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Abstract. We obtain rates of contraction of posterior distributions in inverse problems defined by scales of smoothness classes. We
derive abstract results for general priors, with contraction rates determined by Galerkin approximation. The rate depends on the amount
of prior concentration near the true function and the prior mass of functions with inferior Galerkin approximation. We apply the general
result to non-conjugate series priors, showing that these priors give near optimal and adaptive recovery in some generality, Gaussian
priors, and mixtures of Gaussian priors, where the latter are also shown to be near optimal and adaptive. The proofs are based on
general testing and approximation arguments, without explicit calculations on the posterior distribution. We are thus not restricted to
priors based on the singular value decomposition of the operator. We illustrate the results with examples of inverse problems resulting
from differential equations.

Résumé. Nous obtenons le taux de contraction des distributions a posteriori dans les problèmes inverses définis par des classes
d’échelles de régularité. Nous obtenons des résultats abstraits pour des lois a posteriori générales déterminées par des approximations
de type Galerkin. Le taux dépend du niveau de concentration de la loi a priori au voisinage des vrais paramètres et de la probabilité
a priori de l’ensemble des paramètres avec approximation Galerkin inférieure. Nous appliquons le résultat abstrait a trois types de
lois a priori : au cas des séries aléatoires non conjuguées, montrant ainsi que ces mesures a priori donnent une récupération presque
optimale sous des hypothèses assez générales ; au cas des mesures gaussiennes ; et au cas des mélanges de gaussiennes, où il est
également démontré que ces derniers sont presque optimaux et adaptatifs. Les preuves sont basées sur des tests statistiques et argu-
ments d’approximation, sans calculs explicites sur la loi a posteriori. Nous ne sommes donc pas limités aux lois a priori basées sur
la décomposition en valeurs singulières de l’opérateur. Nous illustrons les résultats par des exemples de problèmes inverses résultant
d’équations différentielles.
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1. Introduction

In a statistical inverse problem one observes a noisy version of a transformed signal Af and wishes to recover the unknown
parameter f . In this paper we consider linear inverse problems of the type

Y (n) = Af + 1√
n

ξ, (1.1)

where A : H → G is a known bounded linear operator between separable Hilbert spaces H and G, and ξ is a stochastic
‘noise’ process, which is multiplied by the scalar ‘noise level’ n−1/2. The problem is to infer f from the observation
Y (n). To this purpose we assume that the forward operator A is injective, but we shall be interested in the case that
the inverse A−1, defined on the range of A is not continuous (or equivalently the range of A is not closed in G). The
problem of recovering f from Y (n) is then ill-posed, and regularization methods are necessary in order to ‘invert’ the
operator A. These consist of constructing an approximation to A−1, with natural properties such as boundedness and
whose domain includes the data Y (n), and applying this to Y (n). By the discontinuity of the inverse A−1, the noise present
in the observation is necessarily multiplied, and regularization is focused on balancing the error in the approximation to
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A−1 to the size of the magnified noise, in order to obtain a solution that is as close as possible to the true signal f . In
this article we study this through the convergence rates of the regularized solutions to a true parameter f , as n → ∞,
i.e. as the noise level tends to zero. In particular, we consider contraction rates of posterior distributions resulting from a
Bayesian approach to the problem.

There is a rich literature on inverse problems. The case that the noise ξ is a bounded deterministic perturbation,
has been particularly well studied, and various general procedures and methods to estimate the convergence rates of
regularized solutions have been proposed. See the monographs [14,29]. The case of stochastic noise is less studied, but
is receiving increasing attention. In this paper we shall be mostly interested in the case that ξ is white noise indexed by
the Hilbert space G, i.e. the isonormal process, which is characterized by the requirement that 〈ξ,w〉G is a zero-mean
Gaussian variable with variance ‖w‖2

G, for every w ∈ G, where 〈·, ·〉G and ‖ · ‖G are the inner product and norm in in G.
Actually the isonormal process cannot be realized as a Borel-measurable map into G, and hence we need to interpret (1.1)
in a generalized sense. In our measurement model the observation Y (n) will be a stochastic process (Y (n)(w) : w ∈ G)

such that

Y (n)(w) = 〈Af,w〉G + 1√
n
ξ(w), w ∈ G, (1.2)

where ξ = (ξ(w) : w ∈ G) is the iso-normal process, i.e. a zero-mean Gaussian process with covariance function
E(ξ(w1)ξ(w2)) = 〈w1,w2〉G. The processes Y (n) and ξ are viewed as measurable maps in the sample space R

G, with
its product σ -field. Statistical sufficiency considerations show that the observation can also be reduced to the vector
(Y (n)(w1), Y

(n)(w2), . . .), which takes values in the sample space R
∞, for any orthonormal basis (wi)i∈N of G. Since

in that case the variables ξ(w1), ξ(w2), . . . are stochastically independent standard normal variables, the coordinates
Y (n)(wi) of this vector are independent random variables with normal distributions with means 〈Af,wi〉G and variance
1/n. This is known as the Gaussian sequence model in statistics, albeit presently the ‘drift function’ Af involves the
operator A. See [4,27] and references therein.

An alternative method to give a rigorous interpretation to white noise ξ , is to embed G into a bigger space in which
ξ can be realized as a Borel measurable map, or to think of ξ as a cylindrical process. See e.g., [51]. For G a set of
functions on an interval, one can also realize ξ as a stochastic integral relative to Brownian motion, which takes its values
in the ‘abstract Wiener space’ attached to G. We shall not follow these constructions, as they imply the stochastic process
version (1.2), which is easier to grasp and will be the basis for our proofs.

It is also possible to consider the model (1.1) with a noise variable ξ that takes its values inside the Hilbert space G.
In this paper we briefly note some results on this ‘coloured noise’ model, but our main focus is model (1.2).

The study of statistical (nonparametric) linear inverse problems was initiated by Wahba in 1970s in [60]. The 1990s
paper [12] used wavelet shrinkage methods, while around 2000, the authors of [9] investigated (1.1) in the linear partial
differential equations setting, while a systematic study of Gaussian sequence models was presented in [8]. A review of
work until 2008 is given in [7]. The connection of regularization methods to the Bayesian approach was recognized early
on. However, the study of the recovery properties of posterior distributions was started only in [31,32]. A review of the
Bayesian approach to inverse problems, with many examples, is given in [52].

In the present paper we follow the Bayesian approach. This consists of putting a probability measure on f , the prior,
that quantifies one’s prior beliefs on f , and next, after collecting the data, updating the prior to the posterior measure,
through Bayes’ formula. As always, this is the conditional distribution of f given Y (n) in the model, where f follows
the prior measure �, a Borel probability distribution on H , and given f the variable Y (n) has the conditional distribution
on R

G determined by (1.2). For a given f ∈ H the latter conditional distribution is dominated by its distribution under
f = 0. The Radon–Nikodym densities y 	→ p

(n)
f (y) of the conditional distributions can be chosen jointly measurable in

(y, f ), and by Bayes’ formula the posterior distribution of f is the Borel measure on H given by

�n

(
f ∈ B|Y (n)

) =
∫
B

p
(n)
f (Y (n)) d�(f )∫

p
(n)
f (Y (n)) d�(f )

. (1.3)

The form of the densities p
(n)
f is given by the (abstract) Cameron–Martin formula, but will not be needed in the following

(see Lemma 9.1). In the Bayesian paradigm the posterior distribution encompasses all the necessary information for
inference on f . An attractive feature of the Bayesian approach is that it not only offers an estimation procedure, through
a measure of ‘center’ of the posterior distribution, but also provides a way to conduct uncertainty quantification, through
the spread in the posterior distribution.

One hopes that as the noise level tends to zero, i.e. n → ∞, the posterior measures (1.3) will contract to a Dirac
measure at f0 if in reality Y (n) is generated through the model (1.2) with f = f0. We shall be interested in the rate of
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contraction. Following [16,18,19] we say that a sequence εn ↓ 0 is a rate of posterior contraction to f0 if, for a fixed
sufficiently large constant M , and n → ∞,

�n

(
f : ‖f − f0‖H > Mεn|Y (n)

) P
(n)
f0→ 0. (1.4)

We shall use the general approach to establishing such rates of contraction, based on a prior mass condition and testing
condition, explained in [18]. This was adapted to the inverse setup in [30], who in a high level result show how to obtain
an inverse rate from a rate in the forward problem and a continuity modulus of the restriction of the operator to suitable
sets on which the posterior concentrates.

Much of the existing work on statistical inverse problems is based on the singular value decomposition (SVD) of the
operator A; see, e.g., [7]. When A is compact, the operator A∗A, where A∗ is the adjoint of A, can be diagonalized with
respect to an orthonormal eigenbasis, with eigenvalues tending to zero. The observation Y (n) can then be reduced to noisy
observations on the Fourier coefficients of Af in the eigenbasis, which are multiples of the Fourier coefficients of f , and
the problem is to recover the latter. In the frequentist setup thresholding or other regularization methods can be applied to
reduce the weight of estimates on coefficients corresponding to smaller eigenvalues, in which the noise will overpower the
signal. In the Bayesian setup one may design a prior by letting the Fourier coefficients be (independent) random variables,
with smaller variances for smaller eigenvalues. These singular value methods have several disadvantages, as pointed out
in [11,12]. First, the eigenbasis functions might not be easy to compute. Second, and more importantly, these functions
are directly linked to the operator A, and need not be related to the function space (smoothness class) that is thought to
contain the true signal f . Consequently, the parameter of interest f may not have a simple, parsimonious representation
in the eigenbasis expansion, see [12]. Furthermore, it is logical to consider the series expansion of the signal f in other
bases than the eigenbasis, for instance, in the situation that one can only measure noisy coefficients of the signal f in a
given basis expansion, due to a particular experimental setup. See [20,40] for further discussion.

One purpose of the present paper is to work with priors that directly relate to common bases (e.g., splines or wavelets
bases) and function spaces, rather than to the operator through its singular value decomposition. We succeed in this aim
under the assumption that the operator A respects a given scale of function spaces. In Section 2 we first set up such a
scale in an abstract manner, and then introduce a smoothing assumption on the operator A in terms of this scale. Next in
Section 4–Section 7 we consider priors defined in terms of the scale, rather than the operator. Thus operator and prior are
assumed related, but only indirectly, through the scale.

A canonical example are Sobolev spaces, with the operator A being an integral operator. This Sobolev space setup
with wavelet basis was investigated in [11,12]. In deterministic inverse problems, a more general setup, considering A

that acts along nested Hilbert spaces, Hilbert scales, was initiated by Natterer in [42] and further developed in, amongst
others, [26,39,40]. In the Bayesian context Hilbert scales were used in [15], under the assumption that the noise ξ is a
proper Gaussian element in G, and in [1], but under rather intricate assumptions.

A second purpose of the present paper is to allow priors that are not necessarily Gaussian. In the linear inverse problem
Gaussian priors are easy, as they lead to Gaussian posterior distributions, which can be studied by direct means. Most of
the results on Bayesian inverse problems fall in this framework [1,15,31,32], exceptions being [49] and [30].

Thus in this paper we investigate a Bayesian approach to linear inverse problems that is not based on the SVD and
does cover non-conjugate, non-Gaussian priors.

The white noise model represents a limiting case (in an appropriate sense) of the inverse regression model

Yi = Af (xi) + zi, i = 1, . . . , n,

where zi are independent standard normal random variables. Insights gained in inverse problems in the white noise model
shed light on the behaviour of statistical procedures in the inverse regression model, which is the one encountered in
actual practice, as the signal f can be typically observed only on a discrete grid of points. It is next at times possible to
extend theoretical results obtained in the white noise setting to those in the inverse regression setting.

The paper is organized as follows. In Section 2 we introduce in greater detail our setup along with the assumptions that
will be used in this article. We also present some examples for illustration. Next we present a general contraction theorem
in Section 3, and apply this to two main special cases, series priors and Gaussian priors in Section 4 and Section 6. The
section on Gaussian priors is preceded by a discussion in Section 5 of Hilbert scales generated by unbounded operators,
which next serve as inverse covariance operators. Since the simple Gaussian prior is not fully adaptive, we introduce
Gaussian mixture priors to obtain adaptation in Section 7. In Section 8 we discuss several extensions of the present work.
Section 9 contains the proofs, and an appendix presents background to some of the tools we need in the proofs.

Notation 1.1. The symbols �,�,� mean ≤,≥,= up to a positive multiple independent of n (or another asymptotic
parameter). The constant may be stated explicitly in subscripts, and e.g. �f means that it depends on f .
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2. Setup

In this section we formalize the structure of the inverse problem that will be worked out in this article.

Smoothness scales
The function f in (1.1) is an element of a Hilbert space H . We embed this space as the space H = H0 in a ‘scale of
smoothness classes’, defined as follows.

Definition 2.1 (Smoothness scale). For every s ∈ R the space Hs is an infinite-dimensional, separable Hilbert space,
with inner product 〈·, ·〉s and induced norm ‖ · ‖s . The spaces (Hs)s∈R satisfy the following conditions:

(i) For s < t the space Ht is a dense subspace of Hs and ‖f ‖s � ‖f ‖t , for f ∈ Ht .
(ii) For s ≥ 0 and f ∈ H0 viewed as element of H−s ⊃ H0,

‖f ‖−s = sup
‖g‖s≤1

〈f,g〉0, f ∈ H0. (2.1)

The notion of scales of smoothness classes is standard in the literature on inverse problems. In the preceding definition
we have stripped it to the bare essentials needed in our general result on posterior contraction. Concrete examples, as well
as more involved structures such as Hilbert scales, are introduced below.

Remark 2.2. We may also start with Hilbert spaces Hs for s ≥ 0 only satisfying (i) and next define H−s for s ≥ 0 to be
the dual space H ∗

s . We next embed H−s for s ≥ 0 in H0 through identifying H0 and its dual H ∗
0 ⊂ H ∗

s (the restriction of
a continuous linear map from H0 to R to domain Hs is contained in H ∗

s ), and the norm duality (2.1) will be automatic.
It is important that we only ‘flip’ H0 in this contruction. Every Hilbert space Hs can be identified with its dual H ∗

s in
the usual way, but this involves the inner product in Hs , and is different from the identification of H ∗

s with the ‘bigger
space’ H−s for s �= 0.

More generally (2.1) is implied if, for s > 0, the space H−s can be identified with the dual space H ∗
s of Hs and the

embedding ι : H0 → H−s is the adjoint of the embedding ι : Hs → H0, after the usual identification of H0 and its dual
space H ∗

0 . (The three nested spaces H−s ⊃ H0 ⊃ Hs then form a ‘Gelfand triple’.) Indeed, by definition the image i∗f of
f ∈ H0 = H ∗

0 under the adjoint ι∗ : H ∗
0 → H ∗

s is the map g 	→ (ι∗f )(g) = 〈ιg, f 〉0 = 〈g,f 〉0 from Hs → R. The norm
of this map as an element of H ∗

s is sup‖g‖s≤1(ι
∗f )(g). The norm duality follows if ι∗f is identified with the element

f ∈ H0 ⊂ H−s .

We assume that the smoothness scale allows good finite-dimensional approximations, as in the following condition.

Assumption 2.3 (Approximation). For every j ∈ N and s ∈ (0, S), for some S > 0, there exists a (j − 1)-dimensional
linear subspace Vj ⊂ H0 and a number δ(j, s) such that δ(j, s) → 0 as j → ∞, and such that

inf
g∈Vj

‖f − g‖0 � δ(j, s)‖f ‖s , (2.2)

‖g‖s �
1

δ(j, s)
‖g‖0, ∀g ∈ Vj . (2.3)

This assumption is also common in the literature on inverse problems. The two inequalities (2.2) and (2.3) are known
as inequalities of Jackson and Bernstein type, respectively, see, e.g., [5]. The approximation property (2.2) shows that
‘smooth elements’ f ∈ Hs are well approximated in ‖ · ‖0 by their projection onto a finite-dimensional space Vj , with
approximation error tending to zero as the dimension of Vj tends to infinity. Naturally one expects the numbers δ(j, s)

that control the approximation to be decreasing in both j and s. In our examples we shall mostly have polynomial
dependence δ(j, s) = j−s/d , in the case that H0 consists of functions on a d-dimensional domain. The stability property
(2.3) quantifies the smoothness norm of the projections in terms of the approximation numbers. Both conditions are
assumed up to a maximal order of smoothness S > 0, and it follows from (2.3) that Vj must be contained in the space
HS .

The approximation property (2.2) can also be stated in terms of the ‘approximation numbers’ of the canonical em-
bedding ι : Hs → H0. The j th approximation number of a general bounded linear operator T : G → H between normed
spaces is defined as

aj (T : G → H) = inf
U :RankU<j

sup
f :‖f ‖G≤1

∥∥(T − U)f
∥∥

H
, (2.4)
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where the infimum is taken over all linear operators U : G → H of rank less than j . It is immediate from the definitions
that the numbers δ(j, s) in (2.2) can be taken equal to the approximation numbers aj (ι : Hs → H0). The set of approx-
imation numbers aj (ι : Hs+t → Ht) of the canonical embedding describes many characteristics of the smoothness scale
(Hs)s∈R. We give a brief discussion in Appendix B.

Example 2.4 (Sobolev classes). The most important examples of smoothness classes satisfying Definition 2.1 are frac-
tional Sobolev spaces on a bounded domain D ⊂ R

d . For a natural number s ∈ N the Sobolev space of order s can be
defined by

Hs(D) = Ws,2(D) :=
{
f ∈ D ′(D) : ‖f ‖s :=

∑
|α|≤s

∥∥Dαf
∥∥

L2(D)
< ∞

}
.

Here D ′(D) is the space of generalized functions on D (distributions), i.e. the topological dual space of the space C∞
c (D)

of infinitely differentiable functions with compact support in D; the sum ranges over the multi-indices α = (α1, . . . , αd) ∈
({0} ∪N)d with |α| := ∑s

i=1 αi ≤ s; and Dα is the differential operator

Dα := ∂α1∂α2 · · ·∂αd

∂x
α1
1 x

α2
2 · · ·∂x

αd

d

.

The definition can be extended to s ∈ R\N in several ways. All constructions are equivalent to the Besov space Bs
2,2(D),

see [55,56].
It is well known that the approximation numbers of the scale of Sobolev spaces satisfy Assumption 2.3 with δ(j, t) =

j−t/d , see [25].

Example 2.5 (Sequence spaces). Suppose (φi)i∈N is a given orthonormal sequence in a given Hilbert space H , and
1 ≤ bi ↑ ∞ is a given sequence of numbers. For s ≥ 0, define Hs as the set of all elements f = ∑

i∈N fiφi ∈ H with∑
i∈N b2s

i f 2
i < ∞, equipped with the norm

‖f ‖s =
(∑

i∈N
b2s
i f 2

i

)1/2

.

Then H0 = H is embedded in Hs , for every s > 0, and the norms ‖f ‖s are increasing in s. Every space Hs is a Hilbert
space; in fact Hs is isometric to H0 under the map (fi) → (fib

s
i ), where we have identified the series with their coeffi-

cients for simplicity of notation.
For s < 0, we equip the elements f = ∑

i∈N fiφi of H , where (fi) ∈ �2, with the norm as in the display, which is now
automatically finite, and next define Hs as the metric completion of H under this norm. The space Hs is isometric to the
set of all sequences (fi)i∈N with

∑
i∈N f 2

i b2s
i < ∞ equipped with the norm given on the right hand side of the preceding

display, but the series
∑

i∈N fiφi may not possess a concrete meaning, for instance as a function if H is a function space.
By Parseval’s identity the inner product on H = H0 is given by 〈f,g〉0 = ∑

i∈N figi , and the norm duality (2.1) follows
with the help of the Cauchy–Schwarz inequality.

The natural approximation spaces for use in Assumption 2.3 are Vj = Span(φi : i < j). Inequalities (2.2)–(2.3) are
satisfied with the approximation numbers taken equal to δ(j, t) = b−t

j .

The forward operator A in the model (1.1) is a bounded linear operator A : H → G between the separable Hilbert
spaces H and G, and is assumed to be smoothing. The following assumption makes this precise. This assumption is
satisfied in many examples and is common in the literature (for instance [11,21,42]).

In Definition 2.1 the space H is embedded as H = H0 in the smoothness scale (Hs)s∈R and hence has norm ‖ · ‖0.

Assumption 2.6 (Smoothing property of A). For some γ > 0 the operator A : H−γ → G is injective and bounded and,
for every f ∈ H0,

‖Af ‖ � ‖f ‖−γ . (2.5)

Example 2.7 (SVD). If the operator A : H → G is compact, then the positive self-adjoint operator A∗A : H → H

possesses a countable orthonormal basis of eigenfunctions φi , which can be arranged so that the corresponding sequence
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of eigenvalues λi decreases to zero. If A is injective, then all eigenvalues, whose roots are known as the singular values
of A, are strictly positive. Suppose that there exists γ > 0 such that

λi � i−2γ . (2.6)

If we construct the smoothness classes (Hs)s∈R from the basis (φi)i∈N and the numbers bi = i as in Example 2.5, then
(2.5) is satisfied.

Indeed, we can write A in polar decomposition as Af = U(A∗A)1/2f , for a partial isometry U : Range(A) → G, and
then have Af = U

∑
i fi

√
λiφi , so that ‖Af ‖ = ‖∑

i fi i
−γ φi‖0 � ‖f ‖−γ .

Thus constructions using the singular value decomposition of A can always be accommodated in the more general
setup described in the preceding.

Example 2.8 (Poisson equation). The operator A : L2(0,1) → L2(0,1) defined by the differential equation (Af )′′ = f

with Dirichlet boundary conditions Af (0) = Af (1) = 0 is smoothing with γ = 2 in the Sobolev scale given in Exam-
ple 2.4. This is shown in Sections 10.4 and 11.2 in [24].

Example 2.9 (Symm’s equation [29]). Consider the Laplace equation �u = 0 in a bounded set � ⊂ R
2 with boundary

condition u = g on the boundary ∂�. The singular layer potential, a boundary integral

u(x) = − 1

π

∫
∂�

h(y) ln |x − y|ds(y), x ∈ �,

solves the boundary value problem if and only if the density h, belonging to the space C(∂�) of continuous functions on
∂�, solves Symm’s equation

− 1

π

∫
∂�

h(y) ln |x − y|ds(y) = g(x), x ∈ ∂�. (2.7)

Assume the boundary ∂� has a parametrization of the form {ρ(s), s ∈ [0,2π ]}, for some 2π -periodic analytic function
ρ : [0,2π ] →R

2 such that |ρ̇(s)| > 0 for all s. Then Symm’s equation takes the following form,

Af (z) := − 1

π

∫ 2π

0
log

∣∣ρ(z) − ρ(s)
∣∣f (s) ds = g

(
ρ(z)

)
, z ∈ [0,2π ],

where f (s) = h(ρ(s))|ρ̇(s)|. It is shown in Theorem 3.18 of [29] that the operator A satisfies (2.5) with γ = 1 and
(Hs)s∈R the periodic Sobolev spaces on [0,2π ].

Example 2.10 (Radon transform). Inverting the Radon transform was recently studied in the Bayesian framework by
[41], who studied the posterior distribution of smooth functionals for general Gaussian priors, but not the inversion of the
whole function. The SVD of the transform is known (see [61,62]) and can be used to put the problem in our framework, in
the spirit of Example 2.7. This would give a Bayesian parallel to the rate results in [28]. We do not know if other standard
smoothness scales could be used within our framework as well.

Remark 2.11. For all our purposes the smoothing condition (2.5) can be relaxed to (A.6)–(A.7). This relaxation covers
the situation where there exists an operator A0 that satisfies (2.5) and is a ‘version’ of A in that the two operators possess
a common inverse, such as when A and A0 are defined to solve a differential equation with different boundary conditions.
Lemma A.3 shows that the relaxed version of the smoothing condition is then satisfied by the map f 	→ [Af ] of f in the
class of Af in the quotient space G/R(A − A0).

3. General result

In this section we present a general theorem on posterior contraction. We form the posterior distribution �n(·|Y (n)) as in
(1.3), given a prior � on the space H = H0 and an observation Y (n), whose conditional distribution given f is determined
by the model (1.2). We study this random distribution under the assumption that Y (n) follows the model (1.2) for a given
‘true’ function f = f0, which we assume to be an element of Hβ in a given smoothness scale (Hs)s∈R, as in Definition 2.1.

The result is based on an extension of the testing approach of [19] to the inverse problem (1.2). It resembles the
approach in [44,45,49,54] or [30], except that the inverse problem is handled with the help of the Galerkin method,
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which is a well known strategy in numerical analysis to solve the operator equation y = Af for f , in particular for
differential and integral operators. The Galerkin method has several variants, which are useful depending on the properties
of the operator involved. Here we use the least squares method, which is of general application; for other variants and
background, see e.g., [29]. In Appendix A we give a self-contained derivation of the necessary inequalities, exactly in our
framework. We note that the Galerkin method only appears as a tool to state and derive a posterior contraction rate. In our
context it does not enter into the solution of the inverse problem, which is achieved through the Bayesian method.

Let Wj = AVj ⊂ G be the image under A of a finite-dimensional approximation space Vj linked to the smoothness
scale (Hs)s∈R as in Assumption 2.3, and let Qj : G → Wj be the orthogonal projection onto Wj . If A : H → G is
injective, then A is a bijection between the finite-dimensional vector spaces Vj and Wj , and hence for every f ∈ H there
exists f (j) ∈ Vj such that Af (j) = QjAf . The element f (j) is called the Galerkin solution to Af in Vj . By the projection
theorem in Hilbert spaces it is characterized by the property that f (j) ∈ Vj together with the orthogonality relations

〈
Af (j),w

〉 = 〈Af,w〉, w ∈ Wj . (3.1)

The idea of the Galerkin inversion is to project the (complex) object Af onto the finite-dimensional space Wj , and next
find the inverse image f (j) of the projection, in the finite-dimensional space Vj , as in the diagram: Clearly the Galerkin
solution to an element f ∈ Vj is f itself, but in general f (j) is an approximation to f , which will be better for increasing
j , but increasingly complex. The following theorem uses a dimension j = jn that balances approximation to complexity,
where the complexity is implicitly determined by a testing criterion.

Theorem 3.1. For smoothness classes (Hs)s∈R as in Definition 2.1, assume that ‖Af ‖ � ‖f ‖−γ for some γ > 0, and let
f (j) denote the Galerkin solution to Af relative to linear subspaces Vj associated to (Hs)s∈R as in Assumption 2.3. Let
f0 ∈ Hβ for some β ∈ (0, S), and for ηn ≥ εn ↓ 0 such that nε2

n → ∞, and jn ∈ N such that jn → ∞, and some c > 0,
assume

jn ≤ cnε2
n, (3.2)

ηn ≥ εn

δ(jn, γ )
, (3.3)

ηn ≥ δ(jn,β). (3.4)

Consider prior probability distributions � on H0 satisfying

�
(
f : ‖Af − Af0‖ < εn

) ≥ e−nε2
n , (3.5)

�
(
f : ∥∥f (jn) − f

∥∥
0 > ηn

) ≤ e−4nε2
n . (3.6)

Then the posterior distribution in the model (1.2) contracts at the rate ηn at f0, i.e. for a sufficiently large constant M we
have �n(f : ‖f − f0‖0 > Mηn|Y (n)) → 0, in probability under the law of Y (n) given by (1.2) with f = f0.

Proof. The Kullback–Leibler divergence and variation between the distributions of Y (n) under two functions f and f0 are
given by n‖Af −Af0‖2/2 and twice this quantity, respectively. (At a referee’s request, a proof is provided in Lemma 9.1.)
Therefore the neighbourhoods Bn,2(f0, ε) in (8.19) of [19] contain the ball {f ∈ H0 : ‖Af − Af0‖ ≤ ε}. By assumption

(3.5) this has prior mass at least e−nε2
n .

Because the quotient of the left sides of (3.5) and (3.6) is o(e−2nε2
n), the posterior probability of the set {f : ‖f (jn) −

f ‖0 > ηn} tends to zero, by Theorem 8.20 in [19].
By a variation of Theorem 8.22 in [19] it is now sufficient to show the existence of tests τn such that, for some M > 0,

P
(n)
f0

τn → 0, sup
f :‖f −f0‖0>Mηn,

‖f (jn)−f ‖0≤ηn

P
(n)
f (1 − τn) ≤ e−4nε2

n .

Indeed, in the case that the prior mass condition (8.20) in Theorem 8.22 of [19] can be strengthened to (8.22), as is
the case in our setup in view of (3.5), it suffices to verify (8.24) only for a single value of j . Furthermore, we can
apply Theorem 8.22 with the metrics dn(f, g) = ‖f − g‖0εn/ηn in order to reduce the restriction dn(θ, θn,0) > Mεn to
‖f − f0‖0 > Mηn.
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Fix any orthonormal basis (ψ̄i)i<j of Wj = AVj and define

Ȳj =
∑
i<j

Y
(n)

ψ̄i
ψ̄i =

∑
i<j

〈Af, ψ̄i〉ψ̄i + 1√
n

∑
i<j

ξψ̄i
ψ̄i

= QjAf + 1√
n
ξ̄j ,

where ξ̄j := ∑
i<j ξψ̄i

ψ̄i . The latter is “standard normal in the finite-dimensional space Wj ”: because (ξψ̄i
)i<j are i.i.d.

standard normal variables, the variable 〈ξ̄j ,w〉 = ∑
i<j ξψ̄i

〈ψ̄i ,w〉 is N(0,‖Qjw‖2)-distributed, for every w ∈ G.

Let the operator Rj : G 	→ Vj be defined as Rj = A−1Qj , where A−1 is the inverse of A, which is well defined on the
range Wj = AVj of Qj . Then by definition RjAf is equal to the Galerkin solution f (j) to Af . By the preceding display
Rj Ȳj is a well-defined Gaussian random element in Vj , satisfying

Rj Ȳj = f (j) + 1√
n
Rj ξ̄j . (3.7)

The variable Rj ξ̄j is a Gaussian random element in Vj with strong and weak second moments

E‖Rj ξ̄j‖2
0 ≤ ‖Rj‖2E‖ξ̄j‖2 = ‖Rj‖2E

∑
i<j

ξ2
ψ̄i

= ‖Rj‖2(j − 1)� j

δ(j, γ )2
,

sup
‖f ‖0≤1

E〈Rj ξ̄j , f 〉2
0 = sup

‖f ‖0≤1
E
〈
ξ̄j ,R

∗
j f

〉2 = sup
‖f ‖0≤1

∥∥QjR
∗
j f

∥∥2 ≤ ∥∥R∗
j

∥∥2 � 1

δ(j, γ )2
.

In both cases the inequality on ‖Rj‖ = ‖R∗
j ‖ at the far right side follows from (A.3).

The first inequality implies that the first moment E‖Rj ξ̄j‖0 of the variable ‖Rj ξ̄j‖0 is bounded above by
√

j/δ(j, γ ).
By Borell’s inequality (e.g. Lemma 3.1 in [37] and subsequent discussion), applied to the Gaussian random variable Rj ξ̄j

in H0, we see that there exist positive constants a and b such that, for every t > 0,

Pr

(
‖Rj ξ̄j‖0 > t + a

√
j

δ(j, γ )

)
≤ e−bt2δ(j,γ )2

.

For t = 2
√

nηn/
√

b and ηn, εn and jn satisfying (3.2), (3.3) and (3.4) this yields, for some a1 > 0,

Pr
(‖Rjn ξ̄jn‖0 > a1

√
nηn

) ≤ e−4nε2
n . (3.8)

We apply this to bound the error probabilities of the tests

τn = 1
{‖RjnȲjn − f0‖0 ≥ M0ηn

}
, (3.9)

where M0 is a given constant, to be determined.
Under f0, the decomposition (3.7) is valid with f = f0, and hence Rj Ȳj − f0 = n−1/2Rj ξ̄j + f

(j)

0 − f0. By the

triangle inequality it follows that τn = 1 implies that n−1/2‖Rjn ξ̄jn‖0 ≥ M0ηn − ‖f (j)

0 − f0‖0. By (A.5) the assumption

that f0 ∈ Hβ implies that ‖f (j)

0 − f0‖0 ≤ M1δ(j,β), for some M1, which at j = jn is further bounded by M1ηn, by
assumption (3.4). Hence the probability of an error of the first kind satisfies

P
(n)
f0

τn ≤ Pr

(
1√
n
‖Rjn ξ̄jn‖0 ≥ (M0 − M1)ηn

)
.

For M0 − M1 > a1, the right side is bounded by e−4nε2
n , by (3.8).

Under f the decomposition (3.7) gives that Rj Ȳj − f0 = n−1/2Rj ξ̄j + f (j) − f0. By the triangle inequality τn = 0
implies that n−1/2‖Rjn ξ̄jn‖0 ≥ ‖f (jn) − f0‖0 − M0ηn. For f such that ‖f − f0‖0 > Mηn and ‖f − f (jn)‖0 ≤ ηn, we
have ‖f (jn) − f0‖ ≥ (M − 1)ηn. Hence the probability of an error of the second kind satisfies

P
(n)
f (1 − τn) ≤ Pr

(
1√
n
‖Rjn ξ̄jn‖0 ≥ (M − 1 − M0)ηn

)
.

For M − 1 − M0 > a1, this is bounded by e−4nε2
n , by (3.8).
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We can first choose M0 large enough so that M0 − M1 > a1, and next M large enough so that M − 1 − M0 > a1, to
finish the proof. �

Inequality (3.5) is the usual prior mass condition for the ‘direct problem’ of estimating Af (see [16]). It determines
the rate of contraction εn of the posterior distribution of Af to Af0. The rate of contraction ηn of the posterior distribution
of f is slower due to the necessity of (implicitly) inverting the operator A. The theorem shows that the rate ηn depends
on the combination of the prior, through (3.6), and the inverse problem, through the various approximation rates.

Remark 3.2. It would be possible to obtain the theorem as a corollary of Theorem 2.1 in [30]. We would take the sets Sc
n

in the latter high-level result equal to the sets {f : ‖f (jn) − f ‖0 > ηn} appearing in (3.6). To verify the conditions of [30]
for this choice, most of the preceding proof would be needed. Since the next theorem appears not to be a consequence of
this approach, and its proof uses the preceding proof, we have given a direct proof instead.

The theorem applies to a true function f0 that is ‘smooth’ of order β (i.e., f0 ∈ Hβ ). For a prior that is constructed to
give an optimal contraction rate for multiple values of β simultaneously, the theorem may not give the best result. The
following theorem refines Theorem 3.1 by considering a mixture prior of the form

� =
∫

�τ dQ(τ), (3.10)

where �τ is a prior on H , for every given ‘hyperparameter’ τ running through some measurable space, and Q is a prior
on this hyperparameter. The idea is to adapt the prior to multiple smoothness levels through the hyperparameter τ .

Theorem 3.3. Consider the setup and assumptions of Theorem 3.1 with a prior of the form (3.10). Assume that (3.2),
(3.3), (3.4) and (3.5) hold, but replace (3.6) by the pair of conditions, for numbers ηn,τ and C > 0 and every τ ,

�τ

(
f : ∥∥f (jn) − f

∥∥
0 > ηn,τ

) ≤ e−4nε2
n , (3.11)

�τ

(
f : ‖f − f0‖0 < 2ηn,τ

) ≤ e−4nε2
n , ∀τ with ηn,τ ≥ Cηn. (3.12)

Then the posterior distribution in the model (1.2) contracts at the rate ηn at f0, i.e. for a sufficiently large constant M we
have �n(f : ‖f − f0‖0 > Mηn|Y (n)) → 0, in probability under the law of Y (n) given by (1.2) with f = f0.

Proof. We take the parameter of the model as the pair (f, τ ), which receives the joint prior given by f |τ ∼ �τ and
τ ∼ Q. With abuse of notation, we denote this prior also by �. The likelihood still depends on f only, but the joint prior
gives rise to a posterior distribution on the pair (f, τ ), which we also denote by �n(·|Y (n)), by a similar abuse of notation.

By (3.10) and (3.11)–(3.12),

�
(
(f, τ ) : ∥∥f (jn) − f

∥∥
0 > ηn,τ

) ≤ e−4nε2
n ,

�
(
(f, τ ) : ηn,τ ≥ Cηn,‖f − f0‖0 < 2ηn,τ

) ≤ e−4nε2
n .

In view of (3.5) and Theorem 8.20 in [19], the posterior probabilities of the two sets in the left sides tend to zero. As in
the proof of Theorem 3.1, we can apply a variation of Theorem 8.22 in [19] to see that it is now sufficient to show the
existence of tests τn such that, for some M ≥ 2C,

P
(n)
f0

τn → 0, sup
(f,τ ):‖f −f0‖0>Mηn∨2ηn,τ ,

‖f (jn)−f ‖0≤ηn,τ

P
(n)
f (1 − τn) ≤ e−4nε2

n .

(Note that Mηn ∨ 2ηn,τ = Mηn if ηn,τ < Cηn and M ≥ 2C.) We use the tests defined in (3.9), as in the proof of Theo-
rem 3.1. The latter proof shows that the tests are consistent. We adapt the bound on the power, as follows.

By the triangle inequality τn = 0 implies that, for (f, τ ) with ‖f − f0‖0 > Mηn ∨ 2ηn,τ and ‖f (jn) − f ‖0 ≤ ηn,τ ,

n−1/2‖Rjn ξ̄jn‖0 ≥ ∥∥f (jn) − f0
∥∥

0 − M0ηn ≥ ‖f − f0‖0 − ∥∥f (jn) − f
∥∥

0 − M0ηn

≥ Mηn ∨ 2ηn,τ − ηn,τ − M0ηn ≥ (M/2 − M0)ηn.
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Hence by (3.8) the probability of an error of the second kind is bounded by e−4nε2
n , for M sufficiently large that M/2 −

M0 > a1. �

In a typical application of the preceding theorem the priors �τ for τ such that ηn,τ ≥ Cηn will be the priors on ‘rough’
functions, with ‘intrinsic’ contraction rate ηn,τ slower than ηn. These ‘bad’ priors do not destroy the overall contraction
rate, because they put little mass near the true function f0, by condition (3.12). It is necessary to address these priors
explicitly in the conditions, because they will typically fail the approximation condition (3.6), which must be relaxed to
(3.11). A further generalization might be to allow the truncation levels jn to depend on τ , but this will not be needed for
our examples.

Inspection of the proof shows that the posterior probability of the sets {τ : ηn,τ � Cηn} tends to zero. This means that
the posterior correctly disposes of the models that are ‘too rough’, for the given true function f0. In general there is no
similar protection against models that are too smooth, but this does not affect the contraction rate.

4. Random series priors

Suppose that {φi}i∈N is an orthonormal basis of H = H0 that gives optimal approximation relative to the scale of smooth-
ness classes (Hs)s∈R in the sense that the linear spaces Vj = Span{φi}i<j satisfy Assumption 2.3. Consider a prior
defined as the law of the random series

f =
M∑
i=1

fiφi, (4.1)

where M is a random variable in N independent from the independent random variables f1, f2, . . . in R.

Condition 4.1 (Random series prior).

(i) The probability density function pM of M satisfies, for some positive constants b1, b2,

e−b1k � pM(k) � e−b2k, ∀k ∈ N.

(ii) The variable fi has density p(·/κi)/κi , for a given probability density p on R and a constant κi > 0 such that, for
some C > 0 and w > 0, α,β0 > 0,

p(x) � e−C|x|w , (4.2)

i−β0/d(log i)−1/w � κi � iα. (4.3)

Priors of this type were studied in [2,49], and applied to inverse problems in the SVD framework in [49] (see Sec-
tion 3.1 of the latter paper for discussion). For Gaussian variables fj and degenerate M the series (4.1) is a Gaussian
process, and has been more widely studied, but we focus here on the non-Gaussian case. Since the basis (φi)i∈N used in
the prior is linked to the smoothness class (Hs)s∈R, rather than to the operator A, the prior is not restricted to the SVD
framework. Of course, in the theorem below we do require the operator to be smoothing in the same smoothness scale,
thus maintaining a link between prior and operator.

The assumption on the density pM is mild and is satisfied, for instance, by the Poisson distribution. The assumption
on the density p is mild as well, and is satisfied by many distributions with full support in R, including the Gaussian and
Laplace distributions. The parameter β0 in (4.3) must be a lower bound on the smoothness of the true parameter f0. Apart
from this, condition (4.3) is also very mild, and allows the scale parameters κi to tend both to zero or to infinity.

The preceding random series prior is not conjugate to the inverse problem (1.1). In general the resulting posterior
distribution will not have a closed form expression, but must be computed using simulation, such as Markov chain Monte
Carlo, or approximated using an optimisation method, such as variational approximation. However, the contraction rate
of the posterior distribution can be established without the help of an explicit expression for the posterior distribution, as
shown in the following theorem.

Theorem 4.2 (Random series prior). Let (φi)i∈N be an orthonormal basis of H0 such that the spaces Vj = Span{φi}i<j

satisfy Assumption 2.3 with δ(j, s) = j−s/d relative to smoothness classes (Hs)s∈R as in Definition 2.1. Assume that
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‖Af ‖ � ‖f ‖−γ for some γ > 0, and let f0 ∈ Hβ for some β ∈ (0, S). Then, for the random series prior defined in (4.1)
and satisfying Definition 4.1 with β0 ≤ β , and sufficiently large M > 0, for τ = (β + γ )(1 + 2γ /d)/(2β + 2γ + d),

�n

(
f : ‖f − f0‖0 > Mn−β/(2β+2γ+d)(logn)τ |Y (n)

) P
(n)
f0→ 0.

The rate n−β/(2β+2γ+d) is known to be the minimax rate of estimation of a β-regular function on a d-dimensional
domain, in an inverse problem with inverse parameter γ (see, e.g., [11]). The assumption that δ(j, s) = j−s/d places the
setup of the theorem in this setting, and hence the rate of contraction obtained in the preceding theorem is the minimax
rate up to a logarithmic factor. The rate is adaptive to the regularity of β of the true parameter, which is not used in the
construction of the prior, apart from the assumption that β ≥ β0. (See [17] and Chapter 10 in [19] for general discussion
of adaptation in the Bayesian sense.)

The proof of the theorem is deferred to Section 9; it will be based on Theorem 3.1.

Example 4.3 (Wavelet basis). Let p be a standard normal density, pM a standard Poisson probability mass function, and
set the scaling parameters κi equal to 1 (no scaling).

Consider an S-regular orthonormal wavelet basis {φj,k} for the space of square-integrable functions on the d-
dimensional torus (0,2π ]d . We can renumber the index (j, k) into N by ordering the basis functions by their multireso-
lution levels, 2jd + k, and next construct the random series prior (4.1).

An S-regular orthonormal wavelet basis is known to correspond to the scale of Sobolev spaces up to smoothness level
S. Therefore, by Theorem 4.2, the contraction rate of the posterior distribution is n−β/(2β+2γ+d) times a logarithmic
factor whenever the operator is smoothing relative to the Sobolev scale and the true function f0 belongs to the Sobolev
space of order β , for β0 ≤ β < S. Thus the posterior distributions are adaptive up to a logarithmic factor to the scale of
Sobolev spaces of orders between β0 and S.

For increasing β ≥ S the rate given by the theorem still improves. However, the ‘regularity’ β defined by the scale
(Hs)s∈R may then not coincide with the Sobolev scale.

5. Hilbert scales

A Hilbert scale is a special type of smoothness scale (Hs)s∈R, as in Definition 2.1, generated by an unbounded operator.
Such a scale is particularly useful in connection to differential operators and Gaussian priors, as considered in the next
sections. For reference we include a short summary on Hilbert scales, and some examples. Extended discussions of Hilbert
scales in the context of regularization theory can be found e.g. in Chapter 8 of [14], and a general treatment of the subject
in [34].

A Hilbert scale is generated by an unbounded operator L : D(L) ⊂ H0 → H0, with domain D(L) such that

(a) D(L) is dense in H0 (i.e. ‘L is densely defined’),
(b) D(L) = D(L∗),
(c) 〈Lx,y〉 = 〈x,Ly〉 for all x, y ∈ D(L) (i.e. ‘L is symmetric’),
(d) 〈Lx,x〉 ≥ κ‖x‖2, for all x ∈ D(L), and some κ > 0.

The set D(L∗) in (b) is the domain of the adjoint L∗ of L, which is defined as the set of all y ∈ H such that the map
x 	→ 〈Lx,y〉 from D(L) to R is continuous. Thus D(L∗) depends on the domain D(L), which is considered part of the
definition of L and is restricted by (a) only. Together, requirements (b) and (c) are equivalent to the requirement that L be
self-adjoint. The latter is important for the existence of a spectral decomposition, used below.

The domain of the k-th power of the operator L is defined, by induction for k = 2,3, . . . , as D(Lk) = {f ∈ D(Lk−1) :
Lf ∈ D(L)} (with L1 = L). All powers Lk , for k ∈ N, are defined on

H∞ :=
⋂
k∈N

D
(
Lk

)
. (5.1)

It can be shown that H∞ is dense in H0 (Lemma 8.17 in [14]). Next, using spectral theory, fractional powers Ls can be
defined as well on the domain H∞, for every s ∈R, through integration with respect to the spectral family (Eλ) of L, i.e.

Ls :=
∫
R

λs dEλ =
∫ ∞

κ

λs dEλ.
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This allows to define an inner product on H∞ by, for h,g ∈ H∞ and s ∈ R,

〈h,g〉s := 〈
Lsh,Lsg

〉
. (5.2)

Definition 5.1 (Hilbert scales). The Hilbert space Hs is the completion of H∞ with respect to the norm induced by the
inner product 〈·, ·〉s defined in (5.2). The family (Hs)s∈R is called the Hilbert scale generated by L.

The following proposition, adapted from Proposition 8.19 in [14], lists basic properties of Hilbert scales.

Proposition 5.2. Let L be a densely defined unbounded operator satisfying (a)–(d). Then the Hilbert scale (Hs)s∈R is a
smoothness scale in the sense of Definition 2.1, with

(i) ‖f ‖s ≤ κs−t‖f ‖t , for f ∈ Ht , and s < t .
(ii) ‖f ‖s ≤ ‖f ‖λ

r ‖f ‖1−λ
t , for λ = (t − s)/(t − r), and r < s < t .

Furthermore, for any s, t ∈ R the operator Lt−s has a unique extension from H∞ to a bounded, self-adjoint operator
Lt−s : Ht → Hs , satisfying

(iii) ‖Lt−sf ‖s � ‖f ‖t , for f ∈ Ht .
(iv) Lt−s = LtL−s .
(v) (Ls)−1 = L−s .

Somewhat abusing notation, we have denoted the extension of Lt−s in the proposition using the same symbol Lt−s .
Taking s = 0 or t = 0, we see that Ls : Hs → H0 and Ls : H0 → H−s are norm isomorphisms, for every s ∈ R. In
particular, the unbounded densely defined operator L : D(L) ⊂ H0 → H0 that generates the scale can be extended to a
bounded operator L : H1 → H0, by strengthening the norm on its domain, and also to a bounded operator L : H0 → H−1,
by extending its range space and weakening the norm of its range space. Moreover, the inverse map is a norm isomorphism
L−1 : H0 → H1, and hence is certainly bounded as an operator L−1 : H0 → H0.

The eigenvalues of L−1 are closely connected to the approximation numbers in Assumption 2.3.

Proposition 5.3. If L−1 : H0 → H0 is compact with eigenvalues λj ↓ 0, then Assumption 2.3 is satisfied in the Hilbert
scale (Hs)s∈R generated by L, with δ(j, t) � λt

j and S = ∞. In fact, there exist linear spaces Vj of dimension j − 1 such
that, for s ≥ 0 and t ∈R,

inf
g∈Vj

‖f − g‖t � δ(j, s)‖f ‖s+t , (5.3)

‖g‖s+t �
1

δ(j, s)
‖g‖t , ∀g ∈ Vj . (5.4)

Proof. Because L−1 : H0 → H0 is compact, there exists an orthonormal basis (φi)i∈N of eigenfunctions in H0. It may
be checked that f = ∑

i∈N fiφi has Lsf = ∑
i∈N fiλ

−s
i φi , and square norm ‖f ‖2

s = ∑
i∈N f 2

i λ−2s
i , provided the latter

series converges. Take Vj equal to the linear span of the first j − 1 eigenfunctions. Then f − Pjf = ∑
i≥j fiφi and

hence ‖f − Pjf ‖2
t = ∑

i≥j f 2
i λ−2t

i ≤ λ2s
j

∑
i≥j f 2

i λ−2t−2s
i ≤ λ2s

j ‖f ‖2
s+t , for s, t ≥ 0, and for f ∈ Vj we have ‖f ‖2

s+t =∑
i<j f 2

i λ−2s−2t
i ≤ λ−2s

j

∑
i≤j f 2

i λ−2t
i = λ−2s

j ‖f ‖2
t . �

The sequence spaces of Example 2.5 are one class of examples of Hilbert scales, generated by the operator L : (fi) 	→
(fibi). More intricate Hilbert scales arise from (elliptic) differential operators. These are useful in that they can incor-
porate boundary conditions, which are then automatically inherited by a Gaussian prior attached to such a scale. The
following one-dimensional example is simplistic, but illustrative.

Example 5.4 (Sobolev scales). Consider the one-dimensional negative Laplacian

−� = − d2

dx2

as an operator on the space C∞
c (0,1) of infinitely often differentiable functions with compact support in (0,1), viewed

as subset of L2(0,1), with range space L2(0,1). On this domain this operator is not self-adjoint, but it has a self-adjoint
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extension (with differentiation interpreted in the sense of distributions) to the space of all functions f ∈ W 2,2(0,1)

satisfying the Dirichlet boundary condition

f (0) = 0 = f (1). (5.5)

(See Theorem 4.23 in [23].) The eigenfunctions of the Laplacian under the Dirichlet boundary condition are the functions
x 	→ sin(jπx), for j ∈N, with eigenvalues of the order bj � j−1. The corresponding Hilbert scale can also be described
as the sequence space generated by this orthogonal basis.

Because the Laplacian is a second derivative it is natural to half the scale parameter, or equivalently use the root
negative Laplacian L := √−� as the generator of the scale (where the root is defined through the spectral decomposition).

The boundary conditions play an important role in defining the scale. Technically they are needed to create a domain
on which the operator is self-adjoint. An alternative choice to the Dirichlet is the Cauchy boundary condition

f ′(0) = 0 = f (1).

This leads to the sequence scale generated by the eigenfunctions x 	→ cos((j − 1/2)πx), for j ∈N, and is different from
the Dirichlet scale. Again the eigenvalues of L−1 are of the order j−1.

Incidentally, it is shown in [43] that the full Sobolev scale (s ∈ R) of Example 2.4 is not a Hilbert scale for any
generating operator L. Also in that sense the boundary conditions are essential.

Example 5.5 (Abel operator). For a given kernel function K : (0,1) × (0,1) → R and α ∈ (0,1], consider the operator
A : L2(0,1) → L2(0,1) given by

Af (x) = 1

�(α)

∫ x

0
(x − s)α−1K(x, s)f (s) ds.

For K = 1 this gives the classical Abel operator. Under mild smoothness conditions on K , it is shown in [22], Theorem 1,
that A is smoothing (i.e. (2.5) holds) of order γ = 1 for the Sobolev scale generated by the root negative Laplacian under
the Cauchy boundary condition, described in Example 5.4.

While in the preceding examples the boundary consists of just two points, for multi-dimensional domains the boundary
is continuous, and the restrictions of functions in a smoothness class to the boundary form an infinite-dimensional function
space. By choosing an appropriate generating operator, we can construct a Hilbert scale of functions that automatically
satisfy a desired boundary condition.

Consider a second order elliptic differential operator L : D(L) ⊂ L2(D) → L2(D) on a bounded domain D ⊂ R
d

with a smooth boundary. To generate a Hilbert scale the operator must be self-adjoint, which involves both the form
of the operator and its domain D(L), where different domains will lead to different Hilbert scales. Self-adjointness
requires both the structural property

∫
D(Lf )g dλ = ∫

D f (Lg)dλ and equality of the domains of L and its adjoint L∗,
where the domain of L∗ is by definition the set of g such that the left side of the preceding equality is a continuous
function of f ∈ D(L) ⊂ L2(D). The latter implies restrictions on the domain, which are typically revealed through
partial integrations.

One may start from L as an operator on the space of C∞-functions with support within D. The closure of this operator
(defined by the closure of its graph {(f,Lf ) : f ∈ C∞

c (D)} in L2(D) × L2(D)), is known as the minimal realization
associated with L, while the maximal realization has domain of definition {f ∈ L2(D) : ∃u ∈ L2(D) such that Lf =
u weakly}. (See Definitions 4.1–4.2 in [23]; a self-adjoint operator is always closed, which explains ’minimal’.) Neither
of these operators need to be self-adjoint, but there always exist self-adjoint operators with a domain between these two
extremes.

For example, the minimal domain of the d-dimensional Laplacian operator L = −� is given by {f ∈ W 2,2(D) :
f |∂D = ∇f |∂D = 0} (see Theorem 10.19 in [50]) and the maximal domain contains the full Sobolev space W 2,2(D) given
in Example 2.4 (see Exercise 10.11 in [50]). Two possible domains on which L is self-adjoint are (see Theorems 10.19
and 10.20 in [50]):{

f ∈ W 2,2(D) : f |∂D = 0
}
,{

f ∈ W 2,2(D) : ∇f |∂D = 0
}
.

These correspond to the Dirichlet and Neumann boundary conditions, respectively. More sophisticated boundary condi-
tions are possible as well, see [23,38].
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In the Bayesian setup we model a function through a prior. When a true function is known to satisfy certain bound-
ary conditions, as in many problems involving differential forward operators, we can incorporate these in the prior by
choosing an appropriate generating operator. For an operator A defined in terms of the Laplacian and the same boundary
conditions the smoothing condition (2.5) will be satisfied. The following is a another example of a pair of L and A.

Example 5.6 (Volterra). Consider the operator A : L2((0,1)2) → L2((0,1)2) on functions f : (0,1)2 → R on the unit
square satisfying the differential equation

Dx,yAf = f, Dx,y = ∂2

∂x ∂y
.

We can render the solution of the equation unique by imposing boundary conditions. Two solutions are given by

Af (x, y) =
∫ x

0

∫ y

0
f (s, t) ds dt,

A0f (x, y) = Af (x, y) −
∫ 1

0
Af (x, t) dt −

∫ 1

0
Af (s, y) ds +

∫ 1

0

∫ 1

0
Af (s, t) ds dt.

The first satisfies the boundary conditions Af (x,0) = Af (0, y) = 0, while the second is obtained from the first by
subtracting its projection on the set of all functions of the form (x, y) 	→ g1(x) + g2(y), which forms the kernel of
the differential operator. Other boundary conditions will still give different versions of the operator.

We claim that A0 is smoothing of order γ = 1 for the Hilbert scale generated by the root L of D2
x,y with Dirichlet

boundary condition, while A is smoothing relative to the scale of L combined with Cauchy boundary condition.
The scale under the Dirichlet boundary condition is generated by the orthogonal system of eigenfunctions ek,l :

(x, y) 	→ sin(kπx) sin(lπy), for (k, l) ∈ N
2, the tensor product of the basis of the one-dimensional Dirichlet–Laplacian

as in Example 5.4, with corresponding eigenvalues are k2l2π4. By explicit calculation

Aek,l(x, y) = 1

klπ2

[
cos(kπx) cos(lπy) − cos(kπx) − cos(lπy) + 1

]
,

A0ek,l(x, y) = 1

klπ2
cos(kπx) cos(lπy).

The functions (x, y) 	→ cos(kπx) cos(lπy), for (k, l) ∈ (N∪ {0})2 form an orthogonal basis of L2((0,1)2). We conclude
that for f = ∑

k,l fk,lek,l ,

‖Af ‖2 �
∑
k,l

f 2
k,l

k2l2
+

∑
k

(∑
l

fk,l

kl

)2

+
∑

l

(∑
k

fk,l

kl

)2

+
(∑

k,l

fk,l

kl

)2

,

‖A0f ‖2 �
∑
k,l

f 2
k,l

k2l2
� ‖f ‖2−1,

where ‖ · ‖−1 refers to the scale of L with Dirichlet boundary condition. The first equation shows that the operator A is
not smoothing in this scale, but in general satisfies ‖Af ‖� ‖f ‖−1.

On the other hand, the Cauchy boundary condition generates the system of eigenfunctions (x, y) 	→ cos((k −
1/2)πx) cos((l − 1/2)πy), for (k, l) ∈ N

2. These can be seen to be also the eigenfunctions of A∗A, and hence the
smoothing property of A fits the‘ SVD framework, as in Example 2.7.

The two versions A and A0 possess the same inverse operator, namely the differential operator Dx,y used for their
definitions. This suggests that from the point of view of reconstructing f in the inverse problem it should not matter
whether one is provided with a noisy version of either Af or A0f as input data, seemingly contradicting the fact that
the operators are smoothing in different scales. This paradox may be resolved by considering A or A0 as maps into the
quotient space L2((0,1)2)/N(Dx,y), where N denotes the kernel of the operator. The map f 	→ [Af ] = [A0f ] into the
class of Af in this quotient space is injective and can be shown to be appropriately smoothing (see (A.6)–(A.7)), and
consequently both scales can be used with both operators (cf. Remark 2.11).
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6. Gaussian priors

If the function f in (1.1) is equipped with a Gaussian prior, then the corresponding posterior distribution will be Gaussian
as well. Furthermore, the posterior mean will then be equal to the solution found by the method of Tikhonov-type regular-
ization (see e.g. [15,31,52]). Although this allows to study the posterior mean and the full posterior distribution by direct
methods, in this section we derive the rate of posterior contraction from the general result Theorem 3.1. An advantage
of this approach is that the proof can be extended to mixtures of Gaussian priors, which is important to obtain optimal
recovery rates for true functions of different smoothness levels. See Section 7.

Centred Gaussian distributions on a separable Hilbert space correspond bijectively to covariance operators. By defini-
tion a random variable F with values in H0 is Gaussian if 〈F,g〉0 is normally distributed, for every g ∈ H0, and it has
zero mean if these variables have zero means. The variances of these variables can then be written as

E〈F,g〉2
0 = 〈Cg,g〉0,

for a linear operator C : H0 → H0, called the covariance operator. A covariance operator C is necessarily self-adjoint,
nonnegative, and of trace class, i.e.,

∑
i∈N〈Cφi,φi〉 < ∞, for some (and then every) orthonormal basis (φi)i∈N of H0;

and every operator with these properties generates a Gaussian distribution.
In the setting of a Hilbert scale (Hs)s∈R generated by the operator L it is natural to choose a Gaussian prior with

covariance operator of the form L−2α , for some α > 0. If L−1 has eigenvalues λj , then this operator is of trace class
if

∑
j∈N λ−2α

j < ∞. Thus α must be chosen big enough for the Gaussian prior to exist as a ‘proper’ prior on H0. For

instance, if λj � j−1/d , then every choice α > d/2 yields a proper prior.
This leads to the following theorem on posterior contraction rates for Gaussian priors, the proof of which is given in

Section 9.

Theorem 6.1 (Gaussian prior). Consider a Hilbert scale (Hs)s∈R generated by an operator L as in the preceding such
that L−1 : H0 → H0 is compact with eigenvalues λj satisfying λj � j−1/d . Suppose the operator A : H0 → G satisfies
‖Af ‖ � ‖f ‖−γ , assume that f0 ∈ Hβ , for some β > 0, and let the prior be zero-mean Gaussian with covariance operator
L−2α , for some α > d/2. Then the posterior distribution satisfies, for sufficiently large M > 0,

�n

(
f : ‖f − f0‖0 > Mn−((α−d/2)∧β)/(2α+2γ )|Y (n)

) P
(n)
f0→ 0.

If F is distributed according to the prior in the preceding theorem, then LsF is also zero-mean Gaussian distributed,
with covariance operator L2s−2α , which has eigenvalues j−(2α−2s)/d . For s < α − d/2, this operator is of trace class and
hence LsF is a proper random variable in H0. In other words, the distribution of F gives probability 1 to L−sH0 = Hs , for
every s < α−d/2. The prior in the preceding theorem can therefore be interpreted as being ‘almost’ of regularity α−d/2.
The rate n−((α−d/2)∧β)/(2α+2γ ) is therefore comparable to the rate obtained in Theorem 3.5 in [49] and Theorem 4.1 in
[31] (with the scaling parameter fixed to 1), except that the parameter α in the latter references is denoted presently by
α − d/2.

An improvement of the present theorem is that the covariance operator of the Gaussian prior is not directly linked to
the operator A, but only weakly so by (2.5). For example, we may construct a prior by a random series (see Theorem I.23
in Appendix I.6, [19]), in any basis corresponding to the smoothness scale. We illustrate this below by using the wavelet
basis for an inverse problem given by a differential operator, after first noting that the singular value setup is covered as
well.

Example 6.2 (SVD). The scale of smoothness classes constructed in Example 2.5 and Example 2.7 is the Hilbert
scale attached to the operator L given by Lf = ∑

i∈N bifiφi defined on the domain of functions f = ∑
i∈N fiφi , with∑

i∈N b2
i f

2
i < ∞. Under assumption (2.6) this operator can also be expressed as L = (A∗A)−1/(2γ ), and depends on the

operator A through its eigenfunctions. A Gaussian prior with covariance operator L−2α corresponds to modelling the
coefficients fi relative to the basis φi as independent zero-mean normal variables Fi with variances b−2α

i . This follows,
because in that case E〈F,g〉2

0 = ∑
i∈N b−2α

i g2
i = 〈L−2αg, g〉2

0, for every g ∈ H0.
Thus in this case the prior coincides with the ones in the literature studied under the SVD framework, e.g. [31,32]. In

the present more general setting L need not be directly linked to A, except that the operator must possess the smoothing
property Definition 2.6.

Example 6.3 (Sobolev scales, wavelet prior). Let {φj,k}(j,k)∈�, be an S-regular orthonormal wavelet basis in L2(T), on
T := (0,2π ]. Let fj,k = ∫

T
f (x)φj,k(x) dx be the wavelet coefficients of a function f . By Parseval’s identity, the map
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U : f 	→ {fj,k} is a unitary operator U : L2(T) → �2(�). The multiplication operator m : {fj,k} 	→ {2j fj,k} on �2(�) has
s-th power given by ms : {fj,k} 	→ {2jsfj,k}. Then L := U∗mU has s-th power Ls := U∗msU and generates a Hilbert
scale (Hs)s∈R. For f ∈ Hs , we have

‖f ‖2
Hs(T) =

∞∑
j=0

22js

2j −1∑
k=0

f 2
j,k.

This norm can be shown to be equivalent to the standard Sobolev norm, for 0 ≤ s < S.
The Gaussian prior with covariance operator L−2α can be represented by a random series of the form

F =
∑

(j,k)∈�

Fj,kφj,k,

where Fj,k ∼ N (0,2−2jα) are independent random variables. This prior corresponds to the Hilbert scale, but does not
refer to an operator A. For instance, the eigenbasis of the operator in Example 2.9 is the Fourier basis (see [29]), and not
the wavelet basis. Thus we have constructed a Gaussian prior that is not related to the eigenbasis, but attains the same
contraction rate.

It may be noted that the scale (Hs)s∈R is well defined for every s ∈ R, and with the preceding prior Theorem 6.1
is applicable to the full scale, and gives a contraction rate relative to the scale, which is optimal when β = α − d/2.
However, the scale agrees with the Sobolev scale only for β < S, and hence the optimality is in the Sobolev sense
only if β < S. This restriction is typical when working with an approximation scheme such as wavelets or splines.
One can of course choose a suitably large value of S, or may mix over multiple wavelet bases, as in the next sec-
tion.

As mentioned in Section 1, there are many works on Bayesian inverse problems with Gaussian priors. The setup of
the preceding theorem is similar to [1,15], arguably closer to [1]. While we mainly treat the white noise case, our results
can be extended to cover the noise structure in [1], and hence also cover the model in [15]. On the other hand, we differ
from [1] in the following sense. First, unlike Assumption 3.1 in [1], our characterization of the smoothing property of the
operator A, i.e. Definition 2.6, is simple, and in principle, our setup can also be extended to severely ill-posed problems,
see Section 8. Second, our proof strategy is different, as we do not use Gaussian conjugacy, which is the main tool in [1].
This also allows us to obtain posterior contraction rates for non-conjugate priors in Section 4, and for Gaussian mixtures
in Section 7.

7. Gaussian mixtures

The posterior contraction rate resulting from a zero-mean Gaussian prior with covariance operator L−2α , as considered in
Section 6, is equal to the minimax rate n−β/(2β+2γ+d) (see [11]) only when α − d/2 = β , i.e., when the prior smoothness
α − d/2 matches the true smoothness β . By mixing over Gaussian priors of varying smoothness the minimax rate can
often be obtained simultaneously for a range of values β (cf. [33,53,57]). In this section we consider mixtures of the mean-
zero Gaussian priors with covariance operators τ 2L−2α over the ‘hyperparameter’ τ . Thus the prior � is the distribution
of τF , where F is a zero-mean Gaussian variable in H0 with covariance operator L−2α , as in Section 6, and τ is an
independent scale parameter. The variable 1/τa may be taken to possess a Gamma distribution for some given 0 < a ≤ 2,
or, more generally, should satisfy the following mild condition.

Condition 7.1. The distribution Q of τ has support [0,∞) and satisfies

{
− logQ((t,2t)) � t−2 as t ↓ 0,

− logQ((t,2t)) � td/(α−d/2) as t → ∞.

Theorem 7.2 (Gaussian mixture prior). Consider a Hilbert scale (Hs)s∈R generated by an operator L as in the
preceding such that L−1 : H0 → H0 is compact with eigenvalues λj satisfying λj � j−1/d . Suppose the operator
A : H0 → G satisfies ‖Af ‖ � ‖f ‖−γ , assume that f0 ∈ Hβ , for some β ∈ (0, α], and let the prior be a mixture
of the zero-mean Gaussian distributions with covariance operators τ 2L−2α over the parameters τ equipped with
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a prior satisfying Definition 7.1, for some α > d/2. Then the posterior distribution satisfies, for sufficiently large
M > 0,

�n

(
f : ‖f − f0‖0 > Mn−β/(2β+2γ+d)|Y (n)

) P
(n)
f0→ 0.

The proof is given in Section 9.

8. Discussion and comments

In this section we comment on the present setup and discuss directions in which the results in this article can be extended.

Coloured noise
We have examined the case that the noise ξ in model (1.1) is white noise. Statistical estimation in the case that the noise
is a proper centred Gaussian random element in G, as studied in [15], is easier in terms of minimax rates (if in both cases
the noise is scaled to the same unit), as this would imply that the noise is less variable. By inspection of our proofs one
sees that the concentration inequalities that drive the testing criterion remain valid if the covariance operator of the noise
is bounded above by the identity, as is assumed in [1,3]. As a consequence, the proof of Theorem 3.1 goes through and
the theorem remains valid, as do the corollaries in the later sections. However, for truly coloured noise the result may
be suboptimal, as one may expect a faster posterior contraction rate, which will incorporate the decrease of the noise
variance in certain directions. The methods of the present paper can be adapted to this case as long as the covariance
operator fits the scale of smoothness classes, as in [15]. A sharp result in full generality may be difficult to attain, as it
will be the outcome of the interaction of the directions of decrease in the noise, the true parameter and the prior.

Approximation numbers of embeddings
In the corollaries to the main result we have assumed that the approximation numbers δ(j, s) of the canonical embedding
ι : Hs → H0 are of polynomial order j−s/d . This order matches the approximation numbers of Sobolev spaces on d-
dimensional, bounded domains, and seems common. Other decay rates do arise, e.g., an exponential rate in severely
ill-posed problems (as in the heat equation considered in [32]), or a logarithmic rate (as in [6]). The general Theorem 3.1
remains valid, but its corollaries must be adapted. For Gaussian priors in logarithmic or exponential scales, this is relatively
straightforward using the general theory of approximation numbers, which relates these to singular values and metric
entropy. See the discussion in Appendix B.

9. Proofs

Lemma 9.1. For θ = (θ1, θ2, . . .) let Pθ be the distribution of the random element (X1 + θ1,X2 + θ2, . . .) in R
∞ for

X1,X2, . . . i.i.d. mean-zero normal variables with variance σ 2. If θ ∈ �2, then Pθ is absolutely continuous relative to P0
with log likelihood

log
dPθ

dP0
(X1,X2, . . .) = 1

σ 2

∞∑
i=1

θiXi − 1

2σ 2

∞∑
i=1

θ2
i ,

where the first series converges almost surely and in second mean. The expectation and variance of minus this variable
are

∑∞
i=1 θ2

i /(2σ 2) and twice this quantity, respectively.

Proof. That the series converges in L2 is clear from the fact that θ ∈ �2; the almost sure convergence next follows from
the Itô–Nisio theorem. The expectation and variance of the right side are easy to compute as limits.

Write �∞ for the right side of the display, and �n for the expression obtained by replacing the infinite sums by the
sums from 1 to n. Thus �n → �∞ almost surely. Since E0e

2�n = e
∑n

i=1 θ2
i /σ 2

is uniformly bounded in n, it follows that
e�n is uniformly integrable and hence converges in mean to e�∞ . In particular, the mean of the latter variable is 1, the
mean of the former variables.

It follows that the Borel measure on R
∞ defined by B 	→ E01B(X)eL∞ is a probability measure. For every Borel set

B it is the limit of E01B(X)eLn , which is Pθ(B) if B depends only on the first n coordinates, as eLn is the density of the
distribution of (X1 + θ1, . . . ,Xn + θn) with respect to its distribution at θ = 0. Since the Borel σ -field on R

∞ is generated
by the algebra of all cylinder sets, it follows that Pθ and the measure B 	→ E01B(X)eL∞ agree. �
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9.1. Proof of Theorem 4.2

The theorem is a corollary to Theorem 3.1 and uses arguments as in the proof of Proposition 3.2 in [49].
First we determine εn to satisfy the prior mass condition (3.5) of the direct problem. Let Pj be the projection onto the

linear span of the first j − 1 basis elements φi . By the assumption on A and the triangle inequality, for any in ∈N,

‖Af − Af0‖� ‖f − f0‖−γ � ‖f − Pinf0‖−γ + ‖Pinf0 − f0‖−γ

� ‖f − Pinf0‖−γ + δ(in, γ )δ(in, β)‖f0‖β, (9.1)

by (A.1), if 0 ≤ β,γ < S. Here δ(in, γ )δ(in, β) = i
−(γ+β)/d
n � εn if in � ε

−d/(γ+β)
n .

By the orthogonality of the basis (φi), the function φj is orthogonal to the space Vj spanned by (φi)i<j . Hence

Pjφj = 0, so that ‖φj‖−γ ≤ δ(j, γ )‖φj‖0 � j−γ /d , for every j , by (A.1). Consequently, for f = ∑in−1
i=1 fiφi ∈ Vin and

f0 = ∑
i f0,iφi , by the triangle inequality,

‖f − Pinf0‖−γ �
in−1∑
i=1

|fi − f0,i |i−γ /d .

It follows that there exists a constant a > 0 such that

�
(
f : ‖f − Pinf0‖−γ < aε

) ≥ �

((
(fi),M

) :
in−1∑
i=1

|fi − f0,i |i−γ /d < ε,M = in − 1

)

≥
in∏

i=1

�

(
fi : |fi − f0,i | < εiγ/d

in

)
�(M = in − 1)

≥
in∏

i=1

∫ εiγ /d/(κi in)

0
p

(
x + f0,i

κi

)
dxe−b1in ,

in view of Definition 4.1. By (4.2) of the latter assumption, the integral
∫ r

0 p(x + μ)dx is bounded below by a constant
times re−C(r+|μ|)w . It follows that for ε such that εiγ /d/(κiin) ≤ 1, for i ≤ in, the preceding display is lower bounded by
a multiple of

εin

[
in∏

i=1

iγ /d

κi in

]
exp

[
−C

in∑
i=1

(
1 + |f0,i |

κi

)w
]
e−b1in .

By (4.3), we have iγ /d/κi � (1/i)γ /d−α , which is bounded below by 1 if γ /d − α ≥ 0 and by (1/in)
α−γ /d otherwise,

and hence always by (1/in)
α . This shows that the first term in square brackets is bounded below by (a2/iα+1

n )in , for some
a2 > 0. Since f0 ∈ Hβ , by assumption, the norm duality (2.1) gives that |f0,i | = |〈f0, φi〉0| ≤ ‖f0‖β‖φi‖−β � i−β/d .
Together with (4.3) this gives that |f0,i |/κi � i(β0−β)/d(log i)1/w ≤ (log i)1/w , whence minus the exponent in the second
term in square brackets is bounded by a multiple of in(1 + (log in)

1/w)w . We conclude that there exists a constant a3 > 0
such that

�
(
f : ‖f − Pinf0‖−γ < aε

) ≥ εine−a3in log ine−b1in ,

for every ε > 0 such that εiγ /d/(κi in) ≤ 1, for every i ≤ in. Since iγ /d/κi � i(γ+β0)/d(log i)1/w , again by (4.3), a suffi-
cient condition for the latter is that εi

(γ+β0)/d
n (log in)/in ≤ 1.

Combining this with (9.1), we see that (3.5) is satisfied for εn such that there exists in with

i
−(γ+β)/d
n � εn, in log in � nε2

n, εni
(γ+β0)/d
n (log in) ≤ in.

This leads to the rates

εn � (logn/n)(β+γ )/(2β+2γ+d), in � (n/ logn)d/(2β+2γ+d).
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(The third requirement is easily satisfied and remains inactive.) We can choose a sufficiently large proportionality constant
in � when defining εn, so that (3.5) is satisfied for εn, since the left and right sides of (3.5) are increasing and decreasing
in εn, respectively.

Since the Galerkin projection f (j) is equal to f itself if f ∈ Vj , we have that ‖f (jn) − f ‖0 = 0 for the random series
f = ∑M

i=1 fiφi if M < jn. By (ii) of Definition 4.1 it follows that, for some b′
2 > 0 and every ηn > 0,

�
(
f : ∥∥f (jn) − f

∥∥
0 > ηn

) ≤ �(M ≥ jn) ≤ e−b′
2jn .

Hence (3.6) is satisfied for jn = nε2
n/(4b′

2). Thus we choose

jn � nd/(2β+2γ+d)(logn)(2β+2γ )/(2β+2γ+d),

with a sufficiently large constant in �. Then (3.2) is satisfied and it remains to solve ηn from (3.3) and (3.4). This leads
to the inequalities

ηn ≥ εnj
γ/d
n � n−β/(2β+2γ+d)(logn)(1+2γ /d)(β+γ )/(2β+2γ+d),

ηn ≥ j
−β/d
n � n−β/(2β+2γ+d)(logn)−β(2β+2γ )/((2β+2γ+d)d).

The rate is the maximum of the rates at the right hand sides, which coincides with the first rate. This concludes the proof.

9.2. Proof of Theorem 6.1

The theorem is a corollary to Theorem 3.1. The main tasks are to determine εn satisfying the prior mass condition (3.5)
of the direct problem, and next to identify ηn from the prior mass condition (3.6) and the other conditions.

The first task is achieved in the following lemma.

Lemma 9.2. Under the assumptions of Theorem 6.1, for f0 ∈ Hβ , as ε ↓ 0,

− log�
(
f : ‖Af − Af0‖ < ε

)
�

{
ε−d/(α+γ−d/2) if d/2 < α ≤ β + d/2,

ε−(2α−2β)/(β+γ ) if α > β + d/2.
(9.2)

Proof. Since by assumption ‖Af − Af0‖ � ‖f − f0‖−γ , the probability in the left side is the decentered small ball
probability �(f : ‖f − f0‖−γ < aε) of the Gaussian random variable F distributed according to the prior and viewed as
map into H−γ ⊃ H0, for some a > 0. Because F has covariance operator L−2α as a map in H0, its reproducing kernel
Hilbert space (or Cameron–Martin space) H (which does not depend on its range space) is equal to the range of L−α

under the norm ‖L−αh‖H = ‖h‖0 (see e.g., Example I.14 of [19]). Since L−α : H0 → Hα is a norm isometry, by (iii) of
Proposition 5.2, this is the Hilbert space Hα with its natural norm ‖ · ‖α . The left side of (9.2) is therefore up to constants
equivalent to

inf
h∈Hα :‖h−f0‖−γ <ε

‖h‖2
α − log�

(‖f ‖−γ < ε
)
. (9.3)

See [35,36,58], or Section 11.2, in particular, Proposition 11.19 in [19].
By (A.1) ‖Pjf0 − f0‖−γ � δ(j, γ )δ(j,β)‖f0‖β , which is bounded above by ε for j � ε−d/(β+γ ). Thus for this value

of j the first term in (9.3) is bounded above by

‖Pjf0‖α �
{

‖Pjf0‖β if α ≤ β,

1/δ(j,α − β)‖Pjf0‖β if α > β

by (5.4). Here ‖Pjf0‖β ≤ ‖Pjf0 − f0‖β + ‖f0‖β ≤ (δ(j,0) + 1)‖f0‖β , by (5.3). It follows that the contribution of the
decentering in (9.3) is of order 1 if α ≤ β and is bounded above by a term of order ε−2(α−β)/(β+γ ) if α > β .

By Lemma B.1, the metric entropy logN(ε, {f ∈ Hα : ‖f ‖α ≤ 1},‖ · ‖−γ ) is of the order ε−d/(α+γ ). Hence, by [35]
(see Lemma 6.2 in [59]),

− log�
(‖f ‖−γ < ε

) � ε−d/(α+γ−d/2).

Finally, the assertion of the lemma follows from discussion by cases. �
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It follows that (3.5) is satisfied for

εn ≥ n−(β∧(α−d/2)+γ )/(2α+2γ ). (9.4)

The next step of the proof is to bound the prior probability in (3.6).

Lemma 9.3. Under the assumptions of Theorem 6.1, there exist a, b > 0, such that for every j ∈ N and t > 0,

�
(
f : ∥∥f (j) − f

∥∥
0 > t + aj1/2−α/d

) ≤ e−bt2j2α/d

.

Proof. We have f (j) − f = (RjA − I )f , for Rj = A−1Qj . Therefore, the probability on the left concerns the random
variable (RjA−I )F , if F is a variable distributed according to the prior �. Since F is zero-mean normal with covariance
operator L−2α , this variable is zero-mean Gaussian with covariance operator (RjA − I )L−2α(RjA − I )∗. We shall
compute the weak and strong second moments of the variable (RjA − I )F , and next apply Borell’s inequality for the
norm of a Gaussian variable to obtain the exponential bound.

Because 〈(RjA − I )F,g〉0 = 〈F, (RjA − I )∗g〉0 is zero-mean Gaussian with variance ‖L−α(RjA − I )∗g‖2
0 =

‖(RjA − I )∗g‖2−α , the weak second moment of (RjA − I )F is given by

sup
‖g‖0≤1

E
〈
(RjA − I )F,g

〉2
0 = sup

‖g‖0≤1

∥∥(RjA − I )∗g
∥∥2

−α
.

By the norm duality (2.1), the right side is equal to

sup
‖g‖0≤1

sup
‖f ‖α≤1

〈
f, (RjA − I )∗g

〉2
0 ≤ sup

‖f ‖α≤1

∥∥(RjA − I )f
∥∥2

0 � δ(j,α)2

in view of (A.5).
The strong second moment of the Gaussian variable (RjA − I )F is equal to the trace of its covariance operator. As

Trace(S∗S) = ∑
i ‖Sφi‖2 = ∑

i

∑
j 〈Sφi,φj 〉2 = ∑

i ‖S∗φi‖2, for any orthonormal basis (φi) and operator S, we have

E
∥∥(RjA − I )F

∥∥2
0 =

∑
i∈N

∥∥(RjA − I )L−αφi

∥∥2
0.

For the orthonormal basis of eigenfunctions of L−1 and Vj the span of the first j − 1 of these eigenfunctions, as in
Proposition 5.3, L−αVj ⊂ Vj , and hence (RjA−I )L−αφi vanishes for i < j . For i ≥ j the latter element is the difference
g(j) − g of the Galerkin solution g(j) to g = L−αφi . Therefore, by (A.5) the preceding display is bounded above by a
multiple of∑

i≥j

δ(i, α)2
∥∥L−αφi

∥∥2
α

=
∑
i≥j

δ(i, α)2‖φi‖2
0 � j1−2α/d ,

where we used the estimate
∑

i>j i−b ≤ j1−b/(b − 1), for b > 1.
Since the first moment of ‖(RjA− I )F‖0 is bounded by the root of its second moment, the lemma follows by Borell’s

inequality (see e.g. Lemma 3.1 and subsequent discussion in [37]). �

For t2 = 4nε2
n/(bj

2α/d
n ) and j = jn the bound in the preceding lemma becomes e−4nε2

n . Hence (3.6) is satisfied for

ηn �
√

nεnj
−α/d
n + j

1/2−α/d
n .

Here we choose εn the minimal solution that satisfies the direct prior mass condition (3.5), given in (9.4). Next we solve
for ηn under the constraints (3.3) and (3.4). The first of these constraints, jn ≤ nε2

n, shows that the first term on the right
side of the preceding display always dominates the second term. Therefore, we obtain the requirements jn ≤ nε2

n and

ηn ≥ √
nn−(β∧(α−d/2)+γ )/(2α+2γ )j

−α/d
n ,

ηn ≥ n−(β∧(α−d/2)+γ )/(2α+2γ )j
γ /d
n ,

ηn ≥ j
−β/d
n .

Depending on the relation between α and β + d/2, two situations need to be discussed separately.
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(i) α ≤ β + d/2. We choose jn � nd/(2α+2γ ) = nε2
n and then see that the first two requirements in the preceding display

both reduce to ηn ≥ n−(α−d/2)/(2α+2γ ), while the third becomes ηn ≥ n−β/(2α+2γ ) and becomes inactive.
(ii) α > β +d/2. We choose jn � nd/(2α+2γ ) ≤ nε2

n, and then see that all three requirements reduce to ηn ≥ n−β/(2α+2γ ).

Finally, we apply Theorem 3.1 to complete the proof.

9.3. Proof of Theorem 7.2

Let �τ denote the zero-mean Gaussian distribution on H with covariance operator τ 2L−2α (where α > d/2).

Lemma 9.4. Under the assumptions of Theorem 7.2, for f0 ∈ Hβ and β ≤ α, as ε ↓ 0,

− log�τ

(
f : ‖Af − Af0‖ < ε

)
� 1

τ 2

(
1

ε

)(2α−2β)/(β+γ )

+
(

τ

ε

)d/(α+γ−d/2)

.

Lemma 9.5. Under the assumptions of Theorem 7.2, for f0 ∈ Hβ and β ≤ α, as ε ↓ 0,

− log�τ

(
f : ‖f ‖0 < ε

)
�

(
τ

ε

)d/(α−d/2)

.

Lemma 9.6. Under the assumptions of Theorem 7.2, there exist a, b > 0 such that, for every j ∈N and x, τ > 0,

�τ

(
f : ∥∥f (j) − f

∥∥
0 > τx + τaj1/2−α/d

) ≤ e−bx2j2α/d

.

Proofs. The proof of the first lemma follows the same lines as the proof of Lemma 9.2, except that now the Cameron–
Martin space of the measure �τ on H−γ is Hα equipped with the norm ‖ · ‖H = 1

τ
‖ · ‖α rather than its natural norm.

The second lemma follows similarly, but considers the centered probability only. The third lemma is immediate from
Lemma 9.3 as �τ is the law of τF , for F the Gaussian variable with the law � as in the latter lemma, and the map
f 	→ f (j) − f is linear. �

As preparation for the proof of Theorem 7.2, we first show that the minimax rate can be obtained by a Gaussian prior
with the deterministic scaling, dependent on β , given by

τn = n(α−d/2−β)/(2β+2γ+d). (9.5)

Theorem 9.7. Assume the conditions on the Hilbert scale, the forward operator A and the true parameter f0 in Theo-
rem 6.1 hold. Suppose that the priors � are zero-mean Gaussian with covariance operators τ 2

nL−2α with τn as given in
(9.5) and α > d/2. Then for β ≤ α, the posterior distribution satisfies, for sufficiently large M > 0,

�n

(
f : ‖f − f0‖0 > Mn−β/(2β+2γ+d)|Y (n)

) P
(n)
f0→ 0.

Proof. The theorem is a corollary to Theorem 3.1. The proof follows the same lines as the proof of Theorem 6.1. By
Lemma 9.4, inequality (3.5) is satisfied for

εn � n−(β+γ )/(2β+2γ+d).

By Lemma 9.6, inequality (3.6) is satisfied for

ηn � τn

(√
nεnj

−α/d
n + j

1/2−α/d
n

)
.

We choose jn � nε2
n, and the minimal solution εn = n−(β+γ )/(2β+2γ+d) to the second last display. It is then straightfor-

ward to verify that (3.3), (3.4) and (3.6) are satisfied for ηn � n−β/(2β+2γ+d). �

Theorem 7.2 is a corollary of Theorem 3.3, with the choices

ηn � n−β/(2β+2γ+d), εn � n−(β+γ )/(2β+2γ+d),

jn � nε2
n = nd/(2β+2γ+d).

Conditions (3.2), (3.3), and (3.4) are satisfied for these choices. It remains to verify (3.5), and (3.11)–(3.12).
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For ease of notation, for the moment, define ηn and εn as in the preceding display, with exact equality (i.e., with the
constant set equal 1). Let τn be the ‘optimal’ scaling rate defined in (9.5).

Verification of (3.5). For τ � τn and ε � εn as given and β ≤ α, both terms in the right side of Lemma 9.4 are of the
order nε2

n. The lemma yields, for τn ≤ τ ≤ 2τn and some constant a1 > 0,

− log�τ

(
f : ‖Af − Af0‖ < εn

) ≤ a1nε2
n.

This shows that

�
(
f : ‖Af − Af0‖ < εn

) =
∫ ∞

0
�τ

(
f : ‖Af − Af0‖ < εn

)
dQ(τ)

≥ e−a1nε2
nQ(τn,2τn).

If α − d/2 < β , then τn → 0, and Definition 7.1 on Q gives that

− logQ(τn,2τn) � τ−2
n = n(2β−2α+d)/(2β+2γ+d) ≤ nd/(2β+2γ+d) = nε2

n,

if β ≤ α. If 0 < β < α − d/2, then τn → ∞, and Definition 7.1 on Q gives that

− logQ(τn,2τn) � τ
d/(α−d/2)
n = n(d(α−d/2−β)/(α−d/2)(2β+2γ+d))

≤ nd/(2β+2γ+d) = nε2
n.

Finally if α − d/2 = β , then τn = 1 and Q(τn,2τn) � 1. Thus in all three cases Q(τn,2τn) is bounded below by a power
of e−nε2

n . Combining this with the preceding, we see that �(f : ‖Af − Af0‖ ≤ εn) ≥ e−a2nε2
n , for some positive constant

a2, which we can take bigger than 1. Then (3.5) is satisfied for εn equal to
√

a2 times the current εn.
Verification of (3.12). Lemma 9.5 gives that

�τ

(
f : ‖f − f0‖0 < 2ηn,τ

) ≤ �τ

(
f : ‖f ‖0 < 2ηn,τ

) ≤ e−a3(τ/ηn,τ )d/(α−d/2)

,

for some constant a3. This is bounded above by e−4a2nε2
n if

ηn,τ = 2a4τn(d/2−α)/(2β+2γ+d) = 2a4τηn/τn,

for a sufficiently small constant a4 > 0.
Verification of (3.11). Choosing x = a4ηn/τn = ηn,τ /(2τ) in Lemma 9.6, we see that the left side of (3.11) is bounded

above by e−4a2nε2
n if jn satisfies

aj
1/2−α/d
n ≤ a4ηn/τn and ba2

4(ηn/τn)
2j

2α/d
n ≥ 4a2nε2

n.

Both inequalities become equalities for jn of the order jn � nd/(2β+2γ+d), as indicated at the beginning of the proof.
Since 1/2 − α/d < 0 and 2α/d > 0, the left side of the first inequality is decreasing in jn and the left side of second
inequality is increasing. Thus both inequalities are satisfied for jn = a5n

d/(2β+2γ+d) and a sufficienty large constant a5.
Finally we choose εn and jn in Theorem 3.3 equal to

√
a2 and a5 times the orders indicated at the beginning of the

proof. Then (3.2) is satisfied, and (3.3) and (3.4) are satisfied if ηn is chosen of the indicated order times a sufficiently
large constant.

Appendix A: Galerkin projection

In this section we collect some (well known) results on the Galerkin method. Consider a scale of smoothness classes
(Hs)s∈R as in Definition 2.1.

Lemma A.1. If Vj is a finite-dimensional space as in Assumption 2.3 such that (2.2) and (2.3) hold, then, for Pj : H0 →
Vj the orthogonal projection onto Vj , and 0 ≤ s, t < S,

‖f − Pjf ‖−t � δ(j, t)δ(j, s)‖f ‖s , f ∈ H0, (A.1)

‖g‖s �
1

δ(j, s)δ(j, t)
‖g‖−t , g ∈ Vj . (A.2)



Bayesian inverse problems 2103

Proof. By the dual norm relation in (ii) of Definition 2.1, and the orthogonality of f − Pjf to Vj ,

‖f − Pjf ‖−t = sup
‖g‖t≤1

〈f − Pjf,g〉0 = sup
‖g‖t≤1

〈f − Pjf,g − Pjg〉0

≤ ‖f − Pjf ‖0 sup
‖g‖t≤1

‖g − Pjg‖0,

by the Cauchy–Schwarz inequality. Here ‖f − Pjf ‖0 � δ(j, s)‖f ‖s and ‖g − Pjg‖0 � δ(j, t)‖g‖t , both by (2.2). In-
equality (A.1) follows.

For the second inequality we have, for g ∈ Vj ,

‖g‖0 = sup
f ∈Vj :‖f ‖0≤1

〈g,f 〉0 � sup
f ∈Vj :‖f ‖0≤1

‖g‖−t‖f ‖t ,

again by the dual norm relation. Here we can bound ‖f ‖t by ‖f ‖0/δ(j, t), with the help of (2.3). We obtain (A.2) by first
bounding ‖g‖s with the help of (2.3) and next using the preceding display. �

Let A : H → G be an injective bounded operator between separable Hilbert spaces, and let Vj be a finite-dimensional
subspace of H . The Galerkin solution f (j) ∈ Vj to the image Af of an element f is defined (also see Section 3) as the
element in Vj such that Af (j) is equal to the orthogonal projection of Af onto the image space Wj = AVj . Thus, if
Qj : G → Wj denotes the orthogonal projection onto Wj , then the Galerkin solution can be written as

f (j) = RjAf for Rj = A−1Qj,

where the inverse A−1 is well defined on the linear subspace Wj .
If the operators RjA are uniformly bounded with respect to j , then the convergence rate ‖f (j) − f ‖0 of the Galerkin

solution to f is known to be of the same order as the distance ‖Pjf − f ‖0 of f to its projection on Vj . (See Section 3.2
and Theorem 3.7 in [29], or the proof below.) In particular, if f ∈ Hs and Vj satisfies (2.2), then the convergence rate is
given by δ(j, s).

In order to control the stochastic noise term ξ in the observation scheme (1.1), it is necessary also to control the norms
of the operators Rj . The following lemma summarizes the properties of the Galerkin projection needed in the proof of
our main result.

Lemma A.2. If Vj is a finite-dimensional space as in Assumption 2.3 such that (2.2) and (2.3) hold, and A : H0 → G

is a bounded linear operator satisfying ‖Af ‖ � ‖f ‖−γ for every f ∈ H0, then the norms of the operators Rj : G → H0
and RjA : H0 → H0 satisfy

‖Rj‖�A

1

δ(j, γ )
, (A.3)

‖RjA‖�A 1. (A.4)

Furthermore, for f ∈ Hs the Galerkin solution f (j) ∈ Vj to Af satisfies∥∥f (j) − f
∥∥

0 �A δ(j, s)‖f ‖s . (A.5)

Proof. For g ∈ G we have Rjg ∈ Vj and hence by (A.2),

‖Rjg‖0 �
1

δ(j, γ )
‖Rjg‖−γ � 1

δ(j, γ )
‖ARjg‖ = 1

δ(j, γ )
‖Qjg‖,

since ARj = Qj . Because ‖Qjg‖ ≤ ‖g‖, we conclude that ‖Rj‖� 1/δ(j, γ ).
By definition f (j) = RjAf , and RjA acts as the identity on Vj . Therefore f (j) − Pjf = RjA(f − Pjf ), and hence∥∥f (j) − Pjf

∥∥
0 ≤ ‖Rj‖

∥∥A(f − Pjf )
∥∥ � ‖Rj‖‖f − Pjf ‖−γ ≤ ‖Rj‖δ(j, γ )‖f ‖0,

by (A.1). By the preceding paragraph ‖Rj‖δ(j, γ )� 1, so that the right side is bounded above by a multiple of ‖f ‖0. By
the triangle inequality

‖RjAf ‖0 = ∥∥f (j)
∥∥

0 ≤ ∥∥f (j) − Pjf
∥∥

0 + ‖Pjf − f ‖0 + ‖f ‖0 � ‖f ‖0,

in view of the preceding display and the fact that ‖Pjf − f ‖0 ≤ ‖f ‖0. This shows that ‖RjA‖� 1.
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Finally, since f (j) − f = (RjA − I )(f − Pjf ), we have that

∥∥f (j) − f
∥∥

0 = ∥∥(RjA − I )(f − Pjf )
∥∥

0 ≤ (‖RjA‖ + 1
)‖f − Pjf ‖0.

Inequality (A.5) follows by the boundedness of ‖RjA‖ and (2.2). �

As is clear from the proof, the smoothing assumption ‖Af ‖ � ‖f ‖−γ can be relaxed to the pair of inequalities

‖Af ‖� ‖f ‖−γ , f ⊥ Vj , (A.6)

‖Af ‖� ‖f ‖−γ , f ∈ R(Rj ). (A.7)

This helps to cover cases in which the smoothing condition is satisfied for a modification of the operator A, but not A

itself, for example a modification taking different boundary conditions of a differential operator into account.
We introduce a modified Galerkin solution to Af to cover such a case. Let A0,A : H → G be injective bounded

operators between separable Hilbert spaces that possess a common inverse in the sense of existence of a linear map B :
D(B) ⊂ G → H with domain D(B) containing the linear span of the ranges of A0 and A such that that BA0 = I = BA.
For simplicity of notation, write B = A− = A−

0 . Intuitively, for the inverse problem, taking A0f or Af as input data
should be equivalent. However, it may be that A0 is smoothing in a given scale (Hs)s∈R, whereas A is not. In that case
we reconstruct as follows. Assume that � = A − A0 has closed range, and let P� : G → G be the orthogonal projection
onto this range. Now let Qj : G → G be the orthogonal projection onto the finite-dimensional space (I − P�)AVj , and
set

f (j) = RjAf, for Rj = A−Qj(I − P�). (A.8)

Thus after removing the “irrelevant part” of Af that does not influence the inversion, we project onto the finite-
dimensional space (I − P�)AVj of similarly cleaned functions Af with f ∈ Vj , and finally invert.

Lemma A.3. If Vj is a finite-dimensional space as in Assumption 2.3 such that (2.2) and (2.3) hold, and A0,A : H0 → G

are bounded linear operators with common inverse satisfying ‖A0f ‖ � ‖f ‖−γ for every f ∈ H0, then the operators
Rj : G → H0 and RjA : H0 → H0 and f (j) = RjAf as in (A.8) satisfy (A.3), (A.4) and (A.5).

Proof. The operator [A] : H → G/�(H) mapping f ∈ H into the class of Af in the quotient space G/�(H) is one-to-
one, since [Af ] = 0 implies Af ∈ R(�) and hence f = BAf = 0, since B� = 0. Identifying [g] ∈ G̃ := G/�(H) with
the function (I −P�)g with norm ‖[g]‖

G̃
= ‖(I −P�)g‖G, we see that RjAf as in (A.8) is actually the Galerkin solution

to [A]f . It suffices to show that [A] : H → G̃ is smoothing in the sense of (A.6). Now ‖[Af ]‖
G̃

= ‖(I − P�)A0f ‖G ≤
‖A0f ‖G � ‖f ‖−γ , for every f ∈ H . Furthermore, for every f such that A0f ⊥ R(�), the inequality is an equality. This
is true for f = Rjg, since A0Rjg = Qj(I − P�)g ∈ (I − P�)AVj . �

Appendix B: Approximation numbers and metric entropy

The j th approximation number of a bounded linear operator T : G → H between normed spaces is defined as

aj (T : G → H) = inf
U :RankU<j

‖T − U‖G→H , (B.1)

where the infimum is taken over all linear operators U : G → H of rank (i.e., dimension of the range space) strictly less
than j , and the norm on the right is the operator norm ‖T − U‖G→H = supf :‖f ‖G≤1 ‖(T − U)f ‖H . The approximation
numbers measure the possibility of approximating an operator by simpler operators of finite-dimensional rank. There
is a rich literature on approximation numbers. The main purpose of the present section is to note their relationship to
singular values and to metric entropy. Metric entropy plays an important role in the characterization of contraction rates
of Bayesian posterior distributions.

If G ⊂ H , we can take T equal to the embedding ι : G → H , and then by linearity we see that there exists an operator
U of rank smaller than j such that

‖f − Uf ‖H � aj (ι : G → H)‖f ‖G, ∀f ∈ G.
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If H is a Hilbert space, then the minimizing finite-rank operator U is of course the orthogonal projection Pj on Vj .
However, the approximation numbers also ‘search’ an optimal projection space. If we take G = Hs and H = H0, then the
range space Vj of U satisfies the approximation property (2.2), with the numbers δ(j, s) taken equal to the approximation
numbers aj (ι : Hs → H0).

The approximation number is an example of an s-number, as introduced in [46]. In general s-numbers are defined
as maps T 	→ (sj (T ))j∈N, attaching to every operator T a sequence of nonnegative numbers sj (T ), satisfying certain
axiomatic properties. In general, approximation numbers attached to operators T : H → H are the ‘largest’ possible
s-numbers, but on Hilbert spaces there is only one s-number: all s-numbers are the same (see 2.11.9 in [47]). Because
the singular values are also s-numbers, the latter unicity yields the important relation that the approximation numbers of
operators on Hilbert spaces are equal to their singular values. Recall here that the singular values of a compact operator
T : G → H are the roots of the eigenvalues of the self-adjoint operator T ∗T : G → G.

The finite-rank approximations U that (nearly) achieve the infimum in the definition of the approximation numbers for
different j are not a-priori ordered. However, in many cases there exists a basis (φi)i∈N such that the projections on the
linear span of the first j − 1 basis elements achieve the infimum. For Sobolev spaces e.g. spline bases, the Fourier basis,
or wavelet bases are all ‘optimal’ in this sense (see [10,48]).

Approximation numbers are strongly connected to metric entropy. In the literature the connection is usually made
through the notion of ‘entropy numbers’, which are defined as follows. The j -th entropy number ej (T ) of an operator
T : G → H is defined as the infimum of the numbers ε > 0 so that the image T (UG) ⊂ H of the unit ball UG in G can
be covered by 2j−1 balls of radius ε in H ; or more formally, with UH the unit ball in H ,

ej (T ) = inf

{
ε > 0 : T (UG) ⊂

2j −1⋃
i=1

(hi + εUH ), for some h1, . . . , h2j −1 ∈ H

}
.

The function j 	→ ej (T ) is roughly the inverse function of the metric entropy of T (UG) relative to the metric induced by
‖ · ‖H . Recall that the metric entropy of a metric space (U,d) is the logarithm of the covering number N(ε,U,d), which
is the minimal number of d-balls of radius ε > 0 needed to cover the space U . Presently we consider the metric entropy
H(ε,T ) = logN(ε,T (UG),‖ · ‖H ) of T (UG) under the metric of H . Roughly we have that

N
(
ε,T (UG),‖ · ‖H

) � 2j−1, if ej (T ) � ε.

If we use the logarithm at base 2, then the map ε 	→ H(ε,T ) is approximately inverse to the map j 	→ ej (T ).
Now it is proved in [13] that for any operator T : G → H between Hilbert spaces with infinite-dimensional ranges:

ej+1(T ) ≤ 2aJ+1(T ) ≤ 2
√

2eJ+2(T ),

for any natural numbers j, J satisfying:

j log 2 ≥ 2
J∑

i=1

log
3ai(T )

aJ+1(T )
.

As shown in [13] this relationship between entropy numbers and approximation numbers may be solved to derive the
entropy number from the approximation numbers in many cases.

The following lemma gives one example, important to the present paper.

Lemma B.1 (Metric entropy). For a smoothness scale (Hs)s∈R satisfying (2.2) with δ(j, s) = j−s/d , and s > 0 and
t ≥ 0,

logN
(
ε,

{
f ∈ Hs : ‖f ‖s ≤ 1

}
,‖ · ‖−t

) ∼ ε−d/(s+t). (B.2)

Proof. By (A.1) the approximation number aj (ι : Hs → H−t ) is of the order δ(j, s)δ(j, t) = j−(s+t)/d . It is shown in [13]
that the entropy numbers ej (ι : Hs → H−t ) are of the order j−(s+t)/d . By the preceding reasoning this can be inverted to
obtain the order of the metric entropy of the image of the unit ball in H−t . �

In a similar way it is possible to invert approximation numbers that are not of the polynomial form j−s/d . There are
many examples of this type, for instance, involving additional logarithmic terms, or exponentially decreasing rates.
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