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Abstract. We consider random permutations on Sn with logarithmic growing cycles weights and study the asymptotic behavior as the
length n tends to infinity. We show that the cycle count process converges to a vector of independent Poisson variables and also compute
the total variation distance between both processes. Next, we prove a central limit theorem for the total number of cycles. Furthermore
we establish a shape theorem and a functional central limit theorem for the Young diagrams associated to random permutations under
this measure. We prove these results using tools from complex analysis and combinatorics. In particular we have to apply the method
of singularity analysis to generating functions of the form exp((− log(1 − z))k+1) with k ≥ 1, which have not yet been studied in the
literature.

Résumé. Nous considérons les permutations aléatoires sur Sn dont les poids des cycles sont à croissance logarithmique et nous
étudions le comportement asymptotique quand la longueur n tend vers l’infini. Nous montrons que le processus de comptage des
cycles converge vers un vecteur de variables de Poisson indépendantes et nous calculons également la distance en variation totale entre
les deux processus. Ensuite, nous prouvons un théorème central limite pour le nombre total de cycles. En outre, nous établissons un
théorème de forme et un théorème central limite fonctionnel pour les diagrammes de Young associés à des permutations aléatoires sous
cette mesure.

Nous prouvons ces résultats à l’aide d’outils d’analyse complexe et de combinatoire. En particulier nous devons appliquer la
méthode d’analyse de singularité aux fonctions génératrices de la forme exp((− log(1 − z))k + 1) avec k ≥ 1, qui n’ont pas encore été
étudiées dans la littérature.
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1. Introduction

Let Sn be the symmetric group of all permutations on elements 1, . . . , n. For any permutation σ ∈ Sn, denote by Cm =
Cm(σ) the cycle counts, that is, the number of cycles of length m = 1, . . . , n in the cycle decomposition of σ ; clearly

Cm ≥ 0 (m ≥ 1),

n∑
m=1

mCm = n. (1.1)

Here we study random permutations with respect to the following probability measure.

Definition 1.1. Let � = (θm)m≥1 be given, with θm ≥ 0 for every m ≥ 1. We define for σ ∈ Sn the weighted measures
on Sn as

P�[σ ] := 1

hnn!
n∏

m=1

θCm
m (1.2)

with hn = hn(�) a normalization constant and h0 := 1.
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This measure has received a lot of attention in recent years and has been studied by many authors. An overview can
be found in [11]. Classical cases of P� are the uniform measure (θm ≡ 1) and the Ewens measure (θm ≡ θ ). The uniform
measure is well studied and has a long history (see e.g. the first chapter of [1] for a detailed account with references).
The Ewens measure originally appeared in population genetics, see [12], but has also various applications through its
connection with Kingman’s coalescent process, see [16].

The motivation to study the measure P� has its origins in mathematical physics. Explicitly, it occurred in the context
of the Feynman–Kac representation of the dilute Bose gas and it has been proposed in connection with the study of the
Bose–Einstein condensation (see e.g. [4] and [11]). An important question in this context, which is also interesting on its
own right, is the possible emergence of cycles with a cycle length with order of magnitude n as n → ∞. It is clear that
the asymptotic behaviour of the measure P� as n → ∞ strongly depends on the sequence � = (θm)m≥1. In the current
literature, only the cases θm ≈ ϑ and θm ∼ mγ with γ > 0 are well studied. It is known that in the case θm ≈ ϑ there are
cycles of order n in the limit and that the longest cycles follow a Poisson-Dirichlet distribution, see [4,11,17,21]. On the

other hand, it was shown in [8,11] that in the case θm ∼ mγ most cycles have a cycle length of order n
1

1+γ and thus there
are no cycles of order n in the limit. Furthermore, it was established in [8] that the Young diagrams associated to random
permutations converges in this situation to a limit shape and in [9] an asymptotic shape of the cycle length distribution
was determined. In this paper, we are mainly interested in the cycle weights of the form

θm = logk m for m ∈ N and some k ∈ N. (1.3)

However, we do not require for our argumentation that θm be of the form in (1.3). We only require that the generating
function

g�(t) :=
∞∑

m=1

θm

m
tm (1.4)

to have some analytic properties. We will determine these properties in Lemma 2.4 for the case θm = logk m and use them
in Section 2.3 as a basis to specify our working assumptions on g�(t). We will also give some brief comments on which
cycle weights fulfill these properties. Weights of the form (1.3) have not been studied in the literature and our motivation
to consider these weights is the following question. Are there any cycles of order n in the limit if one is considering slowly
growing cycles weights θm as m → ∞? We show in this paper that the length of typical cycle under this measure has the
order of magnitude n/ logk n (see Theorem 3.6 and Theorem 4.1) and thus there are no cycles with lengths of order n.
Also, we show the following. For each b ∈N fixed, we have as n → ∞

(C1,C2, . . . ,Cb)
d→ (Y1, . . . , Yb) (1.5)

with Y1, . . . , Yb independent Poisson distributed random variables with E[Ym] = θm

m
, see Theorem 3.1. Further, we com-

pute the total variation distance between both processes and show that this is tending to 0 for b = o(nc) for some c ∈ (0,1),
see Theorem 5.1. Moreover, we prove a central limit theorem for the total number of cycles, see Theorem 3.2, and show

that a typical permutation consists in average of logk+1(n)
k+1 disjoint cycles. Finally, we establish in Section 4 a shape theorem

and a functional central limit theorem for the Young diagrams associated to random permutations.
We prove these results using tools from complex analysis and combinatorics. For this, we have in particular to compute

the asymptotic behaviour of[
zn

][
exp

((− log(1 − z)
)k+1)] as n → ∞, (1.6)

where [zn][f (z)] denotes the nth Taylor coefficient in the expansion of f (z) about z = 0. As far as we are aware, this
has not yet been studied in the literature and we compute (1.6) with a modified version of the saddle point method, see
Theorem 2.5.

Notation. We use standard notation Z and N for the sets of integer and natural numbers, respectively, and also denote
N0 := {m ∈ Z : m ≥ 0} = {0} ∪ N. Furthermore, we use interchangeably the notion fn = O(gn) and fn 
 gn if there
exists a constant C > 0 and n0 ∈N such that |fn| ≤ C|gn| for all n ≥ n0.

2. Generating functions and asymptotic theorems

We recall in Section 2.1 some basic facts about Sn and generating functions. This includes Pólya’s Enumeration Theorem,
which is a useful tool to perform averages on the symmetric group. In Section 2.2, we determine some analytic properties
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of the generating functions occurring in this paper and establish a result, see Theorem 2.5, which enables us to compute
the asymptotic behaviour of the expression in (1.6).

2.1. Generating functions

For a sequence of complex numbers (am)m≥0, its (ordinary) generating function is defined as the formal power series

g(t) :=
∞∑

m=0

amtm. (2.1)

As usual [14, Section I.1, p. 19], we define the extraction symbol [tm]g(t) := am, that is, as the coefficient of tm in the
power series expansion (2.1) of g(t).

The following simple lemma known as Pringsheim’s Theorem (see, e.g., [14, Theorem IV.6, p. 240]) is important in
asymptotic enumeration where generating functions with non-negative coefficients are usually involved.

Lemma 2.1. Assume that am ≥ 0 for all m ≥ 0, and let the series expansion (2.1) have a finite radius of convergence R.
Then the point t = R is a singularity of the function g(t).

The generating function g�(t) in (1.4), constructed with the coefficients (θm)m≥1, plays a crucial role in this paper.
Indeed, we will see that the asymptotic behaviour of the measure P� is determined by the analytic properties of the
function g�(z).

Recall that the cycle counts Cm = Cm(σ) are defined as the number of cycles of length m ∈ N in the cycle decomposi-
tion of permutation σ ∈ Sn (see the Introduction). The next well-known identity is a special case of the general Pólya’s
Enumeration Theorem [20, Section 16, p. 17] and the proof can be found for instance in [18, p. 5].

Lemma 2.2. Let (am)m∈N be a sequence of (real or complex) numbers. Then one has the following (formal) power series
expansion

exp

( ∞∑
m=1

amtm

m

)
=

∞∑
n=0

tn

n!
∑

σ∈Sn

n∏
m=1

aCm
m , (2.2)

where Cm = Cm(σ) are the cycle counts. If either of the series in (2.2) is absolutely convergent then so is the other one.

We get immediately that

Corollary 2.3. Let hn be the normalisation constant in Definition 1.1 and g�(t) be as in (1.4). We then have as formal
power series in t

∞∑
n=0

hnt
n = exp

(
g�(t)

)
. (2.3)

2.2. Properties of g�(t) in the case θm = logk(m)

In this section, we study the analytic properties of the function g�(t) in the case θm = logk(m). Inserting θm = logk(m)

into the definition of g�(t) in (1.4), we obtain

g�(t) =
∞∑

m=1

logk m

m
tm. (2.4)

This function has radius of convergence 1. A big part of our argumentation is based on the saddle-point method. For this
we require the asymptotic behavior as t → 1. Note that the function g�(t) in (2.4) is a special case of the polylogarithm,
see [14, Section VI.8] and [13] as well as [10] for uses of the polylog in polynomial partitions. We thus summarize here
only the properties we need and give only a sketch of the proofs. For a detailed proof, we refer to [14].
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Lemma 2.4. Let θm be as in (1.3). Then g�(t) is given by (2.4) and g�(t) can be analytically continued to C \ [1,∞].
Further, there exists a polynomial P with

P(r) = rk+1

k + 1
+

k∑
j=0

cj r
j (2.5)

with cj ∈ R for 0 ≤ j ≤ k such that

g�

(
e−w

) = P
(− log(w)

) + O(w) (2.6)

for w → 0 with arg(w) ≤ π − ε and ε > 0 arbitrary.

Equation (2.6) is related to (1.6) by inserting w = − log(z) and then expanding. Indeed, we have as z → 1 with |z| < 1
that

− log(− log z) = − log
(−(z − 1)

) + O(z − 1). (2.7)

Combining this with (2.6) gives

g�(z) = P
(− log(− log z)

) + O(z − 1) = P
(− log

(−(z − 1)
) + O(z − 1)

) + O(z − 1)

= P
(− log(1 − z)

) + O
(
(z − 1)1−δ

)
for δ > 0.

Inserting this computation into the generating function of hn in (2.3), we indeed get (1.6). However, we will work with
the expression g�(e−w) instead g�(z) as this is more convenient in our computations.

Sketch of proof. The function g�(t) has clearly radius of convergence 1 and is thus analytic for |t | < 1. For the analytic
continuation, one uses Lindelöfs integral representation of the polylogarithm, see for instance [14, IV.8, p. 237], namely

g�(−t) = −1

2πi

∫ 1/2+i∞

1/2−i∞
logk(s)

s

tsπ

sin(πs)
ds. (2.8)

It is now easy to see that this integral is absolutely convergent for t ∈ C \ [0,∞] and that it defines in C \ [0,∞] an
analytic function. Combining this with the fact that g�(t) has radius of convergence 1 proves the first part of the lemma.

To compute the asymptotic behaviour of g�(e−w) as w → 0, we use the Mellin transform, see for instance [14,
Section B.7]. Applying some elementary properties of the Mellin transform, we get immediately

g∗
�(s) :=

∫ ∞

0
g�

(
e−w

)
ws−1 dw = (−1)kζ (k)(s + 1)�(s), (2.9)

where ζ (k)(s) is the kth derivative of the Riemann zeta function and � is the Gamma function. Using the inverse Mellin
transform, we obtain

g�

(
e−w

) =
∫ 1/2+i∞

1/2−i∞
(−1)kζ (k)(s + 1)�(s)w−s ds. (2.10)

We shift the contour of integration to Re(s) = −3/2. By doing this, we pick up poles at s = 0 and at s = −1 so that

g�

(
e−w

) =
∫ −3/2+i∞

−3/2−i∞
(−1)kζ (k)(s + 1)�(s)w−s ds (2.11)

+ ress=0
(
(−1)kζ (k)(s + 1)�(s)w−s

) + ress=−1
(
(−1)kζ (k)(s + 1)�(s)w−s

)
.

We consider the Laurent expansion of (−1)kζ (k)(s + 1)�(s) around s = 0 and get

(−1)kζ (k)(s + 1)�(s) = k!s−2−k +
k∑

j=0

dj s
−j−1 + O(1), (2.12)
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for some dj ∈ R, 0 ≤ j ≤ k. Note that this Laurent expansion is independent of w. Using the Taylor expansion of
w−s = e−s logw around s = 0 then gives

ress=0
(
(−1)kζ (k)(s + 1)�(s)w−s

) = (−1)k+1 logk+1(w)

k + 1
+

k∑
j=0

dj (−1)j
logj (w)

j ! (2.13)

= P
(− log(w)

)
(2.14)

with P(r) = 1
k+1 rk+1 + ∑k

j=0 dj
rj

j ! . Thus the residue at s = 0 has the form we are looking for. Since �(s) has a simple
pole with residue −1 at s = −1, we get that

ress=−1
(
(−1)kζ (k)(s + 1)�(s)w−s

) = (−1)k+1ζ(0)w. (2.15)

The integral in (2.11) is well defined for all w with arg(w) ≤ π/2 − ε since |�(σ + it)| = O(t2e− π
2 t ) for |t | → ∞

and σ > −2. A direct estimate then shows that this integral is of order O(w3/2). This shows that the above expansion
in (2.6) is valid for arg(w) ≤ π/2 − ε. To complete the proof, it remains to show that this expansion is also valid for
| arg(w)| ≤ π − ε. We omit this proof as it follows the same lines as in the proof of [13, Lemma 3]. �

Remark. One can easily relate the coefficients cj in Lemma 2.4 to the Laurent expansion of �(s) around s = 0. However,
for our purpose it is enough to know that the cj are real numbers. Further, one can obtain with the above argumentation
a complete asymptotic expansion of g�(e−w) and this asymptotic expansion is valid for | arg(w)| ≤ π − ε. However, we
do not need it here and thus will not prove it. Details can be found for instance in [14, Section B.7] and [13].

2.3. Working assumptions on the cycle weights θm

As mentioned in the Introduction, we are mainly interested in the cycle weights of the form θm = logk m. However, we
require for our argumentation only some analytic properties of g�(t). This allows us to work with more general cycle
weights than θm = logk m. In view of Lemma 2.4 and the proof of Theorem 2.5 in Section 2.4, we will work with the
following assumptions:

• θm ≥ 0 for all m ≥ 1,
• g�(t) is holomorphic for |t | < 1,
• g�(t) is continuous in the punctured disc {|t | ≤ 1, t 
= 1} and
• we have as w → 0 with Re(w) ≥ 0

g�

(
e−w

) = P
(− log(w)

) + O(w), (2.16)

where P(r) is a polynomial of degree k + 1 with

P(r) = rk+1

k + 1
+

k∑
j=0

cj r
j with cj ∈R for 0 ≤ j ≤ k. (2.17)

A natural question at this point is: which cycle weights θm fulfill these assumptions? We know from Lemma 2.4 that
this is the case for θm = logk m, but there are of course more. If a function g�(t) fulfills the above assumptions then one
can apply the method of singularity analysis to determine the asymptotic behaviour θm, see [14, p. 387, (27)]. This then
shows that the cycle weights θm must have the form

θm = logk(m) +
k−1∑
j=0

aj logj (m) + o(1) (2.18)

for some aj ∈ R. We note that (2.18) is not equivalent to the above assumptions on g�(t). Indeed, we chose θm =
logk(m) + log−1(m) then it is straight forward to see that (2.16) is not fulfilled. However, if the o(1) in (2.18) is replaced
by O(m−ε) for some ε > 0 then our assumptions on g�(t) are fulfilled. Another natural question is if one can generalise
the above assumptions. For instance if one can add a slowly varying function in the definition of the cycle weights as in
[9]. However, this the topic of future research and will not be studied in this paper.



1996 N. Robles and D. Zeindler

2.4. Asymptotic theorems

In this section, we develop complex-analytic tools for computing the asymptotics of the coefficient hn in the power series
expansion of exp(g�(t)) (see (2.3)) for the cycle weights θm fulfilling the assumptions in Section 2.3. More generally, it
is useful to consider expansions of the function exp(vg�(t)), with some parameter v > 0. We will see that the case v = 1
is of primary importance, but we will need for instance in Theorem 3.2 also the behavior for v ≈ 1 to deduce some limit
theorems.

Theorem 2.5. Suppose g�(t) fulfills the working assumptions in Section 2.3. Further, let f (t) be a holomorphic function
with radius of convergence strictly bigger than 1 and f (1) 
= 0. We then have for v > 0

[
tn

](
f (t) exp

(
vg�(t)

)) = f (1) exp(vP (r) + ne−r )

er
√

2πvP ′′(r) + 2πne−r

(
1 + O

(
log−k/2(n)

))
, (2.19)

where r is a solution of the equation

vP ′(r) = ne−r . (2.20)

Furthermore, the error term in (2.19) is uniform in v for v ∈ [v1, v2], where v1, v2 are arbitrary, but fixed constants with
1 ≤ v1 < v2 < ∞.

We have P ′(r) ∼ rk as r → ∞ and thus (2.20) has a solution for n large. Note that the solution r is unique if cj ≥ 0
for all j . This does not have to be the case if some of the cj are negative. However, a straight forward computation shows
that all solutions fulfill the same asymptotic expansion

r = log(n/v) − k log log(n/v) + O

(
log log(n)

log(n)

)
as n → ∞. (2.21)

From this, we immediately get

P(r) = logk+1(n)

k + 1

(
1 + O

(
log−1(n)

))
,P ′′(r) = k logk−1(n)

(
1 + O

(
log−1(n)

))
, (2.22)

vP ′(r) = ne−r = v logk(n)
(
1 + O

(
log−1(n)

))
. (2.23)

For the proof of Theorem 2.5 we will use the saddle point method. Unfortunately, the function g�(t) is in this situation
not (log-)Hayman admissible (see [8] and [14, Section VIII.5]). We thus cannot use the standardized saddle point method,
which is described for instance in [14, Section VIII.5]. We therefore use a slightly modified version. Also, we need an
auxiliary result.

Lemma 2.6. Let C > 0 be given. Let further Q(x) = adxd + · · · + a0 be a real polynomial with ad > 0 and d ≥ 2. We
then have as r → ∞∫ r

C

exp
(
Q(y)

)
dy = 1

Q′(r)
exp

(
Q(r)

) + O

(
1

(Q′(r))2
exp

(
Q(r)

))
. (2.24)

Proof. We define δ := log log(r). It is easy to see that we have for r large enough

1

2d
Q(r) ≤ Q(r − δ) ≤ Q(r) − δ

2
Q′(r).

We split the integral in (2.24) into the integrals over [C, r −δ] and [r −δ, r]. For r large enough, Q(y) attains its maximum
in the interval [C, r − δ] at r − δ. We thus use for the integral over [C, r − δ] the trivial estimate and get∣∣∣∣∫ r−δ

C

exp
(
Q(y)

)
dy

∣∣∣∣ ≤ r exp
(
Q(r − δ)

) ≤ exp

(
Q(r) + log(r) − δ

2
Q′(r)

)
. (2.25)
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By assumption, we have δ · Q′(r)/ log(r) → ∞ and thus log(r) − δ
2Q′(r) ≤ −K log(r) for r large enough, where K can

be chosen arbitrary large. This implies that∫ r−δ

C

exp
(
Q(y)

)
dy = O

(
exp

(
Q(r)

)
r−K

)
. (2.26)

For the integral over [r − δ, r], we use partial integration and a similar estimate as above to obtain∫ r

r−δ

exp
(
Q(y)

)
dy = 1

Q′(r)
eQ(y) − 1

(Q′(r))2
eQ(y) +

∫ r

r−δ

1

(Q′(y))2
eQ(y) dy + O

(
eQ(r)r−K

)
= 1

Q′(r)
eQ(y) + O

(
1

(Q′(r))2
eQ(y)

)
.

This completes the proof. �

Proof of Theorem 2.5. We begin with the case f (t) ≡ 1. Cauchy’s integral formula gives

In := [
tn

](
exp

(
vg�(t)

)) = 1

2πi

∮
γ

exp
(
vg�(t)

) 1

tn+1
dt, (2.27)

where γ is the circle γ := {t = e−1/2eiϕ, ϕ ∈ [−π,π]}. Applying the variable substitution t = e−w , we get

In = 1

2πi

∫
γ ′

exp
(
vg�

(
e−w

))
enw dw (2.28)

with γ ′ := {t = 1/2 + is, s ∈ [−π,π]}. Note that the integrand in (2.28) is 2πi periodic. We thus can shift the contour γ ′
to the contour γ ′′ = γ ′′

1 ∪ γ ′′
2 ∪ γ ′′

3 (see Figure 1) with

γ ′′
1 := {

w = (−π + x)i, x ∈ [
0,π − e−r

]}
,

γ ′′
2 := {

w = e−reiϕ, ϕ ∈ [−π/2,π/2]},
γ ′′

3 := {
w = ix, x ∈ [

e−r , π
]}

,

where r is the solution of the equation (2.20). We thus can write In = In,1 + In,2 + In,3, where In,j is the integral over γ ′′
j .

Fig. 1. The contours γ ′ and γ ′′.
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We begin by computing In,2 with the saddle point method. We thus first take a look at the behaviour of the integrand
in In,2 for ϕ around 0. We use (2.16) and get

g�

(
e−e−r eiϕ ) =P(r − iϕ) + O

(
e−reiϕ

)
. (2.29)

Expanding P(r − iϕ) around ϕ = 0 gives

P(r − iϕ) =P(r) − iϕP ′(r) − 1

2
P ′′(r)ϕ2 + O

(
ϕ3rk−2) as ϕ → 0. (2.30)

We now split the integral In,2 into the regions [−δ, δ] and [−π/2,π/2]\[−δ, δ] for some δ > 0 small, which we determine
below. We first take a look at the integral over [−δ, δ]. With (2.16) we get

In,2,δ := e−r

2π

∫ δ

−δ

exp
(
vg

(
e−e−r eiϕ ) + ne−reiϕ + iϕ

)
dϕ

= 1

2πer

∫ δ

−δ

exp
(
vP (r − iϕ) + ne−reiϕ + iϕ + O

(
ve−reiϕ

))
dϕ

= 1

2πer

∫ δ

−δ

exp

(
v

(
P(r) − iϕP ′(r) − 1

2
P ′′(r)ϕ2 + O

(
ϕ3rk−2)))

× exp
(
ne−reiϕ + iϕ + O

(
e−r

))
dϕ.

Expanding ne−reiϕ around ϕ = 0 and using that we have vP ′(r) = ne−r by the definition of r in (2.20), we obtain

In,2,δ = exp(vP (r) + ne−r )

2πer

×
∫ δ

−δ

exp

(
−1

2

(
vP ′′(r) + ne−r

)
ϕ2

)
exp

(
iϕ + O

(
ϕ3(rk−2 + ne−r

)) + O
(
e−r

))
dϕ.

We know from (2.21), (2.22) and (2.23) that

r ∼ log(n), P ′′(r) ∼ k logk−1(n) and ne−r ∼ v logk(n) as n → ∞. (2.31)

Thus ne−r is dominating in the coefficients of ϕ2 and ϕ3 in the above expression for In,2,δ . We now define δ := δ(n, v) =
(ne−r )−5/12. Thus δ → 0 and

δ2(vP ′′(r) + ne−r
) → ∞ and δ3(rk−2 + ne−r

) → 0. (2.32)

We therefore get

In,2,δ = exp(vP (r) + ne−r )

2πer

∫ δ

−δ

e− 1
2 (vP ′′(r)+ne−r )ϕ2(

1 − iϕ + O
(
ϕ2 + ϕ3ne−r + e−r

))
dϕ.

For notational convince, we write b := vP ′′(r)+ne−r . The function ϕe− b
2 ϕ2

is odd and thus we can remove the iϕ in the
last equation. Using the variable substitution x2 = bϕ2, we get∫ δ

−δ

e− b
2 ϕ2(

1 + O
(
ϕ2) + O

(
ne−rϕ3) + O

(
e−r

))
dϕ

= 1√
b

∫ δ
√

b

−δ
√

b

e− 1
2 x2(

1 + O
(
b−1x2) + O

(
ne−rb−3/2x3) + O

(
e−r

))
dx

= 1√
b

(∫ ∞

−∞
e− 1

2 x2
dx + O

(
e−δ

√
b
))(

1 + O
(
b−1) + O

(
ne−rb−3/2) + O

(
e−r

))
=

√
2π√
b

(
1 + O

(
log−k/2(n)

))
. (2.33)
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We thus obtain

In,2,δ = exp(vP (r) + ne−r )

er
√

2π(vP ′′(r) + ne−r )

(
1 + O

(
log−k/2(n)

))
. (2.34)

We now show that remaining parts of In,2 and In,1, In,3 are all of lower order. We denote by I c
n,2 the remaining part of

the In,2, i.e. I c
n,2 = In,2 − In,2,δ . For this, we use the inequalities

cos(ϕ) ≤ 1 − ϕ2/12 for |ϕ| ≤ π and (2.35)

Re
(
P(r − iϕ)

) ≤ P(r)

(
1 − k(ϕ/r)2

12

)
for r large and |ϕ| ≤ π. (2.36)

We thus get

∣∣I c
n,2

∣∣ = 2

∣∣∣∣ 1

2πer

∫ π

δ

exp
(
vP (r − iϕ) + ne−reiϕ + iϕ + O

(
ve−reiϕ

))
dϕ

∣∣∣∣

 e−r

∫ π

δ

exp
(
v Re

(
P(r − iϕ)

) + ne−r cos(ϕ)
)
dϕ


 exp
(
vP (r) + ne−r

)
e−r

∫ π

δ

exp

(
−kvP (r)r−2 + ne−r

12
ϕ2

)
dϕ. (2.37)

We now have kvP (r)r−2 = O(logk−1 n) = o(ne−r ) and thus

∣∣I c
n,2

∣∣ 
 exp
(
vP (r) + ne−r

)
e−r

∫ π

δ

exp

(
−ne−r

24
ϕ2

)
dϕ


 exp(vP (r) + ne−r )

er
√

ne−r

∫ ∞

δ
√

ne−r

exp

(
−x2

2

)
dx


 exp(vP (r) + ne−r )

erδ
√

ne−r
e−δ

√
ne−r

. (2.38)

Inserting the definition of δ and the asymptotic behaviour of ne−r shows that I c
n,2 is of lower order. It remains to show

that the integrals over In,1 and In,3 are also of lower order. The computations for both are almost the same and we thus
only take a look at In,3. We have

|In,3| ≤ 1

2π

∣∣∣∣∫ π

e−r

exp
(
vg�

(
e−ix

) + nix
)
dx

∣∣∣∣ ≤ 1

2π

∫ π

e−r

exp
(
Re

(
vg�

(
e−ix

)))
dx.

We first consider the asymptotic behaviour of g�(e−ix) as x → 0. Equation (2.16) gives

g�

(
e−ix

) =P
(− log(x) − iπ/2

) + O(x).

Using the Taylor expansion, we get for x → 0

Re
(
g�

(
e−ix

)) = P
(− log(x)

) − P ′′(− log(x)
)
π2/8 + O

(
P (4)

(− log(x)
)) + O(x).

Since − log(x) ≥ 0 for x < 1, there exists a constant 0 < c < 1 such that

Re(g�

(
e−ix

) ≤ P
(− log(x)

) − 9

8
P ′′(− log(x)

)
for all x ∈ ]0, c]. (2.39)

We now split the integral into the integral over the regions [e−r , c] and [c,π]. By assumption, g�(t) is continuous in the
punctured disc {|t | ≤ 1, t 
= 1}. We thus clearly have

1

2π

∫ π

c

exp
(
Re

(
vg�

(
e−ix

)))
dx = O(1).
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Furthermore, we get with the above estimates and the variable substitution y = − log(x)

1

2π

∫ c

e−r

exp
(
Re

(
vg�

(
e−ix

)))
dx ≤ 1

2π

∫ c

e−r

exp

(
vP

(− log(x)
) − 9

8
vP ′′(− log(x)

))
dx

= 1

2π

∫ r

− log(c)

exp

(
vP (y) − 9

8
vP ′′(y)

)
e−y dy.

Thus we can apply Lemma 2.6 with Q(y) = vP (y) − 9
8vP ′′(y) − y and get

|In,3| = O

(
exp(vP (r) − 9

8vP ′′(r) − r)

P ′(r) − 9
8vP ′′′(r) − 1

)
.

We now have to show that this is of lower order. Recall that the main term in the theorem is

= exp(vP (r) + ne−r − r)√
2πvP ′′(r) + 2πne−r

. (2.40)

Using that

r ∼ log(n/v), vP ′(r) = ne−r ∼ v logk(n) and P ′′(r) ∼ k logk−1(n) (2.41)

immediately completes the proof for the case f (t) ≡ 1. The proof for f (t) as in the theorem is almost the same as for
f (t) ≡ 1. We thus describe only the necessary adjustments. In the integral In,2,δ , one has to use the Taylor expansion
of f (t) around one. It is straight forward to see that only the term f (1) gives a relevant contribution. In the remaining
integrals, we use the estimate f (t) = O(1). This completes the proof. �

We will see that we need in the Sections 3, 4 and 5 also some slight generalizations of Theorem 2.5.

Corollary 2.7. Let g�(t) and P(r) be as in Theorem 2.5. Let further f (t) be a function such that such that

• f (t) is holomorphic for |t | < 1,
• f (t) is continuous in the punctured disc {|t | ≤ 1, t 
= 1} and
• there is a j ≥ 0 and a cf ∈ C such that

f
(
e−w

) = cf

(− log(w))k

wj
+ O

(
(− log(w))j−1

wj

)
as w → 0,Re(w) ≥ 0.

We then have

[
tn

]
f (t) exp

(
g�(t)

) = cf rkejr exp(P (r) + ne−r )√
2πP ′′(r) + 2πne−r

(
1 + O

(
log−1/2 n

))
,

where r is the solution of the equation

P ′(r) = ne−r . (2.42)

Proof. We use in this proof the same notation as in the proof of Theorem 2.5 and describe only the necessary adjustments.
We now have

In = 1

2πi

∫
γ

f (t) exp
(
vg�(t)

) 1

tn+1
dt = 1

2πi

∫
γ ′′

f
(
e−w

)
exp

(
vg�

(
e−w

))
enw dw. (2.43)

We use that γ ′′
2 = {w = e−reiϕ, ϕ ∈ [−π,π]} and obtain

In,2,δ = 1

2πer

∫ δ

−δ

f
(
e−e−r eiϕ )

exp
(
vP (r − iϕ) + ne−reiϕ + iϕ + O

(
ve−reiϕ

))
dϕ.
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As f (t) has a singularity at t = 1, one has to check if f has a relevant influence to the saddle point equation. However, it
is not difficult to see that we can use the same r as in Theorem 2.5. Thus we immediately obtain that

In,2,δ = f
(
e−e−r ) exp(P (r) + ne−r )√

2πP ′′(r) + 2πne−r

(
1 + O

(
log−1/2 n

))
= cf rkejr exp(P (r) + ne−r )√

2πP ′′(r) + 2πne−r

(
1 + O

(
log−1/2 n

))
.

The remaining parts of I2 are of lower order. This completes the proof. �

3. Asymptotic statistics of cycles

We apply in this section Theorem 2.5 to determine the asymptotic behaviour of various random variables on Sn.

3.1. Normalisation constant hn

Recall that we have seen in Corollary 2.3 that

∞∑
n=0

hnt
n = exp

(
g�(t)

)
, (3.1)

where hn is the normalisation constant of the measure P� in Definition 1.1. Theorem 2.5 implies that

hn = exp(P (r) + ne−r )

er
√

2πP ′′(r) + 2πne−r

(
1 + O

(
log−k/2(n)

))
, (3.2)

where P is as in Section 2.3 and r is the solution of the equation P ′(r) = ne−r .

3.2. Cycle counts

Our first result deals with the asymptotics of the cycle counts Cm’s (i.e., the numbers of cycles of length m ∈ N, respec-
tively, in a random permutation σ ∈Sn).

Theorem 3.1. Suppose that � = (θm)m∈N fulfils the assumptions in Section 2.3 and that Sn is endowed with P�. We
then have for each b ∈N as n → ∞

(C1,C2, . . . ,Cb)
d→ (Y1, . . . , Yb) (3.3)

with Y1, . . . , Yb independent Poisson distributed random variables with E[Ym] = θm

m
.

Theorem 3.1 shows that the asymptotic behaviour of cycles counts follows the typical pattern of random permutations
with cycle weights. The more interesting question is of course the behaviour in the case when we replace the fixed b in
Theorem 3.1 by a b = b(n) with b(n) → ∞ as n → ∞. We study this question in Section 5.

Proof of Theorem 3.1. Using Lemma 2.2 it is forthright to see that we have

∞∑
n=0

hnE�

[
exp

(
i

b∑
m=1

smCm

)]
tn = exp

(
b∑

m=1

θm

m

(
eism − 1

)
tm

)
exp

(
g�(t)

)
(3.4)

as formal power series in t . The details of this computation can be found for instance in [19, Theorem 3.1]. Theorem 2.5
with v = 1 and Lévy’s continuity theorem immediately complete the proof. �
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3.3. Total number of cycles

We denote by K0n the total number of cycles in the cycle decomposition of σ ∈ Sn, i.e.

K0n :=
n∑

m=1

Cm. (3.5)

Theorem 3.2. Suppose that � = (θm)m∈N fulfils the assumptions in Section 2.3 and that Sn is endowed with P�. We
then have

K0n −E[K0n]√
logk+1(n)

k+1

d→N (0,1), (3.6)

where N (0,1) is the standard normal distribution and E[K0n] ∼ logk+1(n)
k+1 .

Theorem 3.2 shows that the behavior of K0n is very similar to the behaviour under uniform and Ewens measure.
Indeed, if we insert (formally) k = 0 into (3.6), we recover the behaviour of K0n under the uniform measure. We have on

the other hand in the case θm = mγ that E[K0n] ∼ Cn
γ

1+γ for some C > 0, see [11]. We thus see that the studied model is
(at least in many points) closer to the uniform and Ewens measure than the case θm = mγ .

Proof of Theorem 3.2. We have for each s ∈C as formal power series in t

E�

[
exp(sK0n)

] = E�

[
exp

(
s

n∑
m=1

Cm

)]
= 1

hn

[
tn

]
exp

(
esg�(t)

)
. (3.7)

This equation follows immediately from Lemma 2.2. The exact details of this computation can be found for instance in
[19, Lemma 4.1]. Although the expressions in (3.7) holds for general s ∈C, we will calculate the asymptotic behaviour of
the moment generating function of K0n only on the positive half-line s ≥ 0. Theorem 2.2 in [7] shows that this is enough
to prove statement of the theorem. Let r be the solution of esP ′(r) = ne−r . Theorem 2.5 then gives

[
tn

]
exp

(
esg�(t)

) = exp(esP (r) + esP ′(r))
er

√
2πesP ′′(r) + 2πesP ′(r)

(
1 + O

(
log−k/2(n)

))
. (3.8)

We now define

K̃0n := K0n −E[K0n]√
logk+1(n)

k+1

. (3.9)

As (3.8) hold uniformly of s bounded, we can replace s by s̃ = s√
logk+1(n)

k+1

. We thus get with a direct computation that

E
[
esK̃0n

] = 1

hn

[
tn

]
exp

(
es̃g�(t) − s̃E[K0n]

) = es2/2(1 + O
(
log−k/2(n)

))
. (3.10)

This completes the proof of the theorem. �

3.4. Lexicographic ordering of cycles

Often cycles in the cycle decomposition of a permutation are ordered by length. Another convenient way is to list the
cycles (and their lengths) via the lexicographic ordering, that is, by tagging them with a suitable increasing subsequence
of elements starting from 1.

Definition 3.3. For permutation σ ∈ Sn decomposed as a product of cycles, let L1 = L1(σ ) be the length of the cycle
containing element 1, L2 = L2(σ ) the length of the cycle containing the smallest element not in the previous cycle, etc.
The sequence (Lj ) is said to be lexicographically ordered.
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Fig. 2. Illustration of 
0.

Our next aim is to determine the asymptotic behaviour of the lexicographically ordered cycles lengths. For this we
have to extend the assumptions in Section 2.3 a little bit. We assume in addition that we have for all j ≥ 1

g
(j)
�

(
e−w

) = (j − 1)!
(

ew

w

)j (− log(w)
)k + O

((
ew

w

)j (− log(w)
)k−1

)
, (3.11)

where g
(j)
� (t) is the j th derivative of g�. If the function g�(t) fulfills the assumptions in Section 2.3 and can be ana-

lytically extended beyond the punctured disc {|t | ≤ 1, t 
= 1} then the assumption (3.11) is automatically fulfilled. For
concreteness, let us define the following region.

Definition 3.4. Let 1 < R and 0 < φ < π
2 be given. We then define the domain 
0 as


0 = 
0(R,φ) = {
t ∈ C; |t | < R,z 
= 1,

∣∣arg(z − 1)
∣∣ > φ

}
. (3.12)

An illustration of 
0(R,φ) can be found in Figure 2. We then have

Lemma 3.5. Suppose that � = (θm)m∈N fulfills the assumptions in Section 2.3 and that g�(t) can be analytically ex-
tended to some domain 
0(R,φ), with 
0(R,φ) as in (3.12). Then the assumption (3.11) is fulfilled.

The lemma follows immediately with Cauchy’s integral formula for higher order derivatives. Lemma 2.4 and 3.5 imme-
diately imply that g�(t) fulfils the assumption (3.11) if θm = logk(m). We now can show

Theorem 3.6. Suppose that � = (θm)m∈N fulfils the assumptions in Section 2.3 and the assumption (3.11). If Sn is
endowed with P�, we then have for each b ∈ N(

L1 · logk(n)

n
,L2 · logk(n)

n
, . . . ,Lb · logk(n)

n

)
d−→ (E1,E2, . . . ,Eb), (3.13)

where (Em)bm=1 are iid exponential distributed random variables with parameter 1.

Proof. We prove first the case b = 1. We have

P[L1 = m] = θm

n

hn−m

hn

. (3.14)

The proof of (3.14) can be found for instance in [11, Proposition 2.1]. We now claim that we have for each j ∈N

E�

[
(L1 − 1)j

] = 1

nhn

[
tn

]
tj g

(j+1)
� (t) exp

(
g�(t)

)
, (3.15)
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where (x)j = x(x − 1) · · · (x − j + 1) denotes the falling factorial. Indeed, using (3.14) gives

E�

[
(L1 − 1)j

] = 1

hn

n∑
m=1

(m − 1)j · P[L1 = m] = 1

nhn

n∑
m=1

(m − 1)j · θmhn−m

= 1

nhn

[
tn

]( n∑
m=1

(m − 1)j · θmtm

)
exp

(
g�(t)

) = 1

nhn

[
tn

]
tj g

(j+1)
� (t) exp

(
g�(t)

)
.

We now can use Corollary 2.7 together with assumption (3.11) to compute E�[(L1 − 1)j ]. We obtain

E�

[
(L1 − 1)j

] = j !
n

rke(j+1)r
(
1 + o(1)

) = j ! nj rk

(ne−r )j+1

(
1 + o(1)

)
= j !

(
n

rk

)j (
1 + o(1)

) = j !
(

n

logk(n)

)j (
1 + o(1)

)
,

where we have used on the last line that ne−r = P ′(r) ∼ rk and r ∼ log(n), see (2.21). This immediately implies with a
simple induction that

E�

[(
L1 · logk(n)

n

)j]
= j !

(
n

logk(n)

)j (
1 + o(1)

)
. (3.16)

Since (3.16) holds for each j ∈ N, we get that L1 · logk(n)
n

converges in distribution to exponential distributed random
variables with parameter 1. This completes the case b = 1. The proof of the case b > 1 is similarly and we thus omit it.
However, the interested reader can find more details for instance in [6, Lemma 5.7] or in [22]. �

4. Limit shape

We consider in this section the shape of Young diagrams associated to random permutations and study the typical behavior
as n → ∞ with respect to the measure P� under the assumptions in Section 2.3. We show that this shape converges to a
limit shape and that fluctuations near a point of this limit shape behave like a normal random variable. In this section we
shall mainly follow the techniques from [8]. We first define

wn(x) =
∑
k≥x

Ck. (4.1)

The function wn(x) = wn(x,σ ) is as a function in x piecewise constant and right continuous. Further wn(x,σ ) can be
interpreted as the upper boundary of the Young diagram corresponding the cycle type of the permutation σ . A detailed
illustration of this can be found in [8, Section 1].

The limit shape of the process wn(x) as n → ∞ with of the respect to probability measures P� on Sn (and sequences
of positive real numbers n and n∗ with n · n∗ = n) is understood as a function w∞ :R+ →R

+ such that for each ε, δ > 0

lim
n→+∞P�

[{
σ ∈ Sn : sup

x≥δ

∣∣(n)−1wn

(
xn∗) − w∞(x)

∣∣ ≤ ε
}]

= 1. (4.2)

The assumption n · n∗ = n ensures that the area under the rescaled Young diagram is 1. One of the most frequent choices
is n = n∗ = n1/2, however this is often not the optimal choice. The computations in Section 3 suggest that the length of a
typical cycle has order of magnitude n/rk . It is thus natural to choose

n∗ = n

rk
and n = rk (4.3)

with r the solution (2.20). In order to avoid confusion, we write rk from now instead n.
The next natural question is then whether fluctuations satisfy a central limit theorem, namely whether

r−kwn

(
n∗x

) − w∞(x)
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converges for a given x (after centering and applying normalization) to a normal distribution. Also it is natural to ask if
the process converges in distribution to a Gaussian process on the space of càdlàg functions. Of course the role of the
probability measure on Sn is important for that.

We first consider the behavior for a given x > 0. We have

Theorem 4.1. Let k ≥ 3 and suppose that P� fulfills the assumptions in Section 2.3. We then have the following results.

(1) The limit shape exists for the process wn(x) as n → ∞ with the scaling n∗ as in (4.3) and n = rk . Further the limit
shape is given by

w∞(x) =
∫ ∞

x

u−1e−u du. (4.4)

(2) The fluctuations at a point x of the limit shape behave like

w̃n(x) := wn(xn∗) − rk(w∞(x) + zn(x))

rk/2
L−→ N

(
0, σ 2∞(x)

)
(4.5)

with

σ 2∞(x) := e−2x + w∞(x)

and zn = O(1/ logn).

Remark. The condition k ≥ 3 is required in the estimates used for the error terms. However, we believe that this condition
could be relaxed to k ≥ 1 by a more detailed investigation of the corresponding error terms.

We prove this theorem by computing the Laplace transform of wn(x). We have

Lemma 4.2. Let k ≥ 3. We have for bounded s ≥ 0 and with respect to P� as n → ∞

E�

[
exp

(−sw̃n(x)
)] = σ 2∞(x)

s2

2
+ O

(
r−k/2s3).

We will give the proof of Lemma 4.2 in Section 4.1. However, we show immediately that Lemma 4.2 implies Theo-
rem 4.1. The structure of the proof is similar to the one appearing in [8], and we give the proof for the convenience of the
reader.

Proof of Theorem 4.1. Theorem 2.2 in [7] shows that it is sufficient to compute the Laplace transform for s ≥ 0 to
establish the CLT. Therefore Lemma 4.2 immediately implies the second point of Theorem 4.1. Thus it remains to show
that that w∞(x) is the limit shape. Let ε > 0 be arbitrary and choose 0 = x0 < x1 < · · · < x� such that

w∞(xj+1) − w∞(xj ) < ε/2 for 1 ≤ j ≤ � − 1 and w∞(x�) < ε/2.

We now claim that we have for each x ∈ R
+∣∣r−kwn

(
xn∗) − w∞(x)

∣∣ > ε =⇒ ∃j with
∣∣r−kwn

(
xjn

∗) − w∞(xj )
∣∣ > ε/2. (4.6)

Indeed, let us for consider first the case r−kwn(x
∗)−w∞(x) > ε. Clearly, there exists a j such that xj ≤ x ≤ xj+1. Since

wn(x) is a monotone decreasing function, we get immediately

r−kwn

(
xn∗) − w∞(x) > ε =⇒ r−kwn

(
xjn

∗) − w∞(x) > ε

=⇒ r−kwn

(
xjn

∗) − w∞(xj ) > ε + w∞(x) − w∞(xj )

=⇒ r−kwn

(
xjn

∗) − w∞(xj ) > ε/2.

The computation in the second case is similar. Using (4.6), we obtain

P�

[
sup
x≥0

∣∣rkwn

(
x∗) − w∞(x)

∣∣ ≥ ε
]

≤
�∑

j=1

P�

[∣∣rkwn

(
x∗
j

) − w∞(xj )
∣∣ ≥ ε/2

]
. (4.7)

It now follows from (4.5) that each summand in (4.7) tends to 0 as n → ∞. This completes the proof. �
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We are also interested in the joint behaviour at different points of the limit shape. For this, let x� ≥ x�−1 ≥ · · · ≥ x1 ≥ 0
be given. From computational point of view, it is easier to study the increments. We thus consider

wn(x) = (
wn(x�),wn(x�−1) − wn(x�), . . . ,wn(x1) − wn(x2)

)
. (4.8)

We now have

Theorem 4.3. For � ≥ 2 and x� ≥ x�−1 ≥ · · · ≥ x1 ≥ 0, let

w̃n(x) = (
w̃n(x�), w̃n(x�−1) − w̃n(x�), . . . , w̃n(x1) − w̃n(x2)

)
(4.9)

with w̃n as in Theorem 4.1. Set x�+1 = +∞. We then have for 1 ≤ j < i < �

w̃∞(xi, xj ) := lim
n→+∞ Cov

(
w̃n(xj ) − w̃n(xj+1), w̃n(xi) − w̃n(xi+1)

)
(4.10)

= (
e−xj − e−xj+1

)(
e−xi − e−xi+1

)
.

The proof of this theorem is given in Section 4.2.
We have seen in Theorem 3.1 that the cycle counts C1, . . . ,Cb converge to independent Poisson random variables

Y1, . . . , Yb . For the uniform and Ewens measure, this remains true as long as b = o(n), see [2]. However, Theorem 4.3
now shows that the increments in (4.9) are not independent in the limit. Thus a similar result can hold in the considered
model at most for b = o(n/ logk(n)). This will be the topic of Section 5.

Theorem 4.3 can be extended to a functional CLT.

Theorem 4.4. The process w̃n : R+ →R (see Theorem 4.1) converges weakly with respect to P� as n → ∞ to a contin-
uous Gaussian process w̃∞ : R+ → R. Explicitly, we have w̃∞(x) ∼ N (0, (σ∞(x))2) and covariance structure is given
in Theorem 4.3. In particular, the increments are not independent.

The proof of this theorem is given in Section 4.3.

4.1. Proof of Lemma 4.2

We begin with some preparations. We have

Lemma 4.5 ([8, Lemma 4.1]). We have for x ≥ 0 and s ∈C

E�

[
exp

(−swn(x)
)] = 1

hn

[
tn

][
exp

(
g�(t) + (

e−s − 1
) n∑

m=�x�

θm

m
tm

)]
. (4.11)

Furthermore, we need

Lemma 4.6. Let r be as in (2.20), n∗ be as in (4.3), v = O(r−k/2), q > 0, j ∈ Z and x > 0. We then define r ′ := r + v

and get∑
m≥xn∗

θmmj exp
(−mqe−r ′) = rk

(
er

)j+1
∫ ∞

x

uj exp(−qu)du + O
(
rk−1/2(er

)j+1)
. (4.12)

Proof. We know from (2.18) that θm has the form

θm = logk(m) +
k−1∑
j=0

aj logj (m) + o(1) for some aj ∈R. (4.13)

Thus is is sufficient to study the case θm = logk(m) and to show that∑
m≥xn∗

logk(m)mj exp
(−mqe−r ′) = rk

(
er

)j+1
∫ ∞

x

uj e−qu du + O
(
rk−1/2(er

)j+1)
. (4.14)
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We apply Euler’s summation formula to the sum on the LHS in (4.12) with θm = logk(m) and f (y) = logk(y)yj ×
exp(−yqe−r ′

). This gives∑
m≥xn∗

logk(m)mj exp
(−mqe−r ′) =

∫ ∞

xn∗
logk(y)yj exp

(−yqe−r ′)
dy

+
∫ ∞

xn∗

(
y − �y�)f ′(y) dy − f

(
xn∗)(xn∗ − [

xn∗]) (4.15)

with �y� = max{m ∈ N;m ≤ y}. We first look at the integral∫ ∞

xn∗
logk(y)yj exp

(−yqe−r ′)
dy. (4.16)

We now use the variable substitution u = ye−r ′
and get∫ ∞

xn∗
logk(y)yj exp

(−yqe−r ′)
dy = (

er ′)j+1
∫

e−r′xn∗
logk

(
uer ′)

uj exp(−qu)du

= (
er ′)j+1

∫
e−r′xn∗

(
log(u) + r ′)k

uj exp(−qu)du.

Using that n∗ = n/rk and that P ′(r) = ne−r , we immediately obtain that∫ ∞

xn∗
logk(y)yj exp

(−ye−r
)
dy = rk

(
er

)j+1
∫

x

uj exp(−qu)du + O
(
rk−1/2(er

)j+1)
.

This gives the desired asymptotic behaviour. We thus have to show that the remaining terms in (4.15) are of lower order.
We have

f ′(y) = (
1 + j log(y) − yqe−r ′

log(y)
)

logk−1(y)yj−1 exp
(−yqe−r ′)

.

We now use the same computation as for the main term for the integral over f ′(y) in (4.15) and immediately get that it is
of lower order. Further, inserting the definition of n∗ into f (xn∗)(xn∗ − [xn∗]) shows that it is of lower order. �

We are now able to prove Lemma 4.2.

Proof of Lemma 4.2. We use the definition of w̃n(x) in (4.5) and obtain

E�

[
exp

(−sw̃n(x)
)] = exp

(
srk/2(w∞(x) + zn(x)

))
E�

[
exp

(−s∗wn

(
xn∗))] (4.17)

with wn(x) as in (4.1), n∗ as in (4.3) and s∗ := sr−k/2. Thus it is enough to compute the asymptotic behaviour of
E�[exp(−s∗wn(xn∗))]. We now use Lemma 4.5 and replace x by xn∗ and s by s∗ in (4.11). This then gives

hnE�

[
exp

(−s∗wn

(
xn∗))] = [

tn
][

exp

(
g�(t) + (

e−s∗ − 1
) n∑

m=�xn∗�

θm

m
tm

)]
. (4.18)

The natural approach would be now to use Theorem 2.5 to compute the asymptotic behaviour of the last expression.
Unfortunately, the additional term

Mn(t) := (
e−s∗ − 1

) n∑
m=�xn∗�

θm

m
tm (4.19)

in (4.18) has a relevant influence to the saddle point. We thus cannot directly use Theorem 2.5, but we can adjust the proof
of Theorem 2.5. We will focus here only on the necessary adjustments.

As in the proof of Theorem 2.5, we can rewrite (4.20) as

In := 1

2πi

∫
γ ′′

exp
(
g�

(
e−w

) + Mn

(
e−w

))
enw dw, (4.20)

where γ ′′ is the same contour as in Figure 1, but we replace in γ ′′
2 the r with a r ′, see below.



2008 N. Robles and D. Zeindler

We now use the same splitting of In as in the proof of Theorem 2.5 and write

In = In,2,δ + I c
n,2 + In,1 + In,3.

The remaining proof is now structured as follows: We first determine r ′ so that we can apply the saddle point method,
then we evaluate In,2,δ and finally we show that the remaining parts are of lower order.

We now insert the definition of γ ′′
2 into of In,2,δ , see Figure 1, and use that g�(e−w) = P(− log(w)) + O(w) to obtain

In,2,δ = 1

er ′2π

∫ δ

−δ

exp
(
f (ϕ) + iϕ + O

(
e−r ′

eiϕ
))

dϕ with

f (ϕ) := P
(
r ′ − iϕ

) + ne−r ′
eiϕ + Mn

(
e−e−r′eiϕ )

. (4.21)

We now write f (ϕ) = f (0) + ia(r ′)ϕ − b(r ′)ϕ2

2 + Rn(ϕ, r ′). In order to be able to apply the saddle point method, we
have to find r ′ = r ′(n, x) and δ = δ(n, x) with

b
(
r ′)δ2 → ∞, δ → 0, a

(
r ′) = o

(√
b
(
r ′)) and Rn

(
ϕ, r ′) = o

(
ϕ3δ−3).

We now claim that we can choose

r ′ = r + v with v := (e−s∗ − 1)rke−x

ne−r
and δ = (

ne−r
)−5/12

, (4.22)

where r is the solution of the equation P ′(r) = ne−r . We now have

a
(
r ′) = −P ′(r ′) + ne−r ′ − e−r ′

e−e−r′
M ′

n

(
e−e−r′ )

. (4.23)

Since s∗ = sr−k/2 and r ∼ log(n), see (2.21), we obtain v ∼ e−xsr−k/2 = O(r−k/2). By assumption, P(r) has degree
k + 1 and P ′(r) = ne−r . We thus have

−P ′(r ′) + ne−r ′ = −P ′(r + v) + ne−r−v = −P ′(r) + ne−r + vne−r + O
(
rk/2−1)

= vne−r + O
(
rk/2−1).

On the other hand, we get with Lemma 4.6 that

e−r ′
e−e−r′

M ′
n

(
e−e−r′ ) = (

e−s∗ − 1
)
e−r ′

n∑
m=�xn∗�

θme−me−r′

= (
e−s∗ − 1

)
rk

∫ ∞

x

e−u du + O
(
rk/2−1) = (

e−s∗ − 1
)
e−xrk + O

(
rk/2−1).

Combining these two equations with the definition of v, we get that a(r ′) = O(rk/2−1). In a similar way, we get b(r ′) =
P ′′(r) + ne−r + O(rk/2) ∼ rk and that Rn(ϕ, r ′) = O(rkϕ3). This implies b(r ′) ∼ rk , a(r ′) = o(

√
b(r ′)), b(r ′)δ2 → ∞

and Rn(ϕ, r ′) = o(δ−3ϕ3). We thus can apply the saddle point method with r ′ and use the same computation as in (2.33).
We obtain with f as in (4.21) that

In,2,δ = exp(f (0))

er ′√2πb(r ′)

(
1 + O

(
a(r ′)√
b(r ′)

))
= exp(−v + f (0))

er
√

2π(P ′′(r) + ne−r )

(
1 + O

(
r−1)).

We now have to determine f (0).
We first look at v. We use ne−r = P ′(r) and s∗ = sr−k/2 and get

v = (e−s∗ − 1)rke−x

ne−r
= e−x

(
− s

rk/2
+ s2

2rk
+ O

(
s3r−3k/2))(

1 + O(1/r)
)
. (4.24)
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Inserting this into P(r ′) and using r ′ = r + v gives

P
(
r ′) = P(r + v) = P(r) + P ′(r)v + 1

2
P ′′(r)v2 + O

(
v3 logk−2 n

)
= P(r) − e−x

(
1 + O(1/r)

)
r−k/2s + e−x

(
1 + O(1/r)

) s2

2
+ O

(
s3r−k/2). (4.25)

Furthermore, we have

ne−r ′ = ne−re−v = ne−r
(
1 − v + v2/2 + O

(
v3))

= ne−r + e−x
(
1 + O(1/r)

)
rk/2s + (

e−2x − e−x
)(

1 + O(1/r)
) s2

2
+ O

(
s3r−k/2) (4.26)

and get with (4.19) and Lemma 4.6

Mn

(
e−e−r′ ) = (

e−s∗ − 1
)(

rk

∫ ∞

x

u−1e−u du + O
(
rk−1))(

1 + O(1/r)
)

= w∞(x)
(−rk/2s + s2/2 + O

(
s3r−k/2))(1 + O(1/r)

)
(4.27)

with w∞(x) as in (4.4). Combining (4.25), (4.26) and (4.27), we obtain

I2,δ = exp(P (r) + ne−r )

er
√

2π(P ′′(r) + ne−r )

(
1 + O

(
r−1))

× exp(−(
w∞(x) + zn(x)

)
rk/2s + (

e−2x + w∞(x)
)(

1 + O(1/r)
s2

2
+ O

(
s3r−k/2))

with zn(x) = O(1/r) = O(1/ logn). Using Theorem 2.5, we immediately get that

I2,δ

hn

· exp
(
w∞(x)

(
1 + O(1/r)

)
rk/2s

) −→ exp

((
e−2x + w∞(x)

) s2

2

)
.

Comparing this with (4.17), we immediately see that I2,δ

hn
has the predicted behaviour of

E�

[
exp

(−sw̃n(x)
)]

.

Thus the proof is complete if we can show that the remaining integrals are of lower order.
We consider next the integral I c

n,2. We split this integral into the integrals over the intervals [δ, log−2 r] and

[log−2 r,π/2]. We begin with the first interval. We get with Lemma 4.6 that

Re

(
n∑

m=�xn∗�

θm

m
e−me−r′eiϕ

)
=

n∑
m=�xn∗�

θm

m
e−me−r ′ cos(ϕ) = rk

∫ ∞

x

e− cos(ϕ)u

u
du + O

(
rk−1/2).

Splitting the last integral into two integrals over [x,2k log r] and [2k log r,∞], it is straight forward to see that

∫ ∞

x

e− cos(ϕ)u

u
du =

∫ ∞

x

e−u

u
du + O

(
ϕ2

∫ ∞

x

e−u

u

)
+ O

(
r−k

)
.

Using the definition of Mn(t) in (4.19) and that s∗ = sr−k/2, we have for |ϕ| ≤ log−2 r

Re
(
Mn

(
e−e−r′eiϕ )) = −srk/2(w∞(x) + zn(x)

) + O
(
rk/2ϕ2) + O(1). (4.28)
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Using the definition of I c
n,2 and f in (4.21) and the estimates in (2.36), we obtain as in (2.37) and (2.38) that∣∣∣∣ 1

2πer

∫ log−2 r

δ

exp
(
f (ϕ)

)
dϕ

∣∣∣∣

 e−r

∫ log−2 r

δ

exp
(
Re

(
f (ϕ)

))
dϕ


 exp
(
P(r) + ne−r − srk/2(w∞(x) + zn(x)

))
e−r

∫ log−2 r

δ

exp

(
−kP (r)r−2 + ne−r

24
ϕ2

)
dϕ


 exp(P (r) + ne−r − srk/2(w∞(x) + zn(x)))

erδ
√

ne−r
e−δ

√
ne−r

.

Thus this part of I c
n,2 is indeed of lower order. For the interval [log−2 r,π/2], we use that

Re

((
e−s∗ − 1

) n∑
m=�xn∗�

θm

m
e−me−r′eiϕ

)
= O

(
rk/2+1). (4.29)

Using again the same argument as in (2.37) and (2.38), we obtain∣∣∣∣ 1

2πer

∫ π

log−2 r

exp
(
f (ϕ)

)
dϕ

∣∣∣∣

 e−r

∫ π

log−2 r

exp
(
Re

(
f (ϕ)

))
dϕ


 exp
(
P(r) + ne−r + O

(
rk/2+1))e−r

∫ π

log−2 r

exp

(
−kP (r)r−2 + ne−r

24
ϕ2

)
dϕ


 exp(P (r) + ne−r + O(rk/2+1))

er
√

ne−r

∫ ∞
√

ne−r log−2 r

exp

(
−x2

2

)
dx


 exp(P (r) + ne−r + O(rk/2+1))

erδ
√

ne−r
e−ne−r log−4 r .

We now have ne−r log−4 r ∼ rk log−4 r > rk/2+1 since k ≥ 3. This implies that this part of I c
2,δ is also of lower order.

Note that this inequality is the origin of the assumption k ≥ 3 in this section. It remains to consider the integral I3. Here
we use also the bound (4.29) and the fact that k ≥ 3. The computations closely parallel those of the proof of Theorem 2.5
and we may thus safely omit them. This completes the proof. �

4.2. Proof of Theorem 4.3

The proof of Theorem 4.3 has the same ingredients as the proof of Theorem 4.1. We thus give only a sketch of the proof
and highlight the necessary adjustments.

As for Theorem 4.1, we compute the Laplace transform of wn(x). We begin with the generating function. We have

Lemma 4.7 ([8, Lemma 4.2]). We have for x = (x1, . . . , x�) ∈ R
� with x� ≥ x�−1 ≥ · · · ≥ x1 ≥ 0 and s = (s1, . . . , s�) ∈

C
�

E�

[
exp

(−〈
s,wn(x)

〉)] = 1

hn

[
tn

][
exp

(
g�(t) +

�∑
j=1

(
e−sj − 1

) �xj+1−1�∑
k=�xj �

θk

k
tk

)]
, (4.30)

using the convention x�+1 := ∞ and 〈s,wn(x)〉 the standard scalar product of wn(x) and s.

The first step is again to apply Cauchy’s integral formula to (4.30) and to replace for all j with 1 ≤ j ≤ � the points
xj by xjn

∗ and all sj by s∗
j := sj r

−k/2. Further, we use the same curve as in the proof Theorem 4.1, but with a slightly
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different r ′. Explicitly, we replace r ′ by

r ′
� = r + v� with v� :=

∑�
j=1(e

−s∗
j − 1)rk(e−xj − e−xj+1)

ne−r
(4.31)

and use the same δ = (ne−r )−5/12. We then proceed to apply the saddle point method so that we arrive at

E�

[
exp

(−〈
s, w̃n(x)

〉)] = exp(−v� + f�(0))

er
√

2π(P ′′(r) + ne−r )

(
1 + O

(
r−1))

with

f�(ϕ) := P
(
r ′ − iϕ

) + ne−r ′
eiϕ +

�∑
j=1

(
e
−s∗

j − 1
) �xj+1n

∗−1�∑
k=�xj n∗�

θm

m
e−me−r′eiϕ

.

To prove the theorem, we have only to determine the coefficients of s2
j and sisj in f�(0). To do this, we first look at v�.

We use ne−r = P ′(r) and obtain

v� =
�∑

j=1

(
e−xj − e−xj+1

)(− sj

rk/2
+ s2

j

2rk
+ O

(
s3
j r−3k/2))(

1 + O(1/r)
)
. (4.32)

Using the expansion

P
(
r ′
�

) =P(r + v�) = P(r) + P ′(r)v� + 1

2
P ′′(r)v2

� + O
(
v3
� logk−2 n

)
,

and P ′(r) ∼ rk and P ′′(r) = O(rk−1), we immediately get

[
s2
j

][
P

(
r ′
�

)] = (e−xj − e−xj+1)

2

(
1 + O(1/r)

)
for 1 ≤ j ≤ �, (4.33)

[sisj ]
[
P

(
r ′
�

)] = O(1/r)) for i 
= j. (4.34)

Furthermore, using ne−r ′
� = ne−re−v� = P ′(r)(1 − v� + v2

�/2 + O(v3
� )), we obtain

[
s2
j

][
ner ′

�
] = (e−xj − e−xj+1)2 − (e−xj − e−xj+1)

2

(
1 + O(1/r)

)
for 1 ≤ j ≤ �, (4.35)

[sisj ]
[
ner ′

�
] = (

e−xj − e−xj+1
)(

e−xi − e−xi+1
)(

1 + O(1/r)
)

for i 
= j. (4.36)

Finally, applying Lemma 4.6, we get

�∑
j=1

(
e
−s∗

j − 1
) �xj+1n

∗−1�∑
k=�xj n∗�

θm

m
e−me−r′ =

�∑
j=1

(
e
−s∗

j − 1
)(

rk

∫ xj+1

xj

u−1e−u du + O
(
rk−1)). (4.37)

This implies

[
s2
j

][1

2

�∑
j=1

(
e
−s∗

j − 1
) �xj+1n

∗−1�∑
k=�xj n∗�

θm

m
e−me−r′

]
=

∫ xj+1

xj

u−1e−u du
(
1 + O(1/r)

)
, (4.38)

[sisj ]
[

�∑
j=1

(
e
−s∗

j − 1
) �xj+1n

∗−1�∑
k=�xj n∗�

θm

m
e−me−r′

]
= O(1/r). (4.39)
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Combining all these equations, we obtain

[
s2
j

][
f�(0)

] =
(e−xj − e−xj+1)2 + ∫ xj+1

xj
u−1e−u du(1 + O(1/r))

2

(
1 + O(1/r)

)
, (4.40)

[sisj ]
[
f�(0)

] = (
e−xj − e−xj+1

)(
e−xi − e−xi+1

)(
1 + O(1/r)

)
. (4.41)

This completes the proof Theorem 4.3.

4.3. Proof of Theorem 4.4

We use a similar method of proof as in [8, Section 4.3] and as in [15]. Theorem 4.3 gives us the convergence of the finite
dimensional distributions. It thus remains to prove the tightness of the process. This means we have to show that the
moment condition in [5, p. 128] is fulfilled. We begin with the generating function. We have

Lemma 4.8 ([8, Lemma 4.10]). For 0 ≤ x1 < x ≤ x2 arbitrary and x∗ := xn∗, x∗
1 := x1n

∗ and x∗
2 := x2n

∗

r2k · hnE�

[(
w̃n

(
x∗) − w̃n

(
x∗

1

))2(
w̃n

(
x∗

2

) − w̃n

(
x∗))2] (4.42)

= [
tn

][((
gx∗

x∗
1
(t) − Ex

x1

)2 + gx∗
x∗

1
(t)

)((
g

x∗
2

x∗ (t) − Ex2
x

)2 + g
x∗

2
x∗ (t)

)
exp

(
g�(t)

)]
with

gb
a(z) :=

∑
a≤j<b

ϑj

j
zj and Eb

a = E�

[
wn

(
bn∗) − wn

(
an∗)] for a < b.

We can now prove the tightness of the process w̃n(x
∗).

Lemma 4.9. We have for 0 ≤ x1 < x ≤ x2 < K with K arbitrary

E�

[(
w̃n

(
x∗) − w̃n

(
x∗

1

))2(
w̃n

(
x∗

2

) − w̃n

(
x∗))2] = O

(
(x2 − x1)

2). (4.43)

Proof. We use Lemma 4.8 and apply the proof of Theorem 2.5 to the function

gn(t) := exp
(
g�(t) + log

((
gx∗

x∗
1
(t) − Ex

x1

)2 + gx∗
x∗

1
(t)

) + log
((

g
x∗

2
x∗ (t) − Ex

x1

)2 + g
x∗

2
x∗ (t)

))
.

We claim that we can use the same curve and the same r and δ as in the proof of Theorem 2.5. Theorem 4.1 and Lemma 4.6
imply immediately that Ex

x1
= O(rk) and gx∗

x∗
1
(ee−r eiϕ

) = O(rk). It is thus immediate to show that we indeed can use the

same curve and the same r and δ. We thus arrive at

r2k
E�

[(
w̃n

(
x∗) − w̃n

(
x∗

1

))2(
w̃n

(
x∗

2

) − w̃n

(
x∗))2]

= ((
gx∗

x∗
1

(
e−e−r ) − Ex

x1

)2 + gx∗
x∗

1

(
e−e−r ))((

g
x∗

2
x∗

(
e−e−r ) − Ex2

x

)2 + g
x∗

2
x∗

(
e−e−r ))(

1 + o(1)
)
.

Differentiating (4.30) with respect to s1 and substituting s1 = 0 shows that

Ex
x1

= E�

[
w̃n

(
x∗) − w̃n

(
x∗

1

)] = 1

hn

[
tn

][
g

x∗
2

x∗ (t) exp
(
g�(t)

)] = g
x∗

2
x∗

(
e−e−r )(

1 + o(1)
)
. (4.44)

It is then clear that gx∗
x∗

1
(e−e−r

) − Ex
x1

= o(x − x1). Therefore

((
gx∗

x∗
1

(
e−e−r ) − Ex

x1

)2 + gx∗
x∗

1

(
e−e−r ))

r−k = O
(
gx∗

x∗
1

(
e−e−r )

r−k
)
.

Applying Lemma 4.6 then shows gx∗
x∗

1
(e−e−r

)r−k = O(x − x1). Similar considerations apply for x2. This completes the

proof. �
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5. Total variation distance

We have proven in Section 3.2 that for each fix b ∈ N

(C1,C2, . . . ,Cb)
d−→ (Y1, Y2, . . . , Yb) as n → ∞, (5.1)

where (Cm)bm=1 denote the cycle counts on Sn up to length b and (Ym)bm=1 are independent Poisson random variables
with E[Ym] = θm

m
. Unfortunately, the convergence in (5.1) is often not strong enough, since many interesting random

variables involve all or almost all cycle counts Cm. Thus, one needs estimates where b and n grow simultaneously. The
quality of the approximation can conveniently be described in terms of the total variation distance. For all 1 ≤ b ≤ n

denote by db(n) the total variation distance

db(n) := dTV
(
L(C1,C2, . . . ,Cb),L(Y1, Y2, . . . , Yb)

)
. (5.2)

The main result of this section is

Theorem 5.1. Let (b(n))n∈N be a sequence so that b(n) = o(nc) with 0 < c < (3k + 3)−
1

k+1 . Then one has that

db(n) = o(1). (5.3)

The computations in the proof of Theorem 5.1 and the similarities with the cases θm ≈ ϑ and θm ∼ mγ strongly suggest
that Theorem 5.1 might not be optimal. We expect that db(n) = o(1) if and only if b(n) = o(n/ logk(n)). However, our
current estimates for the error terms are too weak to prove this and a more sophisticated bound would be needed.

5.1. Proof of Theorem 5.1

The starting point for computing a total variation distance in a random permutation model is typically the so called
conditioning relation. This has been used in [2] of the uniform measure and also in [22] for the case θm ∼ mα and
in [3] for random permutations without macroscopic cycles. Before, we can state this conditioning relation (and prove
Theorem 5.1), we have to introduce some notations. We define

Yb := (Y1, Y2, . . . , Yb(n)) and Cb := (C1,C2, . . . ,Cb(n)), (5.4)

where (Ym)m∈N and (Cm)m∈N are as above. Inserting the definition of the total variation distance in (5.2), we get

db(n) = 1

2

∑
a∈Nb(n)

∣∣P�[Cb = a] − P[Yb = a]∣∣. (5.5)

Furthermore, we define

Tb1b2 :=
b2∑

k=b1+1

kYk for b1, b2 ∈ N with b1 ≤ b2. (5.6)

The conditioning relation [1, Equation (1.15)] now states that

P�[Cb = a] = P[Yb = a|T0n = n]. (5.7)

It is straight forward to see that (5.7) indeed holds also for all probability measures P�. Inserting (5.7) in (5.5) and using
the same computation as in the proof of [1, Lemma 3.1], one immediately obtains

db(n) =
∞∑

�=0

P[T0b(n) = �]
(

1 − P[Tb(n)n = n − �]
P[T0n = n]

)
+

(5.8)

with (x)+ = max{x,0}. We immediately get that

db(n) ≤ P[T0b(n) /∈ J ] + max
�∈J

(
1 − P[Tb(n)n = n − �]

P[T0n = n]
)

+
, (5.9)
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where J is an arbitrary subset of N. We now let J be the interval

J := [
E[T0b(n)] − g(n)

√
Var(T0b(n)),E[T0b(n)] + g(n)

√
Var(T0b(n))

]
(5.10)

for some g(n) with g(n) → ∞ and g(n) = o(logk/2(b(n))). Chebyshev’s inequality gives

db(n) ≤ max
�∈J

(
1 − P[Tb(n)n = n − �]

P[T0n = n]
)

+
+ O

(
g−2(n)

)
. (5.11)

Thus Theorem 5.1 is proven if we can show that P[Tb(n)n=n−�]
P[T0n=n] = 1 + o(1). The random variables Ym are independent

Poisson distributed and thus (5.6) implies that the probability generating function of Tb1b2 is given by

E
[
zTb1b2

] = exp

(
b2∑

m=b1+1

θm

m

(
zm − 1

))
. (5.12)

Using this observation and Corollary 2.3, we immediately get

P[Tb(n)n = n − �]
P[T0n = n] = exp(

∑b(n)
m=1

θm

m
)

hn

[
zn−�

][
exp

(
g�(z) −

b(n)∑
m=1

θm

m
zm

)]
. (5.13)

Theorem 2.5 gives us the asymptotic behaviour of hn. Thus it remains to compute

I tv
n := [

zn−�
][

exp

(
g�(z) −

b(n)∑
m=1

θm

m
zm

)]
. (5.14)

We accomplish this in similar way as in the proof of Theorem 2.5. Cauchy’s integral formula and the change of variable
z = e−w gives us

I tv
n = 1

2πi

∫
γ ′′

exp

(
g�

(
e−w

) + (n − �)w −
b(n)∑
m=1

θm

m
e−mw

)
dw, (5.15)

where γ ′′ is the same contour as in the proof of Theorem 2.5, see Figure 1.
We now split the curve γ ′′ into two parts. Explicitly, we denote by γ ′′2 the part of γ ′′ consisting of all w with w with

|w| ≤ 1
b(n) log2k(b(n))

and by γ ′′1,3 the remaining parts of γ ′′.

We begin by computing the integral over γ ′′2. We note that γ ′′2 includes γ ′′
2 as e−r ∼ logk(n)

n
and b(n) = O(nc) with

c < 1. Thus γ ′′2 contains the part giving the main contribution to the integral. We first show that w� = o(1). It follows
from (2.18) that θm ∼ logk(m). Since the Ym are independent Poisson random variables with parameter θm

m
, we get with

(5.6)

E[T0b(n)] =
b(n)∑
m=1

mE[Ym] =
b(n)∑
m=1

θm ∼ b(n) logk
(
b(n)

)
. (5.16)

Similarly, we obtain Var(T0b(n)) ∼ b2(n) logk b(n). Thus we get that � ∼ b(n) logk(b(n) and therefore w� = o(1). Further,
using |w| ≤ 1

b(n) log2k(b(n))
, we get for all w in γ ′′2

b(n)∑
m=1

θm

m
exp(−mw) =

b(n)∑
m=1

θm

m

(
1 + O(mw)

) =
b(n)∑
m=1

θm

m
+ o(1). (5.17)

Inserting this into the integral over γ ′′2 in (5.15), we obtain

I 2
n = exp(−∑b(n)

m=1
θm

m
+ o(1))

2πi

∫
γ ′′2

exp
(
g�

(
e−w

) + nw
)
dw.
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The last integral is the same integral as in the proof of Theorem 2.5. Thus we get

I 2
n = exp

(
−

b(n)∑
m=1

θm

m

)
· hn

(
1 + O

(
log−k/2(n)

))
. (5.18)

Inserting (5.18) into (5.13), we obtain

P[Tb(n)n = n − �]
P[T0n = n] = 1 + o(1) + exp(

∑b(n)
m=1

θm

m
)

hn

I 1,3
n , (5.19)

where I
1,3
n is the integral over γ ′′1,3. Clearly, γ ′′1,3 is a part of γ ′′

1 and γ ′′
3 . Thus we obtain as in the proof of Theorem 2.5,

that

∣∣I 1,3
n

∣∣ ≤ 2

2π

∫ π

d(n)

exp

(
Re

(
g�

(
e−eix )) − Re

(
b(n)∑
m=1

θm

m
e−mix

))
dx

≤ 2 exp(
∑b(n)

m=1
θm

m
)

2π

∫ π

d(n)

exp
(
Re

(
g�

(
e−eix )))

dx,

with d(n) := 1
b(n) log2k(b(n))

. Using the estimate in (2.39) for g�(e−eix
), we get

1

2π

∫ π

d(n)

exp
(
Re

(
g�

(
e−eix )))

dx ≤ 1

2π

∫ e(n)

− log(π)

exp

(
P(y) − 9

8
vP ′′(y)

)
e−y dy,

where e(n) := (1 + ε) log(b(n)) with ε > 0 arbitrary. Applying Lemma 2.6 with Q(y) = P(y) − 9
8vP ′′(y) − y, we get

that the last integral is bounded by

1

2π

exp(P (e(n)) − 9
8P ′′(e(n)) − e(n))

P ′(e(n)) − 9
8P ′′′(e(n))

≤ 2

2π

exp(P (e(n)))

P ′(e(n))
. (5.20)

We now insert this inequality into (5.19) and obtain

P[Tb(n)n = n − �]
P[T0n = n] = 1 + o(1) + O

(
exp(2

∑b(n)
m=1

θm

m
)

hn

2

2π

exp(P (e(n)))

P ′(e(n))

)
. (5.21)

Furthermore, we have by assumption b(n) = O(nc). This implies

b(n)∑
m=1

θm

m
= logk+1 b(n) + O

(
logk b(n)

) = ck+1 logk+1 n + O
(
logk(n)

)
. (5.22)

Similarly, we get

P
(
e(n)

) = 1

k + 1

(
c(1 + ε)

)k+1 logk+1(n) + O
(
logk(n)

)
.

Since c < (3k + 3)−
1

k+1 and P(r) = 1
k+1 rk+1 + O(rk), we get for ε small enough

exp

(
2

b(n)∑
m=1

θm

m

)
2

2π

exp(P (e(n)))

P ′(e(n))
≤ exp

(
2k + 3

k + 1
ck+1(1 + ε)k+1 logk+1(n)

)
≤ exp

((
1 − ε′)P(r)

)
for some ε′ > 0. It follows immediately from Theorem 2.5 that exp((1 − ε′)P (r)) = o(hn). Inserting this into (5.19)
completes the proof of Theorem 5.1.



2016 N. Robles and D. Zeindler

References

[1] R. Arratia, A. D. Barbour and S. Tavaré. Logarithmic Combinatorial Structures: A Probabilistic Approach. EMS Monographs in Mathematics.
European Mathematical Society (EMS), Zürich, 2003. MR2032426

[2] R. Arratia and S. Tavaré. The cycle structure of random permutations. Ann. Probab. 20 (3) (1992) 1567–1591. MR1175278
[3] V. Betz, H. Schäfer and D. Zeindler Random permutations without macroscopic cycles, 2017. To appear in Ann. Appl. Probab. Available at

arXiv:1712.04738.
[4] V. Betz, D. Ueltschi and Y. Velenik. Random permutations with cycle weights. Ann. Appl. Probab. 21 (1) (2011) 312–331. MR2759204

https://doi.org/10.1214/10-AAP697
[5] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New

York, 1999. MR1700749 https://doi.org/10.1002/9780470316962
[6] L. V. Bogachev and D. Zeindler. Asymptotic statistics of cycles in surrogate-spatial permutations. Comm. Math. Phys. 334 (2015) 39–116.

MR3304271 https://doi.org/10.1007/s00220-014-2110-1
[7] P. Chareka. A finite-interval uniqueness theorem for bilateral Laplace transforms. Int. J. Math. Math. Sci. 2007 (2007) Article ID 60916.

MR2365732 https://doi.org/10.1155/2007/60916
[8] A. Cipriani and D. Zeindler. The limit shape of random permutations with polynomially growing cycle weights. ALEA Lat. Am. J. Probab. Math.

Stat. 12 (2) (2015) 971–999. MR3457548
[9] S. Dereich and P. Mörters. Cycle length distributions in random permutations with diverging cycle weights. Random Structures Algorithms 46 (4)

(2015) 635–650. MR3346460 https://doi.org/10.1002/rsa.20520
[10] A. Dunn and N. Robles. Polynomial partition asymptotics. J. Math. Anal. Appl. 459 (2018) 359–384. MR3730445
[11] N. M. Ercolani and D. Ueltschi. Cycle structure of random permutations with cycle weights. Random Structures Algorithms 44 (1) (2014) 109–

133. MR3143592 https://doi.org/10.1002/rsa.20430
[12] W. J. Ewens. The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3 (1972) 87–112. Erratum: ibid. 3 (1972) 240; ibid. 3 (1972)

376. MR0325177 https://doi.org/10.1016/0040-5809(72)90035-4
[13] P. Flajolet. Singularity analysis and asymptotics of Bernoulli sums. Theoret. Comput. Sci. 215 (1–2) (1999) 371–381. MR1678788

https://doi.org/10.1016/S0304-3975(98)00220-5
[14] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, New York, 2009. MR2483235 https://doi.org/10.1017/

CBO9780511801655
[15] J. C. Hansen. A functional central limit theorem for the Ewens sampling formula. J. Appl. Probab. 27 (1) (1990) 28–43. MR1039182

https://doi.org/10.2307/3214593
[16] F. M. Hoppe. The sampling theory of neutral alleles and an urn model in population genetics. J. Math. Biol. 25 (2) (1987) 123–159. MR896430

https://doi.org/10.1007/BF00276386
[17] J. F. C. Kingman. The population structure associated with the Ewens sampling formula. Theor. Popul. Biol. 11 (2) (1977) 274–283. MR0682238

https://doi.org/10.1016/0040-5809(77)90029-6
[18] I. G. Macdonald. Symmetric Functions and Hall Polynomials, 2nd edition. Oxford Mathematical Monographs. The Clarendon Press, Oxford

University Press, New York, 1995. MR1354144
[19] A. Nikeghbali and D. Zeindler. The generalized weighted probability measure on the symmetric group and the asymptotic behaviour of the cycles.

Ann. Inst. Henri Poincaré Probab. Stat. 49 (4) (2011) 961–981. Available at arXiv:1105.2315. MR3127909 https://doi.org/10.1214/12-AIHP484
[20] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen. Acta Math. 68 (1937) 145–254.

MR1577579 https://doi.org/10.1007/BF02546665
[21] A. A. Shmidt and A. M. Vershik. Limit measures arising in the asymptotic theory of symmetric groups. Theory Probab. Appl. 22 (1) (1977) 70–85.

MR0448476
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