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Abstract. In the last decade, Hawkes processes have received a lot of attention as good models for functional connectivity in neural
spiking networks. In this paper we consider a variant of this process; the age dependent Hawkes process, which incorporates individual
post-jump behavior into the framework of the usual Hawkes model. This allows to model recovery properties such as refractory
periods, where the effects of the network are momentarily being suppressed or altered. We show how classical stability results for
Hawkes processes can be improved by introducing age into the system. In particular, we neither need to a priori bound the intensities
nor to impose any conditions on the Lipschitz constants. When the interactions between neurons are of mean-field type, we study large
network limits and establish the propagation of chaos property of the system.

Résumé. Depuis la dernière décennie il s’est avéré que la classe des processus de Hawkes fournit un bon modèle pour décrire la
connectivité fonctionnelle dans un réseau de neurones. Dans cet article nous étudions une variante de ce processus, le processus
de Hawkes structuré en âge. Cette structure en âge rajoute un comportement individuel après les sauts à la dynamique de chaque
composante, ce qui permet en particulier de décrire une période refractaire durant laquelle l’influence du réseau est supprimée ou au
moins modifiée. Nous améliorons les résultats de stabilité classiques pour les processus de Hawkes dans ce cadre. En particulier, nous
n’avons ni besoin de supposer que les intensités sont bornées, ni d’imposer une condition aux normes Lipschitz des fonctions taux de
saut. Lorsque les interactions entre les neurones sont du type champ moyen, nous étudions les limites en grande population et nous
démontrons la propriété de propagation du chaos du système.
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1. Introduction

In nature, macroscopic events caused by many microscopic events in an interacting network of units often exhibit a cas-
cading structure, so that they come in waves, for example caused by some events inhibiting or exciting the occurrence
of other events. Technological development permitting high-frequency data sampling in recent decades has made it pos-
sible to perform detailed analysis of the dependencies between units interacting in a cascade structure. It is therefore
relevant to develop models which can quantify temporal interactions between many units on a microscopic level. There
are many examples of phenomena of interest which occur in cascades and have been analyzed by Hawkes processes. Ex-
amples include bankruptcies in finance that propagate through a market, giving rise to volatility clustering observations
[1], interactions on social media [22], and pattern dependencies in DNA [21].

Hawkes processes are point processes where the intensity function is stochastic and allowed to depend on the past
history, introducing memory in the temporal evolution of the stochastic process. Initially introduced in [14] and [15], they
have commonly been used to model neurophysiological processes [3,4,8,11,20], and the application we have in mind is to
model functional connectivity between neurons in a network. When neurons send an electric signal, the so-called action
potential or spike, they excite or inhibit recipient neurons in the network (the post-synaptic neurons). Jumps of the ith unit
of the Hawkes process are then identified with the spike times of the ith neuron. Moreover, the biological process imposes
a strong self-inhibition on a neuron that has just emitted a spike. This period of about 2ms is called the absolute refractory
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period, and in this phase it is virtually impossible for a neuron to spike again. The neuron then gradually regains its ability
to spike in the longer relative refractory period. It was proposed in [3] to model absolute and relative refractory periods
in neuronal spike trains by age dependent Hawkes processes, where the age of a unit is defined as the time passed since
the last time it jumped, and thus, it resets to zero at each jump time. The present article is devoted to a thorough study of
its stability properties and associated mean-field limits.

It turns out that the classical stability results for Hawkes processes can be improved by introducing age into the system.
In particular, we neither need to a priori bound the intensities nor to impose any conditions on the Lipschitz constants. This
is interesting not only from a mathematical but also from a biological point of view. If a network of neurons is transmitting
some information over time, it is not operational nor realistic that intensities should be bounded, a given signal should be
transmitted without any necessary delay. However, if the activity explodes, the entire system breaks down. Introducing a
refractory period on the individual neuron stabilizes the system, while at the same time the information is still transferred
effectively by the network.

In the present paper we consider multivariate counting processes (Zi
t )t≥0, i = 1, . . . ,N , where N is the number of

units in the network.
The counting processes (Zi

t )t≥0, i = 1, . . . ,N , are characterized by their conditional intensities which can informally
be described as the instantaneous jump rate, given the past, that is,

λi
t dt ≈ P

(
Zi has a jump in (t, t + dt]|Ft

)
,

where Ft is the history of the entire network of neurons. The Hawkes process is defined by imposing a specific structure
on the conditional intensity.

Before giving a precise definition of the age dependent Hawkes process in Definition 1.1 below, let us start by describ-
ing and discussing its related components in a less formal way. We consider an N -dimensional point process (Zi)i≤N ,
where each coordinate Zi counts the jump events of the ith unit. The intensity of this process is a predictable process
depending on the history Ft before and up to time t . It is assumed to have the form

λi
t = ψi

(
Xi

t ,A
i
t

)
, (1)

where Xi
t is the memory process, a predictable process depending on the history Ft of the process, ψi is the rate function,

and Ai
t is the age process of Zi . Here follows a brief introduction of the involved objects.

The Rate Function (x, a) �→ ψi(x, a) describes how the memory and the age influence the intensity of the ith unit.
The existence of a non-exploding Hawkes process is generally ensured by assuming that ψi is sub-linear in x. Often,
stronger assumptions such as a uniform bound on ψi is also imposed to prove basic properties. In this article we will
work under standard Lipschitz- and linear-growth-conditions, but we shall not need to bound the rate function nor its
Lipschitz constant.

The Age Process Ai
t associated to the ith process Zi is the time elapsed since the last jump time of Zi before time t ,

that is,

Ai
t =

{
Ai

0 + t, if Zi has not jumped between time 0 and time t,

t − sup{s < t : �Zi
s > 0}, otherwise,

where �Zi
s = Zi

s − Zi
s− = Zi

s − limε→0+ Zi
s−ε are the jumps.

The Memory Process Xi
t integrates the effects of previous jumps in the network, where the influence from the past is a

weighted average of all previous jumps of all units that directly affect unit i (the pre-synaptic neurons). Each unit has its
own memory process, even if they all depend on the same common history of all units, but they are affected in individual
ways. More precisely, the ith memory process is assumed to have the structure

Xi
t =

N∑
j=1

∑
τ<t :�Z

j
τ =1

hij (t − τ) + Ri
t =

N∑
j=1

∫ t−

0
hij (t − s)Zj (ds) + Ri

t .

In the definition of the memory process we have introduced two new objects.
The Weight Function hij (t) determines how much a jump of unit j that occurred t time units ago contributes to the

present memory of unit i. Positive hij (t) means excitation of unit i when a jump of unit j occurred t time units ago, while
negative hij (t) means inhibition.

The Initial Signal Ri
t is a process assumed to be known at time t = 0. It should be thought of as a memory process

which the process inherits from past time.
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When Ri ≡ 0 and ψi(x, a) = f i(x) for a suitable function f i , we obtain the usual non-linear Hawkes process which
has been studied in detail, e.g., in [2].

In Section 2, we discuss stability of the age dependent Hawkes process. The main assumption is a post-jump bound on
the intensity, corresponding to a strong self-inhibition for a short time interval after a spike. This models the refractory
period. We do not impose any a priori bounds on the intensities. Within this sub-model, we are able to prove stability
properties for the N -dimensional Hawkes process. The results we obtain are similar to what has been shown for ordinary
nonlinear Hawkes processes in [2] and recently in [5]. This last paper is however entirely devoted to the study of weight
functions which are of compact support giving rise to explicit regeneration points when the process comes back to the all
zero measure. Compared to these studies, it turns out that the natural self-inhibition by the age processes eliminates the
need of controlling the Lipschitz constant of ψ , and we do not need any restriction on the support of the weight functions.
We also discuss which starting conditions (that is, which form of an initial process) will ensure that the Hawkes process
jumps in synchrony with the invariant process eventually. When this holds, the Hawkes process is said to couple with the
invariant process. These results are collected within our first main theorem, Theorem 2.2.

During the proof of the stability properties, other interesting properties of the model are discussed, such as a nice-
behaving domination of the intensities (Lemma 2.4).

In Section 3, we study a mean-field setup and associated mean-field limits. More precisely, we consider N interacting
units which are organized within K classes of populations. Each unit belongs to one of these classes, and any two units
within the same class k are assumed to be similar, k = 1, . . . ,K. This means that they have the same rate function ψk ,
memory process Xk and initial signal Rk , and the weight function describing the influence of any unit belonging to
another class l is given by N−1hkl . However, each unit still has its own age process.

In this setup we establish a limiting distribution for a large scale network, N → ∞. Let Nk be the number of units
in class k with proportion Nk/N , and assume limN→∞ Nk/N = pk > 0. We index the j th unit within class k by Zkj ,
k = 1, . . . ,K, j = 1, . . . ,Nk . It is sensible to assume that small contributions from unit Zlj to the memory process Xk

of the kth class disappear in the large-scale dynamics, meaning that N−1 ∑Nl

j=1

∫ t−
0 hkl(t − s)Zlj (ds) ≈ pl

∫ t

0 hkl(t −
s) dEZl1(s) for large N , for any 1 ≤ l ≤ K. Therefore, if a limiting point process (Zkj )j∈N exists, we expect that any
Zkj , k ≤ K, j ≥ 1, should have intensity

λ
kj
t = ψk

(
xk
t ,A

kj
t

)
,

where Akj is the age process of Zkj , and the process xk
t is deterministic, given by

xk
t =

K∑
l=1

pl

∫ t

0
hkl(t − s) dEZl1(s) + rk

t ,

where rk
t is a suitable limit of the initial processes in population k. In Theorem 3.2, we discuss criteria under which such

a system exists. Our second main theorem, Theorem 3.3, shows that this system will indeed be a limit process for the age
dependent Hawkes processes for N → ∞. We also discuss in Lemma 3.4 how robust the system is to adjusting the weight
functions. Not only is this robustness a good model feature in itself, but it also allows approximation of an arbitrary age
dependent Hawkes process, using weight functions with better features. Examples are weight functions given by Erlang
densities or exponential polynomials which induce Markovian systems, see [8].

We close our article with the Appendix where we collect some proofs and useful results about counting processes.

Notation, definitions and core assumptions

Throughout this article, we will be working on a background probability space (�,F,P ), and all random variables
are assumed to be defined on this space. If v = (v1, . . . , vd) is a d-dimensional Euclidian vector, then |v| = ∑d

i=1 |vi |
denotes the 1-distance. Moreover, for a d-dimensional process X we define the running-supremum of the 1-distance as
‖X‖t = sups≤t |Xs |.

We recall the basic Stieltjes integration notation. Let g : R→R be a càdlàg function. The variation of g on a bounded
interval I is given by

Vg(I ) = sup
(xi )∈I

∣∣g(xi) − g(xi−1)
∣∣ < ∞.

where I denotes the system of all finite sets of inceasing indices (xi) ⊂ I . g is said to be of finite variation, if the variation
is finite on all bounded intervals. For such g there exist two singular σ -finite measures μ+

g , μ−
g s.t. μg := μ+

g −μ−
g which
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satisfies μg(a, b] = g(b) − g(a). The variation measure |dg| := μ+
g + μ−

g satisfies |dg|(a, b] = Vg(a, b]. If f : R→ R is
a measurable function such that

∫ |f ||dg| < ∞ then we define the Lebesgue-Stieltjes integral as∫
f (x)dg(x) =

∫
f (x)dμg(x),

see e.g. [13]. If ν is a measure on R
2 we shall also use the following notation for the integral over semi-closed boxes

∫ b

a

∫ d

c

f (x, y)ν(dx, dy) =
∫

1
{
(a, b]}(x)1

{
(c, d]}(y)f (x, y)ν(dx, dy).

In the following we introduce the core mathematical objects and assumptions needed to discuss the age dependent
Hawkes process.

π | π and πi, i ∈ N, are i.i.d. Poisson Random Measures (PRMs) on R×R+ with Lebesgue intensity measure. For any
t ∈R, we define the σ -algebra F̃t induced by the projections

π
(
A ∩ (

(−∞, t] ×R+
))

,πi
(
A ∩ (

(−∞, t] ×R+
))

for A ∈ B(R×R+), i ∈ N.

We equip the space (�,F,P ) with the filtration (Ft )t∈R which is the completion of (F̃t )t∈R.
h| weight functions: For all 1 ≤ i, j ≤ N , hij :R+ → R is a locally integrable function.
Rt | initial signals: For all 1 ≤ i ≤ N , (Ri

t )t≥0 is an F0 ⊗ B measurable process on t ∈ R+ such that t �→ ERi
t is locally

bounded.
ψ | rate functions: For all 1 ≤ i ≤ N , ψi : R × R+ → R+ is a measurable function which is L-Lipschitz in x when the

age variables agree, and otherwise sub-linear in x, i.e.,∣∣ψi(x, a) − ψi
(
x′, a′)∣∣ ≤ L

∣∣x − x′∣∣1{
a = a′} + L

(
max

(∣∣x′∣∣, |x|) + 1
)
1
{
a �= a′}, (2)

for some L ≥ 1. By taking a possibly larger L we may, and will, also assume that

ψi(x, a) ≤ L
(
1 + |x|) ∀(x, a) ∈ R×R+. (3)

A0| initial ages (Ai
0)i∈N are F0-measurable random variables with support in R+.

With these definitions, we introduce the age dependent Hawkes process.

Definition 1.1 (The age dependent Hawkes process). Let N ∈ N and let (Z,X,A) = ((Zi)1≤i≤N, (Xi)1≤i≤N,

(Ai)1≤i≤N) be a triple consisting of an N -dimensional counting process Z, an N -dimensional predictable process X,
and an N -dimensional adapted càglàd process A. The triple is an N -dimensional age dependent Hawkes process with
weight functions (hij )i,j≤N , spiking rates (ψi)i≤N , initial ages (Ai

0)i≤N , and initial signals (Ri)i≤N if almost surely all
sample paths solve the system

Zi
t =

∫ t

0

∫ ∞

0
1
{
z ≤ ψi

(
Xi

s,A
i
s

)}
πi(ds, dz),

Xi
t =

N∑
j=1

∫ t−

0
hij (t − s)Zj (ds) + Ri

t ,

Ai
t − Ai

0 = t −
∫ t−

0
Ai

s Zi(ds),

(4)

for all t ≥ 0.

Remark 1. Notice that we choose the càglàd version of A, that is, A is left continuous and has right limits. All age
processes presented in the article will be càglàd as well. This is notationally convenient as the age process will appear in
the intensities for most point processes treated in this article.

Example 1.2 (Examples of rate functions). A possible choice of rate function is ψi(x, a) = f i(x)gi(a), where f i is
Lipschitz and gi is bounded. In particular, for the neuroscience application, it is possible to model an absolute refractory
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period of length δ by putting ψi(x, a) = f i(x)1{a > δ}. Another example are the rate functions considered in the time
elapsed neuron network model of [19] given by ψi(x, a) = f i(x)gi(a − si(x)), where gi ≡ 0 on R−, and where gi , si

are Lipschitz and bounded.

Example 1.3 (Initial process). Let zi(ds),1 ≤ i ≤ N , be F0-measurable point measures on [−∞,0] which we interpret
as the initial condition of the age dependent Hawkes process. We then typically think of initial processes Ri

t of the form

Ri
t =

N∑
j=1

∫ 0

−∞
hij (t − s)zj (ds),

provided the above expression is well-defined.

Well-posedness of the system (4) follows from

Proposition 1.4. Almost surely, there is a unique sample path (Z,X,A) solving (4). Moreover, Z is non-exploding.

Proof. Let h = ∑N
i,j=1 |hij | and R = ∑N

i=1 |Ri |. Assume first that R is bounded by some constant M > 0. Consider the
linear Hawkes processes

Z̃i
t =

∫ t

0

∫ ∞

0
1
{
z ≤ L(1 + Ys)

}
πi(ds, dz), 1 ≤ i ≤ N,

Yt =
N∑

j=1

∫ t−

0
h(t − s)Z̃j (ds) + M.

(5)

Notice that Z̃ is driven by the same PRMs as Z. It is well known that the system (5) almost surely has a path-wise unique
solution, which is defined for all t ∈ [0,∞) (see for example [7], Theorem 6). By induction over jump times of

∑N
j=1 Z̃j

it follows that (4) has a unique solution satisfying Zi
t ≤ Z̃i

t for all t ∈ R+, implying that Z does not explode.
In the general case define for each m ∈ N the N -dimensional age dependent Hawkes processes (Zm,Xm,Am) with

the same starting conditions and parameters as (Z,X,A) except for the initial processes, which are instead defined as
Rmi = −m ∨ Ri ∧ m. Write also λ

m,i
t = ψi(X

m,i
t ,A

m,i
t ) for the associated intensity and λ

m∧m+1,i
t := λ

m,i
t ∧ λ

m+1,i
t . We

have that

P
(
Zm

t �= Zm+1
t , t ∈ [0, T ])

≤ P(∃i :
∫ ∞

0

∫ T

0
1
{
z ∈ (

λm∧m+1,i
s , λm∧m+1,i

s + L
∣∣Rm,i

s − Rm+1,i
s

∣∣}πi(ds, dz) ≥ 1
)

≤ L

N∑
i=1

E

∫ T

0

∣∣Rm,i
s − Rm+1,i

s

∣∣ds.

Since E
∫ T

0 |Ri
s |ds < ∞, we conclude that∑

m

P
(
Zm

t �= Zm+1
t , t ∈ [0, T ]) < ∞,

implying that almost surely, the limit Z = limm→∞ Zm exists. It is straightforward to show that Z solves (5). �

2. Stability

We start this section by discussing the stability of the age dependent Hawkes process within a sub-model where age acts as
an inhibitor. For nonlinear Hawkes processes with no age dependence, a thorough investigation of invariant distributions
and couplings was done in [2]. However, for results where boundedness is not forced upon the system (Theorem 1 of [2]),
stability depends on the Lipschitz constant L of ψ in (2). As we show in Theorem 2.2 below, such restrictions are not
necessary when age is incorporated as an inhibitor. The fact that the model has desirable stability properties is indicated
by the result of Lemma 2.4, where we state a strong control of the intensity.
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Throughout this section, the processes are defined on the entire real line R unless otherwise mentioned. We do this for
the following reason. When studying stability and thus the existence of stationary versions of infinite memory processes
such as (age dependent) Hawkes processes, a widely used approach is to construct the process starting from t = −∞. If
such a construction is feasible, this implicitly implies that the state of the process at time t = 0 must be in a stationary
regime. Therefore, throughout this section we will work with random measures Z defined on the entire real line, with the
usual identification of processes and random measures given by Zt = Z((0, t]), for all t ≥ 0, and Zt = −Z((t,0]), for all
t < 0. We shall also use the shift operator θr which is defined for any r ∈ R by

θrZ(C) := Z(r + C) := Z
({r + x : x ∈ C}), (6)

for any C ∈ B(R).

Setup in this section

We consider a system with a fixed number of units N . Introduce the functions

hij (t) = sup
s≥t

|hij |(s), h(t) =
N∑

i,j=1

|hij |.

In addition to the fundamental assumptions we add the following set of assumptions.

Assumption 1. 1. There exist K and δ > 0 such that

ψi(x, a) ≤ K for all 1 ≤ i ≤ N,a ∈ [0, δ], x ∈ R. (7)

2. There exist x∗, a∗, c > 0 such that for all |x| ≤ x∗, a ≥ a∗ and for all 1 ≤ i ≤ N ,

ψi(x, a) ≥ c > 0. (8)

3. We suppose that

[0,∞[� t �→ hij (t) ∈ L1 ∩L2 and [0,∞[� t �→ thij (t) ∈ L1. (9)

Notice that (9) implies that

h :=
N∑

i,j=1

hij ∈ L1 ∩L2 (10)

is a decreasing function that dominates hij for all i, j ≤ N .

Remark 2. The existence of K , δ in (7) excludes instantaneous bursting by imposing a bound on the immediate post-
jump intensity. Moreover the existence of x∗, a∗, c in (8) ensures that no unit will eventually stop spiking. A main example
of rate functions that satisfy this assumption are those inducing absolute refractory periods as given in Example 1.2.

The assumption h ∈ L1 is natural, at least in the context of modeling interacting neurons. To obtain stability, it is
usually assumed that the weight functions are integrable. Here we impose the slightly stronger assumption that h̄ij ∈ L1;
that is, there exists a decreasing integrable function dominating hij .

Throughout this section we use the following notation. For K > 0 as in (7) above, we denote the PRMs

πK(ds) := π
(
ds, [0,K]), πi

K(ds) := πi
(
ds, [0,K]) and πNK :=

N∑
i=1

πi
K. (11)

Example 2.1 (Hawkes processes with Erlang weight functions). Weight functions given by Erlang kernels are widely
used in the modeling literature to describe delay in the information transmission. They are given by

hij (t) = cij t
nij e−νij t , t ≥ 0,
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where cij ∈ R, νij > 0 and nij ∈ N ∪ {0} are fixed constants. The order of the delay is given by nij . The delay of the
influence of particle j on particle i is distributed and taking its maximum absolute value at nij /νij time units back in
time. The sign of cij indicates if the influence is inhibitory or excitatory, and the absolute value of cij scales how strong
the influence is. All hij clearly satisfy (9).

The main result of this chapter shows existence of a unique stationary N -dimensional age dependent Hawkes process
following the dynamics of (4). In order to state the result, we first introduce the notion of compatibility (see e.g. [2]).
Let MR− be the set of all bounded measures defined on R− equipped with the weak-hat metric and the associated Borel
σ -algebra MR− (see the Appendix for details). We shall say that Z is compatible (to π1, . . . , πN) if there is a measurable
map H : MN

R− → MR− such that for all t ∈ R,

(
θ tZ

)
|R− = H

((
θ tπ1, . . . , θ tπN

)
|R−

)
(12)

Likewise, we say that a stochastic process X is compatible, if Xt = H((θtπ1, . . . , θ tπN)|R−) for an appropriate measur-
able mapping H .

Remark 3. Note that if Z1, . . . ,Zn are compatible random measures, then (Z1, . . . ,Zn) is a stationary and ergodic
n-tuple of random measures.

Let Z = (Zi), 1 ≤ i ≤ N , be compatible random measures on R. Let X = (Xi)i≤N , A = (Ai)i≤N be compatible
processes defined on t ∈ R such that Ai

t is adapted and càglàd and Xi
t is predictable for all 1 ≤ i ≤ N . We say that Z is

an N-dimensional age dependent Hawkes process on t ∈R, if almost surely

Zi(t1, t2] =
∫ t2

t1

∫ ∞

0
1
{
z ≤ ψi

(
Xi

s,A
i
s

)}
πi(ds, dz),

Xi
t =

N∑
j=1

∫ t−

−∞
hij (t − s)Zj (ds) t ∈R,

Ai
t2

− Ai
t1

= t2 − t1 −
∫ t2−

t1

Ai
t Z

i(dt),

(13)

for all −∞ < t1 ≤ t2.

Theorem 2.2. Grant Assumption 1.

1. There exists an N -dimensional age dependent Hawkes process Z on R, compatible to (π1, . . . , πN).
2. Let Ž be another N -dimensional age dependent Hawkes process with the same weight functions (hij )i,j≤N and driven

by the same PRMs (π1, . . . , πN), following the dynamics (4), that is, starting at time 0 with arbitrary initial ages
(Ǎi

0)i≤N and initial signals (Ri)i≤N such that

E

∫ ∞

0

∣∣Ri
s

∣∣ds < ∞ (14)

for all 1 ≤ i ≤ N . Then almost surely, Ž and Z couple eventually, i.e.,

∃ t0 ∈R+ : Ž|[t0,∞) = Z|[t0,∞).

3. If Z′ is another N -dimensional age dependent Hawkes process on R, compatible to (π1, . . . , πN), then Z = Z′ almost
surely.

The proof of the above theorem will be given in the next subsection. An immediate corollary of it is an ergodic theorem
for additive functionals of age dependent Hawkes processes depending only on a finite time horizon. More precisely, let
T > 0 be a fixed time horizon and let MT be the set of all bounded measures defined on ]−T ,0], equipped with its Borel
σ -algebra MT (see the Appendix).



Stability and mean-field limits of age dependent Hawkes processes 1965

Corollary 2.3. Grant Assumption 1. Let (Z,X,A) be the stationary age dependent Hawkes process and let Ž be as in
Item 2. of Theorem 2.2. Let f : MT → R be any measurable function such that

μ(f ) := Ef
(
(Z| ]−T ,0])

)
< ∞. (15)

Then

1

t

∫ t

0
f

((
θsŽ| ]−T ,0]

))
ds = 1

t

∫ t

0
f

(
(Ž| ]s−T ,s])

)
ds → μ(f ) (16)

almost surely, as t → ∞.

Proof. By ergodicity of (Z,X,A), it holds that

1

t

∫ t

0
f

((
θsZ| ]−T ,0]

))
ds = 1

t

∫ t

0
f

(
(Z| ]s−T ,s])

)
ds → μ(f ).

Since Ž|[t0,∞) = Z|[t0,∞), we have that

f
((

θsŽ| ]−T ,0]
)) = f

((
θsZ| ]−T ,0]

))
for all s ≥ t0 + T ,

which implies (16). �

2.1. Proof of Theorem 2.2

This section is devoted to the proof of Theorem 2.2, and we will thus work under Assumption 1.
The proof of the existence part relies on the Picard iteration

X
n,i
t =

N∑
j=1

∫ t−

−∞
hij (t − s)Zn−1,j (ds),

(17)

Zn,i(t1, t2] =
∫ t2

t1

∫ ∞

0
1
{
z ≤ ψi

(
Xn,i

s ,An,i
s

)}
πi(ds, dz), t1 < t2 ∈ R,

where An,j is the age process of Zn,j . The Picard iteration is similar to the one found in [2], but since the system has
an age variable and the intensity is not neccesarily bounded, the following issues must be addressed before proving
convergence.

• We need to produce an integrable intensity λ̂ that a priori dominates the intensities ψi(X
n,i
t ,A

n,i
t ). This is done in

Proposition 2.6.
• Using the Lipschitz part of (2), we will construct events Et ∈ Ft for all t ∈ R such that A

n,i
t = A

n+1,i
t on Et , for all

n ∈N, i ≤ N . This is done in Lemma 2.7.
• We need to ensure that the ith iteration is well defined, i.e. for a given Xn,i there exist Zn,i , An,i such that (17) is

satisfied. This is done in Lemma 2.8.

Finally we combine these results to complete the proof of Theorem 2.2. We start with the following useful result which
provides bounds on the intensities.

Lemma 2.4. Let K , δ be the constants from (7). Let X be a predictable stochastic process and assume that (Z,A) solves
the system

Z(t1, t2] =
∫ t2

t1

∫ ∞

0
1
{
z ≤ ψ(Xs,As)

}
π(ds, dz), t1 ≤ t2 ∈R,

where A is the age process of Z and where ψ satisfies (2) and (7). Suppose moreover that (9) is satisfied. Then almost
surely, for any 1 ≤ i, j ≤ N , t1 ≤ t2,

Yij (t1, t2) =
∫ t1−

−∞
hij (t2 − s)Z(ds)
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is well-defined and

∣∣Yij (t1, t2)
∣∣ ≤

∞∑
k=0

hij (t2 − t1 + At1 + kδ) +
∫ t1−At1

−∞
hij (t2 − s)πK(ds). (18)

Moreover,

E

∫ t

−∞
hij (t − s)πK(ds) < ∞

for all t .

Corollary 2.5. If we suppose in addition that h̄(0) < ∞, then

EYij (t, t) ≤ K

∫ ∞

0
h̄(u) du +

∑
k≥0

h̄(kδ) < ∞. (19)

Proof of Lemma 2.4. For any i, j ≤ N , t ≤ t2 we have

∣∣Yij (t, t2)
∣∣ ≤

∫ t−

−∞
hij (t2 − s)1{As ≥ δ}Z(ds) +

∫ t−

−∞
hij (t2 − s)1{As < δ}Z(ds)

=
∫ t−At

−∞
hij (t2 − s)1{As ≥ δ}Z(ds) +

∫ t−At

−∞
hij (t2 − s)1{As < δ}Z(ds)

≤
∫ t−At

−∞
hij (t2 − s)G(ds) +

∫ t−At

−∞
hij (t2 − s)πK(ds)

:= Ŷij (t, t2) + Ỹij (t, t2),

where G(dt) = 1{At ≥ δ}Z(dt). Define now for fixed t ∈ R and for all l ∈ N, τl(t) := sup{s < τl−1(t) : �Gs = 1}, where
we have put τ0(t) := t − At . Thus, τl(t) is the lth jump-time of G before t − At – which is itself the last jump-time of Z

strictly before time t .
We may upper bound Ŷij by

Ŷij (t, t2) ≤
G(−∞,t)∑

l=0

hij

(
t2 − τl(t)

)
.

Since τl(t) − τl−1(t) ≥ δ by construction of G and since hij is decreasing, we get the bound

Ŷij (t, t2) ≤
∞∑
l=0

hij (t2 − t + At + lδ).

Note that almost surely, At never attains the value 0 for any t ∈ R, and in that event, each term in the above sum is finite
for all t ≤ t2 ∈ R. Moreover, since hij is L1 and decreasing the sum is finite as well. The expectation t �→ EỸ (t, t) is
given by

EỸij (t, t) = lim
T →∞E

∫ t−At

−T

hij (t − s)πK(ds)

≤ lim
T →∞E

∫ t

−T

hij (t − s)πK(ds) = K

∫ ∞

0
hij (u) du < ∞. �

We now construct the dominating intensity, as mentioned in the start of the section. Recall that L ≥ 1 is the Lipschitz
constant appearing in (2) and let K , δ be the constants from (7), we suppose w.l.o.g. that K ≥ c, where c is the lower
bound from (8).
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Proposition 2.6. Let C ≥ max{1 +∑
k≥1 h̄(kδ),K}. There exists a compatible process (Ẑ, Â, λ̂) which is defined for any

t ∈ R by

λ̂t = L

(
C +

∫ t−

−∞
h̄(t − s)πNK(ds) + h̄(Ât )

)
, (20)

where

Ẑ(t1, t2] =
N∑

i=1

∫ t2

t1

∫ ∞

0
1{z ≤ λ̂s}πi(ds, dz) (21)

for all t1 ≤ t2, together with its age process Ât . Moreover, we have that

E(λ̂t ) < ∞. (22)

Proof. By construction, λ̂t ≥ K for all t , and therefore, any jump time τ of πi
K is also a jump of Ẑ. Hence, at τ , the

age process Ât is reset to 0. It is therefore possible to construct a unique solution to (20) on t ∈ (τ,∞). This solution
is non-exploding since the process is stochastically dominated by a classical linear Hawkes process Z′ having intensity
L(C +∫ τ−

−∞ h̄(t − s)πNK(ds)+2
∫ t−
τ

h̄(t − s)Z′(ds)) which is non-exploding by Proposition 1.4 since h̄ ∈ L1. A solution
on the entire real line may be constructed by pasting together the solutions constructed in between the successive jump
times of πNK . It is unique and compatible by construction.

It remains to prove that E(λ̂t ) < ∞. Due to stationarity, it is sufficient to prove that Eh̄(Â0) < ∞. Also from station-
arity, writing T1 for the first jump time of Ẑ after time 0, it follows that L(T1) = L(Â0). It follows from Lemma A.3 in
the Appendix that

P(T1 > t) = P
(
Z[0, t] = 0

) = E

(
exp

(
−

∫ t

0

(
LC + Lξs + Lh̄(Â0 + s)

)
ds

))
,

where ξs := ∫ 0−
−∞ h(s − u)πNK(du), implying that, since Â0 ≥ 0 and h̄ is decreasing,

E
(
h̄(Â0)

) =
∫ ∞

0
E

(
h̄(t)e− ∫ t

0 (LC+Lξs+Lh̄(Â0+s)) ds
(
LC + Lξt + Lh̄(Â0 + t)

))
dt

≤ L

∫ ∞

0

(
h̄(t)2 + h̄(t)E(ξ0) + h̄(t)C

)
dt < ∞,

since h̄ ∈ L1 ∩L2. �

We now proceed to the construction of events Et which a priori will serve by coupling the age processes in the Picard
iteration. Indeed, Assumption (8) will enable us to construct common jumps for any two point processes Z1, Z2 having
intensity ψ(X̃1

t ,A
1
t ) and ψ(X̃2

t ,A
2
t ), where Ai

t is the age process of Zi , and X̃i
t is a predictable process such that

ψ
(
Xi

t ,A
i
t

) ≤ λ̂t ,

for i = 1,2.
Fix some p > a∗ such that

∑
k≥1

Lh̄(p + kδ) <
x∗

3N
, (23)
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where a∗ and x∗ are given in (8), and fix some M > LC where L and C are as in (20). Then necessarily M ≥ K ≥ c.
Introduce for all t ∈ R the events

E1
t := {

π1(ds, [0, c]) has a unique jump τ 1 in (t − 2Np + p, t − 2Np + 2p])}
∩

N⋂
j=1

{∫ τ 1−

t−2Np

∫
R+

1{z ≤ M}πj (ds, dz) = 0

}

∩
N⋂

j=1

{∫ t−2Np+2p

τ 1

∫
R+

1
{
z ≤ M + 2Lh̄

(
s − τ 1)}πj (ds, dz) = 0

}
, (24)

and for all i = 2, . . . ,N ,

Ei
t := {

πi
(
ds, [0, c]) has a unique jump τ i in

(
t − 2Np + 2(i − 1)p + p, t − 2Np + 2ip])}

∩
N⋂

j=1

{∫ τ i−

t−2Np+2(i−1)p

∫
R+

1
{
z ≤ M + 2Lh̄

(
s − (

t − 2Np + 2(i − 1)p
))}

πj (ds, dz) = 0

}

∩
N⋂

j=1

{∫ t−2Np+2ip

τ i

∫
R+

1
{
z ≤ M + 2Lh̄

(
s − τ i

)}
πj (ds, dz) = 0

}
, (25)

where the constant c is given in (8). This event splits the interval (t − 2Np, t) up in intervals of length 2p, where the ith
truncated PRM has exactly one jump in the second part, and no other events (of truncated PRMs) occur.

To control the past up to time t − 2Np, we also introduce the event

E0
t := {

λ̂t−2Np + x∗ ≤ M
} ∩

{∫ t−2Np

−∞
h̄(t − 2Np − s)πNK(ds) ≤ x∗

3N

}

and put

Et :=
N⋂

i=0

Ei
t . (26)

The event E2Np is illustrated in Figure 1, for N = 2 and h(t) ≈ t−0.4. The grey area is the relevant part for the truncated
PRMs.

The main feature of the event E2Np with N = 2 is the fact that the process is forced to have some regeneration events
during the intervals ]p,2p] and ]3p,4p]. Indeed, on these intervals, the corresponding age processes will have values
larger than p > a∗, and the associated memory processes will be bounded by x∗, such that we can use (8).

Let us return to the general definition of the events Et . Using induction and the strong Markov property, it follows
from integrability of h̄ that P(

⋂j

i=0 Ei
t ) > 0 for all t ∈ R, j ≤ N . In particular P(Et) > 0. Let us define

Yt :=
∫ t−Ât

−∞
h(t − s)πNK(ds) +

∞∑
k=0

h̄(Ât + kδ). (27)

We summarize the most important features of the event Et in the next lemma.

Lemma 2.7. On Et , for all 1 ≤ i ≤ N , each measure πi(ds, [0, c]) has a jump at time τ i ∈ (t − 2Np, t) such that∫ t

t−2Np

∫
R+

1
{
s �= τ i, z ≤ λ̂s

}
πi(ds, dz) = 0, (28)

λ̂τ i ≤ λ̂t−2Np + 2i

3N
x∗, (29)

Yτi ≤ 2i

3N
x∗. (30)
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Fig. 1. An illustration of the event E2Np with N = 2 and h(t) ≈ t−0.4. The figure shows a superposition of π1(•), π2(�), including the jump times

τ1 and τ2, and three curves: The dotted curve is the constant c. The dashed curve is the intensity process λ̂. The solid curve is enclosing the area (in
grey) of the plane that is relevant to the event E2Np , and it is given by M for 0 < s ≤ τ1, M + 2Lh(s − τ1) for τ1 < s ≤ 2p, M + 2Lh(s − 2p) for

2p < s ≤ τ2 and M + 2Lh(s − τ2) for τ2 < s ≤ 4p.

Moreover, |τ i − τ i−1| ≥ a∗, where we put τ 0 = t − 2Np. In particular, take any two point processes Z1, Z2 having
intensity ψ(X̃1

t ,A
1
t ) and ψ(X̃2

t ,A
2
t ), where Ai

t is the age process of Zi , and X̃i
t is a predictable process such that

ψ
(
Xi

t ,A
i
t

) ≤ λ̂t ,

for i = 1,2. It holds that A1
t = A2

t under the event Et .

Proof. Let (τ i)i≤N be the jump times as given in the definition of Et . By construction, the inter-distances are at least
equal to p and thus strictly larger than a∗, since we chose p > a∗. We shall prove by induction over j that

∫ t−2Np+2jp

t−2Np

∫
R+

1
{
s �= τ i, z ≤ λ̂s

}
πi(ds, dz) = 0 ∀i ≤ N

as well as (29) and (30) hold for i ∈ {0, . . . , j} in the event Et . The induction start is trivial, so assume that the assertion
is true up to j − 1. Notice that by the induction assumption

λ̂s ≤ λ̂t−2Np + 2(j − 1)

3N
x∗ + 2Lh

(
s − τ j−1),

for s ≥ τ j−1 and until the next jump of Ẑ. It follows from the construction of Ej ∩ Ej−1 that Ẑ(τ j−1, τ j ) = 0. This
proves the first claim. It also shows that Âτj > p so the properties of p gives 2Lh(τ j − τ j−1) ≤ 2x∗

3N
which implies the

remaining claims. �

The next result ensures that for a well-behaving process Xi there exist couples (Zi,Ai) such that Zi has intensity
ψi(Xi,Ai) and Ai is the age of Zi . The proof relies on a Picard iteration of (13) that alternately updates (Xi)i≤N and
(Zi,Ai)i≤N .

Lemma 2.8. Let (Ẑ, Â, λ̂) be as in Proposition 2.6 and let (Xi
t )t∈R,1 ≤ i ≤ N , be compatible and predictable stochastic

processes satisfying that almost surely,

∣∣Xi
t

∣∣ ≤ Yt , (31)

for all 1 ≤ i ≤ N , t ∈R.
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Then there exist random counting measures Zi,1 ≤ i ≤ N , on R which are compatible, and compatible càglàd pro-
cesses Ai,1 ≤ i ≤ N , which almost surely satisfy

Zi(B) =
∫

B

∫ ∞

0
1
{
z ≤ ψi

(
Xi

s,A
i
s

)}
πi(ds, dz), ∀B ∈ B(R), (32)

for all 1 ≤ i ≤ N , where Ai is the age process of Zi .

Proof. The proof relies on Picard iteration. For that sake, define recursively for all n ≥ 1, for all 1 ≤ i ≤ N ,

Zn,i(t1, t2] =
∫ t2

t1

∫ ∞

0
1
{
z ≤ ψi

(
Xi

s,A
n−1,i
s

)}
πi(ds, dz), t1 < t2 ∈ R, (33)

where An−1,i is the age process corresponding to Zn−1,i . We initialize the iteration with Z0,i ≡ πi
K .

We start by proving inductively over n that the Picard iteration is well-posed, and Zn is non-exploding and compatible.
The induction start is trivial. We assume that the hypothesis holds for n − 1. Clearly Zn is compatible. Moreover, Zn,i

has intensity ψi(Xi
t ,A

n−1,i
t ) ≤ L(1 + Yt ), and EYt < ∞ implying that Zni does not explode.

We will now prove the convergence of the above scheme. To do so, define measures Zi and Z
i

by

Zi[t] = lim inf
n→∞ Zni[t], Z

i[t] = lim sup
n→∞

Zni[t]

for any t ∈R, and

Z̃ =
N∑

i=1

(
Z

i − Zi
)
.

That is, Z̃ counts the sum of the differences of the superior and inferior limit processes. We claim that Z̃ is almost surely
the trivial measure. It will follow that Zn,i , and thus also An,i converge.

To prove this claim, consider the event

Gt = {
Z̃(t,∞) = 0

}
.

Notice that {Z̃(t,∞) = 0} = {θ t (πi)Ni=1 ∈ V } for some V ∈M and thus {Z̃(t,∞) = 0 infinitely often} is an invariant set,
and thus also a 0/1 event. It follows by standard arguments that P(Z̃(R) = 0) = 1 if P(G0) > 0.

We now prove that P(G0) > 0 by showing that E0 ⊂ G0, where E0 was defined in (26) above (that is, we choose
t = 0).

The assumption |Xi
t | ≤ Yt implies that λ

n,i
t ≤ λ̂t for all i, n and t . Lemma 2.7 implies that on Et we have Âτ i ≥ a∗,

and therefore also A
n,i

τ i ≥ a∗. Moreover, (30) implies that |Xi
τ i | ≤ x∗. Therefore, (8) implies

λ
n,i

τ i ≥ c (34)

for all n, i. As a consequence, at time τ i , all Zni have a common jump. From (28) it follows that Zni(τ i,0) = 0, and
therefore, A

n,i
0 = −τ i . In particular, they are all equal. We may now conclude that on E0, Z

n,i
|R+ is a constant sequence

over n, for all i. In particular, we have Z̃(0,∞) = 0. To conclude the proof, we have proven that E0 ⊂ G0, and thus

P(G0 ∩ E0) = P(E0) > 0,

implying the result. �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. First we construct a stationary solution to (13). For this sake we consider the Picard iteration

X
n,i
t =

N∑
j=1

∫ t−

−∞
hij (t − s)Zn−1,j (ds),



Stability and mean-field limits of age dependent Hawkes processes 1971

Zn,i(t1, t2] =
∫ t2

t1

∫ ∞

0
1
{
z ≤ ψi

(
Xn,i

s ,An,i
s

)}
πi(ds, dz), t1 < t2 ∈ R,

where An,j is the age process of Zn,j . We initialize the iteration with Z0,i ≡ πi
K , X0 ≡ 0.

We start by proving inductively over n that the Picard iteration is well-posed, Zn,i is non-exploding and compatible,
and almost surely

L
(
1 + ∣∣Xn,i

t

∣∣) ≤ λ̂t ∀t ∈R, (35)

for all n, i, where λ̂ is defined in (20) above. The induction start is trivial. Suppose now that the assertion holds for
n − 1. We apply Lemma 2.8 with Xi = Xn,i , and show that the conditions of this Lemma are met, then well-posedness,
ergodicity and stationarity of Zn,i , An,i follow.

Next, we prove the upper bound on Xn,i . By construction,

X
n,i
t =

N∑
j=1

∫ t−

−∞
hij (t − s)Zn−1,j (ds) =

N∑
j=1

∫ t−A
n−1,j
t

−∞
hij (t − s)Zn−1,j (ds).

We apply Lemma 2.4 to each of the N terms within the above sum and obtain

∫ t−A
n−1,j
t

−∞
hij (t − s)Zn−1,j (ds) ≤

∑
k≥0

h̄ij

(
A

n−1,j
t + kδ

) +
∫ t−A

n−1,j
t

−∞
h̄ij (t − s)π

j
K(ds). (36)

Since λ̂t ≥ ψi(X
n−1,i
t ,A

n−1,i
t ) for all i, it follows that Ât ≤ A

n−1,i
t for all i, implying that

∣∣Xn,i
t

∣∣ ≤
∫ t−Ât

−∞
h̄(t − s)πNK(ds) +

∑
k≥0

h̄(Ât + kδ),

which is (31). Finally, since An−1, Zn−1 are compatible, it is straight-forward to show that Zn is compatible as well.
Define now

λi
t = lim inf

n→∞ ψi
(
X

n,i
t ,A

n,i
t

)
, λ

i

t = lim sup
n→∞

ψi
(
X

n,i
t ,A

n,i
t

)
, 1 ≤ i ≤ N.

Note that by (3) and (35), λi
t ≤ λ

i

t ≤ lim supn→∞ L(1 + |Xn,i
t |) ≤ λ̂t . So almost surely, λi , λ

i
have finite sample paths.

Note also that they are limits of predictable processes (see Lemma A.1 in the Appendix), and thus they are predictable as
well. Define also

Z̃i[t] = lim sup
n→∞

Zn,i[t] − lim inf
n→∞ Zn,i[t] = πi

({t} × (
λi

t , λ
i

t

])
,

for i ≤ N , t ∈R. That is, Z̃i counts the difference of the superior and inferior limit process. We claim that

Z̃ =
N∑

j=1

Z̃j (37)

is almost surely the zero-measure. It will follow that Zn,j , and thus also Xn,i , An,i converge. Moreover, it is straight
forward to check that the limit variables solve (13).

To prove this claim, note that we may also find measurable Hi : MR×R+ →R
2 such that almost surely

Hi
(
θ t

(
πi

)N

i=1

) = (
λi

t , λ
i

t

)
, ∀t ∈R.

Consider the events Et defined in (26) above as well as

Gt = (
Z̃(t,∞) = 0

)
.
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Using the functionals obtained previously, it follows that {Z̃(t,∞) = 0} = {θ t (πi)Ni=1 ∈ V } for some V ∈ M and thus
{Z̃(t,∞) = 0infinitely often} is an invariant set, and thus also a 0/1 event. As before this implies that P(Z̃(R) = 0) = 1
if P(G0 ∩ E0) > 0.

To prove that P(G0 ∩ E0) > 0, note that we have λ
n,i
t = ψ(X

n,i
t ,A

n,i
t ) ≤ λ̂t and |Xn,i

t | ≤ Yt . Therefore, the same
arguments as those exposed in the proof of Lemma 2.8, show that on E0, we have A

n,i
0 = A

m,i
0 ; for all n, m and i, that is,

the age variables are all equal at time 0.
Moreover, on G0, either no jumps happen any more, or they happen conjointly, and so the Lipschitz criterion (2)

ensures the bound

∣∣λi

t − λi
t

∣∣ ≤ L lim
n→∞ sup

m,k≥n

∣∣Xm
t − Xk

t

∣∣ ≤ L

∫ 0−

−∞
h(t − s)Z̃(ds) := X̄t ,

for all t ≥ 0, which holds on G0 ∩ E0. Therefore we may write

P(G0 ∩ E0) ≥ P

(
E0 ∩

{
N∑

j=1

∫ ∞

0

∫ ∞

0
1
{
z ∈ (

λ
j
s , λ

j
s + X̄s

]}
πj (ds, dz) = 0

})
.

Note that Lemma A.3 in the Appendix reveals that the compensator of the integral-sum above is

t �→ N

∫ t

0
X̄s ds = NL

∫ t

0

∫ 0−

−∞
h(s − u)Z̃(du)ds.

The same lemma gives an expression for P(Z̄(0,∞) = 0|F0), and so implies the lower bound

P(G0 ∩ E0) ≥ E1{E0} exp

(
−NL

∫ ∞

0

∫ 0−

−∞
h(s − u)Z̃(du)ds

)
.

To prove that the right hand side is positive, it suffices to show that the double integral inside the exponential is almost
surely finite. Notice that by construction, Z̃t ≤ Ẑt , and recall from Proposition 2.6 that λ̂ is stationary with Eλ̂0 < ∞.
After taking expectation,

E

∫ ∞

0

∫ 0−

−∞
h(s − u)Z̃(du)ds ≤ E

∫ ∞

0

∫ 0−

−∞
h(s − u)Ẑ(du)ds

= E

∫ ∞

0

∫ 0−

−∞
h(s − u)λ̂u duds

= E(λ̂0)

∫ ∞

0

∫ 0−

−∞
h(s − u)duds

= E(λ̂0)

∫ ∞

0
th(t) dt < ∞.

This proves the desired result.
We now prove the coupling part. This will be done in two steps. First suppose that |Rt | is bounded by a constant CR .

We suppose w.l.o.g. that λ̂ defined in (20) is such that also C ≥ CR .
Let ((Ži)i≤N, (X̌i), (Ǎi)i≤N) be the N -dimensional age dependent Hawkes process with initial conditions (Ǎi

0), (Ri)

and denote λ̌i
t := ψ(X̌i

t , Ǎ
i
t ). Then we clearly have that

λ̌i
0 ≤ λ̂0

for all i, and it can be shown inductively over the successive jumps of Ẑ, using Lemma 2.4, that this inequality is preserved
over time, that is,

λ̌i
t ≤ λ̂t (38)

for all t ≥ 0. Now introduce

Ě0
t :=

{
N∑

i=1

∫ t

t−2Np

1

{
z ≤ 3Nc

x∗ |Rs |
}
πi(ds, dz) = 0

}
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and put

E′
t := Et ∩ Ě0

t . (39)

Let (τ i)i≤N be the jump times from Lemma 2.7. We necessarily have that on E′
t ,

|Rτi | ≤ x∗

3N
,

for all 1 ≤ i ≤ N . As a consequence, (30) implies that

|X̌τ i | ≤ Yτi + |Rτi | ≤ x∗.

Due to (38), we have Ǎi
τ i ≥ Âτ i ≥ a∗. Therefore, using (8), we conclude that

λ̌i
τ i ≥ c,

implying that τ i is also a jump of Ži . Thus, on E′
t , at time t , all (Ǎi ,Ai),1 ≤ i ≤ N , are coupled. Therefore, we have a

Lipschitz bound under the event E′
t ; so with Z = ∑N

j=1 Zj , Ž = ∑N
j=1 Žj , we may write

N∑
i=1

∣∣ψi
(
Xi

t ,A
i
t

) − ψi
(
X̌i

t , Ǎ
i
t

)∣∣ ≤ L

N∑
i=1

∣∣Xi
t − X̌i

t

∣∣ ≤ L

(∫ 0−

−∞
h(t − s)Z(ds) + |Rt | +

∫ t−

0
h(t − s)Z̃(ds)

)
,

which holds on E′
t .

As before Z̃ := |Z − Ž| and Gt := {Z̃(t,∞) = 0}. Equivalent considerations as in the first part of the proof yield

P
(
Gt ∩ E′

t |Ft

)
≥ 1

{
E′

t

}
exp

(
−L

∫ ∞

t

[∫ 0

−∞
h(s − u)Z(du) + |Rs | +

∫ t−

0
h(s − u)Z̃(du)

]
ds

)

≥ 1
{
E′

t

}
exp

(
−L

∫ ∞

t

[∫ t−

−∞
h(s − u)Z(du) + |Rs | +

∫ t−

0
h(s − u)Ž(du)

]
ds

)
. (40)

Since λ̌t ≤ λ̂t for all t ≥ 0,∫ t−

0
h(s − u)Ž(du) ≤

∫ t−

−∞
h(s − u)Ẑ(du).

As a consequence,

∫ ∞

t

[∫ t−

−∞
h(s − u)Z(du) + |Rs | +

∫ t−

0
h(s − u)Ž(du)

]
ds

≤ 2
∫ ∞

t

[∫ t−

−∞
h(s − u)Ẑ(du)

]
ds +

∫ ∞

t

|Rs |ds = Ct + Dt,

where

Ct := 2
∫ ∞

t

[∫ t−

−∞
h(s − u)Ẑ(du)

]
ds

is stationary and ergodic, and where

Dt :=
∫ ∞

t

|Rs |ds.

Clearly, Dt → 0 as t → ∞ almost surely.
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Now apply Lemma A.4 in the Appendix with Ut := 1Ete
−LCt , rt := 1Ete

−LCt −1E′
t e

−LCt−LDt . Clearly, Ut is ergodic
and satisfies P(Ut > 0) > 0. To see that rt → 0 almost surely as t → ∞, it suffices to prove that 1E′

t − 1Et → 0 almost
surely, as t → ∞, which is equivalent to proving that 1Ě0

t → 1 almost surely. But this follows from

N∑
i=1

E

∫ ∞

0

∫
R+

1

{
z ≤ 3N

x∗ |Rs |
}
πi(ds, dz) < ∞,

which follows from (14).
This finishes the first part of the proof of the coupling result. Finally, suppose that the initial process only satisfies (14).

Take then a sequence (Žm, X̌m, Ǎm) of N -dimensional age dependent Hawkes processes with starting condition (Ǎi
0)i≤n

and initial processes (−m ∨ Ri ∧ m)i≤N . Write λ̌
m,i
t = ψi(X̌

m,i
t , Ǎ

m,i
t ) for the associated intensity and λ̌

m∧m+1,i
t :=

λ̌
m,i
t ∧ λ̌

m+1,i
t . Denote R

m,i
t := −m ∨ Ri

t ∧ m. As in the proof of Proposition 1.4, we have that

P
(
Žm �= Žm+1) ≤ L

N∑
i=1

E

∫ ∞

0

∣∣Rm,i
t − R

m+1,i
t

∣∣dt.

Since E
∫ ∞

0 |Ri
t |dt < ∞, we conclude that∑

m

P
(
Žm �= Žm+1) < ∞,

implying that almost surely, Žm = Ž on R+ for sufficiently large m. Since Žm and Z couple eventually almost surely,
this proves the coupling part. It remains to prove uniqueness of the stationary solution. Let (Z′,X′,A′) be another age
dependent Hawkes process on t ∈R compatible to π1, . . . , πN . Lemma 2.4 gives the inequality

∣∣X′ i
t

∣∣ ≤
N∑

j=1

(∑
k≥0

h̄ij

(
A

′ j
t + kδ

) +
∫ t−A

′ j
t

−∞
h̄ij (t − s)π

j
K(ds)

)
.

Let τ be a jump of Ẑ. Using the above inequality, it is shown inductively over future jumps of Ẑ that λ̂t ≥ |λ′ i | for all
t ∈]τ,∞[. Thus it follows that λ̂t ≥ |λ′ i | for all t ∈ R. Note that the (Z′,X′,A′) system may be written in terms of
Definition 1.1 with initial signals R′ i

t := ∑N
j=1

∫ 0
∞ hij (t − s) dZ

′ j
s . The same arguments as in (38) give

E

∫ ∞

0

∣∣R′ i
s

∣∣ds ≤ E

∫ ∞

0

∫ 0−

−∞
h(s − u)Ẑ(du)ds < ∞.

Therefore it follows from the 2nd point of this theorem that

P
(∃ t0 ∈R : Z′|[t0,∞) = Z|[t0,∞)

) = P

( ∞⋃
n=−∞

(
Z′|[n,∞) = Z|[n,∞)

)) = 1. (41)

Since Z and Z′ are both compatible, it follows that (Z,Z′) is compatible and therefore also stationary. Thus, the events
{Z′

|[n,∞) = Z|[n,∞)} have the same probability for all n ∈ Z, and from (41) it follows that the probability is equal to 1.
This proves that Z = Z′ almost surely. �

2.2. Age dependent Hawkes processes with Erlang weight functions

Here we show how Theorem 2.2 can be applied for weight functions given by Erlang kernels as in Example 2.1, and
consider a one-dimensional (N = 1) age dependent Hawkes process (Z,X,A), solution of

Zt =
∫ t

0

∫ ∞

0
1
{
z ≤ ψ(Xs,As)

}
π(ds, dz),

Xt =
∫ t−

0
h(t − s)Z(ds) + Rt, (42)

At = A0 + t −
∫ t−

0
AsZ(ds),
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where

h(t) = b
tn

n!e
−νt , (43)

for some b ∈ R, ν > 0 and n ≥ 0, and where the initial signal is given by

Rt =
∫ 0

−∞
h(t − s)z(ds),

for some fixed discrete point measure z defined on (−∞,0) such that
∫ 0
−∞ h(t − s)z(ds) is well defined.

The process (Xt ,At ) is not Markov, but it is well-known (see e.g. [8]) that it can be completed to a Markovian system
(X

(0)
t := Xt,X

(1)
t , . . . ,X

(n)
t ,At ), by introducing the auxiliary processes

X
(k)
t :=

∫ t−

0
b
(t − s)n−k

(n − k)! e−ν(t−s)Z(ds) +
∫ 0

−∞
b
(t − s)n−k

(n − k)! e−ν(t−s)z(ds), for all 0 ≤ k ≤ n.

By [8], these satisfy the system of coupled differential equations, driven by the PRM π , given by

dX
(k)
t+ = −νX

(k)
t+ dt + X

(k+1)
t+ dt, 0 ≤ k < n, (44)

dX
(n)
t+ = −νX

(n)
t+ dt + b

∫ ∞

0
1
{
z ≤ ψ

(
X

(0)
t ,At

)}
π(dt, dz), (45)

and

At − A0 = t −
∫ t−

0

∫ ∞

0
As1

{
z ≤ ψ(Xs,As)

}
π(ds, dz) = t −

∫ t−

0
AsZ(ds),

for t ≥ 0. Evidently, h satisfies (9). We suppose that ψ(x, a) satisfies (2) and we strengthen (8) to the following assump-
tion.

Assumption 2. ψ(x, a) is continuous in x and a; and ψ(x, a) ≥ c > 0 for all x, a with a ≥ a∗.

Then the following result strengthens Theorem 2.2 in this Markovian setting.

Theorem 2.9. Grant Assumptions 1 and 2. Then the process (X
(0)
t ,X

(1)
t , . . . ,X

(n)
t ,At ) is positively recurrent in the sense

of Harris having unique invariant probability measure μ.

Proof. Step 1. By Lemma 2.4 and Corollary 2.5, t �→ E(λt ) = E(ψ(Xt ,At )) and t �→ E(|Xt |) = E(|X(0)
t |) are bounded

on R. By the same argument, also t �→ E(|X(k)
t |) is bounded for 1 ≤ k ≤ n. Therefore, (X

(0)
t ,X

(1)
t , . . . ,X

(n)
t ) is a 1-

ultimately bounded Feller process (the Feller property follows from the continuity of ψ ), see e.g. [17].
We write x = (x0, . . . , xn) ∈ R

n+1 for the elements of Rn+1 and denote by Pt((x, a), ·) the transition semigroup of
(X

(0)
t , . . . ,X

(n)
t ,At ). Let Bk = {(x, a) : |x| + |a| ≤ k}. Then for any x0 ∈R

n+1, a0 ≥ 0,

Pt

(
(x0, a0),B

c
k

) ≤ P(x0,a0)

(
|Xt | ≥ k

2

)
+ P(x0,a0)

(
At ≥ k

2

)
,

where

P(x0,a0)

(
|Xt | ≥ k

2

)
≤ 2 supt E(x0,a0)(|Xt |)

k
,

and

P(x0,a0)

(
At ≥ k

2

)
≤ e−c( k

2 −a∗)+ ,
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implying inequality (6) of [17]. Thus, by Theorem 1 of [17], (X
(0)
t , . . . ,X

(n)
t ,At )t≥0 possesses invariant probability

measures μ (not necessarily unique ones).1

Step 2. We shall now use the coupling property proved in Theorem 2.2 to prove uniqueness of the invariant measure μ.
In what follows we write (Z,X,A) for the stationary version of (42), which exists according to Theorem 2.2. Moreover,
we write (Z̃, X̃, Ã) for a version of (42) starting at time t = 0 from an arbitrary initial age a0 and an initial configuration

x0 = (x
(0)
0 , . . . , x

(n)
0 ) with x

(k)
0 = b

∫ 0
−∞

(−s)n−k

(n−k)! e−νsz(ds). Write

τc := inf{t > 0 : Z and Z̃ couple at time t} ∨ 1.

Note that

∣∣h(s + u)
∣∣ ≤ C

∣∣h(s)
∣∣∣∣h(u)

∣∣
for all s, u ≥ 1, where C is an appropriate constant. It follows that almost surely, for all t ≥ τc + 1

|Xt − X̃t | ≤ h(t − τc)
(
Z

([0, τc]
) + Z̃

([0, τc]
))

Z̃
([0, τc]

)
) + C

∣∣h(t − τc)
∣∣(|Xτc | + |X̃τc |

)
,

showing that

lim
t→∞|Xt − X̃t | = 0 (46)

almost surely, since |h(t − τc)| → 0 as t → ∞. In the same way one proves that also

lim
t→∞

∣∣X(k)
t − X̃

(k)
t

∣∣ = 0 (47)

almost surely, for all 1 ≤ k ≤ n. Moreover, we obviously have that Ã = A on [T1 ◦ θτc ,∞[, where T1 ◦ θτc = inf{t > τc :
Z([t]) = Z̃([t]) = 1}. Since ψ(x, a) ≥ c > 0 for all a ≥ a∗, T1 ◦ θτc < ∞ almost surely. This implies the uniqueness of
the invariant measure.

Step 3. Finally, to prove the Harris recurrence of the process (X
(0)
t , . . . ,X

(n)
t ,At ), we rely on the following local

Doeblin lower bound. It states that for all (x∗∗, a∗∗) ∈ R
n+1 ×R+, there exist R > 0, an open set I ⊂ R

n+1 ×R+ and a
constant β ∈]0,1[, such that for any T > (n + 2)a∗,

PT

(
(x0, a0), ·

) ≥ β1C(x0, a0)U(·), (48)

where C = BR(x∗∗, a∗∗) is the (open) ball of radius R centered at (x∗∗, a∗∗), and where U is the uniform measure on I .
This lower bound follows easily adapting the proof of Theorem 3 in [9] to our framework.

We may apply the above result with (x∗∗, a∗∗) ∈ supp(μ) where μ is the (unique) invariant measure of the process.
Then for the stationary version of the process, (X

(0)
t , . . . ,X

(n)
t ,At ) ∈ BR/2(x

∗∗, a∗∗) infinitely often. Then (46) and

(47) imply that also (X̃
(0)
t , . . . , X̃

(n)
t , Ãt ) ∈ BR(x∗∗, a∗∗) = C infinitely often, almost surely. The classical regeneration

technique, see e.g. [18], allows to conclude that indeed the process is positively recurrent in the sense of Harris. �

3. Mean-field limit and propagation of chaos

In this section we focus on a multi-class mean-field setup of the age dependent Hawkes process on R+, starting from
initial signals and ages. We propose a limit system, and show how the high dimensional system couples with the limit
system. This can be seen as a generalization of the work of Chevallier [3] where a single class is considered under the
assumption that the spiking rate function ψ is uniformly bounded. The multi-class setup is similar to the one in [8] for
ordinary Hawkes Processes, and to the data transmission model in [12]. We also discuss how to approximate a Hawkes
process induced by one weight function, by another Hawkes process, induced by different weight functions.

1As a matter of fact, this provides a different approach to prove the existence of a stationary version of the age dependent Hawkes process.
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Setup in this section

In addition to the fundamental assumptions, we introduce the following specifications for the mean-field setup, which
will be used throughout this section. We partition the indices of individual units into K ∈ N different populations, where
K > 0. More precisely, for each fixed total population size N ∈N,

Nk := Nk(N) := #{i ≤ N : i in population k}
will denote the number of units belonging to population k,1 ≤ k ≤K, and

N = N1 + · · · + NK.

We assume that each population represents an asymptotic part of all units, i.e., there exists pk > 0 such that

Nk

N

N→∞→ pk.

For a fixed N ∈ N, we re-index the N -dimensional age dependent Hawkes process of (4) as(
Zkj

)
k≤K,j≤Nk

,

where the superscript kj denotes the j th unit in population k. The weight function from the ith unit of population
l to the j th unit of population k is given by N−1hkl . Moreover, all units within the same population have the same
spiking rate ψk . Finally, we assume that all units in population k have the same initial signal Rk , and that the initial
ages are interchangeable in groups and mutually independent in and between groups. With this set of parameters, the age
dependent Hawkes process (Z,X,A) from (4) defined on t ∈R+ becomes

Z
kj
t =

∫ t

0

∫ ∞

0
1
{
z ≤ ψk

(
Xk

s ,A
kj
s

)}
dπkj (ds, dz), j ≤ Nk, k ≤K,

Xk
t = 1

N

K∑
l=1

Nl∑
j=1

∫ t−

0
hkl(t − s)Zlj (ds) + Rk

t , k ≤ K,

(49)

where Akj is the age process of Zkj , starting from A
kj

0 at time t = 0. Sometimes, to explicitly indicate the dependency on
N , we add N to the superscript and write ZNki

t , XNk and ANki .

Model observations
1. Suppose that the initial ages (Ai

0)i∈N are exchangeable. Then the symmetry of the system gives interchangeability

between units within the same population, i.e., Zkj L= Zki for i, j ≤ Nk , k ≤ K.
2. In the mean-field setup, all units within a population k share the same memory process Xk .

3.1. The limit system

We propose a limit system for N → ∞. To pursue this goal, take finite variation functions t �→ αk
t , locally bounded

functions t �→ βk
t , and PRMs πk for k ≤K, and consider the stochastic convolution equation

φk
t =

∫ t

0
Eψk

(
xk
s ,Ak

s

)
ds,

xk
t =

K∑
l=1

pl

∫ t

0
hkl(t − s)dαl

s + βk
t , (50)

Ak
t − Ak

0 = t −
∫ t−

0

∫ ∞

0
Ak

s1
{
z ≤ ψk

(
xk
s ,Ak

s

)}
πk(ds, dz),

with unknown (φ, x,A) = (φk, xk,Ak)k≤K. Notice that only A is stochastic. Introducing

Zk
t =

∫ t

0

∫ ∞

0
1
{
z ≤ ψk

(
xk
s ,Ak

s

)}
πk(ds, dz),
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we can interpret Ak as age process of Zk . Hence, in the limit, the network activity can be resumed via the deterministic
quantities xk,1 ≤ k ≤K, the only remaining randomness is in the individual age processes. Finally, notice that φ depends
on the law of A.

We are motivated by what for the moment is a heuristic.

N−1
Nk∑
j=1

ZNkj ≈ pkEZk

for large N , where (Z1, . . . ,ZK) denotes the limit process such that each Zk describes the jump activity of a typical unit
belonging to population k. This relation invites the idea that the memory process for N → ∞, t �→ xt should satisfy the
integral system (50) with φk

t = αk
t = EZk

t and βk
t = ERk1

t . This motivates the following result.

Lemma 3.1. Let βt = (βk
t )k≤K be measurable and locally bounded. There is a unique function α such that α = φ, where

(φ, x,A) is the solution to (50). Moreover, φ is continuous and x is bounded on [0, T ] by a constant C which depends on
h := ∑

k,j |hkj |, ‖β‖T , T and L.

The proof is given in the Appendix. Once this lemma is established, we can ensure existence of the limit process.

Theorem 3.2.
Let βt = (βk

t )k≤K be measurable and locally bounded. There is a unique solution (Z,A) to the integral equation

Zk
t =

∫ t

0

∫ ∞

0
1

{
z ≤ ψk

( K∑
l=1

pl

∫ s

0
hkl(s − u)dEZl

u + βk
s ,Ak

s

)}
πk(ds, dz), 1 ≤ k ≤ K,

where Ak is the age process corresponding to Zk , initialized at Ak
0.

Proof. Let (φ, x,A)k≤K be the tuple given in Lemma 3.1. Define the counting process

Zk
t :=

∫ t

0

∫ ∞

0
1
{
z ≤ ψk

(
xk
s ,Ak

s

)}
πk(ds, dz).

It is clear that Ak is the age process of Zk , and since dEZk
t = Eψk(xk

t ,Ak
t ) dt , Zk will satisfy the desired identity. For

uniqueness, consider another solution (Z̃k, Ãk)k≤K, which satisfies the same identity:

Z̃k
t =

∫ t

0

∫ ∞

0
1

{
z ≤ ψk

( K∑
l=1

pl

∫ s

0
hkl(s − u)dEZ̃l

u + βk
s , Ãk

s

)}
πk(ds, dz).

Defining x̃k
t = ∑K

l=1 pl

∫ t

0 hkl(t − s) dEZ̃l
u + βk

t and φ̃k
t = ∫ t

0 Eψk(x̃k
s , Ãk

s ) ds, we note that EZ̃k
t = φ̃k

t . Thus, if we insert
α = φ̃ in (50), (φ̃, x̃, Ã) is a solution, and hence the uniqueness part of Lemma 3.1 gives that (φ̃, x̃, Ã) = (φ, x,A) and
thus also Z = Z̃. �

3.2. Large network asymptotics and weight approximations

In this section we couple the N -dimensional Hawkes process with the limit system proposed in the previous section.
This coupling implies that the finite-dimensional system converges to the limit system. The result is traditionally named
Propagation of Chaos, a typical result within mean-field theory. Specifically for Hawkes processes, there are several
variants of this result. Some of the recent results may be found in [3,7] and in [8].

Framework for propagation of chaos
We will first introduce a set of assumptions.
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Assumption 3. We are given, for each 1 ≤ k ≤K, a sequence (RNk)N∈N of initial signals with supk≤K,N∈N ‖ERNk‖t <

∞, such that there is a locally bounded function t �→ rk
t with

∫ t

0
E

∣∣RNk
s − rk

s

∣∣ds → 0 as N → ∞, (51)

for all t ≥ 0.

Assumption 4. The initial ages Aki
0 ,1 ≤ k ≤ K, 1 ≤ i < ∞ are i.i.d.

Assumption 5. The weight functions hN
kl : R+ → R satisfy hN

kl → hkl as N → ∞ locally in L1, where hkl ∈ L2
loc for all

1 ≤ k, l ≤K.

Consider an i.i.d. sequence of driving PRMs πkj ,1 ≤ k ≤K, j ≥ 1. Define for each N ∈N, the N -dimensional Hawkes
process

(
ZN,XN,AN

) = (
ZNki,XNk,ANki

)
k≤K,i≤Nk

,

given by (49), driven by (πkj ), with weight functions (N−1hN
kl), spiking rate (ψk) and initial processes (RNk).

Applying Theorem 3.2 with weight functions (hkl) and initial functions βk = rk , we obtain, for any 1 ≤ k ≤ K and for
all i ∈N, a solution (Zki,Xk,Aki) to the equation

Zki
t =

∫ t

0

∫ ∞

0
1

{
z ≤ ψk

( K∑
l=1

pl

∫ s

0
hkl(s − u)dEZ

lj
u + rk

s ,Aki
s

)}
πki(ds, dz),

1 ≤ k ≤K, i ∈N, driven by the same sequence of PRMs.

Theorem 3.3 (Propagation of Chaos). Consider the framework described above and grant Assumptions 3–5. Then for
all t ≥ 0,

E
∣∣d(

ZNki
t − Zki

t

)∣∣ → 0, for N → ∞, (52)

for all k ≤ K, i ∈ N. In particular, for any finite set of indices (k1, i1, . . . , kn, in), we have weak convergence

(
ZNk1i1, . . . ,ZNknin

)
t≥0

wk→ (
Zk1i1, . . . ,Zknin

)
t≥0

as N → ∞ (in D(R+,Rn+), endowed with the topology of locally-uniform convergence).

To prove this theorem we shall need the following lemma.

Lemma 3.4. Let (hkl)1≤k,l≤K, (h̃kl)1≤k,l≤K be sets included in a family E of real-valued functions defined on R+ which
is uniformly integrable on [0, T ]. Define (Z,X,A), (Z̃, X̃, Ã) as the N -dimensional age dependent Hawkes process with
weight functions (N−1hkl)1≤k,l≤K, (N−1h̃kl)1≤k,l≤K, rate functions (ψk)k≤K, and with initial conditions A0, Rk . There
exists C > 0 depending on the family E , on T , L, K and on supk≤K ‖ERk‖T (but not on N ) such that

K∑
k=1

E
∣∣d(

Zk1
t − Z̃k1

t

)∣∣ ≤ CT

K∑
k,l=1

∫ t

0
|hkl − h̃kl |(s) ds,

for all t ≤ T .

The proofs of Theorem 3.3 and Lemma 3.4 may be found in the Appendix.

Remark 4. The result shows that finitely many units will be asymptotically independent for N → ∞.
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3.3. The mean-field limit in the case of a hard refractory period

In this section we consider the mean-field limit of age dependent Hawkes processes with one single population (K = 1)
and a weight function given by an Erlang kernel as in Example 2.1, that is,

h(t) = be−νt t
n

n! ,

for some fixed constants b ∈ R, ν > 0, n ∈ N. Throughout this section we suppose a hard refractory period of length δ

after a jump where no new jumps can occur as given in the following assumption.

Assumption 6.

ψ(x, a) = f (x)1{a ≥ δ}.

We start by rewriting the limit system in this frame. Recall that

φt =
∫ t

0
E

(
ψ(xs,As)

)
ds =

∫ t

0
λ̄s ds, (53)

where

λ̄t = E
(
ψ

(
x

(0)
t ,At

))
denotes the expected number of jumps up to time t of a typical unit in the limit system. As in Section 2.2 above, we write
x(0) := x, and we add auxiliary variables x(i),1 ≤ i ≤ n to obtain the system

At = A0 + t −
∫ t

0

∫
R+

As1
{
z ≤ ψ

(
x0
s ,As

)}
π(ds, dz)

together with

dx
(0)
t = −νx

(0)
t dt + x

(1)
t dt,

...

dx
(n−1)
t = −νx

(n−1)
t dt + x

(n)
t dt,

dx
(n)
t = −νx

(n)
t dt + bdφt = −νx

(n)
t dt + bλ̄t dt.

(54)

Let us now study the age process of this limit system. Write τt = sup{0 ≤ s ≤ t : �As �= 0} for the last jump time of the
process before time t , where by convention, sup∅ := 0. Then obviously,

At+ = (t − τt )1{τt > 0} + (A0 + t)1{τt = 0}.
Due to Assumption 6, we have the following

Proposition 3.5.

L(τt )(dz) = E
(
e− ∫ t

0 f (x
(0)
s )1{A0+s≥δ}ds

)
δ0(dz) + f

(
x(0)
z

)
pze

− ∫ t
z+δ f (x

(0)
s ) ds1{0 < z < t}dz,

where pt = P(At ≥ δ) is given by

pt = E
(
1{A0 ≥ δ − t}e− ∫ t

(δ−A0)∨0 f (x
(0)
s ) ds) +

∫ t−δ

0
f

(
x(0)
s

)
pse

− ∫ t
s+δ f (x

(0)
u ) du ds

=
∫ ∞

(δ−t)∨0
μ0(da)e

− ∫ t
(δ−a)∨0 f (x

(0)
s ) ds +

∫ t−δ

0
f

(
x(0)
s

)
pse

− ∫ t
s+δ f (x

(0)
u ) du ds,

where A0 ∼ μ0(da).
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In particular, the above representation shows that, even starting from a non-smooth initial trajectory, pt is eventually
smooth.

Corollary 3.6. For any starting law μ0(da), t �→ pt is continuous on ]δ,∞], and thus, taking into account (54),
C1(]2δ,∞[,R), solving

dpt = −f
(
x

(0)
t

)
pt dt + f

(
x

(0)
t−δ

)
pt−δ dt, for all t > 2δ.

If the starting law is smooth, we can say more.

Corollary 3.7. If μ0(da) = μ0(a) da, with μ0 ∈ C(R,R+), then for all t < δ,

pt =
∫ ∞

δ−t

μ0(a)e
− ∫ t

(δ−a)∨0 f (x
(0)
s ) ds

da

is continuous and thus, taking into account (54), C1([0, δ[,R). In particular, on [0, δ[, t �→ pt solves

dpt = μ0(δ − t) − f
(
x

(0)
t

)
pt dt.

By induction, this implies that t �→ pt is continuous on R+ and C1 on ]δ,∞[, with

dpt = −f
(
x

(0)
t

)
pt dt + f

(
x

(0)
t−δ

)
pt−δ dt, for all t > δ.

Moreover, at t = δ, writing ṗ := d
dt

pt ,

ṗδ− = μ0(0) − f
(
x

(0)
δ

)
pδ and ṗδ+ = −f

(
x

(0)
δ

)
pδ + f

(
x

(0)
0

)
p0.

Let us now look for possible stationary solutions of (54). At equilibrium, we necessarily have that

x(0) ≡ x∗∗

for a given value x∗∗ ∈ R. It follows that At is a renewal process with dynamics

dAt+ = dt − At

∫
R+

1{z≤ψ(x∗∗,At )}π(dt, dz). (55)

A is recurrent in the sense of Harris if it comes back to 0 infinitely often almost surely. This happens if
∫ ∞

0 ψ(x∗∗,At ) dt =
∞ almost surely, which is granted by the following condition.

Assumption 7. For all x, there exists r(x) ≥ 0 such that ψ(x, a) is lower bounded for all a ≥ r(x).

The stationary distribution of (55) is absolutely continuous with respect to the Lebesgue measure on R+, having the
density (see Proposition 21 of [10])

gx∗∗(a) = κe− ∫ a
0 ψ(x∗∗,z) dz

on R+, where κ is chosen such that
∫ ∞

0 gx∗∗(a) da = 1. Recall that λ̄t = dφt

dt
denotes the (expected) jump rate of the limit

system at time t . Then at equilibrium, the total jump rate is constant and given by λ̄t = λ̄. From (53) we get that

λ̄ = κ

∫ ∞

0
ψ

(
x∗∗, a

)
e− ∫ a

0 ψ(x∗∗,z) dz da = κ,

where we have used the change of variables y = ∫ a

0 ψ(x∗∗, z) dz, dy = ψ(x∗∗, a) da.
As a consequence,

λ̄ = κ
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implying that at equilibrium, the jump rate of the system is solution of

λ̄−1 =
∫ ∞

0
exp

(
−

∫ a

0
ψ

(
b

νn+1
λ̄, z

)
dz

)
da. (56)

Here we have used that at equilibrium

x∗∗ = x(0) = 1

ν
x(1) = · · · = b

νn+1
λ̄,

which follows from (54).

Proposition 3.8. Suppose that x �→ ψ(x, a) is strictly increasing for any fixed a ≥ 0 and that b < 0. There exists a unique
solution λ∗ to (56).

Recall that we suppose that ψ(x, a) = f (x)1{a ≥ δ}, for some δ > 0. We calculate the right hand side of (56) and
obtain the fixed point equation

∫ ∞

0
exp

(
−

∫ a

0
ψ

(
b

νn+1
λ̄, z

)
dz

)
da = δ +

(
f

(
b

νn+1
λ̄

))−1

= λ̄−1. (57)

More generally, for any Hawkes process with mean-field interactions, rate function ψ(x, a) given by ψ(x, a) =
f (x)1{a ≥ δ} and general weight function h ∈ L1(R+), we obtain the fixed point equation

λ̄−1 = δ +
(

f

(
λ̄

∫ ∞

0
h(t) dt

))−1

(58)

for the limit intensity. This limit intensity depends on the length of the refractory period, we write λ̄ = λ̄(δ) to indicate
this dependence.

It is then natural to study the influence of the length of the refractory period δ on the limit intensity. If f is increasing
and the system inhibitory, that is,

∫ ∞
0 h(t) dt < 0, then clearly

δ �→ λ̄(δ)

is decreasing: increasing the length of the refractory period “calms down the system”.
In the excitatory case when

∫ ∞
0 h(t) dt > 0, to ensure that the fixed point equation (56) has a solution, suppose that f

is strictly increasing and bounded from above and below, away from zero. Then the function

λ̄ �→
(

f

(
λ̄

∫ ∞

0
h(t) dt

))−1

is a strictly decreasing function mapping [0,∞] onto [ 1
f (0)

, 1
f (∞)

]. Therefore, there is exactly one fixed point solution of

(56), and δ �→ λ̄(δ) is again decreasing.

Appendix

Here we prove Lemma 3.1, Theorem 3.3 and Lemma 3.4. Then we collect some useful results about counting processes.

A.1. Proofs

Proof of Lemma 3.1. It suffices to show that a unique solution exists on [0, T ], for arbitrary T ≥ 0. In the following
proof, C := CT will denote a dynamic constant depending on the parameters described in the lemma. It need not represent
the same constant from line to line, nor from equation to equation.

First we prove existence of a solution to (50) with φt = αt using Picard-iteration. For n ∈ N define (φn, xn,An) =
(φn,k, xn,k,An,k)k≤K as follows. Initialize the system for n = 0 by putting (φ0,k, x0,k,A0,k) ≡ (0,0,A0). For general
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n ∈ N, n ≥ 1, the triple (φn, xn,An) is defined as the solution to (50) with α = φn−1. Inductively it is seen that these
processes are well-defined. Recall that h = ∑K

k,l=1 |hkl |. Using (3) we bound xn by

∣∣xn
t

∣∣ ≤
K∑

l=1

∫ t

0

∣∣h(t − s)
∣∣dφn−1,l

s + |βt | ≤ C

∫ t

0

∣∣h(s)
∣∣ds + C

∫ t

0

∣∣h(t − s)
∣∣∣∣xn−1

s

∣∣ds + |βt |.

It follows from Lemma A.2 in the Appendix that there exists a constant C > 0 which bounds all ‖xn‖T , n ∈N. Using this
upper bound on xn, we also bound the difference of two consecutive solutions. Define

δn
t =

K∑
k=1

∫ t

0
E

∣∣ψk
(
xn,k
s ,An,k

s

) − ψk
(
xn−1,k
s ,An−1,k

s

)∣∣ds.

The Lipschitz property of ψ and the bound on xn yield

δn+1
t ≤ C

∫ t

0

(∣∣xn+1
s − xn

s

∣∣ +
K∑

k=1

P
(∥∥An+1,k − An,k

∥∥
s
> 0

))
ds.

For the probability term, we note that a necessity for the age processes to differ, is that one of their corresponding
intensities catches a π -singularity which the other one does not catch. This leads to the inequality

K∑
k=1

P
(∥∥An+1,k − An,k

∥∥
t
> 0

)
(59)

≤
K∑

k=1

P

(∫ t

0

∫ ∞

0

∣∣1{
z ≤ ψk

(
xn+1,k
s ,An+1,k

s

)} − 1
{
z ≤ ψk

(
xn,k
s ,An,k

s

)}∣∣πk(ds, dz) ≥ 1

)

≤ δn+1
t , (60)

where the latter inequality follows by the Markov inequality. By Gronwall’s inequality we obtain

δn+1
t ≤ C

∫ t

0

∣∣xn+1
s − xn

s

∣∣ds. (61)

Moreover, Lemma 22 of [7] gives

∫ t

0

∣∣xn+1
s − xn

s

∣∣ds ≤
K∑

l=1

∫ t

0

∫ s

0
h(s − u)

∣∣d(
φn,l

u − φn−1,l
u

)∣∣ds ≤
∫ t

0
h(t − s)δn

s ds. (62)

It therefore follows from Lemma A.2 in the Appendix that for all 1 ≤ k ≤ K ,

∞∑
n=1

sup
t≤T

∣∣φn+1,k
t − φ

n,k
t

∣∣ ≤
∞∑

n=1

δn
T < ∞.

Thus, φn and therefore also xn converge locally-uniformly to some φ, x, respectively. Moreover,

P
(
An

s≤T �= An+1
s≤T i.o.

) = P

( ⋂
m∈N

⋃
n≥m

{∥∥An − An+1
∥∥

T
> 0

}) ≤ lim
m→∞

∞∑
n≥m

δn+1
T = 0.

It follows that almost surely, An converges to some limit A after finitely many iterations.
We need to show that the limit triple (φ, x,A) satisfies (50) with φt = αt . Recall that x �→ ψk(x, a) is continuous

for fixed a ∈ R+. Since An reaches its limit in finitely many iterations, and ψ is continuous in x for fixed a, it fol-
lows that limn→∞ ψk(xnk

s ,Ank
s ) exists for all s ≤ T , almost surely. By dominated convergence and (3), it follows that

Eψk(x
n,k
s ,A

n,k
s ) converges as well. Therefore, once again by dominated convergence,

φk
t = lim

n→∞φ
n,k
t = lim

n→∞

∫ t

0
Eψk

(
xn,k
s ,An,k

s

)
ds =

∫ t

0
Eψk

(
xk
s ,Ak

s

)
ds,
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that is, φ satisfies (50). One shows similarly that

xk
t =

K∑
l=1

lim
n→∞

∫ t

0
hkl(t − s)dφn,l

s + βk
t

=
K∑

l=1

lim
n→∞

∫ t

0
hkl(t − s)Eψl

(
xnl,
s ,An,l

s

)
ds + βk

t

=
K∑

l=1

∫ t

0
hkl(t − s)Eψl

(
xl
s,A

l
s

)
ds + βk

t

=
K∑

l=1

∫ t

0
hkl(t − s)dφl

s + βk
t ,

and x satisfies (50) as well. For the age process, notice that the càglàd process

ε(t) =
K∑

k=1

∫ t−

0

∫ ∞

0
1
{
z = ψk

(
xk
s ,Ak

s

)}
πk(ds, dz)

has a compensator which is equal to zero for all t ≥ 0, almost surely, by Lemma A.3. Therefore, εt = 0 for all t ≥ 0
almost surely. This implies that with probability 1, 1{z ≤ ψk(xnk

s ,Ak
s )} converges πk-a.e. to 1{z ≤ ψk(xk

s ,Ak
s )} for all

k ≤ K. As a consequence,

Ak
t − Ak

0 = t − lim
n→∞

∫ t−

0
Ank

s 1
{
z ≤ ψk

(
xn,k
s ,Annk

s

)}
πk(ds, dz)

= t − lim
n→∞

∫ t−

0
Ak

s1
{
z ≤ ψk

(
xn,k
s ,Ak

s

)}
πk(ds, dz)

= t −
∫ t−

0

∫ ∞

0
Ak

s1
{
z ≤ ψk

(
xk
s ,Ak

s

)}
πk(ds, dz),

where we have used dominated convergence. Since x is locally bounded, it follows that φ is C0.
To prove uniqueness, we assume that (φ̃, x̃, Ã) also solves (50) with

x̃k
t =

K∑
l=1

pl

∫ t

0
hkl(t − s) dφ̃l

s + βk
t .

Define

δt =
K∑

k=1

∫ t

0
E

∣∣ψk
(
xk
s ,Ak

s

) − ψk
(
x̃k
s , Ãk

s

)∣∣ds.

Considerations analogous to the ones given in the proof of existence, gives that

|xt − x̃t | ≤ δt ≤ C

∫ t

0
h(t − s)δs ds.

From Gronwall’s inequality it follows that δ ≡ 0, and therefore also that x = x̃ on [0, T ]. From (50) it follows immediately
φ = φ̃ and A = Ã almost surely. �

Proof of Lemma 3.4. Throughout this proof, C is a dynamic constant with dependencies as declared in the theorem.
Define the functions h = ∑

k,l |hkl |, h̃ = ∑
k,l |h̃kl |. First we prove that the memory processes E|Xt |, E|X̃t | are bounded
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on [0, T ] by a suitable constant C. Note that

E|Xt | ≤
K∑

l=1

(∫ t

0
h(t − s)Eψl

(
Xl

s,A
l
s

)
ds +E

∣∣Rl
t

∣∣)

≤ C

∫ t

0
h(t − s)E|Xs |ds + C

∫ t

0
h(s) ds +E|Rt |.

Since E is uniformly integrable, the direct sum {∑K
k,l=1 |fkl |, fkl ∈ E} is uniformly integrable as well. Thus, there exists

b > 0 satisfying

∫ T

0

K∑
k,l=1

|fkl |(s)1
{ K∑

k,l=1

|fkl |(s) > b

}
ds < 2−1 (63)

for all choices of (fkl) ⊂ E . It follows from Lemma A.2 that E‖X‖T ≤ C for a suitable C. The same argument shows that
also E‖X̃‖T ≤ C. Define the total variation measure δt = ∑K

k=1 E|d(Zk1
t − Z̃k1

t )|. We may write

δt ≤ E

K∑
k=1

∫ t

0

∣∣ψk
(
X̃k

s , Ã
k1
s

) − ψk
(
Xk

s ,A
k1
s

)∣∣ds

≤ C

K∑
k=1

∫ t

0
E

∣∣X̃k
s − Xk

s

∣∣ + P
(∥∥Ãk1 − Ak1

∥∥
s
> 0

)
ds.

As in the proof of Lemma 3.1 we apply Markov’s inequality to achieve

K∑
k=1

P
(∥∥Ãk1 − Ak1

∥∥
t
> 0

) ≤ δn
t .

We insert this inequality into (64) to get

δt ≤ C

(∫ t

0
E|X̃s − Xs |ds +

∫ t

0
δs ds

)
. (64)

We now wish to bound the difference of the memory processes. First, define γ = ∑K
k,l=1 |hkl − h̃kl |, and note that for any

fixed k, l, j we have for any s ≥ 0

∣∣∣∣
∫ s−

0
hkl(s − u)dZ

lj
u −

∫ s−

0
h̃kl(s − u)dZ̃

lj
u

∣∣∣∣
≤

∫ s−

0
|hkl − h̃kl |(s − u)dZ

lj
u +

∫ s−

0
|h̃kl |(s − u)

∣∣d(
Z

lj
u − Z̃

lj
u

)∣∣

≤
∫ s−

0
γ (s − u)d

K∑
l=1

Z
lj
u +

∫ s−

0
h̃(s − u)

∣∣∣∣∣d
K∑

l=1

(
Z

lj
u − Z̃

lj
u

)∣∣∣∣∣. (65)

We take expectation and apply Lemma 22 of [7] to obtain

E

∫ t

0

∣∣∣∣
∫ s−

0
hkl(s − u)dZ

lj
u −

∫ s−

0
h̃kl(s − u)dZ̃

lj
u

∣∣∣∣ds ≤
∫ t

0
γ (t − s)L

(
1 +E‖XT ‖)ds +

∫ t

0
h̃(t − s)δs ds.
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Note that this expression does not depend on k, l nor j . Thus we get

K∑
k=1

∫ t

0
E

∣∣X̃k
s − Xk

s

∣∣ds

≤
K∑

k=1

∫ t

0
N−1

K∑
l=1

Nl∑
j=1

E

∣∣∣∣
∫ s−

0
hkl(s − u)dZ

lj
u −

∫ s−

0
h̃kl(s − u)dZ̃

lj
u

∣∣∣∣ds

≤ C

(∫ t

0
γ (s) ds +

∫ t

0

∣∣h̃(t − s)
∣∣δs ds

)
. (66)

Inserting inequality (66) into (64), we obtain

δt ≤ C

(∫ t

0
γ (s) ds +

∫ t

0

(
h̃
∣∣(t − s)

∣∣ + 1
)
δs ds

)
.

The proof will be complete, after repeating the argument for bounded E|X|, but with δ in place of E|X|. �

Proof of Theorem 3.3. Let (Z̃N , X̃N , ÃN) be the N -dimensional age dependent Hawkes process induced by the same
parameters as (ZN,XN,AN), except the weight functions hkl instead of hN

kl .
Fix T > 0 and consider t ∈ [0, T ]. We have

K∑
k=1

∣∣d(
ZNk1

t − Zk1
t

)∣∣ ≤
K∑

k=1

E
∣∣d(

ZNk1
t − Z̃Nk1

t

)∣∣ +
K∑

k=1

E
∣∣d(

Z̃Nk1
t − Zk1

t

)∣∣ := δ̃Nk
t + δNk

t .

The first term converges by Lemma 3.4, and so it remains to prove convergence of δN
t . This part of the proof follows

closely the proof given by Chevallier in [3], but we include it here for completeness. Let C be a dynamic constant
depending on pk , L, T , K, ‖r‖T and (hkl). We use the symbol ε(N) for any function depending on the same parameters

as C, and N such that ε(N)
N→∞→ 0. Recall that ‖x‖T is bounded by C sufficiently large by Lemma 3.1.

As in the proof of Lemma 3.1 we obtain

δN
t ≤ C

(∫ t

0
E

∣∣X̃N
s − xs

∣∣ds +
∫ t

0
δN
s ds

)
. (67)

This inequality prepares for an application of Gronwall’s inequality, but first we bound
∫ t

0 E|X̃s −xs |ds using δN
t as well.

Indeed, set �
kj
t := ∫ t−

0 ψ(xk
s ,A

kj
s ) ds, which is the compensator of Zkj . We write pk = Nk/N + ε(N) and obtain

xk
t = N−1

K∑
l=1

Nl∑
j=1

∫ t−

0
hkl(t − s) dφl

s + rk
t + ε(N)

K∑
l=1

∫ t

0
hkl(t − s) dφl

s .

Since dφl
s = Eψ(xl

s,A
lj
s ) ds and Eψ(xl

s,A
lj
s ) are locally bounded, the entire right term may be replaced by an ε-function.

For fixed k ≤K, we apply the triangle inequality

∫ t

0

(
E

∣∣X̃Nk
s − xk

s

∣∣ −E
∣∣RNk

s − rk
s

∣∣)ds

≤ ε(N)

+
∫ t

0
N−1

K∑
l=1

E

∣∣∣∣∣
Nl∑

j=1

∫ s−

0
hkl(s − u)d

(
φl

u − �
lj
u

)∣∣∣∣∣ds (68)

+
∫ t

0
N−1

K∑
l=1

E

∣∣∣∣∣
Nl∑

j=1

∫ s−

0
hkl(s − u)d

(
�

lj
u − Z

lj
u

)∣∣∣∣∣ds (69)
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+
∫ t

0
N−1

K∑
l=1

E

∣∣∣∣∣
Nl∑

j=1

∫ s−

0
hkl(s − u)d

(
Z

lj
u − Z̃

Nlj
u

)∣∣∣∣∣ds (70)

:= ε(N) + B1k
t + B2k

t + B3k
t .

We now proceed to bound Bi := ∑K
k=1 Bik , i ≤ 3. Define h = ∑K

k,l=1 |hkl |. Rewrite φ and � in terms of their densities,
and thereby obtain a bound for the inner-most sum in (68) for s ∈ [0, t], l ≤ K, which is given by

E

∫ s

0

Nl∑
j=1

h(s − u)
∣∣d(

φl
u − �

lj
u

)∣∣ ≤
∫ s

0
h(s − u)E

Nl∑
j=1

∣∣ψl
(
xl
u,A

lj
u

) −Eψl
(
xl
u,A

lj
u

)∣∣du.

Notice that the sum consists of i.i.d. terms, so we may apply Cauchy–Schwarz to bound it by
√

Nl Var(ψ(xl
u,A

lj
u )), which

is bounded for u ∈ [0, T ] by
√

NlC(1 + ‖rl‖T ) using (3). Insert this into (68) to see that

B1
t =

K∑
k=1

B1k
t ≤ ε(N).

For B2
t , recall that (Zlj − �lj )j are i.i.d. for fixed l. By Cauchy-Schwarz, we obtain a bound for the inner-most sum of

(69)

N
1/2
l

√
Var

∫ s

0
hkl(s − u)d

(
Zl1

u − �l1
u

)
. (71)

To treat the process inside the root, fix s ≥ 0, l ≤ K and consider the process

I : r �→
∫ r∧s

0
hkl(s − u)d

(
Zl1

u − �l1
u

)
.

Then I is a martingale, and

Var Is = E[I ]s = E

∫ s

0
h2

kl(s − u)d�l1
u =

∫ s

0
h2

kl(s − u)Eψl
(
xl
u,A

l1
u

)
du.

Since hkl ∈ L2
loc it follows that Var Is is bounded on s ∈ [0, T ], and so

B2
t ≤ ε(N)

for all t ≤ T . For B3 the triangle inequality, and Lemma 22 [7] gives

B3
t ≤ C

∫ t

0
h(t − s)δN

s ds.

We plug the bounds for B1, B2 and B3 into (67) to obtain

δN
t ≤ C

(∫ t

0
h(t − s)δN

s + ε(N) +
K∑

k=1

E
∣∣RNk

s − rk
s

∣∣ds

)
.

Applying Lemma A.2 in the Appendix yields

δN
t ≤ ε(N) + C

∫ T

0
E

∣∣RN
s − rs

∣∣ds = ε(N) (72)

for all t ≤ T , which implies the desired result. �
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A.2. Results about counting processes

A.2.1. Measure theory on (ME,ME)

This section provides a brief overview of measure theory on the measurable space (ME,ME) of bounded measures
defined on a Polish space E. We refer to A.2.6 in [6] for more details. Let d be a distance so that (E,d) is complete
and separable. A measure ν on E is said to be boundedly finite if diam(A) < ∞ implies that ν(A) < ∞ for A ∈ B(E).
Let ME be the space of all boundedly-finite measures on (E,B(E)). This space may now be equipped with the weak-hat
metric d̂ , making (ME, d̂) a complete and separable space itself. The Borel-algebra ME is easily characterized by the
projections �A : ME � ν �→ ν(A) in the sense that

ME = σ(�A,A ∈D), (73)

where D ⊂ B(D) is a semi-ring of bounded sets. A random variable taking values in the space of measures is called a
random measure. A particular interesting example is when E = R × R+ as considered in this paper. A Poisson random
measure π : � → MR×R+ on R × R+ with Lebesgue intensity measure is a random measure such that for any disjoint
A1, . . . ,An ∈ B(R) ×B(R+),

• π(Ai) ∼ Pois(
∫
Ai

ds dz)

• π(A1) |= . . . |= π(An).

Since the underlying space is on the form R × R+, the first coordinate of π may be thought of as the time coordinate;
and concepts like stationarity and ergodicity transfer naturally to random measures. Define the shift operator as the
automorphism on MR×R+ given by(

θrν
)
(C) = ν

({
(t, x) ∈ R×R+ : (t − r, x) ∈ C

})
.

Then a random measure σ on R×R+ is said to be stationary if the distribution is invariant under shift

L(σ ) = L
(
θrσ

)
for all r ∈R. Stationarity is equivalent to have invariance of the finite dimensional distributions (fidi’s) (Proposition 6.2.III
of [6])

P

(
n⋂

i=1

{
σ(Ai) ∈ Bi

}) = P

(
n⋂

i=1

{
θrσ (Ai) ∈ Bi

})

for all r ∈R, n > 0, A1, . . . ,An ∈ B(R×R+), B1, . . . ,Bn ∈ B(R+). A stationary random measure σ is mixing if

P
(
σ ∈ V, θrσ ∈ W

) |r|→∞→ P(σ ∈ V )P (σ ∈ W) (74)

for all V,W ∈ MR×R+ . We refer to Chapter 10.2–10.3 of [6] for a thorough introduction to ergodic theory for random
measures. As is the case for processes, mixing implies that L(σ ) is ergodic w.r.t. the shift operator θr for all r > 0,
meaning that all invariant events have probability 0/1.

Finally, we present a core measurability result, which can be applied to show measurability of all processes treated in
this article.

Lemma A.1. Let D, E be complete and separable metric spaces, and let H : D × E → R+ be measurable. The section
integral F : ME × D → R

F(ν, d) =
∫

E

H(d, s) dν(s)

is ME ×B(D) → B(R) measurable.

Proof. We start by defining G : MD×E → R+ as

G : ρ �→
∫

H(x,y)ρ(dx, dy).

It is easily seen that G is measurable.
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Consider the map m : ME ×D → MD×E given by (ν, d) �→ δd ⊗ ν. To prove measurability of m it is sufficient to treat
projections into bounded boxes A × B,A ∈ B(D), B ∈ B(E). Such projections are simply given as �A×Bm : (ν, d) �→
1{B}(d)�A(ν) and are therefore measurable. We conclude that

G ◦ m(ν,d) =
∫ ∫

H(u, s) dδd(u) dν(s) =
∫

H(d, s) dν(s) = F(ν, d),

proving that F is measurable. �

We shall need the following version of Gronwall’s lemma which has been proven in [7]. Recall that for any function
g : R+ →R and any T > 0, we have introduced ‖g‖T = supt≤T |g(t)|.

Lemma A.2 (Lemma 23 of [7]). Let h : R+ → R+ be locally integrable and g : R+ → R+ be locally bounded. Let
T ≥ 0.

1. Let u be a locally bounded nonnegative function satisfying ut ≤ gt + ∫ t

0 h(t − s)us ds for all t ∈ [0, T ]. If b > 0
satisfies that

∫ T

0
h(s)1

{
h(s) ≥ b

}
ds <

1

2
, (75)

then ‖u‖T ≤ 2e2bT ‖g‖T =: CT ‖g‖T .
2. Let (un) be a sequence of locally bounded nonnegative functions such that un+1

t ≤ gt + ∫ t

0 h(t − s)un
s ds for all t ∈

[0, T ]. Then supn ‖un‖T ≤ CT (‖g‖T + ‖u0‖T ). Moreover, if the inequality is satisfied with g ≡ 0, then
∑

n un converges
uniformly on [0, T ].

A.2.2. Point process results
We collect some useful results on point processes known in the literature.

Lemma A.3.
Let H : (� ×R×R) → R be P ⊗B → B measurable and assume that almost surely

Z : t �→
∫ t

0

∫ ∞

0
H(s, z)π(ds, dz)

does not explode; that is, for all t > 0,∫ t

0

∫ ∞

0

∣∣H(s, z)
∣∣π(ds, dz) < ∞

almost surely.

1. If H is bounded, then the compensator � of Z is given by

� : t �→
∫ t

0

∫ ∞

0
H(s, z) dz ds,

i.e. Z − � is a local (Ft )-martingale.
2. If moreover s �→ E

∫ |H(s, z)|dz is locally integrable, then Z − � is a martingale.
3. Fix T ≥ 0 and assume that � can be written as

�t =
∫ t

0
λs ds.

Assume also that λ(s) = F(Z|(−∞,T ), s) + ε(s) where F is MR × B(R) �→ B(R) measurable and t �→ ε(t) is
(Ft∧T )-predictable. It holds that

P
(
Z(T ,∞) = 0|FT

) a.s.= exp

(
−

∫ ∞

T

F (Z|(−∞,T ], s) + ε(s) ds

)
.
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Proof. The first point follows from [16], Theorem 1.8 of Chapter II, by using the localizing sequence Tn = inf{t :∫ t

0

∫ ∞
0 |H(s, z)|π(ds, dz) ≥ n}, n ≥ 1, since

∫ Tn

0

∫ ∞

0

∣∣H(s, z)
∣∣π(ds, dz) ≤ n + ‖H‖∞.

For the second point, let Mt := Zt − �t . It suffices to show that E(sups≤t |Ms |) < ∞ which follows from

E

(
sup
s≤t

|Ms∧Tn |
)

≤ 2E
∫ t

0

∫ ∞

0

∣∣H(s, z)
∣∣ds dz < ∞

by monotone convergence. The third point is Lemma 1 in [2]. �

Lemma A.4 (Lemma 5 of [2]). Assume that X, Y are (Ft )t∈R+ -progressive and that for all s ≥ 0

P(Xt = Yt ∀t > s|Fs) ≥ Us − r(s),

where U is ergodic, P(Us > 0) > 0 and r(t)
a.s.→ 0 for t → ∞. Then almost surely, X and Y couple in finite time.
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