f (β−1(α(t)))

‖f (t) − f (β−1(α(t)))‖ = σz.

We suppose, without loss of generality, that the vector z was chosen such that σ = 1. Now, let us show that, for t ∈
(t1, α

−1(b)],
〈
z,f ′

r (t)
〉 ≤ 1

2λ
sup

t1≤s≤t

∥∥f (s) − f
(
β−1(α(s)

))∥∥.
Since 〈z,f ′

r (t1)〉 = 0, we have, according to Theorem 3.1,〈
z,f ′

r (t)
〉 = 〈

z,f ′
r (t) − f ′

r (t1)
〉

=
∫

(t1,t]
〈
z,f ′′(ds)

〉
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= −1

λ
E
[〈
X − f (t̂), z

〉
1{t1<t̂≤t}

]

= −1

λ
E

[〈
X − f (t̂),

f (t̂) − f (β−1(α(t̂)))

‖f (t̂) − f (β−1(α(t̂)))‖
〉
1{t1<t̂≤t}

]
.

Besides, for t ∈ [0,1], starting from

∥∥X − f (t)
∥∥2 = ∥∥X − f (t̂)

∥∥2 + ∥∥f (t̂) − f (t)
∥∥2 + 2

〈
X − f (t̂), f (t̂) − f (t)

〉
,

we deduce, by optimality of t̂ , the inequality

−〈
X − f (t̂), f (t̂) − f (t)

〉 ≤ 1

2

∥∥f (t̂) − f (t)
∥∥2 a.s.

Hence, we obtain

〈
z,f ′

r (t)
〉 ≤ 1

2λ
E
[∥∥f (t̂) − f

(
β−1(α(t̂)

))∥∥1{t1<t̂≤t}
]

≤ 1

2λ
sup

t1<s≤t

∥∥f (s) − f
(
β−1(α(s)

))∥∥. (31)

Similarly, we get, for every t ∈ [β−1(a), t0),

〈
z,f ′

�(t)
〉 ≤ 1

2λ
sup

t≤s<t0

∥∥f (s) − f
(
α−1(β(s)

))∥∥. (32)

This may be seen for instance by considering the optimal curve parameterized in the reverse direction t �→ f (1 − t). For
x ∈ [0, a ∧ b), let D(x) = f (α−1(x)) − f (β−1(x)). This function D is right-differentiable and

D′
r (x) = f ′

r (α
−1(x))

α′
r (α

−1(x))
− f ′

�(β
−1(x))

β ′
�(β

−1(x))
.

Moreover, α′
r (α

−1(x)) ≥ δL and −β ′
�(β

−1(x)) ≥ δL, so that

〈
D′

r (x), z
〉 ≤ 1

δL

(〈
z,f ′

r

(
α−1(x)

)〉+ 〈
z,f ′

�

(
β−1(x)

)〉)
≤ 1

δLλ
sup
u≤x

∥∥D(u)
∥∥.

For the last inequality, we used the upper bounds (31) and (32) together with the monotony of α and β . Observe, since
z = D(x)

‖D(x)‖ , that 〈D′
r (x), z〉 is the right-derivative of ‖D(x)‖. As D(0) = 0, the Gronwall Lemma implies that D(x) = 0

for all x ∈ [0, a ∧ b), which yields a contradiction, since the considered multiple point is supposed to be left-isolated. �

We may now state the injectivity result in dimension 2, for open and closed curves.

Proposition 4.1.

(i) If CL = {ϕ ∈ [0,1] →R2,L(ϕ) ≤ L}, then f is injective.
(ii) If CL = {ϕ ∈ [0,1] →R2,L(ϕ) ≤ L,ϕ(0) = ϕ(1)}, then either f restricted to [0,1) is injective or Imf is a segment.

Proof. (i) CL = {ϕ ∈ [0,1] → R2,L(ϕ) ≤ L}.
Thanks to Lemma 4.4, if f has multiple points, there exists a last multiple point. As such, this multiple point is

right-isolated. However, by Lemma 4.6, this cannot happen. So, f is injective.
(ii) CL = {ϕ ∈ [0,1] →R2,L(ϕ) ≤ L,ϕ(0) = ϕ(1)}.
We assume that f restricted to [0,1) is not injective. So, our aim is to prove that Imf is a segment. As f is supposed

not to be injective, the set D = {t ∈ [0,1) | Card([0,1) ∩ f −1({f (t)})) ≥ 2} is non-empty. Without loss of generality, we
can assume that D ∩ (0,1) �= ∅. Indeed, if D = {0}, we can replace f by the curve t �→ f ((t + 1/2) mod 1) for which
D = {1/2}.
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Let us show that D is dense in (0,1). Proceeding by contradiction, we assume that there exists a non-empty open
interval (a, b) ⊂ (0,1) such that D∩(a, b) =∅. Since D∩(0,1) �=∅, one has D∩(0, a] �=∅ or D∩[b,1) �=∅. Consider
the case where D ∩ [b,1) �= ∅. Define β = inf(D ∩ [b,1)). There exist two sequences (tk)k≥1 ⊂ D and (sk)k≥1 ⊂ D such
that tk ↓ β , f (tk) = f (sk) and sk �= tk for all k ≥ 1. Up to an extraction, sk converges to a limit s ∈ [0,1]. If β �= s then
β ∈ D is left-isolated which is impossible by Lemma 4.6. Thus s = β and consequently sk ≥ β for k large enough. This
yields f ′

r (sk) → f ′
r (β). Besides, for all k, f ′

r (tk) → f ′
r (β) and, by Lemma 4.5, f ′

r (tk) = −f ′
r (sk), which contradicts the

fact that f has speed L. The case where D ∩ (0, a] �=∅ is similar.
The next step is to prove that the set [0,1) \ D is finite. Let t ∈ (0,1) \ D. Since D is dense, there exists a sequence

(tk)k≥1 ∈ D such that tk ↓ t . For every k ≥ 1, there exists sk �= tk such that f (tk) = f (sk). If s ∈ [0,1] is a limit point
of (sk), then f (t) = f (s) which implies t = s since t /∈ D and t �= 0. Therefore limk→∞ sk = t . Up to an extraction, we
may assume that (sk) converges increasingly or decreasingly to t . By Lemma 4.5, one has f ′(tk) = −f ′(sk) for k large
enough. If sk ↓ t , one obtains a contradiction: f ′

r (t) = limk f ′
r (tk) = − limk f ′

r (sk) = −f ′
r (t). Thus sk ↑ t and one gets

f ′
r (t) = −f ′

�(t). This means that f (t) is a cusp. Since ‖f ′′‖([0,1]) < ∞, there are only a finite number of such points.
Observe that, as a consequence of Lemma 4.5, for every t ∈ [0,1), Card([0,1) ∩ f −1({f (t)})) < 3. Indeed, if a point

has multiplicity at least 3, that is there exist 0 ≤ t1 < t2 < t3 < 1 such that f (t1) = f (t2) = f (t3), then, on the one
hand, f ′

r (t1) = −f ′(t2) = −f ′(t3), and on the other hand, f ′(t2) = −f ′(t3). Thus, one obtains again a contradiction:
f ′

r (t1) = f ′(t2) = f ′(t3) = 0. In other words, D = {t ∈ [0,1) | Card([0,1) ∩ f −1({f (t)})) = 2}.
We introduce the function ϕ : [0,1) → [0,1), defined as follows: for t ∈ [0,1) \ D, set ϕ(t) = t and for t ∈ D, set

ϕ(t) = t ′ where t ′ ∈ f −1({f (t)}) and t ′ /∈ t . Note that ϕ is an involution.
Let us show that the function ϕ is continuous on (0,1) \ {ϕ(0)}. First, observe that f is derivable on D ∩ (0,1) by

Lemma 4.5, and that f ′ is continuous on D ∩ (0,1) since f ′
r is right-continuous and f ′

� is left-continuous. Let t ∈ (0,1)

such that t �= ϕ(0) and let (tk)k≥1 be a sequence converging to t . Let s ∈ [0,1] be a limit point of (ϕ(tk)). Since f (tk) =
f (ϕ(tk)), for all k ≥ 1, one has f (s) = f (t). Necessarily, s ∈ (0,1) since t �= ϕ(0). If t /∈ D, one has s = t = ϕ(t). If
t ∈ D, then s ∈ {t, ϕ(t)}. Since D ∩ (0,1) is open, tk ∈ D for k large enough, hence f ′(ϕ(tk)) = −f ′(tk) for k large
enough. Thus f ′(s) = −f ′(t) and consequently s = ϕ(t).

Let us show that ϕ is derivable on D ∩ (0,1) \ {ϕ(0)} and ϕ′(t) = −1 for all t ∈ D ∩ (0,1) \ {ϕ(0)}. Let t ∈ D ∩ (0,1),
t �= ϕ(0). For all h ∈R such that |h| < t ∧ (1 − t), we have

f (t + h) − f (t) = f
(
ϕ(t + h)

)− f
(
ϕ(t)

)
=

∫ ϕ(t+h)

ϕ(t)

f ′(s) ds

= (
ϕ(t + h) − ϕ(t)

) ∫ 1

0
f ′(ϕ(t) + u

(
ϕ(t + h) − ϕ(t)

))
du.

Besides, since f ′ is continuous at the point ϕ(t) ∈ D ∩ (0,1) and ϕ is continuous at the point t , one has

lim
h→0

∫ 1

0
f ′(ϕ(t) + u

(
ϕ(t + h) − ϕ(t)

))
du = f ′(ϕ(t)

) = −f ′(t).

One deduces that limh→0(ϕ(t + h) − ϕ(t))/h = −1.
Let us prove that ϕ(ϕ(0)/2 + t) = ϕ(0)/2 + 1 − t mod 1 for all t ∈ [−ϕ(0)/2,1 − ϕ(0)/2). From the two previous

steps, one deduces that if ϕ(0) = 0, ϕ(t) = 1 − t for all t ∈ (0,1), as desired, while, if ϕ(0) ∈ (0,1), there exist two
constants c1 and c2 such that

ϕ(t) = c1 − t ∀t ∈ (
0, ϕ(0)

)
, ϕ(t) = c2 − t ∀t ∈ (

ϕ(0),1
)
.

It remains to prove that c1 = ϕ(0) and c2 = 1 + ϕ(0). As ϕ takes its values in [0,1), one has ϕ(0) ≤ c1 ≤ 1 and 1 ≤ c2 ≤
1 + ϕ(0). Moreover, since ϕ is a bijection, c2 − t ≥ c1 for t ≥ ϕ(0) or c2 − t ≤ c1 − ϕ(0) for t ≥ ϕ(0), that is c2 − 1 ≥ c1

or c2 ≤ c1. In the first case, one gets c1 = ϕ(0) and c2 = 1 + ϕ(0). In the second case, one gets c1 = c2 = 1, which is not
possible: necessarily, ϕ(0) = 1/2, since otherwise ϕ(1 − ϕ(0)) = ϕ(0) which yields 1 − ϕ(0) = 0, and we see that the
restriction of f to [0,1/2] is a closed curve with the same image as f , hence f is not optimal.

Finally, define the curve f̃ by

f̃ (t) = f
((

ϕ(0)/2 + t
)

mod 1
)
.
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This curve f̃ has the same image as f and, from the last step, f̃ (t) = f̃ (1 − t) for all t ∈ [0,1]. Let us show that Imf is
a segment. Otherwise, the curve g defined by

g(t) = f̃ (t) if t ∈ [0,1/2], g(t) = f̃ (1/2) + 2(t − 1/2)
(
f̃ (1) − f̃ (1/2)

)
if t ∈ [1/2,1]

satisfies L(g) < L(f ) and �(g) ≤ �(f ), since Imf = f̃ ([0,1/2]), thus f cannot be optimal. �

5. Examples of principal curves

5.1. Uniform distribution on an enlargement of a curve

The purpose of this section is to study the principal curve problem for the uniform distribution on an enlargement of some
generative curve. For A ⊂Rd and r ≥ 0, we denote by

A ⊕ r = {
x ∈Rd | d(x,A) ≤ r

}
the r-enlargement of A. Under some conditions on the generative curve f : [0,1] → Rd , for r small enough, it turns
out that the image of an optimal curve with length L(f ) for the uniform distribution on an r-enlargement of Imf is
necessarily Imf . More specifically, the radius r must not exceed the reach of Imf .

The reach of a set A ⊂Rd is the supremum of the radii ρ such that every point at distance at most ρ of A has a unique
projection on A. More formally, following [18], we define for A ⊂Rd

reach(A) = sup
{
ρ ≥ 0 | ∀x ∈ Rd d(x,A) ≤ ρ ⇒ ∃!a ∈ A d(x, a) = d(x,A)

} ∈ [0,+∞].
The question of the optimality of the generative curve when considering the uniform distribution on an enlargement

has been first addressed in dimension d = 2 in [33]. Observe that related ideas can be found in [21]. Our proof in arbitrary
dimension d ≥ 1 relies on arguments in [18], which moreover allow to show uniqueness.

Theorem 5.1. Let f : [0,1] →Rd be a curve. Suppose that f is injective, differentiable, f ′ is Lipschitz, and there exists
c > 0 such that ‖f ′(t)‖ ≥ c for all t ∈ [0,1]. Then, the reach of Imf is positive. Let r ∈ (0, reach(Imf ] and let X be a
random vector uniformly distributed on Imf ⊕ r . Consider a function V : [0,∞) → [0,∞) continuous, increasing and
such that V (0) = 0. Then, for every curve g : [0,1] →Rd such that L(g) ≤ L(f ) one has

E
[
V
(
d(X, Imf )

)] ≤ E
[
V
(
d(X, Img)

)]
with equality if and only if Img = Imf .

The proof of the theorem is based on two lemmas. For k ≥ 1, λk denotes the Lebesgue measure on Rk and αk the
volume of the unit ball in Rk . From [33, Lemma 42], we have the next result.

Lemma 5.1. Let A be a compact connected subset of Rd with H1(A) < ∞. Then for all r ≥ 0 one has

λd(A ⊕ r) ≤ H1(A)αd−1r
d−1 + αdrd .

Lemma 5.2. Let f : [0,1] → Rd be a curve. Suppose that f is injective, f is differentiable, f ′ is Lipschitz, and there
exists c > 0 such that ‖f ′(t)‖ ≥ c for all t ∈ [0,1]. Then, the reach of A = Imf is positive and for all r ≤ reach(A) one
has

λd(A ⊕ r) = L(f )αd−1r
d−1 + αdrd . (33)

Moreover, one has{
x ∈ A ⊕ r | d(x, ∂(A ⊕ r)

) ≥ r
} ⊂ A. (34)

Proof. The assumptions on f imply that there exists ε > 0, a set B ⊂Rd and a function ϕ : (−ε,1 + ε) → B such that ϕ

is bijective, ϕ = f on [0,1], ϕ is differentiable, ϕ′ is Lipschitz and ϕ−1 is Lipschitz. From [18, Theorem 4.19], we deduce
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that reach(A) > 0. For r ∈ (0, reach(A)), equality (33) follows from [18, Theorem 5.6 & Remark 6.14]. For r = reach(A),
we can write

L(f )αd−1r
d−1 + αdrd = lim

n→∞λd

(
A ⊕ (r − 1/n)

) = λd

({
x ∈ Rd | d(x,A) < r

})
and λd(A ⊕ r) ≤ L(f )αd−1r

d−1 + αdrd by Lemma 5.1. Thus, equality (33) holds.
Now, we prove (34). Let x ∈ A⊕ r such that d(x, ∂(A⊕ r)) ≥ r . According to [18, Corollary 4.9], if 0 < s < reach(A)

and A′
s = {y ∈ Rd | d(y,A) ≥ s} then

d
(
y,A′

s

) = s − d(y,A) whenever 0 < d(y,A) ≤ s.

Suppose that d(x,A) > 0, then for all s ∈ [d(x,A), r) one has d(x,A) = s − d(x,A′
s). Since lims→r d(x,A′

s) =
d(x,A′

r ) = d(x, ∂(A ⊕ r)), one gets d(x,A) ≤ 0. This proves that x ∈ A. �

Proof of Theorem 5.1. We set A = Imf and B = Img. On the one hand, denoting by V −1 the inverse of V : [0,∞) →
[0,V (∞)),

E
[
V
(
d(X,B)

)] =
∫ ∞

0
P
[
V
(
d(X,B)

)
> t

]
dt

=
∫ V (∞)

0

(
1 − P

(
d(X,B) ≤ V −1(t)

))
dt

=
∫ V (∞)

0

(
1 − λd((B ⊕ V −1(t)) ∩ (A ⊕ r))

λd(A ⊕ r)

)
dt.

On the other hand, for t ≤ V (r), by Lemma 5.1 and equation (33), one gets

λd

((
B ⊕ V −1(t)

)∩ (A ⊕ r)
) ≤ λd

(
B ⊕ V −1(t)

) ≤ H1(Img)αd−1V
−1(t)d−1 + αdV −1(t)d

≤ L(f )αd−1V
−1(t)d−1 + αdV −1(t)d = λd

(
A ⊕ V −1(t)

)
. (35)

Therefore, for all t ∈ [0,V (∞)),

1 − λd((B ⊕ V −1(t)) ∩ (A ⊕ r))

λd(A ⊕ r)
≥

[
1 − λd(A ⊕ V −1(t))

λd(A ⊕ r)

]
+
.

Consequently,

E
[
V
(
d(X,B)

)] ≥
∫ V (r)

0

(
1 − λd(A ⊕ V −1(t))

λd(A ⊕ r)

)
dt = E

[
V
(
d(X,A)

)]
.

Suppose that E[V (d(X,B))] = E[V (d(X,A))]. Then, we have

λd(A ⊕ r) = λd

((
B ⊕ V −1(t)

)∩ (A ⊕ r)
)

dt-a.e. on
[
V (r),+∞)

.

By right continuity with respect to t , we obtain that λd(A ⊕ r) = λd((B ⊕ r) ∩ (A ⊕ r)). From the chain of inequalities
(35) with t = V (r), we deduce that L(f ) =H1(Img) and

λd

(
(A ⊕ r) ∩ (B ⊕ r)c

) = λd

(
(A ⊕ r)c ∩ (B ⊕ r)

) = 0.

Let us show that A ⊕ r = B ⊕ r . Suppose that (A ⊕ r) ∩ (B ⊕ r)c �= ∅. Then one can find x ∈ Rd and a ∈ A such that
d(x, a) ≤ r and d(x,B) > r . Set y = x − ε(x −a) where 0 < ε ≤ 1 and ε < d(x,B)/r − 1. One has d(y, a) ≤ r − εr < r

and d(y,B) > d(x,B) − εr > r . Thus y belongs to the interior of (A ⊕ r) ∩ (B ⊕ r)c which implies λd((A ⊕ r) ∩
(B ⊕ r)c) > 0. Therefore (A ⊕ r) ∩ (B ⊕ r)c =∅. Similarly one can prove that (A ⊕ r)c ∩ (B ⊕ r) =∅.

Finally, from (34), we deduce that

B ⊂ {
x ∈ B ⊕ r | d(x, ∂(B ⊕ r)

) ≥ r
} = {

x ∈ A ⊕ r | d(x, ∂(A ⊕ r)
) ≥ r

} ⊂ A.

Since L(f ) =H1(Img), this implies that A = B . �
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5.2. Uniform distribution on a circle

In this section, we investigate the principal curve problem for a particular distribution, the uniform distribution on a circle.

Proposition 5.1. Consider the unit circle centered at the origin with parameterization given by

g(t) = (
cos(2πt), sin(2πt)

)
for t ∈ [0,1]. Let U be a uniform random variable on [0,1] and let X = g(U). Then, for every L < 2π , the circle centered
at the origin with radius L

2π
is the unique closed principal curve with length L for X.

Proof. Let f : [0,1] → R2 be an optimal closed curve with length L. We denote by K the convex hull of Imf . Since
Imf is compact, K is a compact convex set (consequence of Caratheodory’s theorem; see, e.g., [25]). Notice that Imf

is included in the unit disk: indeed, if not, since f is a closed curve, with L(f ) < 2π , there exist u1 and u2, such that
f (u1) and f (u2) belong to the unit circle and the arc t ∈ (u1, u2) �→ f (t) is outside the disk, which is not optimal since
replacing this arc by the corresponding unit circle arc yields a better and shorter curve. In turn, the convex hull K is also
included in the unit disk, by convexity of the latter. Let πK : R2 → K denote the projection onto K et define the curve h

by h(t) = πK(g(t)) for t ∈ [0,1]. By this definition of h as projection of the unit circle on a set included in the unit disk
containing Imf , we have

�(h) ≤ �(f ).

• Let us prove that h has length at most L. First, note that h has finite length, since πK is Lipschitz. By properties of the
projection on a closed convex set, we know that the set of points of R2 projecting onto a given element of the boundary
∂K of K is a cone. This ensures that h : [0,1] → ∂K is onto, because a cone with vertex in the unit disk intersects the
unit circle Img at least once. More specifically, if the cone reduces to a half-line (degenerated case), then it intersects
Img exactly once. Otherwise, the cone is the region delimited by two distinct half-lines with common origin in the
disk, and, thus, contains an infinity of such distinct half-lines, each of them intersecting Img once. Hence, for every
v ∈ Imh, there is either one t such that v = h(t), or an infinity.

We will use Cauchy-Crofton’s formula on the length of a curve (for a proof, see, e.g., [2]). Let dr,θ denote the line
with equation x cos θ + y sin θ = r . For every curve ϕ = (ϕ1, ϕ2), if

Nϕ(r, θ) = Card
({

t ∈ [0,1], ϕ(t) ∈ dr,θ

}) = Card
({

t ∈ [0,1], ϕ1(t) cos θ + ϕ2(t) sin θ = r
})

,

then the length of ϕ is given by

1

4

∫ 2π

0

∫ ∞

−∞
Nϕ(r, θ) dr dθ.

Let us compare Nh(r, θ) and Nf (r, θ) for (r, θ) ∈ R × [0,2π ]. To begin with, note that Nh(r, θ) is finite almost
everywhere since h has finite length. So, we need only consider the cases where Nh(r, θ) is finite. This allows to
exclude the points v ∈ Imh such that h−1({v}) is infinite, as well as the cases where a line dr,θ and Imh have a whole
segment in common. Observing that, if the line dr,θ does not intersect Imh, then it does not intersect Imf either, since
Imh is the boundary of the convex hull of Imf , it remains to look at the two following cases for comparing Nh(r, θ)

and Nf (r, θ).
– If the line dr,θ intersects Imh at a single point, then this point belongs to Imf .
– If the line dr,θ intersects Imh at exactly two points, then Imf crosses the line. If Imf were located on one side of

the line, K were not the convex hull. Since f is a closed curve, Imf crosses the line at least twice.
So, Nh(r, θ) ≤ Nf (r, θ) almost everywhere, that is L(h) ≤ L(f ) = L.

• Now, observe that Imh ⊂ Imf . Indeed, otherwise, there exists t ∈ [0,1] such that h(t) /∈ Imf , which means that
d(g(t), Imf ) > d(g(t),K). By continuity this implies that d(g(s), Imf ) > d(g(s),K) for all s in a non-empty open
set and one obtains that �(h) < �(f ). By optimality of f , this is not possible since L(h) ≤ L.

• Since Imh ⊂ Imf and L(f ) = L, to obtain that Imf is the circle with center (0,0) and radius L/2π , it remains
to show that Imh is the circle with center (0,0) and radius L/2π . Let θ ∈ [0,1] and let Aθ : R2 → R2 denote the
rotation with center (0,0) and angle 2πθ . We set hθ (t) = πAθ (K)(g(t)), for every t ∈ [0,1]. Since hθ (t) = Aθ ◦
πK(A−1

θ (g(t))) = Aθ ◦ πK(g(t − θ)), hθ is a curve with same length as h. Moreover, Aθ(X) has the same distribution
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as X, so that

E
[∥∥X − πAθ (K)(X)

∥∥2] = E
[∥∥Aθ(X) − πAθ (K)

(
Aθ(X)

)∥∥2]
= E

[∥∥Aθ(X) − Aθ

(
πK(X)

)∥∥2]
= E

[∥∥X − πK(X)
∥∥2]

.

By strict convexity, we deduce from this equality that, if P(πAθ (K)(X) �= πK(X)) > 0, then

E
[∥∥X − (

πK(X) + πAθ (K)(X)
)
/2

∥∥2]
< �(h).

Since the random variable (πK(X) + πAθ (K)(X))/2 takes its values in the image of the curve (h + hθ )/2 with
length smaller than L(h) ≤ L, that is not possible. Consequently, πAθ (K)(X) = πK(X) almost surely. In other words,
πAθ (K)(g(t)) = h(t) for almost every t ∈ [0,1], and, thus, by continuity, hθ (t) = h(t) for every t ∈ [0,1]. For t ∈ [0,1],
let θ = t . We have h(t) = ht (t) = At ◦ πK(g(0)) = At(h(0)). Since �(f ) = �(h) and L(h) ≤ L, L(h) = L. Hence,
Imh is the circle with center (0,0) and radius L/2π . �

Remark 9. Observe that radial symmetry of a distribution is not sufficient to guarantee that a given circle will be a
constrained principal curve for this distribution. Let us exhibit two counterexamples.

• Let p > 0 and let U denote the uniform distribution on the unit circle. Consider a random variable X taking its values
in R2, distributed according to the mixture distribution

pδ(0,0) + (1 − p)U ,

where δ(0,0) stands for the Dirac mass at the origin (0,0). Then, for every circle with center (0,0) and radius r ∈ (0,1],
because of the atom at the origin, the projection of X on the circle is not unique almost surely, which implies, thanks
to Proposition 3.1, that none of these circles may be a constrained principal curve for X.

• We consider the case where X is a standard Gaussian random vector in R2. Lemma 3.2 ensures that the circle with
center (0,0) and radius E[‖X‖] = √

π/2 cannot be a constrained principal curve for X because it is self-consistent.
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