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Abstract. If W is the simple random walk on the square lattice Z
2, then W induces a random walk WG on any spanning subgraph

G ⊂ Z
2 of the lattice as follows: viewing W as a uniformly random infinite word on the alphabet {x,−x,y,−y}, the walk WG starts

at the origin and follows the directions specified by W , only accepting steps of W along which the walk WG does not exit G. For any
fixed G ⊂ Z

2, the walk WG is distributed as the simple random walk on G, and hence WG is almost surely recurrent in the sense that
WG visits every site reachable from the origin in G infinitely often. This fact naturally leads us to ask the following: does W almost
surely have the property that WG is recurrent for every G ⊂ Z

2? We answer this question negatively, demonstrating that exceptional
subgraphs exist almost surely. In fact, we show more to be true: exceptional subgraphs continue to exist almost surely for a countable
collection of independent simple random walks, but on the other hand, there are almost surely no exceptional subgraphs for a branching
random walk.

Résumé. Une marche aléatoire simple W sur Z2 induit pour chaque sous-graphe couvrant G ⊂ Z
2 une marche WG : notamment,

si on regarde W comme un mot infini uniforme sur l’alphabet {x,−x,y,−y}, alors la marche WG commence à l’origine et suit les
directions definis par W , en acceptant seulement les pas de W le long desquels WG reste sur G. Pour chaque G ⊂ Z

2 fixé, la marche
WG a la loi d’une marche aléatoire simple sur G et alors WG est presque sûrement récurrent dans le sens que WG visite chaque
sommet de G connexe à l’origine un nombre infini de fois. Alors, une question naturelle surgit : est-ce que presque sûrement pour W ,
les marches WG sont récurrents pour tous G ⊂ Z

2 à la fois? Dans cet article, on répond à cette question d’une manière négative, en
montrent l’existence des graphes exceptionnels sur lesquels la marche est transitoire. En fait, on montre que même si on considère un
nombre dénombrable des marches aléatoires simples indépendantes, alors des graphes exceptionnels existent. D’autre coté, on montre
que il n’existe pas des graphes exceptionnels pour la marche aléatoire branchante.
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1. Introduction

Let us say that a walk on a graph G is recurrent if the walk visits every site in the connected component of its starting
point in G infinitely often, and transient otherwise. It is a classical result of Pólya [17] that a simple random walk on the
square lattice Z

2 is almost surely recurrent. In this paper, we shall be concerned with how ‘robust’ this property is in the
following sense: do the coin tosses that determine a recurrent random walk on Z

2 also determine a recurrent random walk
on every subgraph of Z2 simultaneously? We make this question precise below in a few different ways.

We view a simple random walk W on Z
2 as a random infinite word on the four-letter alphabet {x,−x,y,−y}, where

x = (1,0) and y = (0,1), with each letter of W being chosen independently and uniformly at random. For any (spanning)
subgraph G ⊂ Z

2 of the lattice, the random walk W then induces a (random) walk WG on G: starting at the origin, we
consider the letters of W one at a time, and for each letter of W , we take a step in the appropriate direction in G provided
the edge in question is present in G, and stand still otherwise. For any fixed G ⊂ Z

2, it is clear that WG is distributed
as the simple random walk on G, and since G is a subgraph of a recurrent graph, we conclude that WG is almost surely
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recurrent. It follows immediately from Fubini’s theorem that, if we consider any Borel probability measure on the space
of subgraphs of Z2, then the random walk W almost surely has the property that the induced walks WG are recurrent for
almost all G ⊂ Z

2. We are then naturally led to the following question: does the random walk W almost surely have the
property that the induced walks WG are recurrent for all G ⊂ Z

2? Our first result answers this question negatively in the
following strong sense.

Theorem 1.1. If W is a simple random walk on Z
2, then there almost surely exists a (random) exceptional subgraph

H ⊂ Z
2 for which the induced walk WH

(1) visits each site reachable from the origin in H finitely many times, and
(2) fails to visit infinitely many sites reachable from the origin in H .

More generally, we can ask whether a countably infinite independent collection of simple random walks almost surely
has the property that, for every G ⊂ Z

2, at least one of the walks in this collection induces a recurrent walk on G. An
extension of the proof of Theorem 1.1 allows us to prove the following result, which answers this question negatively as
well.

Theorem 1.2. If {Wi}i∈N is a collection of independent simple random walks on Z
2, then there almost surely exists a

(random) exceptional subgraph H ⊂ Z
2 so that, for every i ∈ N, the induced walk (Wi )H

(1) visits each site reachable from the origin in H finitely many times, and
(2) fails to visit infinitely many sites reachable from the origin in H .

What about an uncountable collection of simple random walks? To avoid measurability issues around independence,
we need to be careful about how we phrase such a question. One natural formulation is in the language of branching
random walks. A branching random walk on Z

d starts with a single particle at the origin. At each time step, each
particle independently generates a number of additional particles at its current location according to some fixed offspring
distribution, and we say that this offspring distribution is nontrivial if the number of offspring is nonzero with positive
probability. Independently of the other particles and their history, all particles then take a step in a direction chosen
uniformly at random, which leads to a random family of dependent simple random walks. In this language, one can then
ask whether a branching random walk on Z

2 almost surely has the property that, for every G ⊂ Z
2, at least one of the

branches of the branching random walk induces a recurrent walk on G. Our final result answers this question positively,
and furthermore, shows that the same is true in dimensions greater than two as well.

Theorem 1.3. Fix d ∈ N and let (Wi )i∈S be a family of random walks generated by a branching random walk on Z
d

with a nontrivial offspring distribution. Then, almost surely, for every (spanning) subgraph G ⊂ Z
d , there is some j ∈ S

for which the induced walk (Wj )G is recurrent.

Our work here fits into the broader context of attempting to understand the robustness of objects such as random
walks and Brownian paths, in terms of their quasi-everywhere properties or their dynamical sensitivity; see [5,10,12] for
example.

Let us mention two results in this general direction that are particularly close to our results in spirit. The first relevant
result is a theorem of Adelman, Burdzy and Pemantle [1] on the projections of three-dimensional Brownian motion. The
projection of Brownian motion in R

3 onto any fixed plane yields Brownian motion in that plane which is neighbourhood
recurrent; Adelman, Burdzy and Pemantle [1] however show that there almost surely exists a (random) exceptional plane
on which the projection is not neighbourhood recurrent. The second result that is pertinent is a theorem of Hoffman [11]
demonstrating that recurrence of the simple random walk on Z

2 is dynamically sensitive; in other words, if the coin tosses
of the random walk are refreshed continuously with Poisson clocks generating a dynamic random walk, then although
dynamic random walk is almost surely recurrent at any fixed time, there almost surely exists a (random) exceptional time
at which the dynamic random walk is not recurrent.

Although the two results mentioned above bear some similarities in flavour to our first two results, it is perhaps worth
remarking that the methods of proof are somewhat different: while the results in both [1] and [11] are based on second
moment computations, the proofs of Theorems 1.1 and 1.2, in contrast, proceed by explicitly ‘embedding drift’. In terms
of proofs, our constructive approach however shares more in terms of analogy with the following two results. First,
in [2], Amir, Benjamini, Gurel-Gurevich and Kozma give a construction of a transient walk by dynamically changing
conductances of the underlying graph G = Z

2 along the walk in a way not too dissimilar to our construction. Second, in
[4], Barlow and Perkins construct a (deterministic) exceptional graph G ⊂ Z

2, a certain binary tree embedded in Z
2, on
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which the random walk remains barely recurrent: along the sequence mn = 12(22n+2−n) the simple random walk (Xt )t≥0
on G satisfies

lim inf
n→∞ |Xmn |(mn logmn)

−1/2 ≥ 1/17,

almost surely.
This note is organised as follows. In Section 2, we first sketch a natural approach that fails, but nonetheless motivates

our construction, then we prove Theorem 1.1, and we finally sketch how the same argument extends to prove Theorem 1.2.
Section 3 is devoted to the proof of Theorem 1.3. We conclude in Section 4 with a discussion of some open problems.

2. Existence of exceptional subgraphs

In this section, we prove Theorems 1.1 and 1.2. Before we do so, let us sketch a construction which, while failing to prove
Theorem 1.1, serves as the motivation for the construction in our proof.

Suppose that W is a simple random walk on Z
2. Let us construct a (random) subgraph P ⊂ Z

2 which exhibits some
drift. We shall ensure that P is an infinite non-decreasing path (i.e., a north-east path) passing through the origin, and we
reveal P as follows. We shall read off the letters of W one at a time and follow the induced walk WP on P , revealing
more of P as and when WP needs to know if a particular edge is present in P . At any finite time, it is clear that P (or
rather, what has been revealed of P so far) is a finite non-decreasing path through the origin, and we are forced to reveal
more of P at this time if and only if WP is at one of the leaves of P and the next letter of W would cause WP to exit P

in a non-decreasing fashion. Our strategy for constructing P is then as follows: if WP is at the north-eastern leaf of P at
some stage, and the next letter of W causes WP to travel either north or east, we extend P so as to allow this, proceeding
analogously at the south-western leaf as well.

What can we say about the induced walk WP on the path P as constructed above? It is not hard to see that if we
identify P with Z by ‘unrolling’ it, then WP is a random walk on Z with the following law: if [a, b] ⊂ Z is the range
of the walk at some time and the walk is at x ∈ [a, b] at this time, then the walk moves to either x − 1 or x + 1 both
with probability 1/2, unless x ∈ {a, b}, in which case, the walk moves to b + 1 with probability 2/3 and to b − 1 with
probability 1/3 at x = b, and similarly to a − 1 with probability 2/3 and to a + 1 with probability 1/3 at x = a. In other
words, for the path P constructed as described above, the induced walk WP behaves like a random walk on Z with a tiny
amount of drift; indeed, the walk possesses some drift away from the origin when it is at the boundary of its range, but
behaves like the simple random walk in the interior of its range. Unfortunately, this tiny amount of drift does not stop WP

from being recurrent, but this construction nevertheless demonstrates that it is possible to construct (random) subgraphs
of Z2 where the induced walk possesses some drift; below, we prove Theorem 1.1 with a more careful construction that
embeds more drift into the induced walk.

We need two simple facts about the simple random walk on Z. First, we require the following well-known fact.

Proposition 2.1. The probability that the simple random walk on the interval {0,1, . . . , n} started at 1 visits n before it
visits 0 is 1/n.

Next, we shall also make use of the following crude bound.

Proposition 2.2. The expected number of times the simple random walk on Z started at 0 visits 0 in the first N steps is
at most 10

√
N .

Armed with these two facts, we are now ready to prove our main result.

Proof of Theorem 1.1. To prove the theorem, we will construct a (random) graph H based on the random walk W where
the induced walk WH exhibits a strong drift away from the origin.

The graph H we construct will consist of the vertical lines Ln = {(x, y) ∈ Z
2 : x = 2n − 1} for all integers n ≥ 0, and

a (random) collection of finite horizontal segments between any consecutive pair of vertical lines with the property that
exactly one such horizontal segment connects any consecutive pair of vertical lines; here, by lines and segments, we mean
the edges in the appropriate paths in Z

2, as shown in Figure 1.
Let us denote the location of the induced walk WH at a given time t ≥ 0 by WH (t) = (XH (t), YH (t)), with the time

t tracking steps along WH (as opposed to W). As before, we shall read off the letters of W one at a time, and we shall
reveal H by following the induced walk WH and revealing more of H as necessary.
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Fig. 1. A slice of H between two consecutive vertical lines in H ; edges coloured black are present while edges coloured red are absent.

Notice that the only vertical edges in H are (deterministically) those on a vertical line Ln for some n ≥ 0, so at any
time t ≥ 0, the induced walk WH accepts a vertical step of W if and only if WH (t) ∈ Ln for some n ≥ 0.

We reveal the horizontal edges of H in stages: during stage n ≥ 0, we shall reveal all the horizontal edges of H in
between the lines Ln and Ln+1, with the stage ending as soon as there is a horizontal path connecting these vertical lines
in H . Note in particular that during stage n, we have already revealed all the horizontal edges in H between L0 and Ln,
and none of the horizontal edges in H to the right of Ln+1.

We begin by declaring every horizontal edge to the left of L0 as being absent in H , and for n ≥ 0, having completed
stage n − 1, we reveal H in the following fashion. At some t ≥ 0 during stage n, there are two possibilities. If XH (t) <

2n − 1, then we have nothing to do when we read off the next letter of W since all the edges of H to the left of Ln have
already been revealed. If XH (t) ≥ 2n − 1 on the other hand, we reveal H in such a way so as to ensure that WH always
accepts a letter of W that would cause the induced walk to travel to the right. The stage ends as soon as we have a single
horizontal path connecting Ln and Ln+1, or in other words, at the first time t ≥ 0 when we have XH (t) = 2n+1 − 1. At
the end of the stage, all horizontal edges between Ln and Ln+1 whose presence or absence in H have not been revealed
over the course of the stage, we declare as being absent in H . In particular, the line Ln+1 is incident to precisely one
horizontal edge to its left in H and it has been revealed by the end of the stage.

The above construction clearly ensures that H has the structure we promised. More is true, however; as we shall shortly
see, our construction endows the induced walk WH with a strong drift to the right.

For n ≥ 0, let τn be the first time t at which we have XH (t) = 2n − 1, and let En denote the event that the walk
(WH (t))t≥τn hits the line Ln−1 before hitting the line Ln+1; in other words, En is the event that there exists a time
t ∈ [τn, τn+1) at which XH (t) = 2n−1 − 1. With these definitions in place, we have the following claim.

Claim 2.3. There exists an absolute constant c ∈ (0,1) such that P(En) ≤ cn for all n ≥ 0.

Proof. Let α be the y-coordinate of the unique horizontal path joining the vertical lines Ln−1 and Ln, and let T be the
first time after τn at which the walk WH hits either the line Ln−1 or the line Ln+1. Note that the time between τn and
T naturally decomposes into excursions, where an excursion is a maximal interval of time during which the walk WH

remains at some fixed y-coordinate.
Let us now describe the walk WH in terms of its excursions. First, note that our construction of H ensures that the

y-coordinates of successive excursions of WH are determined by a simple random walk on Z started at α. Also, we
can describe an excursion at some y-coordinate β as follows. If β 	= α, then during an excursion at β , successive x-
coordinates of WH are determined by a simple random walk on the interval {2n − 1,2n, . . . ,2n+1 − 1} started at 2n − 1,
with the excursion ending either, with probability 1, when the x-coordinate of the walk is 2n+1 − 1, or, with probability
2/3, when the x-coordinate of the walk is 2n − 1. If β = α on the other hand, then successive x-coordinates of WH are
determined by a simple random walk on the interval {2n−1 − 1,2n−1, . . . ,2n+1 − 1} started at 2n − 1, with the excursion
ending either, with probability 1, when the x-coordinate of the walk is either 2n−1 − 1 or 2n+1 − 1, or, with probability
1/2, when the x-coordinate of the walk is 2n − 1. Crucially, note that by the strong Markov property of the walk WH ,
each excursion depends on past excursions only through the endpoint of the last excursion preceding it.

Let us say that an excursion is positively successful if it ends on account of the walk WH reaching the line Ln+1, and
negatively successful if it ends on account of the walk WH reaching the line Ln−1. In this language, we see that En is
precisely the event that we witness a negatively successful excursion before a positively successful one.
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We would like to show that in the first 3n excursions, there is a positively successful excursion, but no negatively
successful one. A minor technicality arises from the fact that excursions are only defined until the first successful one
occurs. To circumvent this issue, consider a modified process coupled with WH which, after a successful excursion with
y-coordinate β , teleports to the line Ln, taking y-coordinate β + 1 with probability 1/2, and β − 1 otherwise, before
again moving according to WH . Let F1 to be the event that at least one of the first 3n excursions in this modified process
is positively successful, and let F2 be the event that none of the first 3n excursions in the modified process are negatively
successful. Since WH and our modified process behave identically until the first successful excursion, if F1 and F2 both
occur, then En cannot occur. Therefore, it suffices to show that both F1 and F2 are overwhelmingly likely.

First, we deal with the event F1. It is easy to see from Proposition 2.1 that an excursion is positively successful with
probability at least (1/100)2−n. Using the strong Markov property, we conclude that

P
(
Fc

1

) ≤ (
1 − 2−n/100

)3n ≤ cn
1 ,

where c1 ∈ (0,1) is an absolute constant.
Next, we handle the event F2. Notice that we may only witness a negatively successful excursion at y-coordinate α;

with this in mind, let Z be the number of excursions in the first 3n excursions at y-coordinate α. Since the y-coordinates
of successive excursions are determined by a simple random walk on Z started at α, we conclude from Proposition 2.2
that

P
(
Z ≥ (7/4)n

) ≤ 10
√

3n

(7/4)n
≤ cn

2 ,

where c2 ∈ (0,1) is an absolute constant. As before, we know from Proposition 2.1 that an excursion at y-coordinate α

is negatively successful with probability at most 100 · 2−n, so we may again use the strong Markov property to conclude
that

P
(
Fc

2

) ≤ P
(
Z ≥ (7/4)n

) + P
(
Fc

2 | Z < (7/4)n
)

≤ cn
2 + (

1 − (
1 − 100 · 2−n

)(7/4)n)
≤ cn

2 + cn
3 ,

where c3 ∈ (0,1) is an absolute constant.
The result follows from the estimates above since P(En) ≤ P(F c

1 ) + P(F c
2 ). �

It follows from the above claim, by the Borel–Cantelli lemma, that the walk WH almost surely visits the line Ln only
finitely many times for each n ≥ 0, thus proving the result. �

The proof of Theorem 1.2 follows from a simple modification of the proof of Theorem 1.1; therefore, we only provide
a sketch highlighting the main differences.

Proof of Theorem 1.2. As in the argument above, we begin with the vertical lines L1,L2, . . . , where Ln has x-coordinate
2n − 1. Suppose that we have defined the exceptional graph H up to Li by using the walks W1, . . . ,Wi . To define the
portion of H between Li and Li+1, we run Wi+1 on the already defined portion of H until it first hits Li . At that point,
we run the algorithm used in the proof above on all of the i + 1 walks W1, . . . ,Wi+1 (so that they can move freely to
the right of Li but not up or down in that region) in, say, numerical order, stopping each walk when it first hits Li+1.
We continue this process, introducing one new walk at each step. The analysis goes through essentially as before: if En,i

is the event that, after hitting Ln, the walk Wi hits Ln−1 before Ln+1, then as in Claim 2.3, we have P(En,i) ≤ ncn for
all n ≥ i for some absolute constant c ∈ (0,1). Notice that we rely on independence here: we use the fact that the walk
Wi , conditioned on its trajectory up to hitting Ln and on the exceptional graph built up to Ln, still proceeds as a simple
random walk. The result again follows from the Borel–Cantelli lemma. �

3. Non-existence of exceptional subgraphs

We now consider branching random walks on Z
d in all dimensions d ≥ 2. Recall that we start with a single particle

at the origin, and that at each time step, every particle independently generates a number of additional particles at its
current location according to some fixed nontrivial distribution, where at least one new particle is generated with positive
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probability; independently of the other particles and their history, all particles then take a step in a direction chosen
uniformly at random. The result is a random family (Wi )i∈S of dependent simple random walks, where the branches Wi

with i ∈ S each correspond to a walk on Z
d obtained by starting with the original particle at the origin and then following

either the particle presently under consideration or one of its children at each time.
We will use the following Chernoff-type bound; see [15] for a proof.

Proposition 3.1. For n ∈ N, p ∈ (0,1) and ε > 0, we have

P
(
Bin(n,p) ≤ np(1 − ε)

) ≤ exp

(
−ε2np

2

)
.

We are now ready to give the proof of our final result.

Proof of Theorem 1.3. Note that removing particles reduces the set of walks and makes the problem of finding a recurrent
walk harder. Hence, if at some point a particle has more than one child, we may discard all but one of its children. We
may therefore assume that, for some ε > 0, each particle either has one child with probability ε, or no children at all with
probability 1− ε. It will be helpful to have some notation: in what follows, we write BG(x,ρ) to denote the set of vertices
at graph distance at most ρ from x in a graph G, write B(x,ρ) for BZd (x, ρ), and abbreviate B(0, ρ) by B(ρ).

In this proof, we will need to show that, with very high probability, certain particles have exponentially many children
at a given future time and ensure that most of these children do not wander very far from the origin. To this end, we need
two results which we state and prove below.

First, we need the following estimate for the probability of a simple random walk on Z
d getting unexpectedly far from

its starting point after taking some finite number of steps.

Claim 3.2. Fix δ > 0 and let Sn be an n-step simple random walk on some subgraph G ⊂ Z
d starting from the origin.

Then we have

P
(
Sn /∈ BG(0, δn)

) ≤ cdnd exp

(
−δ2n

2

)
,

where cd > 0 is a constant depending only on the dimension d .

Proof. We make use of an old bound on the transition probabilities of a Markov chain due to Varopoulos [19] and Carne
[6], although we use it in a more recent form due to Peyre [16]. To state this bound, we need a little set up. Given a graph
G and a pair of vertices of x and y of G in the same connected component, let pt (x, y) denote the probability that a
simple random walk on G starting at x is at y after t steps, and write ρ(x, y) for the graph distance between x and y in
G; in this language, we have

pt (x, y) ≤ 2

√
deg(y)

deg(x)
exp

(
−ρ(x, y)2

2t

)
.

With the above bound in hand, we conclude that the probability that an n-step simple random walk on some subgraph
G ⊂ Z

d starting at the origin ends up outside the ball BG(0, δn) is at most

∑
y∈B(n)\BG(0,δn)

pn(0, y) ≤
∑

y∈B(n)

2
√

2d exp

(
−δ2n2

2n

)
≤ √

8d(2n + 1)d exp

(
−δ2n

2

)
;

it is clear that the bound above is of the required form, proving the claim. �

Second, we need the following estimate for the rate of growth of a Galton–Watson branching process.

Claim 3.3. Let (Nj )j≥0 be the number of descendants at time j of a Galton–Watson branching process started with a
single particle and with an offspring distribution that takes the value 2 with probability ε and 1 with probability 1 − ε.
Then there exists constants c, c′ > 0 such that

P
(
Nj ≥ (1 + c)j

) ≥ 1 − e−c′j

for all j ≥ 1.
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Proof. Conditioned on Nj−1, the random variable Nj is distributed as Bin(Nj−1, ε) + Nj−1, independent of everything
else in the past. For j ≥ 1, define Yj = Nj/Nj−1 and note that Yj ∈ [1,2] and E[Yj ] = 1 + ε. From Proposition 3.1, we
deduce that

P(Yj ≥ 1 + ε/2) =
∞∑
i=1

P
(
Bin(i, ε) ≥ iε/2 | Nj−1 = i

)
P(Nj−1 = i)

≥
∞∑
i=1

(
1 − e−iε/8)

P(Nj−1 = i)

≥ (
1 − e−ε/8).

Thus, setting p = (1 − e−ε/8), there exist independent random variables (Xj )j≥1 dominated by the Yj such that Xj takes
the value 1 + ε/2 with probability p and 1 otherwise with probability 1 −p. Since Nj = YjYj−1 · · ·Y1 ≥ XjXj−1 · · ·X1,
by Proposition 3.1, we have

P
(
Nj ≥ (1 + ε/2)jp/2) ≥ P

(
|{i ∈ [j ] : Xi > 1

}| ≥ jp

2

)

≥ P

(
Bin(j,p) ≥ jp

2

)

≥ 1 − e− jp
8 ,

as required. �

Before diving into the details of the proof, let us sketch our plan of attack. Our argument will proceed in stages
bookended by a rapidly-increasing sequence of times (Ti)i∈N. At each time Ti , and for every possible finite subgraph
G ⊂ Z

d contained in the box [−Ti, Ti]d , we arbitrarily choose a representative particle pG. We then show that, with very
high probability, for each such representative particle pG and every possible extension of the corresponding graph G onto
[−Ti+1, Ti+1]d , some descendant of pG visits every vertex of G with distance at most i (in G) to the origin, and ends up
exactly at or one step away from the origin at time Ti+1. We shall show that the failure probabilities decay rapidly enough
so that we may finish by applying the Borel–Cantelli lemma. To avoid clutter, we will not worry about making sure all
the appropriate values are integers.

Let T0 = 0, and for the singleton graph containing just the origin, we choose the initial particle at the origin. Let δ

be sufficiently small such that 2−4dδ(1 + c)(1−4δ) > 1 and cδ − c′(1 − 5δ) < 0, where c, c′ are the absolute constants
promised by Claim 3.3.

Suppose now that we have run the branching walk over the course of � − 1 stages until time n = T�−1. For each
of the at most 2d(2n+1)d possible finite subgraphs G ⊂ Z

d contained in the box [−n,n]d , we now arbitrarily choose a
representative particle pG at some location in [−n,n]d . Note that these particles need not be distinct, and that a single
particle may be at different locations in different subgraphs. We now describe how we construct the �th stage of the
branching walk.

Let N > n/δ be a suitably large integer. We specify what conditions N needs to satisfy in what follows, and shall then
take T� = N . We shall further divide the �th stage, which consists of the interval of time [n + 1,N ], into three smaller
blocks of time as follows.

In the first block, we run the branching walk for δN more steps (after time n) so that for each G ⊂ Z
d contained in

the box [−n,n]d , the representative particle pG has a set of descendants PG after these δN steps. By Claim 3.3, any
fixed representative particle pG has at least (1 + c)δN descendants with probability at least 1 − e−c′δN . If even one of the
representative particles has not branched this much, we declare that this step has failed. Note that we are free to discard
particles, so we may assume (as long as this step has not failed) that each representative particle pG has a set PG of exactly
(1 + c)δN descendants. Note that all the particles under consideration are at a graph distance of at most n + δN < 2δN

from the origin in all the graphs under consideration.
In the second block, we run the branching walk for another N − 5δN steps. For each G ⊂ Z

d contained in the box
[−n,n]d , we now count the number of descendants of each q ∈ PG. We assume that every such q ∈ PG has at least
(1 + c)N−5δN descendants, and if this ever fails to hold, we again declare that the step has failed. By Claim 3.3, the
probability of failure for any particular particle q as above is at most exp(−c′(N − 5δN)).
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Now, fix H ⊂ Z
d contained in the box [−N,N ]d , and suppose that it induces a graph H ′ on [−n,n]d . We say that

a particle q ∈ PH ′ is H -good if at least half of its descendants are no further than 3δN from the origin in H after the
n+N −4δN steps taken so far. Let us estimate the probability λH that any given particle q ∈ PH ′ is H -good. Fix q ∈ PH ′
and denote the position of q at time n + δN by Lq . By Claim 3.2, the probability that a given descendant of q is within
distance δN of Lq in H , and hence within distance 3δN of the origin, is at least

1 − cdNd exp

(
−δ2N

2

)
.

Let Y be the proportion of descendants of q which are within 3δN of the origin. By the linearity of expectation,

E[Y ] ≥ 1 − cdNd exp

(
−δ2N

2

)
.

If q is not good, then Y ≤ 1/2, and since Y ≤ 1, we find that λH + 1
2 (1 − λH ) ≥ E[Y ]. Hence,

λH ≥ 1 − 2cdNd exp

(
−δ2N

2

)

and, by choosing N sufficiently large, we may certainly assume that λH ≥ 2/3. We now also declare the step to have
failed if, for some H as above, at most 1

3 (1 + c)δN elements of PH ′ are H -good, and deduce from Proposition 3.1 that
the probability of failing in this fashion for any fixed H is at most

P

(
Bin

(
(1 + c)δN ,λ

) ≤ 1

3
(1 + c)δN

)
≤ P

(
Bin

(
(1 + c)δN ,λ

) ≤ 1

2
(1 + c)δNλ

)

≤ exp

(
−1

8
(1 + c)δNλ

)

≤ exp

(
− 1

16
(1 + c)δN

)
.

Hence, if we have not already failed, then for any H as above, counting the descendants of H -good particles that don’t
stray too far from the origin, we have at least 1

6 (1 + c)N−4δN such descendants at graph distance at most 3δN from the
origin in H after n + N − 4δN steps; we call these descendants H -counters.

In the third and final block of the stage, our goal is to visit all vertices at distance at most � − 1 from the origin in
every H ⊂ Z

d contained in the box [−N,N ]d . For any fixed H as above, there are at most (2� − 1)d such vertices close
to the origin. We enumerate these vertices and pick a path of length at most � − 1 from the origin to each such vertex in
H ; putting these together, we get a walk WH of length at most (2� − 2)(2� − 1)d in H which starts at the origin, ends at
the origin, and visits every vertex at most distance � − 1 from the origin; furthermore, by choosing N sufficiently large,
we may assume that (2� − 2)(2� − 1)d ≤ δN − n.

For each H -counter v, let Av be the event that, in the next 4δN − n steps, v visits every vertex at most distance
� − 1 from the origin. If no Av occurs, for any H as above, we again declare the stage to have failed. Conditional on
the positions of the H -counters at the start of this block, the events Av are independent of one another. Now, fix these
‘starting positions’ of the 1

6 (1 + c)N−4δN H -counters. For each H -counter v, there is a path of length at most 3δN from
its starting position to the origin. Let Bv be the event that v strictly follows this path, then the walk WH and then never
leaves BH (0,1). Clearly Bv implies Av , and so P[Av] ≥ P[Bv] ≥ (2d)−4δN . Hence, conditional on the starting positions
of the H -counters, the probability that no Av occurs is at most

(
1 − (2d)−4δN

) 1
6 (1+c)N−4δN ≤ exp

(
−1

6
(2d)−4δN (1 + c)N−4δN

)
.

Since the bound above is independent of the starting positions of the H -counters, it also holds without conditioning for
any fixed H as above.

In summary, we declare the �th stage to have failed if one of the following happens.

(1) In the first block, there is some G contained in [−n,n]d whose representative particle pG does not branch sufficiently.
This happens with probability at most

2d(2n+1)d exp
(−c′δN

)
. (1)
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(2) In the second block, there is some G contained in [−n,n]d for which some q ∈ PG does not branch sufficiently. This
happens with probability at most

2d(2n+1)d (1 + c)δN exp
(−c′(N − 5δN)

)
. (2)

(3) In the second block, there is some H contained in [−N,N ]d for which too few particles in the corresponding set PH ′
are H -good. This happens with probability at most

2d(2N+1)d exp

(
− 1

16
(1 + c)δN

)
. (3)

(4) In the third block, there is some H contained in [−N,N ]d for which no H -counter visits every vertex at graph
distance most � − 1 from the origin during steps n + N − 4δN through N in H . This happens with probability at
most

2d(2N+1)d exp

(
−1

6
(2d)−4δN (1 + c)N−4δN

)
. (4)

We now finish the proof as follows. By the union bound, we conclude that the probability of the �th stage being
declared a failure is at most the sum of the estimates in (1), (2), (3) and (4); by the choice of δ, for fixed n, this sum tends
to 0 as N → ∞. We choose N large enough to both ensure that the bounds above hold and to make the probability of the
�th stage being declared a failure at most 2−�, and as mentioned earlier, we set T� = N . In the case of success, for each
H ⊂ Z

d contained in the box [−T�,T�]d , we pick an arbitrary particle that walked the chosen path above and take that
particle to be pH , whereas in the case of failure, we choose representative particles arbitrarily. The Borel–Cantelli lemma
now implies that almost surely, there are only finitely many stages that fail, so for every subgraph, there is a particle that
visits every reachable vertex infinitely often. �

4. Conclusion

We have shown that a countable collection of independent simple random walks in two dimensions can almost surely be
made transient by dropping to a suitable random two-dimensional subgraph; on the other hand, in any number of dimen-
sions, a branching random walk is almost surely recurrent on every subgraph, in the sense that some branch is recurrent on
each subgraph. Natural intermediate questions arise from considering the dynamic random walk W(t)

d mentioned earlier.
This object was introduced by Benjamini, Häggström, Peres and Steif [5], who showed that in three or four dimensions
(i.e., when d ∈ {3,4}), there is almost surely some time T such that W(T )

d is recurrent; while, in five or more dimensions,
almost surely the walk is transitive at all times. In two dimensions, Hoffman [11] showed that there is almost surely a time
T such that the walk is W(T )

2 transitive; see also [3]. In the light of these facts, the following question seems of interest.

Problem 4.1. Let d ∈ {2,3,4}, and let W(t)
d be a dynamic random walk on Z

d . Is there almost surely a (random) subgraph

H ⊂ Z
d on which W(t)

d is transitive for every time t ≥ 0?

It seems plausible that the answer is positive in four dimensions and negative in two dimensions; we are not prepared
to offer a guess in three dimensions, however.

Another interesting question concerns paths. It is clear that for any path P in Z
d through the origin, a random walk on

P is almost surely recurrent. In Section 2, we noted that when one attempts to build a (random) path in two dimensions
that greedily forces the random walk north and east, the resulting induced walk is almost surely recurrent; the induced
walk exhibits some drift (compared to a fixed path) but only at the end points, and this is not enough to make it transient.
This suggests the following question.

Problem 4.2. Let W be a simple random walk on Z
d . Is it almost surely the case that WP is recurrent for every path

P ⊂ Z
d through the origin?

In a similar vein, as pointed out to us by one of the referees, one could also ask what happens if we replace the
underlying graph Z

2 by a strongly-recurrent graph in the sense of [13], such as, for example, the the Sierpinski carpet.
In the cases where we can force a simple random walk to be transient, what can we say about its escape velocity? In

dimensions d ≥ 3, it was shown in [8,9] that a simple random walk on Z
d escapes at a rate of about

√
n/ logcd+o(1) n.

What can be said in our context?
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Problem 4.3. Fix d ≥ 2. What is the supremum of α such that for a random walk W on Z
d , we can almost surely choose

a subgraph H ⊂ Z
d such that the walk escapes to infinity at rate at least nα?

As a first step towards this problem, it would already be interesting to know if we can get a random walk to escape
with linear velocity in high dimensions.

Finally, a fundamental problem in this context, and one of our original motivations for treating the problem considered
here, comes from the theory of universal traversal sequences. Call an infinite word Z on the alphabet {x,−x,y,−y} a
universal traversal sequence for Z2 if ZG is recurrent for every G ⊂ Z

2. The following basic question raised by Spink
[18] remains wide open.

Problem 4.4. Does there exist a universal traversal sequence for Z2?

David and Tiba [7] recently found deterministic constructions of traversal sequences handling a reasonably large class
of (but not all) subgraphs of Z2. However, in general, the most efficient methods that we know of to construct universal
traversal sequences all involve choosing a long enough traversal sequence at random; our main result rules out this
standard construction on the square lattice. Either answer to the above existence question, positive or negative, would be
very interesting.
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Note added in proof

After this manuscript was completed and circulated, it was brought to our attention that the existence of exceptional
subgraphs for a single simple random walk has independently been established by Balister, Bollobás, Leader and Walters
[14].
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