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Abstract. We study scaling limits of periodically weighted skew plane partitions with semilocal interactions and general boundary
conditions. The semilocal interactions correspond to the Macdonald symmetric functions which are (q, t)-deformations of the Schur
symmetric functions. We show that the height functions converge to a deterministic limit shape and that the global fluctuations are
given by the 2-dimensional Gaussian free field as q, t → 1 and the mesh size goes to 0. Specializing to the noninteracting case, this
verifies the Kenyon–Okounkov conjecture for the case of the rvolume measure under general boundary conditions. Our approach uses
difference operators on Macdonald processes.

Résumé. Nous étudions les limites d’échelle de partitions planes tordues (skew) pondérées périodiquement, avec des interactions
semi-locales et des conditions au bord générales. Ces interactions correspondent aux fonctions symétriques de Macdonald, qui sont
des (q, t)-déformations des fonctions de Schur symétriques. Nous montrons que les fonctions de hauteur convergent vers une forme
limite déterministe et que les fluctuations globales sont données par le champ libre gaussien 2-dimensionnel, lorsque q, t → 1 et que
la maille du réseau tend vers 0. En se restreignant au cas sans interactions, ceci confirme la conjecture de Kenyon–Okounkov pour le
cas de la mesure rvolume pour des conditions au bord générales. Notre approche utilise des opérateurs aux différences agissant sur les
processus de Macdonald.
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1. Introduction

Given Young diagrams μ ⊂ λ, a skew plane partition supported in the skew diagram λ/μ is an array of nonnegative
numbers (πi,j )(i,j)∈λ/μ weakly decreasing in each index. For the purposes of this article we have λ=NM = (N, . . . ,N︸ ︷︷ ︸

M times

).

By viewing πi,j as the number of unit cubes on (i, j), we may interpret a skew plane partition as a discrete, stepped
surface in R

3, see Figure 1. The volume of a skew plane partition is the number of unit cubes, that is
∑

i,j πi,j . The
projected image of this stepped surface further admits the interpretation of a skew plane partition as a lozenge tiling; a
tiling of the triangular lattice by rhombi of three types. A fourth alternative perspective is that a skew plane partition can
be viewed as a dimer covering of the honeycomb lattice.

The central objects of this article are Macdonald plane partitions, a broad class of measures on skew plane partitions
which are also Macdonald processes; stochastic processes with special algebraic properties. Macdonald processes were
introduced in [1], with asymptotics accessible through the method of difference operators. Arising in directed polymers,
random matrices and dimer models to name a few, these stochastic processes and their degenerations have found appli-
cations in a variety of probabilistic models, e.g. [1,3,12]. More recently, a class of difference operators for Macdonald
symmetric functions which directly accesses moments of Macdonald processes was discovered by Negut [24] and applied
to the β-Jacobi corners process in [16] and [14, Appendix 1] by Borodin, Gorin and Zhang.

From the methods perspective, the aim of this article was to further develop the machinery of Negut’s difference
operators for the extraction of global asymptotics of Macdonald processes. One achievement is the extension of Negut’s
difference operators to general Macdonald processes with multiply-peaked boundaries; this is essential to analyze skew
plane partitions whenever μ is not the empty diagram. Yet another is that we access observables at singular points of
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Fig. 1. Skew plane partition with support (5,5,5)/(3,1,0).

Macdonald processes; distinguished points where the model exhibits unbounded and singular behavior. Altogether, our
analysis provides a unified framework for the study of a general class of Macdonald processes.

While the application of this method to Macdonald plane partitions illustrates the breadth of the approach, the focus on
Macdonald plane partitions is motivated in part by the long-standing conjecture of Kenyon and Okounkov (KO conjec-
ture) [19, Section 1.5, page 15] on Gaussian free field fluctuations of periodic dimer models which we recall below. More
specifically, the Macdonald plane partitions provide a rich family of non-uniform models which are situated in a space
extending the domain of KO conjecture. Our goal was to demonstrate that (the appropriate extension of) KO conjecture
continues to hold for the broadest class of non-uniform models which are accessible via the Macdonald processes ap-
proach. Another point of interest for Macdonald plane partitions is in their connection to random matrices. In particular,
they may be viewed as discrete realizations of eigenvalues processes for products of random matrices; we provide more
details below.

KO conjecture was stated in their seminal paper [19] which established a general limit shape theorem for dimers on
Z× Z periodic, bipartite graphs (see also [20]). In more detail, one can associate a natural height function to periodic,
bipartite dimer models and the limit shape theorem states that the height function converges, as the mesh size goes to 0,
to the solution of some variational problem. We note that [19] was preceded by a history of works which was initiated
by Cohn, Kenyon and Propp in [11] where the limit shape phenomenon was established for uniform domino tilings
(i.e. square lattice dimer models). Complementing the limit shape theorem, Kenyon and Okounkov conjectured that the
height function of uniform dimer models exhibit Gaussian free field fluctuations in the limit as the mesh size goes to 0.
Moreover, they gave a conjectural description of the complex coordinates which in the case of lozenge tilings admits a
nice geometric interpretation in terms of the local proportions of lozenges ♦ , ♦, ♦ (see Section 2). Though a general
proof of KO conjecture remains undiscovered, the conjecture has been verified for uniform domino and lozenge tiling
models for an assortment of domains, see [8,9,17,18,28].

While KO conjecture was stated for uniform dimer models, the conjecture can be readily extended to non-uniform
models which emulate a volume constraint (see [5, Section 2.4] and [10]). The simplest such model is the rvolume measure
which is a measure on skew plane partitions with fixed support λ/μ and probability P(π) ∝ rvolume of π . Originally
introduced by Vershik [30] when μ is the empty partition, the limit shape and local asymptotics of the rvolume measure
have been thoroughly studied (see [7,22,25,26]). Despite the abundance of literature on this simple model, there are no
results on the global fluctuations in the literature even for the case of ordinary (when μ is empty) partitions. Since this
gap in the literature is unfortunate, the present article fills this vacancy and proves KO conjecture for rvolume using the
approach of Macdonald processes. Moreover, as far as the author is aware, this article provides the first non-uniform
lozenge tiling model for which KO conjecture is true.

However, the Macdonald processes approach applies to a far more general family of measures beyond the rvolume mea-
sures. To demonstrate this generality, we consider the most inclusive set of measures on random plane partitions, subject
to periodicity, for which the Macdonald processes approach applies. Simultaneously, we sought to push the boundaries
for which KO conjecture holds. From this investigation, we find that KO conjecture encompasses a menagerie of models
exhibiting a variety of features such as periodic weighting and semilocal interactions; we note that periodically weighted
variants of rvolume were expected to satisfy KO conjecture but the inclusion of models with semilocal interactions is a
novelty for lozenge tiling models. In other words, we find universality in the global fluctuations of Macdonald plane
partitions. Furthermore, the Macdonald processes approach provides an explicit description of the limit shape in terms of
its moments going beyond the general description given in [19].

We now comment further on some of the aforementioned features in Macdonald plane partitions. In one direction of
generality, Macdonald plane partitions contain periodically weighted variants of the rvolume measure. These measures
have weights with pZ × Z periodicity rather than the Z × Z periodicity of the rvolume measure. The class of models
studied in this article supports general skew diagrams which lead to exotic limit shapes, see Section 6.3 and Figure 2. The
presence of periodically varying weights produce cusps in the frozen boundary whose placement is determined by the
changes in slope of the boundary. We note that the limit shape phenomenon and local asymptotics for the two-periodic
case, near special cusp points, were studied for fairly specific boundaries in [23]. This is the first work to consider general
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Fig. 2. Samples of large plane partitions from the non-interacting case.

boundary conditions for arbitrary period lengths. The analysis of p-periodically weighted models also introduces new
phenomenon in which the integral formulas of the moments contain pth roots of rational functions, see e.g. Section 6.

In another direction of generality, the Macdonald plane partitions exhibit semilocal interactions of varying strengths.
By semilocal interactions, we mean that the Macdonald plane partitions are a family of interacting dimer models on the
honeycomb lattice where semilocality refers to the interaction being longer-range in one of the coordinate directions. For
our models, a deformation parameter pair (q, t)modulates this interaction with q = t corresponding to the non-interacting
models and the interaction parameter logq

log t exaggerating the strength of the interaction as it deviates away from 1. In this
direction, there is the related work of Giuliani, Mastropietro and Toninelli on global fluctuations for interacting dimers
on the square lattice in [15]. A common feature of our results is that the fluctuations depend on the interaction parameter
only by a scaling factor. Let us also note that our model is non-determinantal when q �= t , and in particular the method
of Macdonald processes is the only approach available presently to access KO conjecture for general Macdonald plane
partitions.

Apart from their generality and variety, Macdonald plane partitions are also of interest due to their deep connection
with random matrix theory. Let β = 2 logq

log t be the interaction type. By degenerating (one-periodic) Macdonald plane
partitions via the Heckman–Opdam limit which fixes the interaction type, one can obtain the eigenvalue distribution of
certain products of random matrices. For β = 2, this connection is explored in [6] where the singular values of products
of truncated Haar unitary matrices have correlation kernels obtained via limits of random plane partitions with certain
boundary conditions that correspond to the truncation sizes. The β = 1,4 cases correspond to products of truncated Haar
orthogonal and symplectic matrices respectively. Thus the Macdonald plane partitions can be viewed as discrete realiza-
tions of product matrix processes. We further explore this connection in a future article. In another similar connection
to random matrices, the interaction type β for our skew plane partitions behaves as the β log-gas parameter in random
matrix theory. This is manifested in the usual β-dependence in global fluctuations, namely the height functions have to be
renormalized in a characteristic manner depending on β in order to converge to the (properly scaled) Gaussian free field.
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We note the limit shape and global fluctuations of the so-called discrete β-ensembles were studied in [4] which are yet
another discrete system exhibiting random matrix β-type interactions.

We finally note that this is not the first work which considers Macdonald deformations of the rvolume measure. By
taking q = 0 in the (q, t) parameter pair above, one obtains the Hall–Littlewood plane partitions, parametrized by t , which
were studied by Vuletić in [31] and Dimitrov in [12]. Vuletić studied the case t = −1 and showed that the underlying
point process is given by a Pfaffian point process. Dimitrov considered general Hall–Littlewood plane partitions, and
showed that the lower boundary of the limit shape was independent of the parameter t , along with finding Tracy–Widom
and KPZ-type fluctuations. In a similar spirit, our limit shape and fluctuation results are independent of q, t except for a
scaling factor given by the log-ratio of q and t .

The remainder of the article is organized as follows. Section 2 provides a more detailed background on random skew
plane partitions, introduces the Macdonald plane partitions, and states the main results of this article: limit shape theorems
and the verification of KO conjecture (i.e. global fluctuations) extended to Macdonald plane partitions. In Section 3, we
extend the difference operators of Negut to formal equalities for joint moments of general Macdonald processes, then
specialize to obtain contour integral formulas for the joint moments of random skew plane partitions. We derive conditions
for which the Macdonald plane partitions converge to well-defined non-singular limits and describe this notion of non-
singularity in Section 4.1. In Section 5, we perform asymptotics on the contour integral formulas for the joint moments.
Section 7 concludes the article by proving the main results on the limit shape and Gaussian free field fluctuations, relying
on properties of (the complex structure on) the liquid region and frozen boundary obtained in Section 6.

Notation. Let i denote the imaginary unit, i.e. the square root of −1 in the upper half plane. Given an interval [a, b] ⊂R,
we write [[a, b]] := [a, b] ∩Z. Given a set K ⊂C, we denote the interior of K by int(K) and the closure of K by cl(K).
Let R>0 (R≥0) denote the positive (nonnegative) real numbers and Z>0 (Z≥0) denote the positive (nonnegative) integers.

2. Model and results

We now introduce our models and results with greater detail. For clarity, we begin by introducing the non-interacting
models and results, corresponding to Sections 2.1 and 2.2. In Section 2.3, we parallel the preceding discussion for more
general interacting models.

2.1. Plane partitions and lozenge tilings

We interchangeably say Young diagrams and partitions. Let μ ⊂ NM = (N, . . . ,N︸ ︷︷ ︸
M times

) be a Young diagram. By the back

wall of NM/μ we mean the upper boundary of the skew diagram NM/μ (see Figure 3). Let π = (πi,j ) be a skew plane
partition with support NM/μ. For −M < v < N , the diagonal section πv = (πa,v+a,πa+1,v+a+1, . . .) is an ordinary
partition, where a is the least integer such that (a, v + a) is a box in NM/μ.

A skew plane partition can be viewed as a 3-dimensional object by stacking πi,j cubes above the box (i, j) as in
Figure 3. The resulting (projected) image is a tiling of lozenges ♦ , ♦ , ♦ . For our purposes, we transform the lozenges
by the affine transformation taking ♦ 	→ , ♦ 	→ , ♦ 	→ . Take the standard basis of R2 for the resulting image with
lengths so that the transformed lozenge is the unit square, see Figure 4. This gives a unique projected coordinate system
for the tiling, up to the choice of origin. The back wall is then the graph of some function B : I →R which is piecewise

Fig. 3. (Left) A skew plane partition with support 53/(3,1,0). The grey upper boundary is the back wall. We label the partitions along the diagonal
sections from v =−2 to 3 from left to right. (Right) The skew plane partition as a 3-dimensional object.
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Fig. 4. The skew plane partition in Figure 3 after the affine transformation. (Left) The projected coordinate axes are dashed. (Right) The back wall is
bolded, the line above represents the domain (−3,5) of the back wall, and the dots correspond to coordinates of the diagonal sections.

Fig. 5. Graph of the height function at x = 0. The gray filled tiles correspond to the flat, gray parts of the graph.

linear with slopes 0 or 1. The domain I of B is an interval of length M + N . For convenience, choose the origin in
projected coordinates so that I = (−M,N). Then the centers of the projected horizontal lozenges corresponding to the
diagonal section πv have x-coordinate v, see Figure 4. Denote by PB the set of plane partitions with back wall B . We
may also consider semi-infinite or infinite back walls by taking M or N to ∞.

Fix a skew plane partition π ∈ PB . We define the height function which takes a point (x, y) and gives the height at that
point. More precisely, the height function h : (I ∩ Z)× R→ R is the piecewise linear function which reports the total
length of vertical line segments below the point (x, y) in projected coordinates, see Figure 5.

For a partition λ= (λ1, λ2, . . .) define |λ| = ∑
i≥1 λi . Consider the random (skew) plane partition (RPP) with proba-

bility distribution on PB defined by

P(π)∝
∏

−M<v<N

r |πv |v (2.1)

for a sequence of weights rv > 0 such that the weights above are summable. When rv is constant in v, this is the rvol

measure studied in [7,22,25,26].

Definition 2.1. Let s = (. . . , s−1, s0, s1, . . .) be a p-periodic, bi-infinite sequence of positive numbers. Denote by P
B,r,s

the probability measure on PB defined by (2.1) where

rv = svr,

given that the weights are summable.

We note that local limits for a specific class of back walls B are studied for p = 2 in [23].

2.2. Results

Our main result is an explicit description of the global fluctuations, in terms of the Gaussian free field, of the measures
P
B,r,s as r → 1 and B converges to some limiting B after rescaling. More precisely, we consider the following limit

regime.

Limit Conditions. Fix a p-periodic, bi-infinite sequence s = (. . . , s−1, s0, s1, . . .) ∈ R
∞
>0 such that s0 · · · sp−1 = 1. Let

P
B,r,s be parametrized by a small parameter ε > 0 where B : I ε →R and r := e−ε vary with ε such that
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Fig. 6. An example Limit Condition (2) illustrated by the graphs of εBε((� xε �) at ε = 1, 1
2 ,

1
4 and the limit ε→ 0, along with transition points εvi (ε).

(1) there exist integers

inf I ε = v0(ε) < · · ·< vn(ε)= sup I ε

such that for each 1 ≤ �≤ n, B ′ is p-periodic on (v�−1, v�)∩ (Z+ 1
2 );

(2) there exists an interval I ⊂R and a piecewise linear B : I →R with non-differentiable points

inf I = V0 < · · ·<Vn = sup I

such that

εv�(ε)→ V� (0 ≤ �≤ n), εBε(x/ε)→ B(x)

as ε→ 0, where the latter convergence is uniform over any compact subset of I .

Remark 1. The condition s0 · · · sp−1 = 1 is to ensure the existence of a non-trivial limit shape. If s0 · · · sp−1 < 1, then
the limit shape becomes trivial; 0-volume upon rescaling. If s0 · · · sp−1 > 1, then for r close to 1 the weights of PB,r,s are
no longer summable.

In Section 4.1, we classify the set B(s) of possible limits of back walls B attained by P
B,r,s satisfying the Limit

Conditions. Our law of large numbers and fluctuations results are restricted to a dense subset B�(s) ⊂B(s), defined
in Section 4.1. The reason for this restriction is related to the presence of singular points; a concept further explained
in Section 4.1. Elements B ∈ B�(s) correspond to RPP limits with only finitely many singular points whereas B ∈
B(s) \B�(s) correspond to RPP limits with a continuum’s worth of singular points. Our methods in general are limited
to accessing models with finitely many singular points, thus this restriction is necessary.

Before proceeding to the main result, it is convenient to state the following limit shape result under our limit regime.
Let h denote the random height function of PB,r,s .

Theorem 2.2. Suppose P
B,r,s satisfies the Limit Conditions such that B ∈ B�(s). Then there exists a deterministic

Lipschitz 1 function H : I ×R→R such that we have the convergence

εh

(⌊
x

ε

⌋
,
y

ε

)
→H(x, y)

of measures on y ∈R, weakly in probability as ε→ 0 for all x ∈ I . An explicit description of this height function is given
in Section 7 in terms of its exponential moments.

Remark 2. We note that there exists an approach to Theorem 2.2 through the variational principle [11,19,20]. Our
approach is different with the benefit of giving explicit formulas for exponential moments and being generalizable to the
Macdonald plane partitions introduced in Section 2.3.
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Fig. 7. Geometric description for parameter z in 1-periodic case.

Let p ♦ ,p♦ ,p ♦ denote the local proportions of the subscripted lozenges, if they exist. Given the deterministic limit

H, the local proportions of lozenges at (x, y) ∈ I ×R are well-defined and given by

∇H(x, y)= (1− p ♦ ,−p♦ ),

p ♦ + p♦ + p ♦ = 1.

It is convenient to encode the local proportions by a complex parameter z ∈H so that

p ♦ = arg z, p♦ = 1

p

p−1∑
i=0

arg(1− s0 · · · siz), (2.2)

where the argument is chosen to be 0 on the positive reals. There is a unique such choice of z ∈ H for any given triple
(p ♦ ,p♦ ,p ♦ ). In the case where the period is 1 the parameter z admits a nice geometric interpretation: the triangle

(0,1, z) has angles π(p ♦ ,p♦ ,p ♦ ), see Figure 7. For higher periods p, the author is unaware of a simple geometric

alternative to (2.2).
We briefly recall the pullback of the Gaussian free field. Detailed discussions of the 2-dimensional Gaussian free field

can be found in [29], [13, Section 4].

Definition 2.3. The Gaussian free field H (with Dirichlet boundary conditions) on H is defined to be the generalized
centered Gaussian field on H with covariance

EH(z)H(w)=− 1

2π
log

∣∣∣∣z−w

z− w̄

∣∣∣∣.
Given a domain D and a homeomorphism � :D→H, the �-pullback of the Gaussian free field H ◦� is a generalized
centered Gaussian field on D with covariance

EH
(
�(u)

)
H

(
�(v)

)=− 1

2π
log

∣∣∣∣�(u)−�(v)

�(u)−�(v)

∣∣∣∣.
Definition 2.4. Let I be some indexing set and some family {ξi}i∈I of random variables. Moreover, for each ε > 0,
define a family of random variables {ξεi }i∈I . We say that {ξεi }i∈I → {ξi}i∈I as ε→ 0 in distribution if for any finite
collection i1, . . . , ik ∈ I the random vector (ξεi1 , . . . , ξ

ε
ik
) converges in distribution to (ξi1, . . . , ξik ).

Let H denote the Gaussian free field with Dirichlet boundary conditions on H, and denote by

h(x, y)= h(x, y)−Eh(x, y)

the centered height function. Let the liquid region be defined to be the set of (x, y) such that all the local proportions
p♦ ,p ♦ ,p ♦ are positive. We are now ready to state the main result for the “Schur case”.

Theorem 2.5. Suppose P
B,r,s satisfies the Limit Conditions such that B ∈B�(s). The map ζ(x, y) = exz(x, y), where

z is defined by (2.2), is a homeomorphism from the liquid region to H. Moreover, the centered, rescaled height function√
πh(� x

ε
�, y

ε
) converges to the ζ -pullback of the GFF in the sense that we have the following convergence in distribution{√

π

∫
h

(⌊
x

ε

⌋
,
y

ε

)
e−ky dy

}
x∈I,k∈Z>0

→
{∫

H
(
ζ(x, y)

)
e−ky dy

}
x∈I,k∈Z>0

.
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In [19], Kenyon and Okounkov conjectured that the fluctuations of the height function for Z× Z periodic, bipartite
dimer models are given by the Gaussian free field. Theorem 2.5 confirms this conjecture for periodically weighted skew
plane partitions.

Remark 3. We note that modifying the Limit Conditions so that r = exp(−cε) for some constant c amounts to scaling
the coordinates of the plane partition. For this reason, we consider c= 1 to reduce the number of parameters. In this case
ζ(x, y)= exz(x, y).

Remark 4. We emphasize that in the uniform lozenge tiling models studied in previous works, the uniformization map
from L onto H is not given by the complex slope ζ(x, y), e.g. in [8,9,28]. For the uniform models, the parameter c in the
remark above is taken to be 0 so that ζ(x, y)= z(x, y), and this gives a covering map from L onto H with degree > 1.
As an example, z(x, y) gives a 2-sheeted covering for the uniform lozenge tilings of a regular hexagon due to rotational
symmetry. The reason ζ(x, y) gives a uniformization map for our models can be related to the fact that there is only
one connected component for the frozen region corresponding to ♦ , which is a consequence of our models having no
“ceiling”.

Remark 5. The map ζ depends continuously on the back wall B. Thus Theorem 2.5 provides a continuous family of
GFFs parametrized by B corresponding to asymptotic RPPs.

2.3. Macdonald plane partitions

We now introduce a two-parameter family of deformation for the RPP defined by (2.1). These deformations correspond to
the (q, t)-parameter family of Macdonald symmetric functions with (2.1) corresponding to the Schur case q = t . Instead
of q , we will take a parameter α > 0 so that q = tα . Fix 0 < t < 1, α > 0 and define the corresponding probability
distribution on PB

P(π)=wα,t (π)
∏

−M<v<N

r |πv |v , (2.3)

where wα,t is an r-independent (α, t)-Macdonald weight, and the summability of the weights (2.3) coincides with the
summability of the weights (2.1). The Macdonald weights wα,t (π) can be described in terms of semilocal contributions
of the plane partition. We explain this in greater detail below, after introducing the coordinate system.

For the Macdonald plane partitions, it will be convenient to consider a different tiling and set of coordinates which
we call the α-coordinates. We transform ♦ , ♦, ♦ to , , where the widths of , are 1, the height of is α, and the
height of is 1. This transformation is not affine since the height of does not scale by α for α �= 1, see Figure 8. To
understand where the coordinates come from, consider the 3-dimensional plane partition. If the height corresponds to the
third coordinate, then the projection in Figure 3 is onto the (1,1,1)-plane. If instead we project onto the (α,α,1)-plane,
then after choosing the basis parallel to the edges of the ♦ lozenge we obtain the α-coordinates (up to sign of direction),
see top row of Figure 8.

Fix a plane partition π ∈ PB . We define the height function as before which gives the height at (x, y). More precisely,
the height function h : (I ∩ Z)×R is defined as 1

α
times the total length of vertical line segments beneath a point (x, y)

in α-coordinates, see Figure 9. The 1
α

term is included because the α-coordinates contract the height from R3 by α.
Consider further these vertical segments which are formed by intersections of an adjacent pair of lozenges , . We say

that the vertical segment formed by the intersection of such a pair of lozenges is a turn. If the pair goes from to ( to
) from left to right, then we call it an internal turn (external turn), see Figure 10.

Denote the set of turns of π by T (π). A turn T is a vertical segment {x0} × [y0, y0 + α] and we set x(T ) = x0,
y−(T )= y0, y+(T )= y0+α. Similarly, given a lozenge along the diagonal section x = v it spans a set of y-coordinates
of the form [y1, y1 + 1] in which case we let x( )= v, y−( )= y1, y+( )= y1 + 1. We now introduce an interaction
between a turn T ∈ T (π) and horizontal lozenges which lie directly above it, given by the weight

vα,t (π,T )=
∏

:x( )=x(T )
y−( )≥y+(T )

1− ty+( )−y+(T )

1− ty−( )−y−(T ) . (2.4)
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Fig. 8. Left: α = 1/2; Right: α = 2. Top: 3-d partition projected onto (1, α,α)-plane. Bottom: Transformed tiling with scaling so that the line segments
by the lower left corner denote unit lengths.

Fig. 9. For α = 1/2 (top) and α = 2 (bottom), the graph of the height function at x = 0 and the associated tiling where the gray filled tiles correspond
to the flat, gray parts of the graph.

Note that if α = 1, then the weight is identically 1. If α < 1 (> 1), then each fraction in (2.4) is > 1 (< 1). With this setup,
we now define the Macdonald weight:

wα,t (π)=
∏

T ∈T (π)
T is external

vα,t (π,T )
∏

T ∈T (π)
T is internal

vα,t (π,T )
−1.
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Fig. 10. Left: We mark external and internal turns black and white resp. along the grey band. Middle: y+, y− indicated for tiles and turns. Right:
Weights contributed by the flat tiles above the highlighted turns.

In words, if α < 1 then the weight wα,t favors external turns over internal turns, and the strength of the preference is
amplified by the presence of horizontal lozenges directly above the turn. Decreasing α further exaggerates this interaction.
For α > 1, this preference is reversed for internal and external turns, and increasing α exaggerates the interaction.

Analogues of Theorems 2.2 and 2.5 exist for the Macdonald RPPs.

Definition 2.6. Let s = (. . . , s−1, s0, s1, . . .) be a p-periodic, bi-infinite sequence of positive numbers such that s0 · · · sp =
1. Denote by P

B,r,s
α,t the probability measure on PB defined by (2.3) where

rv = svr, t = rt, q = tα

given that the weights are summable.

This generalizes the family P
B,r,s defined earlier which corresponds to α = 1 (in which case the value of t is immate-

rial). The limit regime we consider is a generalization of the Limit Conditions for PB,r,sα,t where we fix s, α, t.

Theorem 2.7. Suppose PB,r,sα,t satisfy Limit Conditions with fixed s, α, t such that B ∈B�(s). Then there is a deterministic
Lipschitz 1 function H : I ×R→R independent of α, t such that we have the convergence

εh

(⌊
x

ε

⌋
,
y

ε

)
→ 1

α
H(x, y)

of measures on y ∈R, weakly in probability as ε→ 0 for all x ∈ I \ {V�}n�=0 (recall these are the differentiable points of
the continuous, piecewise linear limit B of back walls). An explicit description of this height function is given in Section 7.

Theorem 2.8. Suppose P
B,r,s
α,t satisfy Limit Conditions with fixed s, α, t such that B ∈B�(s). Then the map ζ(x, y) =

exz(x, y), where z is defined by (2.2), is a homeomorphism from the liquid region to H independent of α, t. Moreover, the
centered, rescaled height function

√
απh(� x

ε
�, y

ε
) converges to the ζ -pullback of the GFF in the sense that we have the

following convergence in distribution of the random family{√
απ

∫
h

(⌊
x

ε

⌋
,
y

ε

)
e−kty dy

}
x∈I,k∈Z>0

→
{∫

H
(
ζ(x, y)

)
e−kty dy

}
x∈I,k∈Z>0

for all x ∈ I \ {V�}n�=0.

Remark 6. We prove stronger statements (see Theorems 7.2 and 7.4) which remove the restriction x ∈ I \ {V�}n�=0 in
exchange for a microscopic separation condition. In these improved theorems, we replace �x/ε� with some sequence x(ε)
such that εx(ε)→ x for any x ∈ I with the caveat that certain εx(ε) need to be separated by some microscopic distance
from certain singular points, see Definition 4.6. This separation condition can be removed for the α = 1 case, and is also
unnecessary whenever t= k for any positive integer k > 0. We expect that the statement of Theorem 2.8 should still hold
in the absence of this condition. Due to technical complications, we did not pursue this refinement.
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Notation. Let B : I → R be a back wall for some RPP. Denote IV = I ∩ Z and IE = I ∩ (Z+ 1
2 ). For back walls Ba

denoted by superscripts, we denote the corresponding sets with superscripts: I a (domain of Ba), I aV = I a ∩ Z, I aE =
I a ∩ (Z+ 1

2 ).

3. Joint expectations of observables

The main goal of this section is to obtain formulas for expectations associated to the height function. Consider

℘k(λ;q, t)=
(
1− t−k

) �(λ)∑
i=1

qkλi tk(−i+1) + t−k�(λ),

where λ= (λ1, λ2, . . .) is a partition, �(λ) denotes the number of indices i such that λi �= 0, and k ∈ Z≥0. The following
proposition gives a connection between ℘k and height functions.

Proposition 3.1. Consider a plane partition π ∈ PB . Fix α > 0, and let h be the height function. Then∫ ∞

−∞
h(x, y)tky dy = tkB(x)

αk2(log t)2
·℘k

(
πx; tα, t).

The main result of this section (stated in Theorem 3.17) is a formula for the joint expectation

E
[
℘k1

(
πx1

) · · ·℘km(
πxm

)]
, (3.1)

where k1, . . . , km ∈ Z≥0, x1, . . . , xm ∈ I , and (πx)x∈I are the diagonals of π ∼ P
B,r,s
α,t . This gives us an expression whose

asymptotics are accessible, and the aforementioned proposition provides the link to interpret these asymptotics in terms
of the height function.

To arrive at a formula for (3.1), we establish a more general expression for observables of formal Macdonald processes
in Section 3.1 (Theorem 3.12 and Corollary 3.13). Here, we combine and generalize the approaches of [1,2] and [16]. In
Section 3.2, we specialize these formal expressions to the case of PB,r,sα,t to prove Theorem 3.17; our formula for (3.1).
We note that the formal expressions obtained in Section 3.1 are applicable to a much more general setting than ours.

Before proceeding, we prove Proposition 3.1.

Proof of Proposition 3.1. As defined in Section 2, the height function at (x, y) is the total length of vertical line segments
beneath a point (x, y). Let Yi denote the y+ coordinate of the ith highest lozenge along the x-diagonal section. Then
Yi = απxi − i + 1+B(x). We claim that the height function is given by the formula

h(x, y)= 1

α

(
y −B(x)+

∫ 0

−1

∣∣{i ≥ 1 : Yi + u≥ y}∣∣du). (3.2)

To see how to obtain (3.2), note that the integral counts the total number of lozenges lying above (x, y), counting
non-integer amounts of if (x, y) lies on the lozenge by the vertical distance from (x, y) to the top of . For y large,
the height function is just 1

α
(y −B(x)). As we decrease y, the integral term in (3.2) enters since no vertical segments are

added when passsing through a lozenge. This proves the claim.
Let N = �(πx), and note that ∂yh = 1

α
(1 − ∑∞

i=1 1[Yi − 1, Yi]) which is 0 on (−∞, YN+1) = (−∞,−N + B(x)).
Then ∫ ∞

−∞
h(x, y)tky dy =− 1

k log t

∫ ∞

−∞
(∂yh)(x, y)t

ky dy

=− 1

αk log t

∫ ∞

YN+1

(
1−

N∑
i=1

1[Yi − 1, Yi](y)
)
tky dy

= 1

αk2(log t)2

(
tkYN+1 + (

1− t−k
) N∑
i=1

tkYi

)

= tkB(x)

αk2(log t)2
·℘k

(
πx; tα, t). �
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3.1. Formal expectations

In this subsection, we obtain formal expressions for observables of formal Macdonald processes. In Sections 3.1.1, 3.1.2,
3.1.3, we provide some background on symmetric functions and notions to give rigorous meaning to the formal expres-
sions we work with. In Section 3.1.4, we define the formal Macdonald process and associated objects. In Section 3.1.5,
we give a formal expression for single cut observables of formal Macdonald processes, originally obtained in [16]. In
Section 3.1.6, we extend these formulas to multicut observables of formal Macdonald processes.

3.1.1. Symmetric functions
The following background on symmetric functions and additional details can be found in [21, Chapters I & VI].

Let Y denote the set of partitions. Recall that we represent λ ∈ Y as the nondecreasing sequence (λ1, λ2, . . .) of its
parts and denote by �(λ) the number indices i such that λi �= 0. Given μ,λ ∈Y, we write μ≺ λ if �(μ), �(λ)≤N and

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ λN ≥ μN.

Given a countably infinite set X = (X1,X2, . . .) of variables, let �X denote the algebra of symmetric functions on X over
C. For sets X(1), . . . ,X(n) of variables, let �(X(1),...,X(n)) denote the algebra of symmetric functions on the disjoint union
of these sets.

Recall the power symmetric functions p0(X)= 1 and

pk(X)=
∑
i≥1

Xk
i , k ∈ Z>0.

These symmetric functions are generators of the algebra �X . For each λ ∈Y, define

pλ(X)=
�(λ)∏
i=1

pλi (X).

Then {pλ(X)}λ∈Y forms a linear basis of �X . Fixing 0< q, t < 1, we have the scalar product

〈pλ,pμ〉 = δλμ

�(λ)∏
i=1

1− qλi

1− tλi

∞∏
i=1

imi(λ)mi(λ)!,

where mi(λ) is the multiplicity of i in λ.
The Macdonald symmetric functions {Pλ(X;q, t)}λ∈Y are the unique (homogeneous) symmetric functions satisfying〈

Pλ(X;q, t),Pμ(X;q, t)
〉= 0

for λ �= μ and with leading monomial Xλ1
1 X

λ2
2 · · · with respect to lexicographical ordering of the powers (λ1, λ2, . . .).

This implies that {Pλ(X;q, t)}λ∈Y forms a linear basis for �X . Let Qλ(X;q, t) represent the multiple of Pλ(X;q, t)
satisfying〈

Pλ(X;q, t),Qλ(X;q, t)
〉= 1.

For λ,μ ∈Y, the skew Macdonald symmetric functions Pλ/μ(X;q, t), Qλ/μ(X;q, t) are uniquely defined by

Pλ(X,Y )=
∑
μ∈Y

Pλ/μ(X)Pμ(Y ),

Qλ(X,Y )=
∑
μ∈Y

Qλ/μ(X)Qμ(Y ).

For a single variable x, we have the following expressions for skew Macdonald symmetric functions. Let f (u)= (tu;q)∞
(qu;q)∞

with (u;q)∞ :=∏
i≥0(1− uqi),

Pλ/μ(x)= δμ≺λψλ/μ(q, t)x|λ|−|μ| and Qλ/μ(x)= δμ≺λφλ/μ(q, t)x|λ|−|μ|, (3.3)
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where the coefficients are

ψλ/μ(q, t)=
∏

1≤i≤j≤�(λ)

f (qμi−μj tj−i )f (qλi−λj+1 tj−i )
f (qλi−μj tj−i )f (qμi−λj+1 tj−i )

, (3.4)

φλ/μ(q, t)=
∏

1≤i≤j≤�(μ)

f (qλi−λj tj−i )f (qμi−μj+1 tj−i )
f (qλi−μj tj−i )f (qμi−λj+1 tj−i )

. (3.5)

The skew Macdonald symmetric functions satisfy the branching rule:

Pλ/ν(X,Y )=
∑
μ∈Y

Pλ/μ(X)Pμ/ν(Y ), Qλ/ν(X,Y )=
∑
μ∈Y

Qλ/μ(X)Qμ/ν(Y ) (3.6)

for any λ, ν ∈Y.
We say that a unital algebra homomorphism ρ :�X →C is a specialization. Given a specialization ρ and f ∈�X , we

write f (ρ) instead of ρ(f ) in view of the special case of function evaluation. The specializations we are interested in will
have the following form. Take a sequence {ai}∞i=1 of nonnegative real numbers such that a1 ≥ a2 ≥ · · · and

∑∞
i=1 ai <∞,

define ρ by

pn(ρ)=
∞∑
i=1

ani

for n > 0. This uniquely determines the specialization ρ because the power symmetric functions generate the algebra of
symmetric functions. For such specializations, we may write ρ = (a1, a2, a3, . . .). If the only nonzero members of the
sequence are a1, . . . , aN , we may write ρ = (a1, . . . , aN).

A specialization ρ is (q, t)-Macdonald-positive if Pλ(ρ;q, t)≥ 0 for all partitions λ. The aforementioned specializa-
tion ρ = (a1, a2, . . .) with ai ≥ 0 for all i ≥ 1 is Macdonald positive, as follows from the nonnegativity of (3.3), (3.4),
(3.5).

3.1.2. Graded topology
Let F be a field and A be a (Z≥0-)graded algebra over F . Let An denote the nth homogeneous component of A.
Throughout this section, let us assume that all of our graded algebras have dimAn <∞ for every n≥ 0.

Definition 3.2. Given a ∈A, define ldeg(a) to be the minimum degree among the homogeneous components of a. The
graded topology is the topology on A where a sequence an ∈A converges to a ∈A if and only if

ldeg(an − a)→∞
as n→∞. Denote the completion of A under this topology by Â.

The completion Â consists of formal sums
∑∞

n=1 an where an ∈An. Given two graded algebras A and A′ over F , we
give the following grading to A⊗F A′. If a ∈Am and a′ ∈A′

n, then a⊗ a′ ∈ (A⊗F A′)m+n.
For a field F ⊃C and a graded algebra A over C, denote by A[F ] the graded algebra A⊗CF over F ; i.e. the extension

of scalars from C to F . Given graded algebras A(1), . . . ,A(k) over C, we denote the completion of (A(1)⊗· · ·⊗A(n))[F ]
under the graded topology by

A(1) ⊗̂ · · · ⊗̂A(k)[F ] or
⊗̂k

i=1
A(i)[F ].

Let �X[F ] denote the F -algebra of symmetric functions in X = {x1, x2, . . .}, a set of variables, with coefficients in F .
Take the natural grading on �X[F ] in which (�X[F ])n is spanned by monomials of total degree n. Given disjoint ordered
sets of variables Z1, . . . ,Zn with Zi = (zi,1, . . . , zi,ki ), let L(Z1, . . . ,Zn) denote the field of formal Laurent series in the
variables

n⋃
i=1

{
zi,1

zi,2
, . . . ,

zi,ki−1

zi,ki
, zi,ki

}
.
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The space
⊗̂k

i=1�Xi [F ] consists of formal sums∑
λ1,...,λN∈Y

cλ1,...,λN Pλ1

(
X1) · · ·PλN (

XN
)
,

where cλ1,...,λN ∈ F .
For fields C⊂ F1 ⊂ F2, 1 ≤ k ≤N , there is the natural inclusion map⊗̂k

i=1
�Xi [F1] ↪→

⊗̂k

i=1
�Xi [F2]. (3.7)

We also have consistency

�X1[F ] ⊗F · · · ⊗F �XN [F ] ∼=�X1 ⊗ · · · ⊗�XN [F ]. (3.8)

Definition 3.3. The projection map πnX : �̂X →�{x1,...,xn} is defined as the continuous map sending xn+1, xn+2, . . . to 0
and xi to xi for i = 1, . . . , n.

For a field F ⊃C and a graded algebra A over C, we can extend the domain of the projection

πnX :A ⊗̂�X[F ]→A ⊗̂�{x1,...,xn}[F ]
by identifying with 1A ⊗ πnX then extending by continuity under the graded topology.

Definition 3.4. Let A and A′ be graded algebras over C and {an,j }j be a basis for An for each n ≥ 0. We say that an
element f ∈A ⊗̂A′[F ] is A-projective if

f =
∑
n,j

an,j ⊗ α′n,j , α′n,j ∈A′
n

such that limn→∞ minj ldeg(α′n,j )=∞. This property is independent of the choice of basis.

Elements which are A-projective are closed under addition and multiplication and form a subalgebra of A ⊗̂A′[F ]. If
A=�X , denote the algebra of �X-projective elements by PX(�X ⊗̂A′[F ]).

3.1.3. Macdonald pairing and residue
Recall the Macdonald scalar product determined by

〈Pλ,Qμ〉 = δλμ.

Definition 3.5. Let A,A′ be graded algebras over C. Fix a field F ⊃ C, and let the Macdonald pairing be the bilinear
map 〈·, ·〉Y : (A⊗�X)[F ] × (�X ⊗A′)[F ]→A⊗A′[F ] defined by

〈a ⊗ Pλ,Qμ ⊗ b〉X := 〈Pλ,Qμ〉a⊗ b= δλμa ⊗ b.

This pairing does not extend by continuity to the completions of the domain. However, the pairing does extend contin-
uously to

PX
(
A ⊗̂�X[F ]

)× (
�X⊗̂A′[F ]).

Definition 3.6. Given an ordered set Z = (z1, . . . , zk) of variables, denote by
∮
dZ : L(Z)→ C the residue operator

which takes an element of L(Z) and returns the coefficient of (z1 · · · zk)−1. For
∮
dZ applied to f ∈ L(Z) we write∮

f dZ or
∮
dZ · f .

As with the projection map, the residue operator can act on larger domains. For example, we can extend∮
dZ : Â[

L
(
Z,W 1, . . . ,Wk

)]→ Â
[
L

(
W 1, . . . ,Wk

)]
(3.9)
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by the action 1A⊗ ∮
dZ then extension by continuity. In this case,

∮
dZ preserves the degree of homogeneous elements.

In particular, if we replace Â with A ⊗̂A′, we have that
∮
dZ preserves A-projectivity.

The residue operator commutes with continuous maps under the graded topology.

Lemma 3.7. Let A, A′ be graded algebras over C, and let ϕ : Â→ Â′ be a continuous map which extends naturally to
a continuous map Â[L(Z,W)]→ Â′[L(Z,W)]. Then

ϕ ◦
(∮

dZ

)
=

(∮
dZ

)
◦ ϕ.

Lemma 3.8. Let A, A′ be graded algebras over C, let f ∈ A ⊗̂�X[L(Z)] and g ∈ �X ⊗̂A′[L(W)]. If f is �X-
projective, then〈∮

f dZ,g

〉
X

=
∮
〈f,g〉X dZ, (3.10)〈

f,

∮
g dW

〉
X

=
∮
〈f,g〉X dW. (3.11)

Since the residue operator preserves projectivity, the left hand sides of the equalities above are valid expressions.

Proof. For arbitrary g ∈�X ⊗̂A′[L(W)], the map 〈·, g〉X is continuous on PX(A⊗�X[L(Z)]). By Lemma 3.7, (3.10)
follows. For f ∈ PX(A ⊗̂�X(L(Z)]), the map 〈f, ·〉 is continuous on�X ⊗̂A′[L(W)]. By Lemma 3.7, (3.11) follows. �

3.1.4. Formal Macdonald processes
Let X,Y be countable sets of variables. Fix 0 < q, t < 1 throughout this section. Define the following element of
�X ⊗̂�Y

�(X,Y ) :=
∏

x∈X,y∈Y

(txy;q)∞
(xy;q)∞ .

From [21, Chapter VI, Sections 2 & 4], we have the following equalities

�(X,Y )=
∑
λ∈Y

Pλ(X)Qλ(Y )= exp

( ∞∑
n=1

1− tn

1− qn

1

n
pn(X)pn(Y )

)
.

Define the following element of �X ⊗̂�Y obtained by taking q = 0 above

H(X,Y ; t)=
∏

x∈X,y∈Y

1− txy

1− xy
= exp

( ∞∑
n=1

1− tn

n
pn(X)pn(Y )

)
. (3.12)

Given countable sets of variables X1,X2, the following splitting equality holds

�
((
X1,X2), Y )=�

(
X1, Y

)
�

(
X2, Y

)
(3.13)

and likewise for H(·, ·; t). There is also an inversion equality

H(X,Y ; t)−1 =H
(
tX,Y ; t−1), (3.14)

where by tX we mean the variable set {tx}x∈X .

Definition 3.9. Fix a positive integer N and let U = (U1, . . . ,UN) and V = (V 1, . . . , V N) be ordered N -tuples of

countable sets of variables. A formal Macdonald process is a formal probability measure on Y
N valued in

⊗̂N

i=1(�Ui ⊗
�V i ) with the assignment

MP
f
U ,V (λ)=Z −1Pλ1

(
U1)(∑

μ∈Y
Qλ1/μ

(
V 1)Pλ2/μ

(
U2)) · · ·

(∑
μ∈Y

QλN−1/μ

(
V N−1)PλN/μ(

UN
))
QλN

(
V N

)
,
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where λ= (λ1, . . . , λN) and Z ∈ ⊗̂N

i=1(�Ui ⊗�V i ) is the normalization constant for which the sum over λ ∈Y
N gives

unity.

From [2, Section 3],

Z =
∏

1≤i≤j≤N
�

(
Ui,V j

)
. (3.15)

In terms of the pairing, the formal Macdonald process can be expressed as

MP
f
U ,V (λ)=Z −1Pλ1

(
U1)(N−1∏

i=1

〈
Qλi

(
V i,Y i

)
,Pλi+1

(
Y i,Ui+1)〉

Y i

)
QλN

(
V N

)
. (3.16)

This is an immediate consequence of the branching rule (3.6).
The �’s introduced earlier also relate well with the pairing〈

�
(
X1, Y

)
,�

(
Y,X2)〉=�

(
X1,X2).

Since the power symmetric functions from an algebraic basis for �X[L(Z)], this relation can be further extended as fol-
lows. Take graded algebras A and A′ over L(Z) with Z = (z1, . . . , zk), and sequences {an}, {a′n} in A and A′ respectively
such that ldeg(an), ldeg(a′n)→∞ as n→∞. Then〈

exp

( ∞∑
n=1

an

n
pn(Y )

)
, exp

( ∞∑
n=1

a′n
n
pn(Y )

)〉
= exp

( ∞∑
n=1

1− qn

1− tn

ana
′
n

n

)
. (3.17)

See [2, Proposition 2.3] for further details.

Lemma 3.10. Let X1,X2,X3,X4, Y be countable sets of variables. Then〈
H

(
X1, Y ; t−1)�(

X2, Y
)
,H

(
X3, Y ; t−1)�(

X4, Y
)〉
Y

=H
(
X1,X4; t−1)H (

X2,X3; t−1)�(
X2,X4)∏ (1− x1x3)(1− q

t
x1x3)

(1− 1
t
x1x3)(1− qx1x3)

, (3.18)

where the product is over xi ∈ Xi for i = 1,2,3,4. The expression (1 − qx1x3)
−1 is interpreted as the formal power

series
∑∞

n=0(qx1x3)
n and similarly for (1− t−1x1x3)

−1.

Proof. Use (3.17) with

an =
(
1− t−n

)
pn

(
X1)+ 1− tn

1− qn
pn

(
X2),

a′n =
(
1− t−n

)
pn

(
X3)+ 1− tn

1− qn
pn

(
X4). �

3.1.5. Negut’s operator
Define the continuous linear operator DX−k : �̂X → �̂X by

DX−kPλ(X;q, t)= ℘k(λ;q, t)Pλ(X;q, t).
This operator was studied in [24] and an integral form for this operator was obtained in [16]. The action of this operator
can be given in terms of the residue operator. We first introduce notation to abbreviate the expression. Let Z = (z1, . . . , zk)

be an ordered set of variables. Define

DZ = 1

(2π i)|Z|

∑k
i=1

z1
zi

qi−1

t i−1

(1− qz1
tz2
) · · · (1− qzk−1

tzk
)

∏
i<j

(1− zi
zj
)(1− qzi

tzj
)

(1− zi
tzj
)(1− qzi

zj
)

k∏
i=1

dzk

zk
. (3.19)

For the instances of (1 − v)−1 in the expression, we mean the power series expansion into
∑

n≥0 v
n. We adopt the

shorthand notation Z−1 = (z−1
1 , . . . , z−1

k ).
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Proposition 3.11. Let X and Y be countable sets of variables. Then

DX−k�(X,Y )=�(X,Y )

∮
DZ ·H (

qZ−1,X; t−1)H (
Y,q−1Z; t)−1

. (3.20)

Proof. From [16, Proposition 4.10], we have (3.20) where instead of a set of variables Y we have some fixed set
{u1, . . . , un} of complex numbers, and X is still a countable set of variables. Here we have

∮ : �̂X[L(Z)] → �̂X . The
goal is to extend this to a formal equality on �X ⊗̂�Y for Y an arbitrary countable set of variables.

We can replace (3.20) with a finite set of variables Y (n) = {y1, . . . , yn} instead of fixed complex numbers. In such a
setting, we must consider the residue operator as a map

∮
dZ :�X ⊗̂�y1,...,yn [L(Z)]→�X ⊗̂�y1,...,yn .

Note that if f,g ∈�X ⊗̂�Y such that πYn f = πYn g for all n, then f = g. One then sees that (3.20) holds formally for
arbitrary countable sets of variables X,Y . In this setting, the residue operator takes �X ⊗̂�Y [L(Z)] to �X ⊗̂�Y . �

3.1.6. Formal multicut expectations
We obtain formulas for multicut expectations of formal Macdonald processes. The idea is to repeated apply the operators
DX−k to �.

Theorem 3.12. The following formal identity holds for any nonnegative integers k1, . . . , kN

E
MP

f
U ,V

[
℘k1

(
λ1;q, t) · · ·℘kN (

λN ;q, t)]
=

∮
DZ1 · · ·DZN

∏
1≤i≤j≤N

H
(
Ui, qZ−1

j ; t−1)H (
q−1Zi,V

j ; t)−1 ∏
1≤i<j≤N

C(Zi,Zj ),

where |Zi | = ki and

C(Z,W)=
∏
i,j

(1− t−1qzi/wj )(1− zi/wj )

(1− qzi/wj )(1− t−1zi/wj )
(3.21)

for sets of variables Z = (z1, . . . , zk) and W = (w1, . . . ,w�).

This theorem implies a more general result in which the ℘ki (λ
i) may be taken to higher powers than 1 in the expecta-

tion.

Corollary 3.13. Let 1 ≤ x1 ≤ · · · ≤ xm ≤N and k1, . . . , km > 0 be integers. Then

E
MP

f
U ,V

[
℘k1

(
λx1;q, t) · · ·℘km(

λxm;q, t)]
=

∮
DZ1 · · ·DZm

m∏
a=1

∏
1≤i≤xa
xa≤j≤N

H
(
Ui, qZ−1

a ; t−1)H (
q−1Za,V

j ; t)−1 ∏
a<b

C(Za,Zb), (3.22)

where |Za | = ka .

Proof of Theorem 3.12. Choose nonnegative integers k1, . . . , kN and let Zi = {zij }kij=1 for i = 1, . . . ,N be disjoint sets
of variables.

1. Consider the element∑
λ

℘k1

(
λ1) · · ·℘kN (

λN
)
MP

f
U ,V (λ) ∈

⊗̂N

i=1
(�Ui ⊗�V i ).

2. Multiply through by the normalizing constant. Reexpress the sums within MP in terms of Macdonald pairings as in
(3.16)

∑
λ

℘k1

(
λ1) · · ·℘kN (

λN
)
Pλ1

(
U1)(N−1∏

i=1

〈
Qλi

(
V i,Y i

)
,Pλi+1

(
Y i,Ui+1)〉

Y i

)
QλN

(
V N

)
.
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Here we note the spaces which the pairings map:

〈·, ·〉Y i : (�V i ⊗̂�Yi )× (�Y i ⊗̂�Ui+1)→�V i ⊗̂�Ui+1 .

By natural inclusions (3.7) and consistency (3.8), the domain of this pairing may be extended.
3. Bring the summation inside the pairings and the pairings inside the pairings

〈E1,
〈
E2,

〈· · · 〈EN−1,EN 〉YN−1 · · · 〉
Y 2

〉
Y 1 ,

where

Ei =
∑
λi

℘kiPλ1

(
Y i−1,Ui

)
Qλi

(
V i,Y i

)
and Y 0, YN are empty sets of variables. It was important to use the fact that the first argument of the Y i Macdonald
pairing is �Yi -projective which provides the continuity necessary for bringing the summations inside.

4. We can reexpress the summations in terms of Negut’s operator in the residue form (3.20)

Ei =D
Yi−1,Ui

−ki �
((
Y i−1,Ui

)
,
(
V i,Y i

))
=�

((
Y i−1,Ui

)
,
(
V i,Y i

))∮
H

((
Y i−1,Ui

)
, qZ−1

i ; t−1)H (
q−1Zi,

(
V i,Y i

); t)−1
DZi.

5. The domain of the residue operator can be appropriately extended and consistency follows from (3.7) and (3.8). Note
that the integrand in Ei remains �Yi -projective. Therefore, by (3.10) and (3.11), we may commute the residue operators
with the pairings. After pulling out Y i independent factors outside the residue operators, we obtain

A

∮
DZ1 · · ·

∮
DZN

〈
F1,

〈
F2, . . . 〈FN−1,FN 〉YN−1 · · · 〉

Y 2

〉
Y 1 ,

where

Fi =H
(
Y i−1, qZ−1

i ; t−1)�(
Y i−1,V i

)
H

(
q−1Zi,Y

i; t)−1
�

((
Y i−1,Ui

)
, Y i

)
, (3.23)

A=
N∏
i=1

H
(
Ui, qZ

−1
i ; t−1)H (

q−1Zi,Vi; t
)−1

�
(
Ui,V i

)
. (3.24)

Here, (3.13) and (3.14) were used to split H and �.
6. Apply the pairings for Y i in decreasing order of i. At the (N − i)th step, we have

Ai

∮
DZ1 · · ·

∮
DZN

〈
F1,

〈
F2, . . . 〈Fi ,Fi〉YN−i · · ·

〉
Y 2

〉
Y 1, (3.25)

where Ai collects the Y 1, . . . , Y i independent terms. We show by induction that

Fi =H
(
Y i, qZ−1

[i+1,N]; t−1)�(
Y i,V [i+1,N]), (3.26)

where we used shorthand notation Z[i,j ] = (Zi,Zi+1, . . . ,Zj ) and similarly for V . If we suppose (3.26) is true, then
within the Y i bracket in (3.25), Fi interacts with the third and fourth terms given in (3.23). By (3.14) and (3.18), this
interaction produces

C(Zi,Z[i+1,N])H
(
q−1Zi,V

[i+1,N]; t)−1
H

((
Ui,Y i−1), qZ−1

[i+1,N]; t−1)�((
Ui,Y i−1),V [i+1,N]), (3.27)

where C(Z,W) is defined by (3.21). As a formal expression, we expand any terms of the form (1−v)−1 as the geometric
series. The {Y j } independent term of (3.27) is

C(Zi,Z[i+1,N])H
(
q−1Zi,V

[i+1,N]; t)−1
H

(
Ui, qZ−1

[i+1,N]; t−1)�(
Ui,V [i+1,N]). (3.28)

After picking up the first two terms in (3.23), the remaining term to interact with the Y i−1 pairing is

H
(
Y i−1, qZ−1

[i,N]; t−1)�(
Y i−1,V [i,N]),
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which completes the induction as the starting term and ending terms are consistent, the initial term for i = N − 1 is
exactly FN , and the final term is unity because Y 0 is empty. After collecting the Y j -independent terms (3.28) from each
i =N − 1,N − 2, . . . ,1 and applying (3.13), we complete the proof of Theorem 3.12. �

We now illustrate the main idea of the proof of Corollary 3.13 via a particular example. For further details, we note
that the proof is essentially identical to a corresponding extension in [2] (Theorem 3.10 to Corollary 3.11).

Proof Idea of Corollary 3.13. We consider the example of N = 1 and m = 2. Let k1, k2 > 0 be integers. Consider
auxiliary variables S = (S1, S2),T = (T 1, T 2), and the formal expectation

E
MP

f
S,T

[
℘k1

(
λ1)℘k2

(
λ2)]

=Z −1
0

∑
λ1,λ2∈Y

℘k1

(
λ1)℘k2

(
λ2)Pλ1

(
S1)(∑

μ∈Y
Qλ1/μ

(
T 1)Pλ2/μ

(
S2))Qλ1

(
T 2), (3.29)

where Z0 is the normalizing factor MP
f
S,T . Consider the map φ :�T 1 ⊗�S2 which sends f (T 1)g(S2) 	→ f (0)g(0) to

the constant term for any f,g ∈ �X . By applying (the continuous extension of) φ to (3.29) and rewriting S1 = U and
T 2 = V , we get

Z −1
∑
λ∈Y

℘k1(λ)℘k2(λ)Pλ(U)Qλ(V )= E
MP

f
U,V

[
℘k1

(
λ1)℘k2

(
λ2)], (3.30)

where Z is the normalizing factor for MP
f
U,V . On the other hand, by Theorem 3.12, we have a formal residue expression

for (3.29). By applying φ to this expression, we obtain (3.22) for this choice of N,m.
In the general case, we consider some formal Macdonald process in a greater number of variables, apply Theorem 3.12,

then apply variable contractions φ to obtain the Corollary. �

3.2. RPP observables

In this section, we derive a formula for (3.1), stated below in Theorem 3.17. It is convenient to do this in two steps: first
apply Corollary 3.13 to a formal version of the RPP measures, then specialize the formal RPPs to P

B,r,s
α,t .

3.2.1. Formal random plane partition
Fix a measure P

B,r,s
α,t . For each e ∈ IE , let

Fμ,λ(X;b, q, t)=
{
Pλ/μ(X;q, t) if b= 1,

Qμ/λ(X;q, t) if b= 0.
(3.31)

Definition 3.14. If the domain I of the back wall B : I →R has finite length, define the formal RPP with back wall B to
be the formal probability measure P

B,f supported on PB and valued in
⊗̂

e∈IE�Xe so that

P
B,f(π)= 1

Z

∏
e∈IE

F
π
e− 1

2 ,π
e+ 1

2

(
Xe;B ′(e), q, t

)
. (3.32)

The partition function can be computed:

Z =
∏

e1,e2∈IE,e1<e2
B ′(e1)>B

′(e2)

�(Xe1 ,Xe2). (3.33)

We comment on how to obtain (3.33) after proving Proposition 3.15.
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Proposition 3.15. Suppose the domain I of B : I → R has finite length. Let x1 ≤ · · · ≤ xm be points in IE and
k1, . . . , km > 0 be integers. Then

EPB,f

[
m∏
i=1

℘ki
(
πxi

)]=
∮

· · ·
∮ ∏

a<b

C(Za,Zb)

×
m∏
a=1

∏
e∈IE,e<xa
B ′(e)=1

H
(
Xe,qZ−1

a ; t−1) ∏
e∈IE,e>xa
B ′(e)=0

H
(
q−1Za,X

e; t)−1
DZa,

where |Za| = ka .

Proof. The proof is specializing Corollary 3.13 to the formal RPPs. We find a good way of relabeling the formal Mac-
donald process indices to make this specialization transparent.

Let N = |IE | − 1, e′ = min IE and v′ = min IV (then v′ = e′ − 1
2 ). We may reexpress (3.32) as

P
B,f(π)= 1

Z
F
πv

′
,πv

′+1

(
Xe′ ;B ′(e′), q, t)F

πv
′+1,πv

′+2

(
Xe′+1;B ′(e′ + 1

);q, t) · · ·
× F

πv
′+N ,πv′+N+1

(
Xe′+N ;B ′(e′ +N

);q, t). (3.34)

By (3.3) and (3.31), we have that πv
′+1 = (0) whenever B ′(e′)= 0. Likewise πv

′+N = (0) whenever B ′(e′ +N)= 1. We
may therefore assume that B ′(e′)= 1 and B ′(e′ +N)= 0.

Let Ũ = (Ũ1, . . . , ŨN ) and Ṽ = (Ṽ 1, . . . , Ṽ N ) where N = |IE | − 1. Consider the formal Macdonald process
MP

f
Ũ ,Ṽ

(̃λ1, . . . , λ̃N ). It will be convenient to consider relabelings U = (Ue)e∈IE ,V = (V e)e∈IE , (λe)e∈IE so that

Ũ1 =Ue′ , Ũ2 =Ue′+1, . . . , ŨN =Ue′+N−1, (3.35)

Ṽ 1 = V e′+1, Ṽ 2 = V e′+2, . . . , Ṽ N = V e′+N, (3.36)

λ̃1 = λv
′+1, λ̃2 = λv

′+1, . . . , λ̃N = λv
′+N. (3.37)

Thus

MP
f
Ũ ,Ṽ

(
λ̃1, . . . , λ̃N

)= 1

Z̃
P
λv

′+1

(
Ue′) · ∑

μ∈Y
Q
λv

′+1/μ

(
V e′+1)P

λv
′+2/μ

(
Ue′+1) · · ·

×
∑
μ∈Y

Q
λv

′+N−1/μ

(
V e′+N−1)P

λv
′+N/μ

(
Ue′+N−1) ·Q

λv
′+N

(
V e′+N )

, (3.38)

where Z̃ is the normalization factor.
For e ∈ IE , define Xe to be Ue if B ′(e)= 1 and V e if B ′(e)= 0, and X = (Xe)e∈IE . Similarly, define Y e to be V e if

B ′(e)= 1 and Ue if B ′(e)= 0, and Y = (Y e)e∈IE .
Let ρX0 denote the 0-specialization on �X , or equivalently constant term map for �X . Define

ρB0 :=
⊗
e∈IE

ρY
e

0 :
⊗
e∈IE

�Ye →C.

By taking tensor products with the identity on �Xe for e ∈ IE , and extending by continuity, we have a map

ρB0 :
⊗̂

e∈IE
(�Xe ⊗̂�Ye)→

⊗̂
e∈IE

�Xe .

We may further extend this map by extending the scalars from C to L(Z1, . . . ,Zn).
Applying ρB0 to (3.38) gives (3.34) for λv = πv , v ∈ Iv . This continues to hold true for expectations, so we have

ρB0
(
E
MP

f
U ,V

[
℘k1

(
πx1

) · · ·℘km(
πxm

)])= EPB,f
[
℘k1

(
λx1

) · · ·℘km(
λxm

)]
.
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By Corollary 3.13 the left hand side is exactly

ρB0

(∮
· · ·

∮ ∏
a<b

C(Za,Zb)

m∏
a=1

( ∏
e<xa,e∈IE

H
(
Ue,qZ−1

a ; t−1) ∏
e>xa,e∈IE

H
(
q−1Za,V

e; t)−1
DZa

))

=
∮

· · ·
∮ ∏

a<b

C(Za,Zb)

m∏
a=1

∏
e∈IE,e<xa
B ′(e)=1

H
(
Xe,qZ−1

a ; t−1) ∏
e∈IE,e>xa
B ′(e)=0

H
(
q−1Za,X

e; t)−1
DZa,

where we have used the fact that the residue operator commutes with continuous maps. This proves the proposition. �

Remark 7. The formula (3.33) is then a consequence of applying the specializations in the proof of Proposition 3.15 to
the partition function for the formal Macdonald process (3.15).

3.2.2. Specialization to RPP
Consider the distribution in (2.3) where we have a sequence of weights (rv)v∈IV . Fix an arbitrary ξ > 0 and v0 ∈ IV ,
define

ae :=
{
ξ

∏
v∈IV v0≤v<e rv if e > v0,

ξ
∏
v∈IV e<v<v0

r−1
v if e > v0.

(3.39)

The dependence of our models on ae is only through their ratios with one another. In particular, the choice of ξ and v0 is
immaterial. By (3.4) and (3.5), the distribution defined by

P(π)= 1

Z ((ae)IE )

∏
e∈IE

F
λ
e− 1

2 ,λ
e+ 1

2

(
a1−2B ′(e)
e ;B ′(e), q, t

)
(3.40)

coincides with (2.3) if and only if

Z
(
(ae)IE

)= ∏
e1,e2∈IE,e1<e2
B ′(e1)>B

′(e2)

�
(
a−1
e1
, ae2

)
<∞.

This implies the following lemma.

Lemma 3.16. If the weights in (2.3) are summable, then for any e1, e2 ∈ IE such that e1 < e2 and B ′(e1) > B ′(e2), we
have

a−1
e1
ae2 < 1,

where (ae)e∈IE is defined in (3.39). If I is finite, the inequality is also sufficient to determine the weights are summable.

We note that for I of finite length, each diagonal partition πv of π ∈PB has bounded length �(πv) depending only B
and v. Thus for finite IE , the finiteness of Z ((ae)IE ) implies the existence of the multicut expectations of (3.40).

For the measure P
B,r,s
α,t , a suitable choice for ae is given by

ae = rvs0 · · · s�e� = rvs0 · · · s�e�. (3.41)

The main formula for the observables ℘ can be obtained by specializing the formal RPPs, taking Xe 	→ a
1−2B ′(e)
e . For

x ∈ IV , define the function

GB
<x(z; ε, t)=

∏
e<x,e∈IE
B ′(e)=1

1− (taez)
−1

1− (aez)−1
=

p−1∏
i=0

∏
e<x,e∈IE
e∈pZ+i+ 1

2

(
1− (tre(s0 · · · si)z)−1

1− (re(s0 · · · si)z)−1

)B ′(e)
,

GB
>x(z; ε, t)=

∏
e>x,e∈IE
B ′(e)=0

1− aez

1− taez
=

p−1∏
i=0

∏
e>x,e∈IE
e∈pZ+i+ 1

2

(
1− re(s0 · · · si)z
1− tre(s0 · · · si)z

)1−B ′(e)
.

(3.42)
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Given some function g(z) in one-variable and Z = (z1, . . . , zk) an ordered collection of variables, we write

g(Z) :=
k∏
i=1

g(zi).

Theorem 3.17. Consider the measure PB,r,sα,t where r = e−ε and let (πx)x∈I denote the (random) diagonal partitions. Let
x1 ≤ · · · ≤ xm be in IV and k1, . . . , km > 0 be integers. Suppose there exist positively oriented contours {Ci,j }1≤j≤ki ,1≤i≤m
such that

• the contour Ci,j is contained in the domain bounded by tCi′,j ′ whenever (i, j) < (i′, j ′) in lexicographical ordering;
• each domain bounded by Ci,j contains 0 and the poles of GB

<x(z; ε, t) but not the poles of GB
>x(z; ε, t).

Then

E
[
℘k1

(
πx1;q, t) · · ·℘km(

πxm;q, t)]= ∮
· · ·

∮ ∏
a<b

C(Za,Zb)

m∏
a=1

GB
<xa

(Za; ε, t)GB
>xa

(Za; ε, t)DZa,

where |Zi | = ki , Zi = (zi,1, . . . , zi,ki ), the contour of zi,j is given by Ci,j .

Remark 8. By Lemma 3.16, given any poles p1,p2 of GB
<x(z; ε, t),GB

>x(z; ε, t) respectively, we have p1 < p2. The
existence of the contours Ci,j is then dependent on whether there is enough distance between these two sets of poles.

Proof of Theorem 3.17. If the domain I has finite length, then the theorem follows from Proposition 3.15. To see how
to obtain the contour conditions, we recall the formal definition of (3.12) and (3.19). The formal expansion of (3.12)
that we desire amounts to taking contours which contain the poles of GB

<x(z; ε, t) but not the poles of GB
>x(z; ε, t). The

expressions (1− zi,j
tzi′,j ′

)−1 which appear in DZ and C(Z,W) are expanded as
∑

n≥0
zni,j

(tzi′,j ′ )n
which requires the condition

that Ci,j is contained in the domain bounded by tCi′,j ′ whenever (i, j) < (i′, j ′) in lexicographical order. Note the change
of variables rewriting q−1Za as Za .

If I has infinite length, define PN := P
BN,r,s
α,t where the back wall BN : IN →R is defined to be the restriction of B to

IN := I ∩ [−N,N ], for N ∈N. The summability of the weights of P := P
B,r,s
α,t implies the summability of the weights of

PN .
Let (ae)e∈IE be the sequence of specializations for P as in (3.41). Then (ae)e∈IN,e where INE = IE ∩ [N,N ] is the

sequence of specializations for PN . Let Z and ZN denote the partition functions for P and PN respectively. Choose
x1 ≤ · · · ≤ xm ∈ IE and integers k1, . . . , km > 0. Consider N large enough so that x1, . . . , xm ∈ [−N,N ]. We have

ZNEPN

[
m∏
i=1

℘ki
(
πxi

)]=
∑

(πv)∈YINV

[
m∏
i=1

℘ki
(
πxi

)] ∏
e∈INE

F
π
e− 1

2 ,π
e+ 1

2

(
a1−2B ′(e)
e ;B ′(e), q, t

)

→
∑

(πv)∈YIV

[
m∏
i=1

℘ki
(
πxi

)] ∏
e∈IE

F
π
e− 1

2 ,π
e+ 1

2

(
a1−2B ′(e)
e ;B ′(e), q, t

)

=Z EP

[
m∏
i=1

℘ki
(
πxi

)]

as N →∞ since the sequence is monotonically increasing. Since ZN →Z , we have as N →∞

EPN

[
m∏
i=1

℘ki
(
πxi

)]→ EP

[
m∏
i=1

℘ki
(
πxi

)]
.

On the other hand, for any x ∈ IV , we have GBN
<x (z; ε, t)→GB

<x(z; ε, t) as N →∞ uniformly away from the poles of
GB
<x(z; ε, t), and likewise for GB

>x(z; ε, t). By applying the theorem for the known case of BN and taking N →∞, the
general theorem follows. �
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4. Limit conditions and back walls

4.1. Consequences of the limit conditions

In this section, we identify the class of functions which can be realized as limits of back walls. As mentioned in Sec-
tion 2.2, our limit theorems restrict to a dense subset of this class. We motivate this restriction through the concept of
singular points and some examples from the literature. Our study of singular points is also used in Section 5 for asymp-
totics.

We recall the Limit Conditions.

Limit Conditions. Fix a p-periodic, bi-infinite sequence s = (. . . , s−1, s0, s1, . . .) ∈ R
∞
>0 such that s0 · · · sp−1 = 1. Let

P
B,r,s
α,t be a family parametrized by a small parameter ε > 0 where B : I ε →R and r := e−ε vary with ε so that

(1) there exist elements in Z∪ {±∞}
inf I ε = v0(ε) < · · ·< vn(ε)= sup I ε

such that for each 1 ≤ �≤ n, B ′(x) is p-periodic on (v�−1, v�)∩ (Z+ 1
2 );

(2) there exists an interval I ⊂R and a piecewise linear B : I →R with non-differentiable points

inf I = V0 < · · ·<Vn = sup I

such that

εv�(ε)→ V� (0 ≤ �≤ n), εBε(x/ε)→ B(x)

as ε→ 0, where the latter convergence is uniform over any compact subset of I .

In the setting of global limits under this limit regime, some of the information encoded by s is washed away. The
dependence on s is only through the values and corresponding multiplicities of the sequence {s0 · · · si}p−1

i=0 . This motivates
the following definition.

Definition 4.1. We associate to s the multiset S = {s0 · · · si}p−1
i=0 . Given σ ∈ S , let

Sσ =
{
i ∈ [[0,p− 1]] : σ = s0 · · · si

}
.

In particular, we remember the multiplicity of each member σ ∈ S in (s0 · · · si)p−1
i=0 . The multiplicity of σ is given by

|Sσ |. In replacing s with S , we forget about the particular order of the sequence (s0 · · · si)p−1
i=0 .

For fixed S , it is not the case that any piecewise linear B may be realized as the limiting back wall of some P
B,r,s
α,t sat-

isfying the Limit Conditions. This is due to the fact that PB,r,sα,t is not a probability measure for arbitrary B; the conditions
required for the summability of the weights, summarized by Lemma 3.16, severely restricts the class of B which give rise
to probability measures. We now characterize the set of B which can be achieved by the Limit Conditions.

Given a real-valued function f on an interval I , let f (x±)= limu→x± f (u).

Definition 4.2. Let τ1 ≥ · · · ≥ τp be a labeling of the elements of S and set τ0 =∞, τp+1 = 0. Let B(S) denote the set
of continuous piecewise linear functions B : I →R on some interval domain such that

(1) the non-differentiable points of B are given by

inf I = V0 < · · ·<Vn = sup I ;
(2) for each x ∈ I \ {V�}n�=0, B′(x) ∈ { i

p
}pi=0;

(3) if V ≤W are non-differentiable points of B with B′(V −)= i
p

, B′(W+)= j
p

, then

τ−1
i τj+1e

−(W−V ) ≤ 1. (4.1)

Remark 9. In the definition above, we take the convention that B′(V −
0 )= 0 and B′(V +

n )= 1.
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Theorem 4.3. A function B : I → R is a limiting back wall of some P
B,r,s
α,t satisfying the Limit Conditions if and only if

B ∈B(S).

Before proving this theorem, we provide an important link between the slopes of B′ and that of the prelimit B ′(x) on
pZ+ 1

2 .

Lemma 4.4. Suppose P
B,r,s
α,t satisfies the Limit Conditions. Fix � ∈ [[1, n]] and let B′(V�−1,V�)= i

p
. Then for sufficiently

small ε > 0, there exists a set A⊂ [[0,p− 1]] (potentially varying in ε) of size i such that

s0 · · · sa ≤ s0 · · · sb, for all a ∈A, b ∈ [[0,p− 1]] \A
and

B ′ = 1
[
A+ pZ+ 1

2

]
on I εE ∩ (v�−1, v�).

Proof. By the Limit Conditions, we know that for sufficiently small ε > 0 there exists a (potentially varying in ε) subset
A⊂ [[0,p− 1]] of size i such that

B ′ = 1
[
A+ pZ+ 1

2

]
on I εE ∩ (v�−1, v�).

Assume for contradiction that for arbitrarily small ε > 0, there exist (potentially varying in ε) pairs σ = s0 · · · sa and
τ = s0 · · · sb for some a ∈A and b ∈ [[0,p− 1]] \A such that σ > τ . For ε small enough so that (v�−1, v�) has more than
p points, we may choose e1 ∈ (v�−1, v�)∩ (a + pZ+ 1

2 ), e2 ∈ (v�−1, v�)∩ (b+ pZ+ 1
2 ) such that 0< e2 − e1 < p. By

(3.41), we have

a−1
e1
ae2 = σ−1τre2−e1 > σ−1τe−εp,

where (ae)e∈I εE is the specialization sequence for PB,r,sα,t as defined in (3.39). For ε sufficiently small, the latter is > 1
which violates Lemma 3.16. �

Proof of Theorem 4.3. Suppose B : I → R is a limiting back wall of PB,r,sα,t satisfying the Limit Conditions. It is clear
that B satisfies properties (1) and (2) of Definition 4.2 as a direct consequence of the p-periodicity and convergence
in the Limit Conditions. We check property (3) of Definition 4.2. Let 1 ≤ � ≤ m < n and suppose B′(V −

� ) = i
p

and

B′(V +
m )= j

p
; note that checking the cases �= 0 and m= n is trivial. By Lemma 4.4, for small enough ε > 0 there exist

subsets A1,A2 ∈ [[0,p− 1]] of sizes i, j respectively such that

B ′|I εE∩(v�−1,v�) = 1[A1], B ′|I εE∩(vm,vm+1) = 1[A2].
Moreover,

s0 · · · sa ≤ s0 · · · sb for a ∈A1, b ∈ [[0,p− 1]] \A1

so that the multiset {s0 · · · sa}a∈A1 coincides with {τ1, . . . , τi}. Likewise, {s0 · · · sa}a∈A2 coincides with {τ1, . . . , τj }. In
particular, there exist

e1 ∈
(
A1 + pZ+ 1

2

)
∩ (v�−1, v�), e2 ∈

(
[[0,p− 1]] \A2 + pZ+ 1

2

)
∩ (vm, vm+1),

where s0 · · · sa = τi , s0 · · · sb = τj+1, such that

B ′(e1)= 1, B ′(e2)= 0

for small enough ε > 0. By p-periodicity, we may add that

0 ≤ v� − e1 <p, 0 ≤ e2 − vm < p.
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By (3.41) and Lemma 3.16, we have

a−1
e1
ae2 = τ−1

i τj+1r
e2−e1 < 1,

where (ae)e∈I εE is the specialization sequence for PB,r,sα,t as defined in (3.39). Taking ε→ 0, we obtain

τ−1
i τj+1e

−(Vm−V�) ≤ 1.

Conversely, suppose B ∈B(S). For small ε > 0, set

v� = �V�/ε� + �, 0 ≤ �≤ n;
in the case V0 =−∞ (Vn =+∞) let v0 =−�1/ε2�, vn = �1/ε2�. Let B be a back wall of a skew diagram such that B ′(x)
is p-periodic in x ∈ (v�−1, v�). For each 1 ≤ � ≤ n, if we have B′(V�−1,V�)= i

p
, choose some subset A� ⊂ [[0,p − 1]]

of size i so that

s0 · · · sa ≤ s0 · · · sb, a ∈A�,b ∈ [[0,p− 1]] \A�, B ′|I εE∩(v�−1,v�) = 1[A�]
By fixing εB(�x/ε�)= B(x) at some point x ∈ I , we have the convergence

εB
(�x/ε�)→ B(x).

It remains to check that PB,r,sα,t defines a probability measure, at least for ε sufficiently small. By Lemma 3.16, it suffices
to check that a−1

e1
ae2 < 1 over all edges e1 < e2 where B ′(e1)= 1 and B ′(e2)= 0. We divide this into two cases.

Case 1: e1, e2 ∈ (v�−1, v�). By construction of B , we have B ′ = 1[A�] on (v�−1, v�). Thus e1 ∈ a + pZ + 1
2 , e2 ∈

b+ pZ+ 1
2 for some a ∈A�,b ∈ [[0,p− 1]] \A�. Thus

a−1
e1
ae2 = (s0 · · · sa)−1(s0 · · · sb)re2−e1 < 1.

Note that this only relies on p-periodicity and did not require property (3) in Definition 4.2.
Case 2: e1 ∈ (v�−1, v�), e2 ∈ (vm, vm+1) where 0 < � ≤ m < n. Again, by construction of B we have B = 1[A�] on

(v�−1, v�) and B = 1[Am+1] on (vm, vm+1). If B′(V −
� )= i

p
and B′(V +

m )= j
p

, then we may argue as before to establish
that A� coincides with {τ1, . . . , τi} and Am+1 coincides with {τ1, . . . , τj }. Then

a−1
e1
ae2 = σ−1τre2−e1 ,

where σ ≥ τi and τ ≤ τj+1. Since e1 < v� ≤ vm < e2, we have

a−1
e1
ae2 ≤ τ−1

i τj+1r
vm−v�+1 = τ−1

i τj+1e
−ε(m−�+1)e−ε(�Vm/ε�−�V�/ε�) < τ−1

i τj+1e
−(Vm−V�) ≤ 1,

where the latter inequality follows from property (3) for B(S). �

4.2. Well-behaved back walls

In this subsection, we introduce a subset B�(S) of B(S) which corresponds to well-behaved back walls. This good
behavior is characterized by the presence of only finitely many singular points which we describe further below.

Before providing the definition of the subset B�(S), we begin by introducing and motivating the notion of a singular
point. Fix B ∈B(S), and define

ρ<(x)= max

{
τ−1
i eξ : ξ ≤ x,B′(ξ−)= i

p

}
,

ρ>(x)= min

{
τ−1
j+1e

ξ : ξ ≥ x,B′(ξ+)= j

p

}
.

(4.2)

Lemma 4.5. If B ∈B(S) and x ∈ I , then

ρ<(x)≤ ρ>(x).
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Proof. Suppose ξ1 ≤ ξ2 and B′(ξ−1 )= i
p
,B′(ξ+2 )= j

p
. It is enough to show that

τ−1
i eξ1 ≤ τ−1

j+1e
ξ2 . (4.3)

If ξ1, ξ2 ∈ (V�−1,V�) for some � ∈ [[1, n]], then i = j so that (4.3) holds. Otherwise, there exists a non-differentiable
points V,W such that

ξ1 ≤ V ≤W ≤ ξ2.

Assume that V is the minimal such point and W is the maximal such point. Then

B′(V −)= B′(ξ−1 )= i

p
, B′(W+)= B′(ξ+2 )= j

p
.

Since

τ−1
i τj+1e

−(W−V ) ≤ 1

it follows that

τ−1
i eξ1 ≤ τ−1

i eV ≤ τ−1
j+1e

W ≤ τj+1e
ξ2 . �

We define the singular points to be those points which achieve equality:

Definition 4.6. Given B ∈B(S), we say that x ∈ I is a singular point of B if ρ<(x)= ρ>(x).

Definition 4.7. Denote by B�(S) the subset of B(S) consisting of B with finitely many singular points.

The concept of singular points is significant due to the following connection with the limit shape. Recall the con-
tent of Theorem 2.7: if PB,r,sα,t satisfies the Limit Condition with B ∈B�(S), then the random rescaled height function
εh(x/ε, y/ε) converges to a deterministic limit H(x, y). Then the local proportions p♦ ,p ♦ ,p ♦ converge at each point

(x, y). Recall the liquid region is the set of (x, y) where all the proportions are nonzero. We may view the closure of the
liquid region as the set of points (x, y) where the local picture is random.

In Section 6, we characterize the liquid region as the set of (x, y) for which some equation GB
x (ζ )= e−y determined

by B has a pair of nonreal complex roots, see (6.2). The map B 	→ GB
x is continuous with respect to the topology on

B(S) induced by the coordinates (V0, . . . , Vn,B′(V0,V1), . . . ,B′(Vn−1,Vn)) ∈ (R ∪ {±∞})2n+1 and convergence in
compactum on H in the image. Thus one can formally extend the definition of the liquid region associated to some
B ∈B(S) \B�(S) to be the set of (x, y) such that GB

x (ζ )= e−y has a pair of nonreal roots.
Under this alternative definition of the liquid region, one can determine that the singular points of B are exactly the

points x such that (x, y) is in the liquid region for arbitrarily large y. In other words, the singular points of B correspond
to the horizontal coordinates along which the liquid region is vertically unbounded.

For certain examples of S and B ∈B(S) \B�(S), one can prove the limit shape phenomenon. In these cases, the
alternative definition of the liquid region coincides with the original definition of the liquid region in terms of the local
proportions of lozenges. Although it is not present in the literature, we believe that one may use the method of correlation
kernels to verify the limit shape phenomenon for arbitrary S and B ∈B(S) \B�(S) in the non-interacting (q = t ) case.

We now provide several examples in the literature which illustrate the connection between singular points and un-
boundedness of the limit shape, then give some references to later sections which give suggestions for generalizing this
connection to arbitrary B.

Example 4.1.

(1) p arbitrary, S = {1, . . . ,1}. The set B(S) consists of B such that B′(V�−1,V�) ∈ [0,1] ∩ 1
|S|Z since (4.1) trivially

holds. The singular points in I \ {V�}n�=0 are precisely x ∈ (V�−1,V�) where B′(V�−1,V�) /∈ {0,1}. It was demonstrated in
[7], that the horizontal coordinate x ∈ (V�−1,V�) of the limit shape is vertically unbounded if and only if B′(V�−1,V�) /∈
{0,1}, see also [22, Section 1.2]. The set B�(S) consists of B such that B′(V�−1,V�)= 1 or 0 for every �= 1, . . . , n. In
this case, the singular points are precisely those V� where

0 = B′(V +
�

)
< B′(V −

�

)= 1,

and these are exactly the horizontal coordinates where the limit shape is vertically unbounded.



Global universality of Macdonald plane partitions 1667

(2) p = 2, S = {1, α}, α > 1. Consider the case where n= 3 and we take

V0 =−b, V1 =−a, V2 = a, V3 = b, a < b,

B′(−b,−a)= 1, B′(−a, a)= 1/2, B′(a, b)= 0.

There exists a threshold value a0 such that if a < a0 then B /∈B(S) (thus this does not correspond to a limit of a plane
partition), and if a ≥ a0 then B ∈B(S). If a > a0, then B ∈B�(S) and the singular points occur at −a, a. If a = a0,
then B ∈B(S) \B�(S) and [−a, a] is the set of singular points. In both of these cases, the singular points correspond
to the set of horizontal coordinates where the limit shape is vertically unbounded, see [23, Sections 1.1.1 and 4].

(3) In general, we show in Section 6.3 that the singular points for B ∈B�(S) are exactly the horizontal coordinates
where the limit shape is vertically unbounded. The method for computing the frozen boundary in Section 6.3 can also
be used to see that B ∈B(S) \B�(S) give rise to limit shapes (as defined above) that are vertically unbounded over an
entire nonempty open interval, and these unbounded parts correspond to components of singular points.

Although Definition 4.7 has the advantage of simplicity, it is not as useful for application. We have the following
equivalent definition and characterization of singular points for B ∈B�(S).

Definition 4.8. Let σ1 > · · · > σd be the distinct elements of S in decreasing order, and set σ0 =∞, σd+1 = 0. Let

ςa =∑a
j=1

|Sσj |
p

for 0 ≤ a ≤ d .

Proposition 4.9. We have that B ∈B�(S) if and only if B ∈B(S) such that

(1) for each x ∈ I \ {V�}n�=0, we have B′(x) ∈ {ςi}di=0;
(2) if V <W are non-differentiable points of B, then ρ<(V ) < ρ>(W).

If B ∈B�(S), then the singular points of B are exactly the non-differentiable points V of B such that B′(V +) < B′(V −).
In this case, if B′(V −)= ςi then B′(V +)= ςi−1 and

ρ<(V )= ρ>(V )= σ−1
i eV .

Before providing the proof, we highlight a few features. The first condition in Proposition 4.9 restricts the possible
values of the slopes of B whereas the second condition is a refinement of property (3) in Definition 4.2. This is transparent
when we rewrite the second condition as the following equivalent statement:

If V <W are non-differentiable points of B with B′(V −)= ςi , B′(W+)= ςj for some 0 ≤ i, j ≤ d , then

σ−1
i σj+1e

−(W−V ) < 1. (4.4)

Although this refinement requires the inequality to be strict for pairs of non-differentiable points V <W , it does not
require the same for V =W ; namely if V is a non-differentiable point of B such that B′(V −)= ςi and B′(V +)= ςj then
we still have the weak inequality

σ−1
i σj+1e

−(W−V ) ≤ 1.

This way of viewing B�(S) also has the advantage of realizing the subset as dense in B(S).

Corollary 4.10. If we endow B(S) with the topology induced from the disjoint union
⊔∞

n=1(R ∪ {±∞})2n+1 by identi-
fying B ∈B(S) with the point(

V0, . . . , Vn,B′(V0,V1), . . . ,B′(Vn−1,Vn)
)
.

Then B�(S) is a dense subset of B(S) by Proposition 4.9. Note that the parametrization identifies B which differ up to
translation.

To prove Proposition 4.9, we require a lemma which describes ρ<(x), ρ>(x) in terms of maximizing, minimizing over
finite sets.
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Lemma 4.11. Let B ∈B(S). Then

ρ<(x)= max
�∈[[1,n]]

{
τ−1
i emin(x,V�) : V�−1 < x,B′((V�−1,V�)

)= i

p

}
,

ρ>(x)= min
�∈[[1,n]]

{
τ−1
i+1e

max(V�−1,x) : V� > x,B′((V�−1,V�)
)= i

p

}
.

Moreover,

(1) if x ∈ (V�−1,V�] and B′(x−)= i
p

, then

ρ<(x)= max
(
ρ<(V�−1), τ

−1
i ex),

(2) and if x ∈ [V�−1,V�) and B′(x+)= i
p

, then

ρ>(x)= min
(
ρ>(V�), τ

−1
i+1e

x).
Proof. Suppose ξ ≤ x with ξ ∈ (V�−1,V�] and B′(ξ−)= i

p
. Observe that

B′(ξ−)= B′((V�−1,V�)
)= B′(min(x,V�)−

)
,

which is i
p

. Then

τ−1
i eξ ≤ τ−1

i emin(x,V�) ≤ ρ<(x).

Maximizing over all � ∈ [[1, n]] proves the statement for ρ<(x). A similar argument yields the expression for ρ>(x). The
rest of the lemma follows from the obtained form for ρ<(x) and ρ>(x). �

Proof of Proposition 4.9. Suppose x ∈ (V�−1,V�) is a singular point of B. By Lemma 4.11, one of the following equali-
ties must hold

ρ<(V�−1)= ρ>(V�), τ−1
i ex = τ−1

i+1e
x, ρ<(V�−1)= τ−1

i+1e
x, τ−1

i ex = ρ>(V�).

Observe that the latter two equalities cannot hold, we have

ρ<(V�−1)≤ ρ>(V�−1)≤ τ−1
i+1e

V�−1 < τ−1
i+1e

x

and similarly τ−1
i ex < ρ>(V�). Thus if x ∈ (V�−1,V�) is singular, then

ρ<(V�−1)= ρ>(V�) or τ−1
i = τ−1

i+1.

However note that these equalities are independent of x ∈ (V�−1,V�). In particular, this means that B has a singular point
in (V�−1,V�) if and only if every point is singular in (V�−1,V�).

Therefore, B has finitely many singular points if and only if there are no singular points in I \ {V�}n�=0. By our
discussion above, this is true if and only if

ρ<(V�−1) < ρ>(V�)

for every � ∈ [[1, n]] and

τ−1
i < τ−1

i+1

for any 0 ≤ i ≤ p such that B′((V�−1,V�))= i
p

. The latter condition is equivalent to i =∑a
j=1 |Sσj | for some 0 ≤ a ≤ d

in which case B′(x) ∈ {ςi}di=0. This proves the desired equivalent description of B�(S).
We now characterize the singular points. Since the singular points of B ∈B�(S) are necessarily non-differentiable

points of B, we may assume our singular point is V� for some 1 ≤ � < n with B′(V −
� )= ςi and B′(V +

� )= ςj . Since

max
(
ρ<(V�−1), σ

−1
i eV�

)= ρ<(V�)= ρ>(V�)= min
(
ρ>(V�+1), σ

−1
j+1e

V�
)
.
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Since ρ<(V�−1) < ρ>(V�) and ρ<(V�) < ρ>(V�+1), we must have

σ−1
i eV� = ρ<(V�)= ρ>(V�)= σ−1

j+1e
V� .

This is the case when j = i − 1. �

5. Asymptotics

In this section, we obtain asymptotics of the observables from Section 3 under our limit regime. We begin with relevant
definitions prior to the statement of the main theorems for this section (Theorems 5.2 and 5.3).

Define

G<x(z)=
∏
σ∈S

∏
1≤�≤n
V�−1<x

(
1− emin(V�,x)(σz)−1

1− eV�−1(σz)−1

) 1
p

1[B′(V−
� )≥ςσ ]

,

G>x(z)=
∏
σ∈S

∏
1≤�≤n
V�>x

(
1− e−max(V�−1,x)σ z

1− e−V�σz

) 1
p

1[B′(V−
� )<ςσ ]

,

(5.1)

where we set ςσ = ςσi if σ = σi . Here the branches are chosen so that the argument is 0 for |z| large and real. Recall that
S is a multiset of p elements up to multiplicity with d distinct values. In particular, the product over σ ∈ S is a product
over p terms.

Definition 5.1. Let PB,r,sα,t satisfy the Limit Conditions and let V�1 , . . . , V�ν be the singular points of B. Given d > 0, we
say that x(ε) is d-separated from singular points if∣∣x(ε)− v�i (ε)

∣∣≥ d, 1 ≤ i ≤ ν

for all sufficiently small ε > 0.

We now present the main results for this section. Let (πx)x∈I ε denote the diagonal sections of PB,r,sα,t .

Theorem 5.2. Suppose P
B,r,s
α,t satisfies the Limit Conditions with B ∈ B�(S). Fix x ∈ I, k ∈ Z≥0. Let x ∈ I εV be kt-

separated from singular points and satisfy εx→ x. Then

E℘k
(
πx; rtα, rt)→ 1

2π i

∮ [
GB
<x(z)GB

>x(z)
]kt dz

z
(5.2)

as ε→ 0, where the contour is positively oriented around [0, ρ<(x)) and does not contain (ρ>(x),∞); recall ρ<(x) and
ρ>(x) are defined in (4.2).

Theorem 5.3. Suppose P
B,r,s
α,t satisfies the Limit Conditions with B ∈B�(S). Fix x1 ≤ · · · ≤ xm, k1, . . . , km ∈ Z≥0. Let

x1 ≤ · · · ≤ xm in I εV be such that xi is 2kit-separated from singular points and satisfies εxi → xi for each i ∈ [[1,m]].
Then the vector(

1

ε

(
℘k1

(
πx1; rtα, rt)−E℘k1

(
πx1; rtα, rt)), . . . , 1

ε

(
℘km

(
πxm; rtα, rt)−E℘km

(
πxm; rtα, rt)))

converges in distribution as ε→ 0 to the centered gaussian vector (Dk1(x1), . . .Dkm(xm)) with covariance defined by

Cov
(
Dki (xi ),Dkj (xj )

)
= αt2

kikj

(2π i)2

∮ ∮ [GB
<xi (z)G

B
>xi (z)]kit[GB

<xj (w)G
B
>xj (w)]kj t

(z−w)2
dzdw, 1 ≤ i < j ≤m, (5.3)

where
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• the z-contour is positively oriented around [0, ρ<(xi )) but does not contain (ρ>(xi ),∞),
• the w-contour is positively oriented around [0, ρ<(xj )) but does not contain (ρ>(xj ),∞),
• and the z-contour is enclosed by the w-contour.

If ρ<(xi )= ρ>(xj )=: ρ, then the z- and w-contours intersect at ρ.

The remainder of this section is devoted to the proofs of Theorems 5.2 and 5.3. We begin by collecting some asymptotic
preliminaries. We then give an outline of the proofs to illustrate the key ideas, followed by the rigorous proofs.

5.1. Preliminary asymptotics

In preparation for the asymptotics of the formula from Theorem 3.17, we study the asymptotics GB
<x,G

B
>x and some

asymptotic properties of their poles, formulated in two propositions. The latter is important for understanding the place-
ment of contours in the analysis of moments. Before presenting the propositions, we introduce some notation to work
with the poles of GB

<x,G
B
>x .

Given P
B,r,s
α,t satisfying the Limit Conditions such that B ∈B�(S), we define the (ε-dependent) sets

Ra,�<x =
{(
s0 · · · sare

)−1 : e ∈ (v�−1, v�)∩
(
a + pZ+ 1

2

)
, e < x,B′(V�−1,V�)≥ ςs0···sa

}
,

Ra,�>x =
{(
ts0 · · · sare

)−1 : e ∈ (v�, v�+1)∩
(
a + pZ+ 1

2

)
, e > x,B′(V�,V�+1) < ςs0···sa

}
.

(5.4)

Recall the q-Pochhammer symbol

(a;q)N =
N−1∏
i=0

(
1− aqi

)
, (a;q)∞ =

∞∏
i=0

(
1− aqi

)
.

Lemma 5.4. Suppose P
B,r,s
α,t satisfies the Limit Conditions such that B ∈B�(S). For ε > 0 sufficiently small,

GB
<x(z; ε, t)=

∏
R
a,�
<x �=∅

(t−1(maxRa,�<x )z−1; rp)∞
((maxRa,�<x )z−1; rp)∞

· (rp(minRa,�<x )z−1; rp)∞
(t−1rp(minRa,�<x )z−1; rp)∞

,

GB
>x(z; ε, t)=

∏
R
a,�
>x �=∅

(t−1(minRa,�>x )−1z; rp)∞
((minRa,�>x )−1z; rp)∞

· (rp(maxRa,�>x )−1z; rp)∞
(t−1rp(maxRa,�>x )−1z; rp)∞

.

(5.5)

Proof. If B′((V�−1,V�))= ςi , then Lemma 4.4 implies

B ′ = 1
[ ⋃

1≤j≤i

(
Sσj + pZ+ 1

2

)]

on I εE ∩ (v�−1, v�). By the definitions of GB
<x and Ra,�<x , we have

GB
<x(z; ε, t)=

∏
R
a,�
<x �=∅

∏
ρ∈Ra,�<x

1− t−1ρz−1

1− ρz−1
.

Since the elements of Ra,�<x are

maxRa,�<x , rp maxRa,�<x , r2p maxRa,�<x , . . . , minRa,�<x ,

in decreasing order, we can rewrite the product over ρ as the ratios of Pochhammer symbols in (5.5). The argument is
similar for GB

>x . �

The first proposition in this section describes the behavior of the largest pole of GB
<x and the smallest pole of GB

>x .
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Proposition 5.5. Suppose P
B,r,s
α,t satisfies the Limit Conditions such that B ∈B�(S). For x ∈ I ε , let ρε<(x) and ρε>(x)

denote the maximal pole of GB
<x(z; ε, t) and minimal pole of GB

>x(z; ε, t) respectively. Suppose x ∈ I and x ∈ I ε satisfy
εx→ x as ε→ 0.

(a) If x ∈ I \ {V�}n�=0, then

lim
ε→0

ρε<(x)= ρ<(x), lim
ε→0

ρε>(x)= ρ>(x).

(b) If x = V� is not a singular point and
(i) x > v� for all ε > 0, then

lim
ε→0

ρε<(x)= ρ<
(
V +
�

)
, lim

ε→0
ρε>(x)= ρ>

(
V +
�

)= ρ>(V�).

(ii) x < v� for all ε > 0, then

lim
ε→0

ρε<(x)= ρ<
(
V −
�

)= ρ<(V�), lim
ε→0

ρε>(x)= ρ>
(
V −
�

)
.

(iii) x = v� for all ε > 0, then

lim
ε→0

ρε<(x)= ρ<(V�), lim
ε→0

ρε>(x)= ρ>(V�).

(c) If x = V� is a singular point, then

lim
ε→0

ρε<(x)= ρ<(x)= ρ>(x)= lim
ε→0

ρε>(x).

Furthermore, if B′(V�)= ςσ , then

lim
ε→0

max

( ⋃
a∈Sσ

Ra,�<x

)
= ρ<(V�) > lim sup

ε→0
max

{
poles of GB

<x(z; ε, t)
}∖( ⋃

a∈Sσ
Ra,�<x

)
, (5.6)

lim
ε→0

min

( ⋃
a∈Sσ

Ra,�>x

)
= ρ>(V�) < lim inf

ε→0
min

{
poles of GB

>x(z; ε, t)
}∖( ⋃

a∈Sσ
Ra,�>x

)
, (5.7)

t−1r−|x−v�|−1 ≤ ρε>(x)

ρε<(x)
≤ t−1r−|x−v�|−2p+1, (5.8)

for ε > 0 sufficiently small.

The next proposition gives asymptotics of GB
<x,G

B
>x with special precision given to points near maximal and minimal

poles respectively.
Let θ ∈ (0,π), δ > 0. Define

Dε,θ,δ = {
w ∈C : dist

(
w, [1,∞)

)≥ δ
}∪ {

w ∈C : ∣∣arg
(
w− (1− ε)

)∣∣≥ θ
}
,

that is the neighborhood δ-separated from [1,∞) between the rays of arguments ±θ started from 1− ε on the left side of
C.

Proposition 5.6. Suppose P
B,r,s
α,t satisfies the Limit Conditions such that B ∈B�(S). For x ∈ I ε , let ρε<(x) and ρε>(x)

denote the maximal pole of GB
<x(z; ε, t) and minimal pole of GB

>x(z; ε, t) respectively. Suppose x ∈ I εV such that εx→
x ∈ I . Further assume that if x = V� with V� not a singular point, then either x > v�, x = v�, or x < v� independent of
ε > 0. Then

GB
<x

(
t−1z−1 · ρε<(x); ε, t

)= G<x
(
z−1 · ρ<(x)

)t exp

(
O

(
ε
|z| ∨ |z|2
|1− z|

))
,

GB
>x

(
tz · ρε>(x); ε, t

)= G>x
(
z · ρ>(x)

)t exp

(
O

(
ε
|z| ∨ |z|2
|1− z|

))
uniformly for z ∈Dε,θ,δ and ε > 0 sufficiently small.
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The remainder of this subsection is devoted to the proofs of Propositions 5.5 and 5.6.

Proof of Proposition 5.5. Suppose throughout the proof, ε is small enough so that the conclusion of Lemma 5.4 is true
and so that v� − v�−1 >p for each � ∈ [[1, n]] (that is we have at least one period in (v�−1, v�)). Then

ρε<(x)= max

( ⋃
a∈[[0,p−1]],m∈[[1,n]]

Ra,m<x

)
, (5.9)

where the above set being maximized over is the set of poles of GB
<x(z; ε, t). Observe that if Ra,m<x is nonempty, then

maxRa,m<x = (s0 · · · sa)−1emin(x,Vm) + o(1)

as ε→ 0. The set Ra,m<x is nonempty if vm−1 < x and B′((Vm−1,Vm))≥ ςs0···sa ; here we used the fact that vm−vm−1 >p,
otherwise it is possible that Z+ a + 1

2 and (vm−1, vm) do not intersect.
We first prove the convergence statements in (a), (b), (c) for ρε<(x). The argument for ρε>(x) is similar.
(a). If x ∈ I \ {V�}n�=0, then the set Ra,m<x is nonempty if and only if Vm−1 < x and B′((Vm−1,Vm))≥ ςs0···sa . Then for

εx→ x, we have

ρε<(x)→ max
{
(s0 · · · sa)−1emin(x,Vm) : Vm−1 < x,B′((Vm−1,Vm)

)≥ ςs0···sa
}

= max
{
(s0 · · · sa)−1emin(x,Vm) : Vm−1 < x,B′((Vm−1,Vm)

)= ςs0···sa
}= ρ<(x) (5.10)

as ε→ 0, where the first equality follows from the fact that ςs0···sa is an increasing function of (s0 · · · sa)−1 and the second
equality follows from Lemma 4.11.

(bii), (biii) and (c). Suppose x = V� for some 0 < � ≤ n and x ≤ v� for all ε > 0. In this case, we again have that the
set Ra,m<x is nonempty if and only if Vm−1 < x = V� and B′((Vm−1,Vm))≥ ςs0···sa . Then (5.10) holds for this case as well.

(bi) and (c). Suppose x = V� for some 0 ≤ � < n and x > v� for all ε > 0. Then R
a,m
<x is nonempty if and only if

Vm−1 ≤ V� = x and B′((Vm−1,Vm))≥ ςs0···sa . Then

ρε<(x)→ max
{
(s0 · · · sa)−1emin(x,Vm) : Vm−1 ≤ x = V�,B′((Vm−1,Vm)

)≥ ςs0···sa
}

= max
{
(s0 · · · sa)−1emin(x,Vm) : Vm−1 ≤ x = V�,B′((Vm−1,Vm)

)= ςs0···sa
}= ρ<

(
V +
�

)
as ε→ 0, by the same reasoning as before.

Note that combining the latter two cases gives us the complete case of the convergence of ρε<(x) for (c). It remains to
show (5.6), (5.7), (5.8). For the remainder of the proof, assume x = V� is a singular point.

(c): (5.6). By the argument preceding the case analysis above, Ra,m<x is empty if m> �+ 1. We rewrite the union( ⋃
a∈[[0,p−1]],m∈[[1,n]]

Ra,m<x

)
=

( ⋃
a∈[[0,p−1]],m<�

Ra,m<x

)
∪

( ⋃
a∈[[0,p−1]]

Ra,�+1
<x

)

∪
( ⋃
a∈[[0,p−1]]\Sσ

Ra,�<x

)
∪

( ⋃
a∈Sσ

Ra,�<x

)
(5.11)

as four smaller unions. We want to show that the lim sup of the maximum of the first three unions converges to ρ <
ρ<(V�), then by (5.9) the maximum of the fourth union must be equal to ρε<(x). Since ρε<(x)→ ρ<(V�) as ε→ 0, this
establishes (5.11). Note that the maximum of the first union is exactly ρε<(v�−1) and therefore converges to ρ<(V�−1) as
ε→ 0. By Proposition 4.9,

ρ<(V�−1) < ρ>(V�)= ρ<(V�)

because V� is a singular point. We have thus shown

lim
ε→0

max

( ⋃
a∈[[0,p−1]],m<�

Ra,m<x

)
< ρ<(V�).

For the second union in (5.11), observe that by Proposition 4.9, if σ = σi then

B′((V�,V�+1)
)= B′(V +

�

)= ςi−1.
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Thus, arguing as in the case analysis above,

lim sup
ε→0

max

( ⋃
a∈[[0,p−1]]

Ra,�+1
<x

)
≤ max

{
(s0 · · · sa)−1eV� : ςi−1 = B′((V�,V�+1)

)≥ ςs0···sa
}

≤ σ−1
i−1e

V� < σ−1
i eV� = ρ<(V�),

where we recall ςi−1 = ςσi−1 and the final equality follows from Proposition 4.9. It is necessary to take the lim sup since
the set above may be empty depending on whether x < v� or x > v�. Also, note that the second inequality is equality if
the preceding set is nonempty (this is when i > 0). Otherwise it is strict since max∅=−∞< 0; recall that σ0 =∞ so
we take σ−1

0 = 0. The third union is similar, we have B′((V�−1,V�))= ςσ = ςi by assumption. Then

lim
ε→0

max

( ⋃
a∈[[0,p−1]]\Sσ

Ra,�<x

)
= max

{
(s0 · · · sa)−1eV� : ςi = B′((V�,V�+1)

)≥ ςs0···sa , s0 · · · sa �= σi
}

≤ σ−1
i−1e

V� < σ−1
i eV� = ρ<(V�).

This proves (5.6).
(c): (5.7). Uses an analogous argument as for (5.6).
(c): (5.8). Using (5.6) and (5.7), notice that

ρε<(x)= max

( ⋃
a∈Sσ

Ra,�<x

)
= σ−1r−e1 , ρε>(x)= min

( ⋃
a∈Sσ

Ra,�>x

)
= t−1σ−1r−e2 ,

where

e1 = max

{
e ∈ (v�−1, v�)∩

(
Sσ + pZ+ 1

2

)
: e < x

}
, e2 = min

{
e ∈ (v�, v�+1)∩

(
Sσ + pZ+ 1

2

)
: e > x

}
.

We have the inequalities

min(v�, x)− p+ 1

2
≤ e1 ≤ min(v�, x)− 1

2
,

max(v�, x)+ 1

2
≤ e2 ≤ max(v�, x)+ p− 1

2
.

Thus we conclude (5.8). �

Before going into the proof of Proposition 5.6, we first require a lemma on the asymptotics of Pochhammer symbols.

Lemma 5.7. Let a > 0 and suppose N(ε) ∈ Z>0 such that lim infε→0 εN(ε) > 0 as ε → 0. Then for any fixed θ ∈
(0,π), δ > 0, we have

(z; e−ε)N(ε)
(e−εaz; e−ε)N(ε) =

(
1− z

1− rNz

)a

exp

(
O

(
ε
|z| ∨ |z|2
|1− z|

))
uniformly for z in Dε,θ,δ and ε arbitrarily small.

Proof. Throughout the proof, the constant symbol C is independent of ε > 0 (though it may depend on a, θ ), and may
change from line to line.

Set r = e−ε , N =N(ε), Dε =Dε,θ,δ . Define

Eε
1(z)= log

(z; r)N
(raz; r)N − 1− ra

1− r
log

(
1− z

1− rNz

)
,

Eε
2(z)=

1− ra

1− r
log

(
1− z

1− rNz

)
− a log

(
1− z

1− rNz

)
,

Eε(z)=Eε
1(z)+Eε

2(z)= log
(z; r)N
(raz; r)N − a log

(
1− z

1− rNz

)
.
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Using the fact that

1− ra = 1− (
1− (1− r)

)a = a(1− r)−
(
a

2

)
(1− r)2 +O

(
ε3),

we have

Eε
2(z)=

(
1− ra

1− r
− a

)
log

(
1− z

1− rNz

)
=

(
−

(
a

2

)
ε+O

(
ε2)) log

(
1− z

1− rNz

)
.

The log term is bounded for large |z|, behaves as C|z| for small |z|, and has logarithmic singularities at z= 1 and z= r−N .
Since Dε is separated by a constant distance from the r−N singularity by the assumption lim infε→0 εN(ε) > 0, we may
disregard the singularity at z= r−N and have

∣∣Eε
2(z)

∣∣≤ Cε
|z|

|1− z|
for z ∈Dε . Note that we accounted for the log singularity at 1 with the “wasteful” |1 − z| term in the denominator and
the boundedness for |z| large by balancing the right hand side.

Observe that

log
(z; r)N
(raz; r)N =−

N−1∑
j=0

∫ rj

ra+j
z

1− uz
du=−1− ra

1− r

∫ 1

rN

z

1− u(v)z
dv

by the change of variables

(
rj+1, rj

] � v 	→ u(v)= 1− ra

1− r

(
v− rj

)+ rj ∈ (
rj+a, rj

]
. (5.12)

We may similarly write

1− ra

1− r
log

(
1− z

1− rNz

)
=−1− ra

1− r

∫ 1

rN

z

1− vz
dv.

Thus

Eε
1(z)=

1− ra

1− r

∫ 1

rN

(
z

1− u(v)z
− z

1− vz

)
dv = 1− ra

1− r

∫ 1

rN

(u(v)− v)z2

(1− u(v)z)(1− vz)
dv.

For v ∈ [rj+1, rj ],

u(v)− v = r − ra

1− r

(
v− rj

)
,

so that∣∣u(v)− v
∣∣<Cε,

where the constant is also uniform over v ∈ [rN ,1]. Also for v ∈ [rj+1, rj ],∣∣∣∣ 1− vz

1− u(v)z

∣∣∣∣= ∣∣∣∣1+ z(u(v)− v)

1− u(v)z

∣∣∣∣≤ C

for z ∈Dε . Indeed, u(v) ranges from rN−1+a to 1 so that the buffer provided by Dε bounds |1 − u(v)z| from below by
some constant times ε. Thus

∣∣Eε
1(z)

∣∣≤ 1− ra

1− r

∣∣∣∣∫ 1

rN

(u(v)− v)z2

(1− u(v)z)(1− vz)
dv

∣∣∣∣≤ ∫ 1

rN

Cε|z|2
|1− vz|2 dv.
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By writing

1

|1− vz|2 = 1

z− z̄

(
z

1− vz
− z̄

1− vz̄

)
, v ∈ [

rN ,1
]
,

we obtain

∣∣Eε
1(z)

∣∣≤ Cε|z|2
z− z̄

[
log

(
1− z̄

1− rN z̄

)
− log

(
1− z

1− rNz

)]
= Cε · |z|

2

�z arg

(
1− z̄

1− rN z̄

)
.

Observe that

0 ≤ |z|
�z arg

(
1− z̄

1− rN z̄

)
=− |z|

|1− z|
1

sin arg(1− z)
arg

(
1− z̄

1− rNz

)
≤C

|z|
|1− z|

for z ∈ Dε . The latter bound follows from the fact that the sin arg(1 − z) denominator term is balanced by arg( 1−z̄
1−rN z )

away from [1,∞); note that as z approaches R we only need the fact that arg( 1−z̄
1−rN z ) approaches 0, however near z= 1

we really need arg(1− z̄) to balance sin arg(1− z). Thus

∣∣Eε
1(z)

∣∣≤ Cε
|z|2

|1− z|
uniformly for z ∈Dε . Combining our bounds, we obtain

∣∣Eε(z)
∣∣≤ Cε

|z| ∨ |z|2
|1− z|

uniformly for z ∈Dε . Our lemma now follows from

(z; r)N
(raz; r)N = exp

(
Eε(z)

)
. �

Proof of Proposition 5.6. By Lemma 5.4, for sufficiently small ε > 0, we have

GB
>x

(
tz · ρε>(x); ε, t

)
=

∏
R
a,�
>x �=∅

((minRa,�>x )−1z · ρε>(x); rp)∞
(t (minRa,�>x )−1z · ρε>(x); rp)∞

· (tr
p(maxRa,�>x )−1z · ρε>(x); rp)∞

(rp(maxRa,�>x )−1z · ρε>(x); rp)∞
.

Fix Ra,�>x �=∅. As established in the various cases in the proof of Proposition 5.5, the nonemptiness of Ra,�>x for a, � fixed
is independent of ε > 0 when ε is sufficiently small, under our assumptions on x. We have

((minRa,�>x )−1z · ρε>(x); rp)∞
(t (minRa,�>x )−1z · ρε>(x); rp)∞

· (tr
p(maxRa,�>x )−1z · ρε>(x); rp)∞

(rp(maxRa,�>x )−1z · ρε>(x); rp)∞

= ((minRa,�>x )−1z · ρε>(x); rp)N
(t (minRa,�>x )−1z · ρε>(x); rp)N

,

where N =N(ε) satisfies

rp(N−1) = minRa,�>x

maxRa,�>x
.

By definition of ρε>(x),

ρε>(x)

minRa,�>x
= rν
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for some ν = ν(ε) ≥ 0. Note that εν → ν̂ as ε→ 0 for some ν̂; this follows from the fact that minRa,�>x converges to
(s0 · · · sa)−1emax(x,V�) and that ρε>(x) converges by Proposition 5.5.

There are two main cases to consider: ν̂ > 0 and ν̂ = 0. First suppose ν̂ > 0. Note that if a1 = a1(ε), a2 = a2(ε)

converge to some â > 0 as ε→ 0, then

1− raz

1− rbz
= exp

(
log

(
1+ z(rb − ra)

1− rbz

))
= eO(ε·(|z|∧1))

uniformly over z ∈D0,θ,δ . Thus Lemma 5.7 implies

((minRa,�>x )−1z · ρε>(x); rp)N
(t (minRa,�>x )−1z · ρε>(x); rp)N

=
(

1− (s0 · · · sa)−1emax(x,V�)z · ρ>(x)
1− (s0 · · · sa)−1eV�+1z · ρ>(x)

) t
p

eO(ε(|z|∧1))

uniformly over z ∈D0,θ,δ .
If ν̂ = 0, then write

((minRa,�>x )−1z/ρε>(x); rp)N
(t (minRa,�>x )−1z/ρε>(x); rp)N

= (rνz; rp)N
(trνz; rp)N .

If, in addition, limε→0 εN > 0, then by Lemma 5.7, we have

(rνz; rp)N
(trνz; rp)N =

(
1− rνz

1− (s0 · · · sa)−1eV�+1z · ρ>(x)
) t

p

exp

(
O

(
ε
|z| ∨ |z|2
|1− z|

))
uniformly over z ∈Dε,θ,δ . We may further replace the 1− rνz with 1− z without changing the right hand side since

1− rνz

1− z
= exp

(
log

(
1+ z(1− rν)

1− z

))
= exp

(
O

(
ε

|z|
|1− z|

))
(5.13)

uniformly over z ∈Dε,θ,δ .
Otherwise, if limε→0 εN = 0, take M =M(ε) ∈ Z>0 large so that limε→0 εM > 0. Then by Lemma 5.7,

(rνz; rp)N
(trνz; rp)N = (rνz; rp)N+M

(trνz; rp)N+M · (tr
ν+pNz; rp)M

(rν+pNz; rp)M

=
(

1− rνz

1− rν+pNz

) t
p

exp

(
O

(
ε
|z| ∨ |z|2
|1− z|

))
= exp

(
O

(
ε
|z| ∨ |z|2
|1− z|

))
uniformly over z ∈Dε,θ,δ where the last equality follows from applying (5.13) to 1−rνz

1−z and 1−rpN+νz
1−z , then taking their

quotient.
Multiplying over all Ra,�>x �=∅ and comparing with G>x as defined in (5.1), we obtain the desired asymptotics for GB

>x .
The argument for GB

>x is similar. �

5.2. Outline of proofs

We first outline the proof of Theorem 5.2 to indicate the main obstacles. Part of the proof of Theorem 5.3 will mirror the
outlined proof of Theorem 5.2.

By Theorem 3.17 and (3.19), we can express E℘k(πx;q, t) as

1

(2π i)k

∮
C′1
· · ·

∮
C′k

∑k
i=1

1
zi

qi−1

t i−1

(z2 − q
t
z1) · · · (zk − q

t
zk−1)

×
∏
i<j

(zj − zi)(zj − q
t
zi)

(zj − 1
t
zi)(zj − qzi)

k∏
i=1

GBε

<x(zi; ε, t)GBε

>x(zi; ε, t) dzi, (5.14)
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where C′i is the zi -contour and satisfies the conditions in Theorem 3.17. If the C′i converge to Ci and are separated from
one another so that the contours do not pass through any singularities of the integrand, then the integrand converges on
the contour and the integral (5.14) converges to

1

(2π i)k

∮
C1

· · ·
∮
Ck

∑k
i=1

1
zi

(z2 − z1) · · · (zk − zk−1)

k∏
i=1

[
GB
<x(z)GB

>x(z)
]t
dzi . (5.15)

The dimension of this contour is in general higher than what we desire. However, we can obtain the desired form by
applying the following Theorem from [16, Corollary A.2].

Theorem 5.8 ([16]). Let s be a positive integer. Let f,g1, . . . , gs be meromorphic functions with possible poles at
{p1, . . . ,pm}. Then for k ≥ 2,

1

(2π i)k

∮
· · ·

∮
1

(v2 − v1) · · · (vk − vk−1)

s∏
j=1

(
k∑
i=1

gj (vi)

)
k∏
i=1

f (vi) dvi

= ks−1

2π i

∮
f (v)k

s∏
j=1

gj (v) dv,

where the contours contain {p1, . . . ,pm} and on the left side we require that the vi -contour is contained in the vj -contour
whenever i < j .

We note that this was how the asymptotics of moments were carried out in [16].
In the case that x = V� is a singular point, there is some additional difficulty due to the order of dist(ρε<(x), ρ

ε
>(x))

being O(ε) where ρε<(x), ρ
ε
>(x) are defined as in Proposition 5.5. By the conditions on the contours in Theorem 3.17,

our kth moment formula only makes sense if there is some separation between v� and x. This is where the kt-separation
condition is needed. Even with this separation condition, the contours C′i in (5.14) are O(ε) from one another on the
positive real axis; this is the main technical complication and is a byproduct of dist(ρε<(x), ρ

ε
>(x)) being O(ε). For

points (z1, . . . , zn) where |zi − zj | ∼O(ε), i �= j , we take care to show that the integrand does not diverge. We still have
convergence to (5.15) but with the limiting contours sharing a common point; this means that the integration goes over
some singularities of the integrand. However, we are still able to obtain (5.2) by finding a sequence of integrals which
converge to (5.15) for which we can apply the dimension reduction formula to complete the proof of Theorem 5.2.

The proof of Theorem 5.3 requires the asymptotics of higher cumulants, see the Appendix for a review of the definition
and some facts about cumulants. Modulo a reduction step, the proof of Theorem 5.3 follows a similar line of argument as
Theorem 5.2. Therefore some of the more repetitive points will be done in less detail.

5.3. Proof of Theorem 5.2

As outlined above, we want to show that (5.14) converges to (5.15). We suppress the dependence on B , α and t in the
indexing. Throughout the proof, constants C are uniform in ε and may vary from line to line. We let ρε<(x), ρ

ε
>(x) be as

in Proposition 5.5. For the proof, we assume that if x = V�, then either x > v� for all ε > 0, x = v� for all ε > 0 or x < v�
for all ε > 0. The purpose of this assumption is to ensure ρε<x and ρε>x both converge as in Proposition 5.5. Note that this
condition is not restrictive, if we show (5.14) converges to (5.15) under each separate regime x > v�, x = v�, and x < v�,
then certainly we have that (5.14) converges to (5.15) under a general limit εx→ x without restriction on the inequality
between x and v�, since the limit is independent of this ordering.

The first step is to find contours such that the conditions in Theorem 3.17 are satisfied. As we will see, the kt-separation
condition gives us existence of such contours. In order for the conditions in Theorem 3.17 to be met, we require the
contours C′1, . . . ,C′k in (5.14) to satisfy the following: C′i contains [0, ρε<(x)] but does not intersect [ρε>(x),∞), and C′j
encircles tC′i for any i < j . In particular, we require that C′i intersects (ρε<(x), ρ

ε
>(x)) at some point ai , and these points

must satisfy

ρε<(x) < a1 < ta2 < · · ·< tk−1ak < tk−1ρε>(x). (5.16)

Let 0< θk, . . . , θ1 < π , and set C′′1 , . . . ,C′′k to be contours in C such that C′′i is the contour consisting of line segments
and circular arc{

1+ ue±iθj : u ∈ [0,1]}, {
z ∈C : |z| = ∣∣1+ eiθj

∣∣, arg z > arg
(
1+ eiθj

)}
,
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where the arg branches are in (−π,π], positively oriented around 0. Then C′′1 , . . . ,C′′k intersect pairwise at 1 and C′′j
encircles C′′i \ {1} whenever i < j .

The kt-separation condition guarantees the existence of points a1 := a1(ε), . . . , ak := ak(ε) satisfying (5.16). Indeed,
by Proposition 5.5, if

t−Mr−1 := ρε>(x)

ρε<(x)

then M ≥ k + 1. Indeed, if x is not a singular point then limε→0 ρ
ε
<(x) < limε→0 ρ

ε
>(x) so that there is enough space to

guarantee this inequality for ε sufficiently small, and if x is a singular point then the kt-separation condition implies the
right hand side is ≥ t−1r−kt−1 = t−(k+1)r−1. In particular, we may set

ai =
(
t−Mr−1) i

k+1 ρε<(x)=
(
t−Mr−1)− k+1−i

k+1 ρε>(x).

Since ai/ai−1 > t−1, by setting C′i = aiC′′i , we obtain contours satisfying the conditions in Theorem 3.17.
If x is not a singular point, then limε→0 ρ

ε
<(x) < limε→0 ρ

ε
>(x) so that limε→0 t

−M > 1. Then the integrand in (5.14)
is bounded, having no singularities. Thus by Proposition 5.6, (5.14) converges to (5.15) with Ci = (limε→0 ai)C′′i .

In the case that x is a singular point, then t−M → 1, so there are singularities in (5.14) to take care of. Let Fε(z1, . . . , zk)

denote the integrand in (5.14). We may change variables in (5.14) to replace the C′i contours with C′′i via zi = aiwi . By
dominated convergence, to prove that (5.14) converges to (5.15), we seek a function g so that∣∣Fε(a1w1, . . . , akwk)

∣∣≤ g(w1, . . . ,wk)

for (w1, . . . ,wk) ∈ C′′1 × · · · × C′′k with g integrable on C′′1 × · · · × C′′k with respect to d|w1| · · ·d|wk|.
We may write

G<x(aiwi; ε, t)=G<x

(
t−1 · t(t−Mr−1) i

k+1wi · ρε<(x)
)
,

G>x(aiwi; εt)=G>x

(
t · t−1(t−Mr−1) k+1−i

k+1 wi · ρε>(x)
)
.

If we denote by C′′−1
i = {w :w−1 ∈ C′′i }, then there exists θ ∈ (0,π) such that C′′i ,C

′′−1
i ⊂D0,θ,δ for 1 ≤ i ≤ k and some

fixed δ > 0. This is clear for C′′i . For C′′−1
i , this follows from the map w 	→w−1 being conformal and an involution taking

(−∞,0) onto intself and (0,1) to (1,∞). This implies that given A> 0, then e−εaC′′−1
i , e−εaC′′i ⊂Dcε,θ,δ for 1 ≤ i ≤ k,

a≥A, δ > 0 fixed, and c depending on A. In particular, since

t
(
t−Mr−1) i

k+1 > r−
1
k+1 ,

we have(
t

ai

ρε<(x)
wi

)−1

= (
t
(
t−Mr−1) i

k+1wi
)−1 ∈Dcε,θ,δ,

t−1 ai

ρε>(x)
wi = t−1(t−Mr−1)− k+1−i

k+1 wi ∈Dcε,θ,δ

for 1 ≤ i ≤ k and some fixed δ, c > 0, θ ∈ (0,π). Thus by Proposition 5.6, we have

G<x(aiwi; ε, t)= G<x
(
t
(
t−Mr−1) i

k+1wi · ρ<(x)
)t exp

(
O

(
ε

|1− taiwi
ρε<(x)

|
))

,

G>x(aiwi; ε, t)= G>x
(
t−1(t−Mr−1) k+1−i

k+1 wi · ρ>(x)
)t exp

(
O

(
ε

|1− taiwi
ρε>(x)

|
)) (5.17)

for wi ∈ C′′i ,1 ≤ i ≤ k; note that we dropped the |z| ∨ |z|2 term since C′′i is bounded and separated from 0. Observe that
away from [0,1],

G<x(z)
p =R(z)(1− z),
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where R(z) is a rational functions with poles < 1, we have a similar statement for G<x(z) but we will only need the fact
that it is bounded (we could alternatively flip the roles of G<x and G>x here). Using this and the fact that we may replace
the exponential term in (5.17) with a crude constant order term, we have∣∣G<x(aiwi; ε, t) ·G>x(aiwi; ε, t)

∣∣≤ C
∣∣1− tδwi

∣∣c (5.18)

for wi ∈ C′′i and some fixed constant c > 0, δ > 0. Next, we need the following lemma.

Lemma 5.9. Fix ν > 0. For ε > 0 arbitrarily small, there exists a constant C independent of ε such that

|1− e−νεz|
|w− e−εz| ≤ C

on (z,w) ∈ C′′i × C′′j whenever 1 ≤ i < j ≤ k.

Proof. It suffices to check the inequality for (z,w) near (1,1) where C′′i × C′′j looks like{
1+ ue±iθi : u ∈ [0, δ]}∪ {

1+ ue±iθj : u ∈ [0, δ]}
for some small δ > 0. Since 1−e−νεz

1−e−εz is bounded over this region, independent of ε, it suffices to bound∣∣∣∣ 1− e−εz
w− e−εz

∣∣∣∣= ∣∣∣∣1+ 1−w

(w− 1)+ (1− e−εz)

∣∣∣∣= 1+
∣∣∣∣ w− 1

(w− 1)+ (1− e−εz)

∣∣∣∣= 1+
∣∣∣∣ 1

1+ 1−e−εz
w−1

∣∣∣∣.
Without loss of generality, we may suppose w = 1 + ueiθj for u ∈ [0, δ]. Also note that if z ∈ H then |w − e−εz| <
|w− e−εz̄|, so we may suppose that z ∈H. Then 1− e−εz= u′eiθ for some 0< θ < θi < θj and u′ ∈ [0, δ]. Thus∣∣∣∣ 1

1+ 1−e−εz
w−1

∣∣∣∣= ∣∣∣∣ 1

1+ vei(θ−θj )

∣∣∣∣
for some v ∈ [0,∞). We can maximize the right hand side over v ∈ [0,∞) for each fixed θ < θj ; the maximizing value
is given by 1

sin(θ−θj ) . Thus∣∣∣∣ 1− e−εz
w− e−εz

∣∣∣∣≤ 1+ 1

sin(θi − θj )
,

which proves the lemma. �

Using (5.18) and the fact that | (zj−zi )(zj−
q
t
zi )

(zj− 1
t
zi )(zj−qzi ) | is bounded on C′1 × · · · × C′k uniformly in ε, we can dominate

Fε(z1, . . . , zk) as follows

∣∣Fε(z1, . . . , zk)
∣∣≤C ·

∣∣∣∣ 1

(z2 − q
t
z1) · · · (zk − q

t
zk−1)

∣∣∣∣ k∏
i=1

∣∣1− tδa−1
i zi

∣∣c (5.19)

≤ C

∣∣∣∣ 1

(z2 − q
t
z1) · · · (zk − q

t
zk−1)

∣∣∣∣1−c
(5.20)

on C′1 × · · · × C′k , where the second inequality follows from Lemma 5.9. With zi = aiwi , (5.20) becomes

∣∣Fε(z1, . . . , zk)
∣∣≤C

∣∣∣∣ 1

(a2w2 − q
t
a1w1) · · · (akwk − q

t
ak−1wk−1)

∣∣∣∣1−c

≤C

∣∣∣∣ 1

(w2 −w1) · · · (wk −wk−1)

∣∣∣∣1−c
=: g(w1, . . . ,wk) (5.21)
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for (w1, . . . ,wk) ∈ C′′1 × · · · × C′′k . The dominating function g is integrable, since all its singularities are integrable; e.g.
integrate w1, then w2, etc. We may thus apply dominated convergence and see that (5.14) converges to (5.15) up to a
change of variables where we need to take Ci = ρ<(V�)C′′i .

Now that we have shown (5.14) converges to (5.15), we want to show that (5.15) is the right hand side of (5.2). By a
similar argument, we have the integral

1

(2π i)k

∮
C′1
· · ·

∮
C′k

∑k
i=1

1
zi

(z2 − z1) · · · (zk − zk−1)

k∏
i=1

G<x(zi; ε, t) ·G>x(zi; ε, t) dzi, (5.22)

with C′i and Gx depending on ε, converges to (5.15) as well. On the other hand, Theorem 5.8 says that (5.22) may be
reexpressed as

1

2π i

∮
C′

[
G<x(z; ε, t) ·G>x(z; ε, t)

]k dz
z
,

where C′ is some contour containing the poles of GB
<x(z; ε, t) and 0 and containing no pole of GB

>x(z; ε, t); for example
it suffices to pick C′i for some i ∈ [[1, k]]. This converges to the right hand side of (5.2). Therefore, (5.15) coincides with
the right hand side of (5.2), completing the proof of Theorem 5.2. �

5.4. Proof of Theorem 5.3

We begin by defining

Dε
k(x)=

1

ε

(
℘k

(
πx;q, t)−E℘k

(
πx;q, t)). (5.23)

As alluded to in proof outline, the idea of the proof is to compute the cumulants of (Dε
k1
(x1), . . . ,D

ε
km
(xm)) and check

that they are asymptotically Gaussian as ε→ 0; that is the order ≥ 3 cumulants vanish and the order 2 cumulants (i.e. the
covariances) have the structure asserted by (5.3). The asymptotics of the cumulants have many elements similar to the
asymptotics from the proof of Theorem 5.2. However, the higher order cumulants require greater separation in order for
the formulas from Theorem 3.17 to apply which poses a problem yet again for the singular points. To ameliorate this, we
prove Theorem 5.3 by first reducing to a seemingly weaker claim.

Claim. Fix integers ν ≥ 2, k1, . . . , kν ∈ Z>0 and let x1 ≤ · · · ≤ xν be points in I ε (depending on ε) such that

εxi → xi ∈ I for i ∈ [[1, ν]], and

xi is (ki + · · · + kν)t-separated from singular points, for i ∈ [[1, ν]]. (5.24)

Then

κ
(
Dε
k1
(x1), . . . ,D

ε
kν
(xν)

)→{
κ(Dk1(x1),Dk2(x2)) if ν = 2,

0 if ν > 2.
(5.25)

Lemma 5.10. The Claim above implies Theorem 5.3.

Proof. We first show that for any integer k > 0 and any x ∈ I , we have

E
(
Dε
k(x)−Dε

k(x̃)
)2 → 0

for any x, x̃ ∈ I ε that are (2k)t-separated from singular points with εx, εx̃→ x. (5.26)

To see (5.26), rewrite

E
(
Dε
k(x)−Dε

k(x̃)
)2 = E

(
Dε
k(x)

)2 − 2EDε
k(x)D

ε
k(x̃)+E

(
Dε
k(x̃)

)2

= κ
(
Dε
k(x),D

ε
k(x)

)− 2κ
(
Dε
k(x),D

ε
k(x̃)

)+ κ
(
Dε
k(x̃),D

ε
k(x̃)

)
. (5.27)
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By the Claim, each cumulant appearing in (5.27) converges as ε→ 0 to the same limit:

κ
(
Dε
k(x),D

ε
k(x)

)
, κ

(
Dε
k(x),D

ε
k(x̃)

)
, κ

(
Dε
k(x̃),D

ε
k(x̃)

)→ κ
(
Dk1(x),Dk2(x)

)
.

This implies (5.26).
Let x1, . . . , xm ∈ I ε and integers k1, . . . , km ∈ Z>0 be as in the statement of Theorem 5.3. We can find x̃1, . . . , x̃m ∈ I ε

such that

εx̃i → xi ∈ I for i ∈ [[1, ν]], and

x̃i is χ-separated from singular points for every χ > 0, for i ∈ [[1, ν]]. (5.28)

By the Claim, we have

κ
(
Dε
ki1
(x̃i1), . . . ,D

ε
kiν
(x̃iν )

)→ {
κ(Dki1

(xi1),Dki2
(xi2)) if ν = 2,

0 if ν > 2
(5.29)

for any i1, . . . , iν ∈ [[1,m]] and ν > 0. By Lemma A.3, this implies that (Dε
k1
(x̃1), . . . ,D

ε
km
(x̃m)) converges in distribution

to the Gaussian vector (Dk1(x1), . . . ,Dkm(xm)).
By (5.26), we have

E
(
Dε
ki
(xi)−Dε

ki
(x̃i)

)2 → 0

for each i ∈ [[1,m]]. This implies that (Dε
k1
(x1), . . . ,D

ε
km
(xm)) also converges in distribution to the Gaussian vector

(Dk1(x1), . . . ,Dkm(xm)). �

We are left to prove the Claim. Adding a constant vector to a random vector adds only a constant order term to the
logarithm of the characteristic function. By Definitions A.1 and A.2, we have for ν > 1

κ
(
Dε
k1
(x1), . . . ,D

ε
kν
(xν)

)= ε−νκ
(
℘k1

(
πx1;q, t), . . . ,℘kν (πxν ;q, t))

=
∑
d∈Z>0

{U1,...,Ud }∈�ν

ε−ν(−1)d−1(d − 1)!
d∏
�=1

E

[ ∏
i∈U�

℘ki
(
πxi ;q, t)], (5.30)

where we use the notation from the Appendix with �ν the collection of all set partitions of [[1, ν]].
If x1 ≤ · · · ≤ xν , then given that the conditions of Theorem 3.17 are met, (5.30) can be expressed as

ε−ν
∮

· · ·
∮

C(Z1, . . . ,Zν)

ν∏
i=1

G<xi (Zi)G>xi (Zi)DZi, (5.31)

where Zi = (zi,1, . . . , zi,ki ),

C(Z1, . . . ,Zν)=
∑
d∈Z>0

{U1,...,Ud }∈�ν

(−1)d−1(d − 1)!
d∏
�=1

∏
(i,j)∈U�
i<j

C(Zi,Zj ). (5.32)

Let C′i,j denote the zi,j -contour in (5.31).
As before, the separation condition (5.24) ensures that the conditions of Theorem 3.17 are met. We verify that this

is the case. We require the existence of contours C′i,j , j ∈ [[1, ki]] and i ∈ [[1, ν]], satisfying the following: C′i,j contains
[0, ρε<(xi)] but no elements of [ρε>,∞), and tC′

i′,j ′ encircles C′i,j whenever (i′, j ′) > (i, j) in lexicographical order. In
particular, we require C′i,j intersects (ρε<(xi), ρ

ε
>(xi)) at some point ai,j , and these points must satisfy

ai,j < tai′,j ′ , (i, j) <
(
i′, j ′

)
(5.33)

in lexicographical order. We can construct such contours as follows.
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Let 0< θi,j < π such that θi′,j ′ < θi,j whenever (i, j) < (i′, j ′) in lexicographical order and set Ci,j to be the contour
in C consisting of line segments and a circular arc{

1+ ue±iθi,j : u ∈ [0,1]}, {
z ∈C : |z| = ∣∣1+ eiθi,j

∣∣, arg z > arg
(
1+ eiθi,j

)}
,

where the arg branches are in (−π,π], positively oriented around 0. Then C′′i,j , 1 ≤ j ≤ ki,1 ≤ i ≤ ν, intersect pairwise
at 1 and C′′

i′,j ′ encircles C′′i,j \ {1} whenver (i, j) < (i′, j ′) in lexicographical order.
From ρε<(xi) < ρε>(xi), we have

lim
ε→0

ρε<(xi)≤ lim
ε→0

ρε>(xi).

By monotonicity of ρε< and ρε>, we also have that the left hand side and right hand side grow as i increases; recall
that x1 ≤ · · · ≤ xν . By definition of singular points and Proposition 5.5, we have equality if and only if xi is a singular
point. Let � ⊂ [[1, ν]] be defined so that i ∈ � if and only if xi is singular. Then, we can find ai,j := ai,j (ε), for each
(i, j), (i′, j ′) where j ∈ [[1, ki]], j ′ ∈ [[1, ki′ ]] and i, i′ ∈ [[1, ν]] \� , such that

lim
ε→0

ρε<(xi) < lim
ε→0

ai,j < lim
ε→0

ρε>(xi),

lim
ε→0

ai,j < lim
ε→0

ai′,j ′ , (i, j) <
(
i′, j ′

)
,

(5.34)

where we order lexicographically. For i ∈� we define ai,j using the separation condition. Suppose we have,

xη−1 < xη = · · · = xη+ξ−1 < xη+ξ

with xi = V� a singular point, in particular η, . . . , η+ ξ − 1 ∈� . By Proposition 5.5 the separation condition implies that

ρε>(xi)

ρε<(xi)
≥ t−1r−(ki+···+kν)t−1 = t−(ki+···+kν+1)r−1, i = η, . . . , η+ ξ − 1.

Thus, we may define ai,j for i ∈� such that for any pair ai,j , ai′,j ′ with j ∈ [[1, ki]], j ′ ∈ [[1, ki′ ]] and i, i′ ∈ [[η,η+ξ−1]],
we have

ai,j

ρε<(xi)
> t−1−δ, ρε>(xi)

ai,j
> t−1−δ,

ai′,j ′

ai,j
> t−1−δ, (i, j) <

(
i′, j ′

)
(5.35)

for some fixed, small δ > 0. Indeed, this follows from the separation condition and telescoping over ai,j+1/ai,j with
boundary cases

ai,1/ρ
ε
<(xi), ρε>(xi)/ai,ki .

Although the separation condition is not optimal, it is nearly saturated in the case where x1 = · · · = xν all converge to the
same singular point V� and are as close to v� as the separation condition allows.

From this choice of ai,j , we construct the zi,j -contour C′i,j = ai,jC′′i,j similar to the proof of Theorem 5.2. By (5.34)
and (5.35), the points ai,j satisfy (5.33). Therefore the contours C′i,j meet the conditions of Theorem 3.17, and so we may
express (5.30) as (5.31).

Our next objective is to apply dominated convergence to (5.31). To this end, we rewrite (5.31) in a different form. Let
U ⊂ [[1, ν]], T (U) denote the set of undirected simple graphs with vertices labeled by U , and L(U)⊂ T (U) the subset
of connected graphs. Given a graph �, we denote by E(�) the edge set of �. We show

C(Z1, . . . ,Zm)=
∑

�∈L([[1,ν]])

∏
i<j

(i,j)∈E(�)

(
C(Zi,Zj )− 1

)
. (5.36)

Define

K(U)=
∑

�∈L([[1,ν]])

∏
i<j

(i,j)∈E(�)

(
C(Zi,Zj )− 1

)
,

E(U)=
∑

�∈T ([[1,ν]])

∏
i<j

(i,j)∈E(�)

(
C(Zi,Zj )− 1

)
.

(5.37)
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Then

E(U)=
∑
d>0

{U1,...,Ud }∈�U

d∏
�=1

K(U�). (5.38)

By Lemma A.4, we have

K(U)=
∑
d>0

{U1,...,Ud }∈�U

(−1)d−1(d − 1)!
d∏
�=1

E(U�), (5.39)

which agrees with the right hand side of (5.32) when U = [[1, ν]]. This proves (5.36).
We also record that

C(Zi,Zj )− 1 =
∑

∅ �=S⊂[[1,ki ]]
∅ �=T⊂[[1,kj ]]

∏
(a,b)∈S×T

(1− q)(t−1 − 1)zi,azj,b
(zj,b − qzi,a)(zj,b − 1

t
zi,a)

. (5.40)

For each i ∈ [[1, ν]] and S ⊂ [[1, ki]], let aS be the minimal member of S (we note this choice is arbitrary). For each
edge i, j ∈ [[1, ν]] with i < j , and any pair of subsets S ⊂ [[1, ki]], T ⊂ [[1, kj ]], we have∣∣∣∣ ∏

(a,b)∈S×T

(1− q)(t−1 − 1)zi,azj,b
(zj,b − qzi,a)(zj,b − 1

t
zi,a)

∣∣∣∣≤ C

∣∣∣∣ ε2

(zj,aT − qzi,aS )(zj,aT − 1
t
zi,aS )

∣∣∣∣ (5.41)

for zi,j ∈ C′i,j . The inequality follows from removing all but one (aS, aT ) ∈ S×T using the fact that |zj,b−qzi,a|, |zj,b−
1
t
zi,a | ≥ Cε by our choice of contours. For each � ∈ L([[1, ν]]), fix a complete subtree �′ of �. Then by (5.36), (5.40)

and (5.41), we have

∣∣C(Z1, . . . ,Zν)
∣∣≤C

∑
�∈L([[1,ν]])

∏
i<j

(i,j)∈E(�)

∑
S⊂[[1,ki ]]
T⊂[[1,kj ]]

∣∣∣∣ ε2

(zj,aT − qzi,aS )(zj,aT − 1
t
zi,aS )

∣∣∣∣
≤ Cε2ν−2

∑
�∈L([[1,ν]])

∏
i<j

(i,j)∈E(�′)

∑
S⊂[[1,ki ]]
T⊂[[1,kj ]]

∣∣∣∣ 1

(zj,aT − qzi,aS )(zj,aT − 1
t
zi,aS )

∣∣∣∣ (5.42)

for zi,j ∈ C′i,j . In the last line, we used the fact that the number of edges in �′ is ν − 1 in pulling out the ε factor.
On the other hand, as with (5.19) in the proof of Theorem 5.2, we have the bound∣∣∣∣Gxi (Zi)

DZi

dZi

∣∣∣∣≤ C

∣∣∣∣ 1

(zi,2 − q
t
zi,1) · · · (zi,k − q

t
zi,k−1)

∣∣∣∣ ki∏
j=1

∣∣1− tδa−1
ij zij

∣∣c′ (5.43)

for some c′ > 0 and δ > 0 fixed along zi,j ∈ C′i,j where we write DZi
dZi

to indicate that we remove the differentials from
DZi . Then by (5.42), (5.43), we obtain the following bound for the integrand Fε(Z1, . . . ,Zν) of (5.31) as we had done
with (5.20) in the proof of Theorem 5.2:

∣∣Fε(Z1, . . . ,Zν)
∣∣≤ Cεν−2

ν∏
i=1

∣∣∣∣ 1

(zi,2 − q
t
zi,1) · · · (zi,ki − q

t
zi,ki−1)

∣∣∣∣1−c

×
∑

�∈L([[1,ν]])

∏
i<j

(i,j)∈E(�′)

∑
S⊂[[1,ki ]]
T⊂[[1,kj ]]

∣∣∣∣ 1

(zj,aT − qzi,aS )(zj,aT − 1
t
zi,aS )

∣∣∣∣1−c
(5.44)

for some c > 0 along zi,j ∈ C′i,j for each j ∈ [[1, ki]] and i ∈ [[1, ν]].
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If we expand out the right hand side of (5.44), we have that |Fε(Z1, . . . ,Zν)| is bounded on along C′i,j by a sum of
finitely many terms of the form

Tε(Z1, . . . ,Zν)= Cεν−2
ν∏
i=1

∣∣∣∣ 1

(zi,2 − q
t
zi,1) · · · (zi,ki − q

t
zi,ki−1)

∣∣∣∣1−c

×
∏
i<j

(i,j)∈E(�′)

∣∣∣∣ 1

(zj,b(i,j) − qzi,a(i,j) )(zj,b(i,j) − 1
t
zi,a(i,j) )

∣∣∣∣1−c
(5.45)

for some � ∈ L([[1, ν]]) and some a(i,j) ∈ [[1, ki]], b(i,j) ∈ [[1, kj ]] for each (i, j) ∈ E(�′). Since we are seeking an
integrable function which dominates Fε(Z1, . . . ,Zν), it suffices to dominate Tε(Z1, . . . ,Zν) by an integrable function.

We may assume c < 1. Choose a distinguished element (i�, j�) ∈�′ where i� < j�. Then (5.45) may be replaced by

Tε(Z1, . . . ,Zν)≤ Cε(ν−2)c
ν∏
i=1

∣∣∣∣ 1

(zi,2 − q
t
zi,1) · · · (zi,ki − q

t
zi,ki−1)

∣∣∣∣1−c

×
∣∣∣∣ 1

(zj�,b(i�,j�)
− qzi�,a(i�,j�)

)

∏
i<j

(i,j)∈E(�′)

1

(zj,b(i,j) − 1
t
zi,a(i,j) )

∣∣∣∣1−c
, (5.46)

where we used ε(ν−2)(1−c) to remove each |zj,b(i,j) − qzi,a(i,j) | term except for the one corresponding to the distinguished
edge (i�, j�), recalling again that the number of edges of �′ is ν − 1.

We set zi,j = ai,j
limε→0 ai,j

wi,j for the rest of the proof so that wi,j runs along Ci,j := (limε→0 ai,j )C′′i,j . Then, like (5.21)
in the proof of Theorem 5.2, we have

Tε(Z1, . . . ,Zν)≤ Cε(ν−2)c
ν∏
i=1

∣∣∣∣ 1

(wi,2 −wi,1) · · · (wi,ki −wi,ki−1)

∣∣∣∣1−c

×
∣∣∣∣ 1

(wj�,b(i�,j�)
−wi�,a(i�,j�)

)

∏
i<j

(i,j)∈E(�′)

1

(wj,b(i,j) −wi,a(i,j) )

∣∣∣∣1−c

=: ε(ν−2)cg(W1, . . . ,Wν) (5.47)

We show that g(W1, . . . ,Wν) is integrable on wi,j ∈ Ci,j , j ∈ [[1, ki]], i ∈ [[1, ν]] with respect to the measure∏
i∈[[1,ν]],j∈[[1,ki ]] d|wi,j |. We use the following lemma to this end.

Lemma 5.11. Let  be a graph with vertices labeled by some subset of {(i, j)}i∈[[1,ν]],j∈[[1,ki ]]. If  is a tree and c > 0,
then for any (v′1, v′2) ∈E( ) we have∮

· · ·
∮

1

|wv′1 −wv′2 |1−c
∏

(v1,v2)∈E( )

1

|wv1 −wv2 |1−c
∏

i∈[[1,ν]]
j∈[[1,ki ]]

|dwi,j |<∞,

where Ci,j is the wi,j contour.

Proof. Since the contours Ci,j have finite length, we can integrate out the variables independent of the integrand, so it
suffices to show∮

· · ·
∮

1

|wv′1 −wv′2 |1−c
∏

(v1,v2)∈E( )

1

|wv1 −wv2 |1−c
∏

v∈V ( )
|dwv|, (5.48)

where V ( ) is the vertex set of  .
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For the case where the number of edges of  is 1, we have∮ ∮
1

|wv′1 −wv′2 |2(1−c)
|dwv′1 ||dwv′2 |

is integrable even if Cv1 and Cv2 meet at a point.
For general |E( )| ≥ 1, choose a leaf vertex v1 of  so that v1 is not a vertex of the edge (v′1, v′2). There is a unique

edge e1 = (v1, v2) ∈E( ) containing v1. If we integrate over wv1 , then the wv1 -dependent part of the integrand is |wv1 −
wv2 |c−1 which is integrable even if Cv2 and Cv1 intersect. Then repeat this procedure with the graph  \ {v1} which is still
a tree. After repeating this procedure, we will eventually return to the case |E( )| = 1. �

We check that g(W1, . . . ,Wν)meets the conditions of Lemma 5.11. Our graph  is the union of graph  i for i ∈ [[0, ν]]
defined as follows. Let  i be the graph with edge set E( i)= {((i,1), (i,2)), . . . , ((i, ki − 1), (i, ki))} for i ∈ [[1, ν]] and
E( 0)= {((i, a(i,j)), (j, b(i,j))) : (i, j) ∈�′}. We must check that  is a tree. Indeed, if we collapse each  i to a point vi
for i ∈ [[1, ν]] (alternatively said, we project away the second coordinate for the vertex labels), then  becomes the tree
�′. Since each  i for i ∈ [[1, ν]] is a tree, this implies that  is a tree. Thus by Lemma 5.11,∫

· · ·
∫
g(W1, . . . ,Wν)

∏
i∈[[1,ν]]
j∈[[1,ki ]]

d|wi,j |<+∞, (5.49)

where the wi,j -contour is Ci,j .
If ν > 2, then since ε(ν−2)c → 0, we have that (5.47) converges to 0. Thus for ν > 2, the cumulant (5.30) converges to

0. If ν = 2, then (5.47) allows us to apply dominated convergence so that (5.30) converges to

1

(2π i)k1+k2

∮
· · ·

∮ (
αt2

∑
a∈[[1,k1]]
b∈[[1,k2]]

w1,aw2,b

(w1,a −w2,b)2

)

×
2∏
i=1

∑ki
j=1

1
wi,j

(wi,2 −wi,1) · · · (wi,ki −wi,ki−1)

ki∏
j=1

[
G<xi (wi,j )G>xi (wi,j )

]t
dwi,j , (5.50)

where Ci,j is the zi,j -contour. As in the proof of Theorem 5.2, we can consider the family of integrals replacing Gt
<xi with

G<xi , Gt
>xi with G>xi and Ci,j with C′i,j in (5.50). By applying Theorem 5.8 twice to this family and taking the limit as

ε→ 0, we have that (5.50) is equal to

αt2
k1k2

(2π i)2

∮
C2

∮
C1

1

(z−w)2

[
G<x1(z)G>x1(z)

]k1t
[
G<x2(w)G>x2(w)

]k2t dzdw,

where C1 = C1,i for some i ∈ [[1, k1]] and C2 = C2,j for some j ∈ [[1, k2]]. This proves the Claim, and therefore proves
Theorem 5.3.

6. Complex structure of the liquid region

Throughout this section, we fix a family P
B,r,s
α,t satisfying the Limit Conditions, as defined in the beginning of Section 5,

with limiting back wall B : I → R. The liquid region, denoted by L , is the subset of R2 consisting of (x, y) such that
the local proportions of ♦ , ♦, ♦ lozenges at (x, y) are all positive. The goal of this section is to give a natural complex
structure on L through Gx . This complex structure will be used in Section 7 to describe the GFF fluctuations of PB,r,sα,t in
the limit as ε→ 0.

The key object of study is the function

GB
x (ζ )= e−B(x)GB

<x(ζ ) · GB
>x(ζ ). (6.1)

Throughout this section, we write Gx := GB
x .
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Definition 6.1. For (x, y) ∈R
2, we define the (x, y)-companion equation

Gx(ζ )= e−y. (6.2)

The importance of the companion equation is due to its connection to the liquid region.

Definition 6.2. The liquid region denoted by L is the set of (x, y) ∈R
2 for which the (x, y)-companion equation has a

nonreal pair of roots.

We provided a different definition of the liquid region earlier: the liquid region is the set of (x, y) such that all the local
proportions p♦ ,p ♦ ,p ♦ are positive. The equivalence of these definitions can be seen in Section 7. For now, we use

the definition of the liquid region in terms of the companion equation. The following theorem is the main result of this
section.

Theorem 6.3. For each (x, y) ∈L , there exists a unique root ζ(x, y) of the (x, y)-companion equation in the upper half
plane H. The map ζ :L →H is a diffeomorphism.

Theorem 6.3 endows L with the complex structure of H given by the pullback of ζ(x, y).
We prove Theorem 6.3 in two parts. In Section 6.1, we show that the map ζ(x, y) in Theorem 6.3 exists. In Section 6.2,

we prove that the map ζ(x, y) is a diffeomorphism. In Section 6.3, we give a parametrization of the boundary of L which
we call the frozen boundary; this involves studying the double roots of (6.2).

Before proceeding, we show a convenient expression for Gx as a product of two functions where one is independent
of x and the other depends on x. We also introduce some useful definitions. Define

Px(z)=
∏
σ∈S

(
1− e−xσz

) 1
p , (6.3)

Q(z)= eB(V0)
∏

�∈[[0,n]]
σ∈S

(
1− e−V�σz

) 1
p
(1[B′(V+

� )≥ςσ ]−1[B′(V−
� )≥ςσ ]) (6.4)

= eB(V0)
∏
σ∈S

[(
1− e−V0σz

) 1
p

n∏
�=1

(
1− e−V�σz

1− e−V�−1σz

) 1
p

1[B′(V�−1,V�)<ςσ ]]
(6.5)

= eB(V0)
∏
σ∈S

[(
1− e−Vnσz

) 1
p

n∏
�=1

(
1− e−V�−1σz

1− e−V�σz

) 1
p

1[B′(V�−1,V�)≥ςσ ]]
, (6.6)

where the branches of (1−vz)s above are taken so that z < v−1 give positive real values. If V0 =−∞, then the expression
above is to be interpreted as the limit of the expression as V0 →−∞.

Lemma 6.4. For x ∈R, we have

Gx(z)= Px(z)

Q(z)
.

Proof. It is sufficient to prove this lemma for V0 >−∞, since we may then take V0 →−∞. Suppose a ∈ [[0,p− 1]] is
maximal so that Va−1 < x, then (5.1) implies

e−B(x)G<x(z)= e−B(x)
∏
σ∈S

a∏
�=1

(
1− emin(V�,x)(σz)−1

1− eV�−1(σz)−1

) 1
p

1[B′(V−
� )≥ςσ ]

. (6.7)

Observe that if x1, x2 ∈ [V�−1,V�], then

B(x1)−B(x2)= (x1 − x2)B′(V�−1,V�).

This implies

e−B(x) = e−B′(V−
a )(x−Va−1)e−B(Va−1). (6.8)
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By Lemma 4.4 and the definition of ςσ , we have B′(V −
� )=

∑
σ∈S 1

p
1[B′(V −

� )≥ ςσ ]. Thus the first exponential term on
the right hand side of (6.8) can be used to turn

1− ex(σz)−1

1− eVa−1(σz)−1
into

1− e−xσz
1− e−Va−1σz

for each σ ∈ S in (6.7). The second factor in (6.8) can be used to iterate this procedure where Va−1 and Va−2 play the
role of x and Va−1 respectively; then with Va−2 and Va−3, etc. At the end of this procedure, we obtain

e−B(x)G<x(z)= e−B(V0)
∏
σ∈S

a∏
�=1

(
1− e−min(V�,x)σ z

1− e−V�−1σz

) 1
p

1[B′(V−
� )≥ςσ ]

= e−B(V0)
∏
σ∈S

[(
1− e−xσz

) 1
p

1[B′(V−
a )≥ςσ ]

a−1∏
�=0

(
1− e−Vaσz

) 1
p
(1[B′(V−

a )≥ςσ ]−1[B′(V+
a )≥ςσ ])

]
,

where the second equality uses the fact that B′(V −
�+1)= B′(V +

� ). From (5.1), we may also write

G>x(z)=
∏
σ∈S

[(
1− e−xσz

) 1
p

1[B′(V−
a )<ςσ ]

n∏
�=a

(
1− e−Vaσz

) 1
p
(1[B′(V+

a )<ςσ ]−1[B′(V−
a )<ςσ ])

]
.

From (6.1) and the fact that

1
[
B′(V +

a

)
< ςσ

]− 1
[
B′(V −

a

)
< ςσ

]= 1
[
B′(V −

a

)≥ ςσ
]− 1

[
B′(V +

a

)≥ ςσ
]
,

we obtain

Gx(z)= e−B(V0)
∏
σ∈S

[(
1− e−xσz

) 1
p

n∏
�=0

(
1− e−Vaσz

) 1
p

1[B′(V−
a )≥ςσ ]−1[B′(V+

a )≥ςσ ]
]
= Px(z)

Q(z)
.

�

Definition 6.5. Suppose f :U → Ĉ is such that f p is meromorphic. We say z0 is a branch pole (branch zero) of f if z0
is a pole (zero) of f p . The order of a branch pole (zero) of f at z0 is defined to be the order of the pole (zero) of f p at
z0 divided by p.

Definition 6.6. Suppose f is a product of terms of the form a − z or 1− a−1z for some a ∈R. Define

arg+ f (u)= lim
z→u

arg z>0

argf (z)

for u ∈R away from a branch point of f , where we take arg so that arg(a − z), arg(1− a−1z)= 0 for z < a.

Definition 6.7. Let V be an non-differentiable point of B. Define

JV = {
σ−1eV : 1

[
B′(V +)≥ ςσ

] �= 1
[
B

(
V −)≥ ςσ

]}
and for x ∈ I define Jx = {σ−1ex : σ ∈ S}. If V0 =−∞ (or Vn =+∞), take JV0 = {0} (JVn = {∞}). Let J =⋃n

�=0 JV

and Jx = Jx ∪J . By (6.4), (6.3), and (6.1), Jx contains the set of branch poles and zeros of GB
x .

By the definition of JV and the fact that Proposition 4.9 classifies the situation where B′(V +)−B′(V −) < 0, we have
the following lemma.

Lemma 6.8. Let PB,r,sα,t satisfy the Limit Conditions. Let V be a non-differentiable point of B.

• If B′(V +)−B′(V −) > 0, then JV = {σ−1
i eV : ςi ∈ (B′(V −),B′(V +)],1 ≤ i ≤ d}.

• If B′(V +)−B′(V −) < 0, then JV = {σ−1
i eV } for 1 ≤ i ≤ d such that B′(V −)= ςi .

As a consequence of Lemma 6.8 and (4.4), we have JV < JW whenever V <W .
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6.1. Existence of ζ(x, y)

It will be convenient to consider the phase and magnitude equations for (6.2):

e−y = ∣∣Gx(ζ )∣∣, (6.9)

0 = arg+ Gx(ζ ). (6.10)

From (6.9) and (6.10), we see that the zeros of (6.2) approach branch poles and branch zeros of Gx as y →−∞ and
y→+∞ respectively. The idea is to use this condition to restrict the number of nonreal roots to a single pair.

The following definitions will be useful.

Definition 6.9. Denote by R̂ := R ∪ {∞} the one-point compactification of R. By an interval in R̂ we mean either an
interval in R or a set of the form (a,+∞) ∪ {∞} ∪ (−∞, b). For a > b, we denote the R̂-interval (a,+∞) ∪ {∞} ∪
(−∞, b) by (a, b). The set R̂ \J is a union of |J | disjoint intervals.

Given a set of points A in R̂, we say that an external (internal) component of R̂ \A is a connected component of R̂ \A
of the form (a, b) for some a > b (a < b).

The following basic facts are immediate consequences of the definition (6.1) of Gx .
Recall that the branch poles and branch zeros of Gx are contained in Jx . When Jx ∩ J is nonempty, there may be

cancellations of poles and zeros, thus this containment may be strict for some values of x. Note that if a ∈ Jx \J , then a
is a branch zero of Gx . Also, note that any branch pole a of Gx must be a point in JV for some non-differentiable point V
of B such that a = σ−1eV and B′(V +)−B′(V −) > 0.

The following lemma gives a restriction on branch poles.

Lemma 6.10. Fix x ∈ R. Suppose L is a connected component of R̂ \ Jx such that arg+ Gx(L)= 0. If L is the external
component and x ∈ (V0,Vn), then both endpoints of L are branch poles of Gx . Otherwise, at most one endpoint of L is a
branch pole of Gx .

Proof. Since B′(V −
0 )= 0 and B′(V +

n )= 1, we have minJ = minJV0 = σ−1
1 eV0 and maxJ = maxJVn = σ−1

d eVn . Fur-
thermore, B′(V +

0 )−B′(V −
0 ) > 0 and B′(V +

n )−B′(V −
n ) > 0.

We prove the lemma by examining the case of the external component and internal components separately.
External. Consider the case where L is the external component of R̂ \Jx . If x ∈ (V0,Vn), then the endpoints of L are

minJ and maxJ , both of which are elements of J \ Jx . Thus these are branch poles of Gx . If x > Vn (< V0), then one
endpoint of L is a branch pole given by minJ (maxJ ) and the other endpoint is a branch zero given by maxJx (minJx ).

The situation for x = Vn and x = V0 is more complicated due to cancellation of elements in J and Jx . Suppose x = Vn,
then one endpoint of L is still a branch pole given by minJ , and if JVn is a strict subset of Jx then max(Jx \ JVn) is a
branch zero and the other endpoint of L. However, we may have JVn = Jx . In this case, B′(V +

n−1)= B′(V −
n )= 0 which

implies B′(V +
n−1)−B′(V −

n−1) < 0. Then maxJx \Jx = maxJVn−1 is a branch zero of Gx and the other endpoint of L. The
argument for x = V0 is similar. This concludes the analysis for the external components.

Internal. Now consider the case where L is some internal component. Suppose for contradiction that both endpoints
of L are branch poles of Gx .

We claim that L = (σ−1
i eV , σ−1

i+1e
W ) for non-differentiable points V ≤ W of B and for some i ∈ [[1, d − 1]]. By

Lemma 6.8, each endpoint of L must be an element of JU for some non-differentiable point U of positive change in
slope. The endpoints of L must be adjacent elements of J . If σ−1

i eV = maxJV , then the right endpoint of L must be
σ−1
i+1e

W = minJW where W is the adjacent non-differentiable point V <W by Lemma 6.8. Otherwise, the right endpoint

of L must be σ−1
i+1e

V . This proves the claim.
Observe that

arg+Q(L)=−π
p

n∑
�=0

∑
σ∈S:

σ−1eV�∈JV�

(
1
[
B′(V +

�

)≥ ςσ
]− 1

[
B′(V −

�

)≥ ςσ
])

1
[
σ−1eV� < L

]

=−π
p

∑
σ∈S

(
1
[
B′(V +)≥ ςσ

]
1
[
σ−1 ≤ σ−1

i

]+ 1
[
B′(V −)≥ ςσ

]
1
[
σ−1 > σ−1

i

])
=−π

p

∑
σ∈S

1
[
σ−1 ≤ σ−1

i

]=−πςi,
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where the first equality follows from (6.4), the second from telescoping in �, the third follows from the fact that B′(V −) <
ςi and B′(V +)≥ ςi by Lemma 6.8 and monotonicity of ςσ in σ−1.

We require arg+ Px(L)− arg+Q(L)= arg+ Gx(L)= 0, that is arg+ Px(L)=−πςi . This happens exactly when

σ−1
i ex < L< σ−1

i+1e
x. (6.11)

Since, L = (σ−1
i eV , σ−1

i+1e
W ) where V ≤W , this is only possible if x = V =W . However, this is the case where the

branch pole σ−1
i eV ∈ JV is cancelled by the branch zero σ−1

i ex from Px , likewise for σ−1
i+1e

W . Thus neither endpoints of
L are branch poles. This completes the proof of the lemma. �

The lemma below allows us to extract data from the phase equation.

Lemma 6.11. Fix x ∈ R and suppose a continuous root function ζ(y) of (6.2) approaches a ∈ Jx as y→+∞ (−∞).
Writing ζ = a + εeiθ with θ ∈ [0,π], (6.10) has the form

arg+ Gx
(
a−

)+ (
arg+ Gx

(
a+

)− arg+ Gx
(
a−

)) · θ
2π

+ εO
(
θ ∧ (π − θ)

)= 0. (6.12)

Proof. Clearly, arg+(1− a−1ζ )= θ . For b �= a, we have

arg
(
1− b−1ζ

)= {
−εO(θ ∧ (π − θ)) if a < b,

−(π − εO(θ ∧ (π − θ))) if a > b.
(6.13)

In the case b= 0, consider arg(−ζ ) in which case we still have (6.13). The lemma follows from (6.1). �

The next lemma connects roots of (6.2) with branch poles of Gx .

Lemma 6.12. Fix x ∈R.

(1) For each component L⊂ R̂ \Jx such that arg+ Gx(L)= 0 and each endpoint a of L such that a is a branch pole
of Gx , there exists a continuous root function ζa(y) of (6.2) such that

lim
y→−∞ ζa(y)= a,

which is uniquely defined on (−∞, y0) for some suitably negative y0.
(2) Conversely, there exists some suitably negative y0 such that if ζ is a root of (6.2) at (x, y) for some y < y0, then

ζ = ζa(y) for some component L⊂ R̂ \Jx such that arg+ Gx(L)= 0 with endpoint a which is a branch pole of Gx .
(3) A component L⊂ R̂ \ Jx contains exactly one root of (6.2) for y near −∞ if and only if L contains at least one

root of (6.2) for all y ∈R.

Proof. By (6.9), as y →−∞, any root of (6.2) must get arbitrarily close to a branch pole of Gx . By Lemma 6.11, the
set of such branch poles a must be those for which argGx(a+)= 0 or argGx(a−)= 0 (both cannot hold simultaneously);
thus a is an endpoint of some component L⊂ R̂ \Jx such that arg+ Gx(L)= 0. Lemma 6.11 further indicates that if ζ is
near a for y sufficiently negative, then arg+ Gx(ζ )= 0 which means that ζ ∈ L.

(1) For each a which is a branch pole of Gx and an endpoint of some L with arg+ Gx(L)= 0, we can see from (6.2)
that there exists some root ζa(y) ∈ L near a for y sufficiently negative. By (6.2) and the constraint that roots near a must
be real for y sufficiently negative, we have that ζa(y) is uniquely defined on (−∞, y0) for some suitably negative y0.
This root function is necessarily continuous for y ∈ (−∞, y0).

(2) By the discussion in the first paragraph and uniqueness of ζa, we have that any root ζ of (6.2) must coincide with
some ζa(y) for y sufficiently small.

(3) If L contains exactly one root of (6.2), then one endpoint is a branch pole and the other is a branch zero. Roots
are added to L if nonreal pairs coalesce and are removed from L if real roots coalesce. This implies that the parity of the
number of roots in L must be preserved. Thus for any value of y, L must contain a root of (6.2). �

We are now in a position to prove the existence of the map ζ(x, y).
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Proposition 6.13. The (x, y)-companion equation has at most 2 nonreal roots for a given (x, y) ∈ R
2. If (6.2) has a

nonreal root, then x ∈ (V0,Vn).

Proof. Fix x ∈ R. By the contour integral formula for roots of functions applied to Gx(ζ ) − e−y which is analytic in
w = e−y , we have that the number ν of roots of (6.2) is constant as y varies in R.

Let Lx be the set of components of R̂ \ Jx containing exactly one root of (6.2) for y near −∞. By Lemma 6.12, if
x ∈ (V0,Vn) then the total number of roots of (6.2) is

ν = |Lx | + 2,

where the 2 is contributed by the two endpoints of the external component. Moreover, since there is at least one root
contained in each component L ∈ Lx for all y ∈R, we must have at least |Lx | real roots of (6.2) at any y ∈R. Thus there
are at most two nonreal roots of (6.2) at any given (x, y) ∈R

2.
Similarly by Lemma 6.12, if x /∈ (V0,Vn) then the total number of roots of (6.2) is ν = |Lx |. Moreover, since there is

at least one root contained in each component L ∈ Lx for all y ∈R, all the roots are real for all y ∈R. �

Remark 10. We note that a continuous extension ζ̃ (x, y) of ζ(x, y) onto R
2 is not uniquely defined. However, the

component of R̂ \ Jx which ζ̃ (x, y) belongs to when it is real, i.e. (x, y) /∈ L , is well-defined. From the proof of
Proposition 6.13, for any fixed x ∈ I we see that ζ̃ (x, y) is contained in the external component for y sufficiently negative.
This is because the external component has 2 roots and all other components have at most one root for y sufficiently
negative, and we require a coalescing of real roots to get a pair of nonreal roots. Thus we have the freedom to choose ζ̃
so that ζ̃ (x, y)→ minJx as y→−∞ for all x ∈ I , or so that ζ̃ (x, y)→ maxJx as y→−∞ for all x ∈ I ; note that it is
not clear that ζ̃ is uniquely determined upon making this choice, and we will not need this fact.

Remark 11. As y increases from −∞, we have that the first coalescing of roots (i.e. the first double root of (6.2)) appears
when the two roots starting at opposite endpoints of the external component coalesce. If y = y0 is when the first double
root appears, then each point in the external component must have been a root of the (x, y)-companion equation for some
y ≤ y0.

6.2. Diffeomorphism between roots and H

Proposition 6.13 gives us the existence of a map ζ :L →H. We now show that this map is a diffeomorphism. Throughout
this subsection, it will be convenient to use the symbol ζ as a variable in C. To avoid ambiguity we will write ζ(x, y)
when referring to the root function.

It is useful to consider the spectral curve of the RPP (see [20]), as they can be viewed as the source of the surjectivity
of ζ(x, y). To this end, we start by rewriting the companion equation into an alternative convenient form.

Definition 6.14. Define the analytic function

Q(ζ, η)= η ·Q(ζ)−1 − 1 (6.14)

and the spectral curve for periodic weights s0, . . . , sp−1

P(z,w)=
∏
σ∈S

(1− σz)
1
p −w, (6.15)

where the branch is chosen so that the argument of 1− σz is 0 when z < σ−1.

We will write (z,w) ∈ P to mean P(z,w)= 0. Then ζ ∈H is a solution to the companion equation for some (x, y) ∈
R

2 if and only if there exists (z,w) ∈ P such that

Q(ζ, η)= 0, (6.16)

(ζ, η)= (
exz, eyw

)
. (6.17)

Remark 12. This definition of the spectral curve differs from the definition in [20], which gives
∏
σ∈S(1 − σz) −

wp . This difference arises from a rescaling of the x-axis, namely that [20] contracts the x-direction by p to make the
corresponding fundamental domain Z×Z periodic whereas our fundamental domain is pZ×Z periodic.
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Lemma 6.15. The set of (z,w) ∈ P with z ∈ H satisfies 0 < − argw < π − arg z. Moreover, for any pair ϕ, θ with
0< ϕ < π − θ , there exists a unique (z,w) ∈ P with argw =−ϕ, arg z= θ .

Proof. Fix θ ∈ (0,π). By geometric considerations, the map ρ 	→ arg(1−ρeiθ ) strictly decreases on (0,∞), approaching
0 as ρ→ 0 and approaching −(π − θ) as ρ→∞. Thus the map

ϑ : ρ 	→ 1

p

∑
σ∈S

arg
(
1− σρeiθ

)
also strictly decreases on (0,∞), approaching 0 as ρ→ 0 and approaching −(π − θ) as ρ→∞.

Taking z = ρeiθ , we have that ϑ(ρ) = argw. Since ϑ is a bijection, any point (θ,−ϕ) such that 0 < ϕ < π − θ

uniquely determines a point (z,w) ∈ P where (arg z, argw)= (θ,−ϕ). �

Proof of Theorem 6.3. We first establish that ζ(x, y) is a bijection from L onto H. Given ζ ∈ H, the pair (ζ, η) =
(ζ,Q(ζ )) solves (6.16). To show that ζ is a solution to the companion equation for some (x, y) ∈ R

2 (and therefore
in L ), we must find (z,w) ∈ P so that (ζ, η) = (exz, eyw). Alternatively said, we want (z,w) ∈ P so that arg(ζ, η) =
arg(z,w), and by Lemma 6.15 this (z,w) ∈ P is unique if it exists. By Lemma 6.15 again, it is enough to show that
0<− argη < π − arg ζ .

By geometric considerations (see proof of Lemma 6.15), given ζ ∈H and a, b ∈ [0,∞] such that a < b, we have

−(π − arg ζ )≤ arg
(
1− a−1ζ

)
< arg

(
1− b−1ζ

)≤ 0,

where we mean arg(−ζ )=−(π − arg ζ ) for arg(1−∞ζ ). By (6.5)

argη= 1

p

∑
σ∈S

[
arg

(
1− e−V0σζ

)

+
n∑
�=1

1
[
B′(V�−1,V�) < ςσ

](
arg

(
1− e−V�σζ

)− arg
(
1− e−V�−1σζ

))]
(6.18)

and by (6.6)

argη= 1

p

∑
σ∈S

[
arg

(
1− e−Vnσζ

)

+
n∑
�=1

1
[
B′(V�−1,V�)≥ ςσ

](
arg

(
1− e−V�−1σζ

)− arg
(
1− e−V�σζ

))]
. (6.19)

In (6.18), each summand in the summation over � is ≥ 0 with some > 0. This implies

argη >
∑
σ∈S

1

p
arg

(
1− e−V0σζ

)≥−(π − arg ζ ).

In (6.19), each summand in the summation over � is ≤ 0 with some < 0. This implies

argη <
∑
σ∈S

1

p
arg

(
1− e−Vnσζ

)≤ 0.

So we have 0 < − argη < π − arg ζ . This proves ζ(x, y) is surjective. Moreover, we see that the procedure from ζ to
(x, y) uniquely determines (x, y), thus ζ(x, y) is also injective.

Since ζ(x, y) is differentiable on L , it remains to show the differentiability of the inverse map. However, the chain of
procedures ζ 	→ (ζ, η)= (ζ,Q(ζ )) 	→ (arg ζ, argη) is differentiable. Furthermore, the map (θ,−ϕ) 	→ (z,w) ∈ P where
arg(z,w) = (θ,−ϕ) is differentiable. Therefore ζ 	→ (

ζ
z
,
η
w
) = (ex, ey) is differentiable. It follows that the inverse of

ζ(x, y) is differentiable. �



1692 A. Ahn

6.3. Double roots and the frozen boundary

In this section, we describe the frozen boundary which we define to be the boundary of the liquid region L . This requires
understanding the double roots of the companion equation.

By taking the logarithm and differentiating, a root of the companion equation is a double root if it solves

1

p

∑
σ∈S

1

ζ − exσ−1
−"(ζ)= 0, (6.20)

where

"(ζ)= 1

p

∑
�∈[[0,n]]
σ∈S

(
1
[
B′(V +

�

)≥ ςσ
]− 1

[
B′(V −

�

)≥ ςσ
]) 1

ζ − eV�σ−1
(6.21)

and we take eV0 = 0 if V0 =−∞ and 1
ζ−eVnα−1 = 0 if Vn =+∞. We have the alternative expressions, corresponding to

(6.5) and (6.6) respectively,

"(ζ)= 1

p

∑
σ∈S

[
1

ζ − eV0σ−1
+

n∑
�=1

1
[
B′(V�−1,V�) < ςσ

]( 1

ζ − eV�σ−1
− 1

ζ − eV�−1σ−1

)]
(6.22)

= 1

p

∑
σ∈S

[
1

ζ − eVnσ−1
+

n∑
�=1

1
[
B′(V�−1,V�)≥ ςσ

]( 1

ζ − eV�−1σ−1
− 1

ζ − eV�σ−1

)]
(6.23)

taking the same modifications as above for V0 =−∞ and Vn =+∞.
We reexpress the double root equation to obtain a parametrization of the double roots of (6.2) in terms of ζ ∈R. Define

the function

f (u)= 1

p

∑
σ∈S

1

1− σ−1u

to rewrite the double root equation as

f
(
exζ−1)= ζ"(ζ ). (6.24)

We want to invert f , though we require multiple inverses.
Take f (∞)= 0 so that lim|u|→∞ f (u)= f (∞). Then f is defined on R̂ \ {σ }σ∈S and is invertible on each connected

component. Define E0 = (σ1,0) (that is (σ1,+∞)∪ {∞} ∪ (−∞,0)), Ej = (σj+1, σj ) for 1 ≤ j < d , and Ed = (0, σd).
Let ϕj denote the inverse of f restricted to Ej . For j ∈ [[1, d − 1]], we have ϕj : R→ Ej whereas ϕ0 : (−∞,1)→ E0
and ϕd : (1,+∞)→Ed . Note that ϕ0 maps (−∞,0) to (σ1,+∞), 0 to ∞, and (0,1) to (−∞,0).

Suppose exζ−1 ∈ Ej for some j ∈ [[0, d]]. Then ζ ∈ (−∞, σ−1
1 ex) if j = 0, ζ ∈ (exσ−1

j , exσ−1
j+1) if j ∈ [[1, d − 1]],

and ζ ∈ (exσ−1
d ,+∞) if j = d . In particular, arg+ Px(ζ )= ςj .

By inverting (6.24), the condition for being a double root of (6.2) becomes

ex = ζϕ
(
ζ"(ζ )

)
, (6.25)

ey = Q(ζ)

Px(ζ )
= Q(ζ)∏

σ∈S(1− σ
ϕ(ζ"(ζ ))

)
1
p

, (6.26)

where the choice of inverse ϕ must make the right hand side of (6.26) positive. More specifically, we have arg+Q(ζ)= ςj
for some j ∈ [[0, d]]. Then choose ϕ = ϕj which implies arg+Px(ζ ) = ςj by our discussion above. Thus the argument
arg+ of the right hand side of (6.26) is 0. Moreover, ϕj is the only inverse of f which allows the right hand side of (6.26)
to be positive. We record our choice of ϕ below:

ϕ = ϕj : arg+Q(ζ)= ςj (6.27)

The following proposition shows that (6.25) and (6.26) provides an R \J -parametrization of the frozen boundary.
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Proposition 6.16. Each ζ ∈R \J is a double root of (6.2) for some unique (x, y) ∈R
2.

Proof. Let ζ ∈ R \ J . Consider first ζ = 0 (when 0 /∈ J ); note that V0 > −∞ is equivalent to 0 /∈ J . Then (6.20)
becomes

1

p

∑
σ∈S

e−xσ =−"(0).

The right hand side is positive by (6.23), and so we can solve for x. The companion equation also gives us

e−y = Gx(0)= e−B(V0)

so that we can solve for y. This proves the ζ = 0 case.
For ζ �= 0, we show that the right hand sides of (6.25) and (6.26) are positive. The positivity of the right hand side of

(6.26) follows from the choice of inverse ϕ. We note that the uniqueness of (x, y) follows from the fact that the choice of
inverse ϕ of f is the only one that gives positivity (of (6.26)) as mentioned above.

It remains to show that the right hand side of (6.25) is positive. Suppose j ∈ [[0, d]] so that ϕ = ϕj . We proceed by
case analysis.

Suppose j �= 0, d . Then ϕ(ζ"(ζ )) ∈ Ej ⊂ R>0 and arg+ Px(ζ ) = ςj . These imply ϕj (ζ"(ζ )) > 0 and ζ > 0. Thus
the right hand side of (6.25) is positive.

In preparation for the remaining cases, we note that (6.22) and (6.23) imply

ζ"(ζ )= 1

p

∑
σ∈S

[
1

1− eV0(σζ )−1
+

n∑
�=1

1
[
B′(V −

�

)
< ςσ

]( 1

1− eV�(σζ )−1
− 1

1− eV�−1(σζ )−1

)]
(6.28)

= 1

p

∑
σ∈S

[
1

1− eVn(σζ )−1
+

n∑
�=1

1
[
B′(V −

�

)≥ ςσ
]( 1

1− eV�−1(σζ )−1
− 1

1− eV�(σζ )−1

)]
(6.29)

We also record

arg+Q(ζ)=−π
p

n∑
�=0

∑
σ∈S

σ−1eV�∈JV�

(
1
[
B′(V +

�

)≥ ςσ
]− 1

[
B′(V −

�

)≥ ςσ
])

1
[
σ−1eV� < ζ

]

=−π
p

∑
σ∈S

1
[
B′(V +

�σ−1

)≥ ςσ
]=−π

p

∑
σ∈S

1
[
B′(V −

�σ

)≥ ςσ
]
, (6.30)

where �σ = max{� : σ−1eV�−1 < ζ }.
If j = d , we must check ζ"(ζ ) > 1, i.e. is in the domain of ϕd . Since arg+Q(ζ)=−π , by (6.30) we have B′(V −

�σ
)≥

ςσ for all σ ∈ S . Plugging this into (6.28), along with the fact that ζ ∈ (σ−1eV�σ −1, σ−1eV�σ ) with the convention that
Vn+1 = +∞, we have ζ"(ζ ) > 1. Thus ζ"(ζ ) is in the domain of ϕ. Since ϕ(ζ"(ζ )) ∈ E0 and ζ > 0, the right hand
side of (6.25) is positive.

If j = 0, we must check that ζ"(ζ ) < 0 or 0 < ζ"(ζ ) < 1, i.e. is in the domain of ϕ0. If ζ < 0, then (6.28) implies
ζ"(ζ ) > 0 and (6.29) implies ζ"(ζ ) < 1. We then have ϕ(ζ"(ζ )) < 0. Thus ζϕ(ζ"(ζ )) > 0.

Otherwise, ζ > 0. Since arg+Q(ζ)= 0, by (6.30) we have B′(V −
�σ
) < ςσ for all σ ∈ S . We note that ζ < σ−1eVn for

each σ ∈ S , otherwise it cannot be the case that arg+Q(ζ) = 0. Plugging this into (6.29), we have ζ"(ζ )) < 0. Then
ϕ(ζ"(ζ )) > 0 so that the right hand side of (6.25) is positive. �

The next proposition explains what happens as ζ approaches an element of J .

Proposition 6.17. Let V be an non-differentiable point of B. As ζ → σ−1eV ∈ JV in (6.25) and (6.26), we have x→ V

and y converges to a finite limit if B′(V +)−B′(V −) > 0, and y→+∞ if B′(V +)−B′(V −) < 0.

Proof. Let η= σ−1
i eV for some i ∈ [[1, d]]. By (6.30)

arg+Q(η+)=
1

p

∑
τ−1≤σ−1

i

1
[
B′(V +)≥ ςτ

]+ 1

p

∑
τ−1>σ−1

i

1
[
B′(V −)≥ ςτ

]
. (6.31)
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Fig. 11. Frozen boundary for periodic weights 2,2, 1
4 , 4 linear back wall pieces with slopes 0, 1

3 ,
2
3 ,1 from left to right. Each non-differentiable point

is equally spaced from one another and corresponds to a singular point.

If B′(V +)−B′(V −) > 0 (< 0), then by Lemma 6.8,

arg+Q
(
η+

)=−πςi (=−πςi−1),

arg+Q
(
η−

)=−πςi−1 (=−πςi),
and "(η±) = ±∞ (= ∓∞). By (6.27) and the manner in which ϕj maps into Ej for j ∈ [[0, d]], we have
limζ→η± ϕ(ζ"(ζ )) = σi . Thus limζ→η± ζϕ(ζ"(ζ )) = eV . We also have that Q has a branch zero (pole) at σ−1

i eV

of order
|Sσi |
p

.

Thus if B′(V +)− B′(V −) > 0, then as ζ → η we have ey = Q(ζ)
Px(ζ )

has a finite limit since the branch zero of Q is met

by the branch zero of Px of equal order. In the case B′(V +)− B′(V −) < 0, then ey = Q(ζ)
Px(ζ )

approaches +∞ as ζ → η.
This proves the proposition. �

Remark 13. Proposition 6.17 asserts that the points σ−1eV ∈ JV such that B′(V +)−B′(V −) < 0 correspond to parts of
the frozen region where the vertical coordinate is unbounded. These are the tentacles in the frozen region which arise due
to singular points of the back wall, see Figures 11 and 12. The cusps correspond to other points in JV .

7. Limit shapes and the Gaussian free field

In this section, we combine the results from the previous sections to obtain the main results of this article: the limit shape
and Gaussian free field fluctuations for the height functions. These correspond to Theorems 2.7 and 2.8 given in Section 2.
However, we provide more precise reformulations of these theorems.

Throughout this section, we fix a family P
B,r,s
α,t satisfying the Limit Conditions, as defined in the beginning of Sec-

tion 4.1, with limiting back wall B : I →R. We write Gx := GB
x .

Definition 7.1. We say x(ε) ∈ I ε is separated from singular points if x(ε) is d-separated from singular points (see
Definition 5.1) for every d > 0.

Let ζ = ζB :L →H denote the diffeomorphism from Theorem 6.3. As in Remark 10, we can extend ζ to a function
ζ̃ : I ×R→H such that

lim
y→−∞ ζ̃ (x,y)= minJx = σ−1

1 eV0 .
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Fig. 12. Frozen boundary for periodic weights 4, 1
4 ,2,

1
2 ,

5
4 ,

4
5 , 1 linear back wall piece with slope 1

2 . See Figure 2 for a large sample.

Theorem 7.2. Suppose P
B,r,s
α,t satisfies the Limit Conditions with B ∈B�(S). There exists a deterministic Lipschitz 1

function H := HB : I × R → R independent of α, t such that for any (x,y) ∈ I × R and x(ε) ∈ I ε separated from
singular points with εx(ε)→ x, we have the convergence of random measures on y ∈R

εh

(
x(ε),

y
ε

)
→ 1

α
H(x,y) (7.1)

weakly in probability as ε→ 0. We have the following explicit description of H. For each x ∈ I , we have H(x,y)= 0 for
sufficiently negative y, and

∇H(x,y) := (
∂xH(x,y), ∂yH(x,y)

)= 1

π

(∑
σ∈S

1

p
arg

(
1− σ−1exζ̃ (x,y)

)
,π · 1e−y<Gx(0) − arg ζ̃ (x,y)

)
(7.2)

for (x,y) ∈ I ×R such that the right hand side is well-defined and where the arg branches are chosen so that arg z= 0
for z > 0.

Remark 14. Although the choice of ζ̃ was not shown to be well-defined, we note that arg ζ̃ (x,y) and arg(1 −
σ−1exζ̃ (x,y)) are well-defined (upon specification of the branch). This follows from Remark 10.

The condition in the indicator function e−y < Gx(0) is always true in the liquid region. To see this, let Lx0 be the slice
{(x0,y) : y ∈R, (x0,y) ∈L }. Note 0 is a root of the (x,− logGx(0))-companion equation. By Remark 11, if e−y ≥ Gx(0),
then − logGx(0)≤ minLx.

By the preceding discussion, we have the following corollary:

Corollary 7.3. The limiting height function H from Theorem 7.2 has the following gradient for (x,y) ∈L :

∇H(x,y)= 1

π

(∑
σ∈S

1

p
arg

(
1− σ−1exζ(x,y)

)
,π − arg ζ(x,y)

)
. (7.3)

Theorem 7.4. Suppose P
B,r,s
α,t satisfies the Limit Conditions with B ∈B�(S), ζ(x, y) := ζB(x, y) denotes the homeo-

morphism of Theorem 6.3, and

h(x, y)= h(x, y)−Eh(x, y)
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denotes the centered height function. Then
√
απ ·h converges to the ζ -pullback of the GFF in the following sense. For any

x1, . . . ,xm ∈ I , integers k1, . . . , km > 0, and x1(ε), . . . , xm(ε) ∈ I ε such that xi(ε) is tki -separated from singular points
and εxi(ε)→ xi for each i ∈ [[1,m]], we have the convergence of random vectors(√

απ

∫
h

(
xi(ε),

y
ε

)
e−kity dy

)
i∈[[1,m]]

→
(∫

H
(
ζ(xi ,y)

)
e−kity dy

)
i∈[[1,m]]

(7.4)

in distribution as ε→ 0, where H is the Gaussian free field on H.

Let x0 ∈R and define

Dx0 =
{
ζ(x, y) : x ≤ x0, y ∈R, (x, y) ∈L

}
, (7.5)

DC
x0
= cl

({z : z ∈Dx0 or z̄ ∈Dx0}
)
. (7.6)

The boundary of DC
x0

is

∂DC
x0
= cl

({
ζ(x0, y) : y ∈R, (x0, y) ∈L

}∪ {
ζ (x0, y) : y ∈R, (x0, y) ∈L

})
. (7.7)

The points gained in taking the closure are all in R.
By the parametrization of the frozen boundary in Section 6.3 and Proposition 6.17, we have:

Lemma 7.5. The set DC
x0

contains a neighborhood of JV� if V� < x0, and is separated from JV� if V� > x0.

7.1. Limit shape: Proof of Theorem 7.2

Let x ∈ I and x(ε) ∈ I ε be separated from singular points with εx(ε)→ x. By Theorem 5.2 and Proposition 3.1, the
rescaled height function εh(x(ε), y

ε
) converges to some limiting distribution Hα,t determined by∫

e−tkyHα,t(x,y) dy = 1

αk2t2

1

2π i

∮
C

Gx(z)
kt

z
dz (7.8)

for k ∈ Z>0 and where the contour C is described in Theorem 5.2.
We first show that Hα,t is independent of t, and dependent on α by a simple scaling factor. The function y 	→

Eεh(x(ε),
y
ε
) is 1

α
-Lipschitz by (3.2), nonnegative and monotonically increasing. By considering a subsequence of

y 	→ Eεh(x(ε),
y
ε
), we deduce that Hα,t(x, y) is 1

α
-Lipschitz, nonnegative, and monotonically increasing in y in the

sense that its weak derivative is a positive measure.

Definition 7.6. Given a measure μ on R, let {∫ e−ktuμ(du)}k∈Z>0 be the set of t-exponential moments of μ; for t = 1
we simply say exponential moments of μ. Denote by Etμ the measure defined by(

Etμ
)
(du)= μ

(
d
(
exp(−tu)

))
.

Let us write Eμ=E1μ.

Lemma 7.7. Fix x ∈ I . There exists some M such that Hα,t(x, y) = 0 on {y ≤M}, and Hα,t is determined by its t-
exponential moments.

Proof. Introduce the auxiliary measure μt
x with moments defined∫ ∞

0
ut(k−1)μt

x(du)=
1

α(kt)2

1

2π i

∮
C

Gx(z)
kt

z
dz (7.9)

for k ∈ Z>0. Then μt
x =EtHα,t(x, ·). It follows that μt

x is a finite positive measure supported in [0,+∞). By scaling by
an appropriate c > 0, we may view cμt

x as a probability measure. From the form of the contour integral, we see that there
is a large enough L> 0 such that Ecμt

x
utk ≤ Lk . By a standard Markov inequality argument, this implies μt

x is compactly
supported in [0,+∞). By changing variables, we obtain the lemma. �
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Let H :=H1,1. The exponential moments of H can be analytically extended in the variable k. By the preceding lemma
and (7.8), for any α, t> 0 we have

Hα,t(x, y)= 1

α
H1,1(x, y)=:H(x, y).

To prove Theorem 7.2, it remains to show (7.2). Note that we don’t know ∂xH(x, y) exists at the moment. However,
by Lemma 7.7, H(x, y) is determined by ∂yH(x, y), and we will first compute ∂yH(x, y) from which it will be apparent
that ∂xH(x, y) exists.

We reduce to the case −∞<V0, Vn <∞. Suppose V0 =−∞ or Vn =+∞. Let us revive the superscripts for the back
walls for the sake of this reduction. We have our limiting back wall B, and construct a sequence Bn of back walls which
is simply the restriction of B to I ∩ [−N,N ] so V0 =−N and Vn = N . Since GBN

x → GB
x uniformly on compactum in

C \R, we see that the exponential moments of HBN converge to the exponential moments of HB . Moreover, ζ̃BN which
solves (6.2) for GBN converges to ζ̃B pointwise. Thus the reduction is valid by (7.2). We suppress the B superscript for
the remainder of the proof.

As mentioned above we first compute ∂yH(x, y). The computation for ∂xH(x, y) will then be similar and use many
of facts collected from the computation of ∂yH(x, y).

Computation of Density for ∂yH(x, y). By (7.8), we have∫
∂yH(x, y)e−ky dy = k

∫
H(x, y)e−ky dy = 1

2π i

∮
C

Gx(z)k
kz

dz

for k ∈ Z>0. By Lemma 7.7, we know νx = E(∂yH(x, ·)) is compactly supported in [0,∞). Since V0 >−∞, from our
explicit formula (6.1) we see that the poles of Gx are strictly positive. The set of poles of the integrand contained in C is
exactly {0} ∪Px where

Px =
{
branch poles p of GB

x in JV such that V < x
}⊂ ⋃

B′(V+)−B′(V−)<0
V<x

JV . (7.10)

Let us split C into a contour γ0 containing 0 but no poles in Px and a contour γ which does not contain 0 but contains
Px . For v large enough so that supp(νx) < v and |Gx (z)

v
|< 1 along z ∈ γ , we have the Stieltjes transform

Sνx (v)=
∫ ∞

0

νx(du)

u− v
=−

∞∑
k=0

∫ ∞

0

ukνx(du)

vk+1
=− 1

2π i

∞∑
k=1

∮
C

Gx(z)k
vkk

dz

z

=−
∞∑
k=1

Gx(0)k
vkk

− 1

2π i

∞∑
k=1

∮
γ

Gx(z)k
vkk

dz

z

= log

(
1− Gx(0)

v

)
+ 1

2π i

∮
γ

log

(
1− Gx(z)

v

)
dz

z
. (7.11)

For v large enough so that supp(νx) < v and |Gx (z)
v

|< 1 along γ , define the auxiliary function

ϒx(v)= log

(
1− Gx(0)p

vp

)
+ 1

2π i

∮
γ

log

(
1− Gx(z)p

vp

)
dz

z
. (7.12)

We can extend ϒx(v) to the domain {| arg z|< 2π/p} \ suppνx . Indeed, setting ω= e2π i/p , we have

ϒx(v)=
p−1∑
j=0

log

(
1− ωjGx(0)

v

)
+ 1

2π i

∮
γ

p−1∑
j=0

log(1− ωjGx(z)
v

)

z
dz=

p−1∑
j=0

Sνx
(
vω−j

)
(7.13)

for v large, but since the right hand side is an analytic function in {| arg z|< 2π/p} \ suppνx this identity extends to this
larger domain.

The idea is that we want to evaluate the residues for the contour integral formula of the Stieltjes transform, but since the
integrand is not meromorphic we consider an the auxiliary function ϒx(v). The auxiliary function allows us to consider
an alternative meromorphic integrand. The following lemma establishes that ϒx(v) may be considered instead of the
Stieltjes transform.
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Lemma 7.8. For v0 > 0,

1

π
�+ϒx(v0)= 1

π
�+Sνx (v0)= ρx(v0), (7.14)

where ρx is the density of νx (with respect to the Lebesgue measure) and �+ is the imaginary part taken from the limit
from the upper half plane.

Proof. The second equality of (7.14) is a property of the Stieltjes transform of a measure. We prove the first equality of
(7.14).

Take v0 > 0. Since Sνx (v)= Sνx (v̄) for v ∈C \ suppνx =C \ [0,∞),

�+
(
Sνx

(
v0ω

−j )+ Sνx
(
v0ω

j
))= 0

for j �= 0 and j �= p/2 if p is even. If p is even, then

�+Sνx
(
v0ω

p/2)=�+Sνx (−v0)= 0

since suppνx ⊂ [0,∞). By (7.13), this proves the lemma. �

By Lemma 7.8, we are left to find �+ϒx(v)= ρx(v) and change variables v = e−y to compute ∂yH(x, y). To this end
we consider the following equation

Gx(z)p = vp. (7.15)

The solutions of (6.2) are exactly solutions of

Gx(z)= ωjv (7.16)

for some j ∈ [[0,p− 1]]. A solution to the companion equation (6.2) is a solution to (7.16) with j = 0 and v = e−y .

Definition 7.9. We say that z(x, v) is a root function of (7.15) if z(x, v) is a root of (7.15) for each (x, v) and continuous
in (x, v).

Let z(x, v) be a root function of (7.15). Note that as v→+∞, z(x, v) converges to a pole of Gx(z)p , equivalently a
branch pole of Gx(z).

Definition 7.10. If p is a branch pole of Gx(z), let us say that p is the source of a root function z(x, v) of (7.15) if
limv→+∞ z(x, v)= p.

Let Zx be the multiset of Px where the multiplicity of an element p ∈Px in Zx is the multiplicity of the pole in Gx(z)p .
We will abuse notation and treat p ∈ Zx as an element of Px in statements such as “limv→+∞ z(x, v)= p”. Let M be the
set of v ∈C such that Gx(z)p − vp has a root of order > 1.

Lemma 7.11. For v ∈R>0, we have that

ϒx(v)= log

(
1− Gx(0)

v

)
−

∑
p∈Zx

(
log zp(x, v)− logp

)
, (7.17)

where zp(x, v) is a root function of (7.15). Furthermore the root functions zp(x, v) satisfy the following properties:

(i) For v ∈R>0 \M, the root functions zp(x, v) are distinct from one another.
(ii) If zp(x, v0) is a root of (7.16) for j = 0, then zp(x, v) is a root of (7.16) for j = 0 for all v > 0.

(iii) If zp(x, v0) ∈DC
x is a root of (7.16) for some j �= 0, then zp(x, v) ∈DC

x for all v > 0.
(iv) If v > 0 and zp(x, v) is a root of (7.16) for j �= 0 which is either a double root of (7.15) or zp(x, v) ∈ C \ R, then

there exists q ∈ Zx different from p such that zp(x, v)= zq(x, v).
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Fig. 13. Dots represent points of M. We extend from v0 to v along a path that remains in the grey strip.

Proof. Since the poles of 1− Gx(z)
p

vp
in γ occur exactly in Px , we have

ϒx(v)= log

(
1− Gx(0)

v

)
− 1

2π i

∮
γ

(log z)
d

dz
log

(
1− Gx(z)p

vp

)
dz (7.18)

= log

(
1− Gx(0)

v

)
−

∑
p∈Zx

(
log zp(x, v)− logp

)
(7.19)

for zp(x, v) a root function with source p, where this formula is initially valid for v large. For large enough v, there is no
ambiguity in the choice of zp(x, v). We want to extend this formula to v ∈ (0,+∞). To do this, we require care in the
choice of analytic extension to avoid ambiguity near double roots.

The set M is finite. Indeed, the discriminant of Gx(z)p − vp ∈ (R[v])[z] is a polynomial in R[v], and the set of roots
of the discriminant is exactly the set M. Thus, from some large v0 > 0, zp(x, v) can be extended to any v ∈ R>0 \M
via a path from v0 to v which avoids M. This extension is not unique, as windings around M may change the value.
This ambiguity is lost if we enforce the path from v0 to v to lie in a strip U = {0 ≤ �z < δ} where δ is chosen so that
M∩U ⊂R. For v ∈R \M, let zp(x, v) denote the root function extended via a path from some large v0 to v within the
strip U \M, see Figure 13. We extend the definition to all v ∈R by continuity.

We now prove that the root function zp(x, v) satisfy properties (i)–(iv). Property (i) follows from the definition of our
root function, and since the roots must remain separated on U \M.

For properties (ii) and (iii), we note that a point z ∈ C cannot be both a root of (7.16) for j1 = 0 at (x, v1) and
j2 ∈ [[1,p − 1]] at (x, v2); the special position of j = 0 is a consequence of our choice of branch cut for Gx . This
immediately implies property (ii). For property (iii), we use the additional fact that zp(x, v1) ∈ DC

x and zp(x, v2) /∈ DC
x

implies that zp(x, v) crosses the boundary of DC
x at some v3. The boundary of DC

x is the closure of{
ζ(x, y) : y ∈R, (x, y) ∈L

}∪ {
ζ (x, y) : y ∈R, (x, y) ∈L

}
,

which means that zp(x, v3) is a root of (7.16) for j = 0. By Property (ii), this implies zp(x, v) is a root of (7.16) for j = 0
for all v > 0.

For property (iv), observe that the set of root functions zp(x, v) of (7.16) for j �= 0 is exactly the set of all roots of
(7.16) for j ∈ [[1,p− 1]] contained in DC

x . Indeed, this is the case as v→+∞, and by property (iii) this is therefore the
case for all v > 0. If zp(x, v) ∈DC

x \R for some p ∈ Zx,1, then zp(x, v) ∈DC
x is a root of (7.16) for some j ∈ [[1,p− 1]].

Property (iv) follows from this fact; note that the double root case is a limiting case. �

Given Lemma 7.11, we may define the sub(multi)set Zx,0 of Zx consisting of p such that zp(x, v) is a root of (7.16) for
j = 0. Similarly, let Zx,1 be the sub(multi)set of Zx consisting of q such that zq(x, v) is a root of (7.16) for j ∈ [[1,p−1]].

We rewrite (7.17) as

ϒx(v)= log

(
1− Gx(0)p

vp

)
−

∑
p∈Zx,0

(
log zp(x, v)− logp

)− ∑
p∈Zx,1

(
log zp(x, v)− logp

)
.

By property (iv) of Lemma 7.11, this expression for ϒx(v) implies

�+ϒx(v)= π · 1v<Gx(0) −
∑

p∈Zx,0
arg zp(x, v). (7.20)
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The argument branch is taken so that arg zp(x, v)= 0 for v sufficiently large. This formula is valid except where v = Gx(0)
and zp(x, v) = 0 for some p ∈ Zx,0. Since we are evaluating the density of a measure, these finitely many exceptional
points are immaterial.

By our choice of ζ̃ , we have p0 = minJx ∈ Zx,0 such that ζ̃ (x, y)= zp0(x, v) for some v > 0 where e−y = v. From
Remark 10, we have that zp0(x, v0) = ζ̃ (x, y0) at some point v0 = e−y0 where ζ̃ (x, y) ∈ H; recall that nonreal pair of
roots first appear (as we increase y) when the two roots in the external component coalesce. Moreover, we can find
y0 sufficiently negative so that the other zp(x, v) for p ∈ Zx \ {p0} are confined in their respective components (which
are not the external component). We note that zp0(x, v0) = ζ̃ (x, y0), rather than its conjugate, because we must have
0 ≤ 1

π
�+ϒx = ρx ≤ 1 by the positivity of ∂yH and 1-Lipschitz condition on H. Define the set

C = {
(x, y) ∈L : y ∈R, ζ̃ (x, y)= zp

(
x, e−y

)
for some p ∈ Zx,0,

and ζ̃ (x, y) �= zp
(
x, e−y

)
for all p ∈ Zx,0

}
.

Since (x, y0) ∈ C , we have C is nonempty. We use a connectedness argument to show that C =L . Since the measures νx
are compactly supported and bounded, and the moments depend continuously in x, we have that the Stieltjes transforms
Sνx (v) are continuous in (x, v) for x ∈ I and v ∈ C \R. Then ϒx(v) is continuous in (x, v) for x ∈ I and v ∈ {| arg z|<
2π/p} \ suppνx . By the form (7.18), this continuity can be extended to (x, v) where v ∈R>0 as long as zp(x, v) �= 0 for
all p ∈ Zx and v �= Gx(0) (which is generically the case). It follows that C must be both an open and closed subset of
L , where the open condition is immediate and the closed condition follows from continuity. Since we showed that C is
nonempty, we deduce that C = L since L is homeomorphic to the simply connected set H by Theorem 6.3. With this
fact and (7.20), we have (for v = e−y )

1

π
�+ϒx(v)= 1v<Gx(0) −

1

π
arg ζ̃ (x,− logv), (7.21)

where the argument is chosen so that arg z= 0 when z > 0. Indeed, the indicator takes value 1 whenever ζ̃ is nonreal (see
the discussion following Remark 14) and we require 0 ≤ 1

π
ϒx ≤ 1, so this determines the choice of argument. Changing

variables, we have

∂yH(x, y)= 1e−y<Gx(0) −
1

π
arg ζ̃ (x, y).

Computation of Density for ∂xH(x, y). We follow a similar argument, and have already done most of the work for it.
Notice that

∂xGx(z)
Gx(z)

= 1

p

∑
σ∈S

σe−xz
1− σe−xz

(7.22)

so that by (7.8), we have∫
∂xH(x, y)e−ky = 1

2π i

∮
C

Gx(z)k−1∂xGx(z)
kz

dz= 1

p

∑
σ∈S

1

2π i

∮
C

Gx(z)k
k

σe−x

1− σe−xz
dz. (7.23)

Recall that we had split C into γ and γ0 before in the computation of ∂yH(x, y). This time, we can simply deform C to γ
which encircle Px and not 0 since there is no pole at 0. Let ξx =E(∂xH(x, ·)). As before, we have for large v,

Sξx (v)=−
∞∑
k=1

1

p

∑
σ∈S

1

2π i

∮
γ

Gx(z)k
vkk

σe−x

1− σe−xz
dz= 1

p

∑
σ∈S

1

2π i

∮
γ

log

(
1− Gx(z)

v

)
σe−x

1− σe−xz
dz.

We consider, also for large v,

&x(v)= 1

p

∑
σ∈S

1

2π i

∮
γ

log

(
1− Gx(z)p

vp

)
σe−x

1− σe−xz
dz

= 1

p

∑
σ∈S

1

2π i

∮
γ

log
(
1− σe−xz

) d
dz

log

(
1− Gx(z)p

vp

)
dz. (7.24)
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As before with ϒx(v), we can extend &x(v) to {| arg z|< 2π/p} \ supp ξx , and we have an analogue of Lemma 7.8

1

π
�+&x(v)= 1

π
�+Sξx (v)= '(v), (7.25)

where '(v) is the density of ξx with respect to Lebesgue. From (7.24), we have the following formula

&x(v)= 1

p

∑
σ∈S

∑
p∈Zx

(
log

(
1− σe−xzp(x, v)

)− log
(
1− σe−xp

))
(7.26)

for v > 0 where zp(x, v) are defined as in Lemma 7.11. The log branches here are chosen so that log(1−σe−xzp(x, v))−
log(1− σe−xp)= 0 for v large (so that zp(x, v) is near p). Define for σ ∈ S

fσ (x, v)=
∑

p∈Zx,1

(
arg

(
1− σe−xzp(x, v)

)− arg
(
1− σe−xp

))
, (7.27)

gσ (x, v)=
∑

p∈Zx,0

(
arg

(
1− σe−xzp(x, v)

)− arg
(
1− σe−xp

))
(7.28)

so that

�+&x(v)= 1

p

∑
σ∈S

(
fσ (x, v)+ gσ (x, v)

)
.

Given the following lemma, we can compute that

1

π
�+&x

(
e−y

)= 1

π

∑
σ∈S

1

p
log

(
1− σ−1ex ζ̃ (x, y)

)
.

Changing variables gives us ∂xH(x, y) and completes the proof of the Theorem.

Lemma 7.12. For any σ ∈ S , both sets {y ∈ R : fσ (x, e−y)= 0} and {y ∈ R : gσ (x, e−y)= arg(1 − σe−x ζ̃ (x, y))} are
equal to R.

Proof. We use a connectedness argument. Fix σ ∈ S , let A1 = {y ∈R : fσ (x, e−y)= 0} and A2 = {y ∈R : gσ (x, e−y)=
arg(1 − σe−x ζ̃ (x, y))}. Both A1 and A2 are nonempty and closed subsets of R. It suffices to prove that A1 and A2 are
open subsets of R.

Suppose y0 ∈ A1. We show that [y0, y0 + δ)⊂ A1 for some δ > 0. The argument for (y0 − δ, y0] is identical, and so
this shows that A1 is open. Let p ∈ Zx,1. If zp(x, e−y) is real for y ∈ [y0, y0 + δ) for some δ > 0, then zp(x, e−y) must
be in some connected component of R̂ \ Jx . Note that it cannot be in the external component since argGx = 0 on the
external component. Then arg(1− σ−1zp(x, e

−y)) is constant on [y0, y0 + δ).
Otherwise, for sufficiently small δ > 0, we have zp(x, e−y) ∈C\R for all y ∈ (y0, y0+δ). This means that zp(x, e−y0)

is either a nonreal root of (7.16) or a double root. In either case, by property (iv) of Lemma 7.11, there exists some
q ∈ Zx,1 different from p such that zq(x, e−y0)= zp(x, e

−y0). If zp(x, e−y) ∈C\R for y ∈ (y0, y0+δ), then zq(x, e−y)=
zp(x, e

−y) for y ∈ (y0, y0 + δ) by continuity and property (i) of Lemma 7.11. Then(
arg

(
1− σe−xzp(x, y)

)− arg
(
1− σe−xzp(x, y0)

))
+ (

arg
(
1− σe−xzq(x, y)

)− arg
(
1− σe−xzq(x, y0)

))= 0

for y ∈ (y0, y0 + δ). Summing over all p ∈ Zx,1, we see that fσ (x, e−y)− fσ (x, e
−y0)= 0 for y ∈ [y0, y0 + δ). Thus A1

is open.
The argument for the openness of A2 is similar in structure. Before proceeding, note that from the argument that

C = L in the computation of ∂yH(x, y), we have that (−∞, y′] ⊂ A2 where y′ is the minimal y such that (6.2) has
a double root. We have that ζ̃ (x, y) is contained in the external component of R̂ \ Jx if and only if y ∈ (−∞, y′] (see
Remark 11).

Take y0 ∈A2 \ (−∞, y′). As before, we show that [y0, y0 + δ)⊂A2 for some δ > 0, and the argument for (y0 − δ, y0]
is identical for y0 ∈A2 \ (−∞, y′]. If zp(x, e−y) is real for y ∈ [y0, y0 + δ), then it must be confined to some component
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of R̂ \ Jx which is not the external component. As before, this implies arg(1 − σe−xzp(x, e−y)) is constant for y ∈
[y0, y0 + δ).

Otherwise, there exists δ > 0 small enough so that zp(x, e−y) ∈ C \R for y ∈ (y0, y0 + δ). Since C =L , this corre-
sponds exactly to the case where ζ̃ (x, y) ∈C \R, for y ∈ (y0, y0 + δ). Moreover, we must have ζ̃ (x, y)= zp(x, e

−y) for
some p ∈ Zx,0 and zq(x, e−y) are real for q ∈ Zx,0, q �= p for y ∈ [y0, y0 + δ). In particular, zq(x, e−y) are confined to
some junction component of R̂ \Jx which is not the external component. Then

gσ
(
x, e−y

)− gσ
(
x, e−y0

)=− arg
(
1− σe−x ζ̃ (x, y)

)+ arg
(
1− σe−x ζ̃ (x, y0)

)
.

Thus A2 is open. �

7.2. Fluctuations: Proof of Theorem 7.4

Proof of Theorem 2.8. For x ∈ I and k ∈ Z>0, by Proposition 3.1 we have for x(ε) ∈ I ε

√
απ

∫ (
h

(
x(ε),

y
ε

)
−Eh

(
x(ε),

y
ε

))
e−kty dy = ε

√
πtkB(x)√

αk2(log t)2
(
℘k

(
πx;q, t)−E℘k

(
πx;q, t))

=
√
πtkB(x)√
αk2t2ε

(
℘k

(
πx;q, t)−E℘k

(
πx;q, t)).

Let x1 ≤ · · · ≤ xm in I and k1, . . . , km ∈ Z>0. Let x1(ε) ≤ · · · ≤ xm(ε) be points in I ε such that xi(ε) is kit-separated
from singular points. By Theorem 5.3, the random vector indexed by i ∈ [[1,m]] whose components are given by

√
απ

∫ (
h

(
xi(ε),

y
ε

)
−Eh

(
xi(ε),

y
ε

))
e−kity dy

converges to the Gaussian vector whose ith and j th component for i < j has the covariance

π

(2πι)2kikj t2

∮
Cj

∮
Ci

Gxi (z)
kitGxj (w)

kj t

(z−w)2
dzdw, (7.29)

where C1, . . . ,Cm are contours meeting the criteria in Theorem 5.3, in particular Ci is enclosed by Cj for i < j and the set
of branch poles of Gxi enclosed by Ci is exactly Pxi as defined in (7.10).

Suppose xi < xj so that the contours Ci and Cj are separated. By Lemma 7.5, we can deform Ci to the boundary of
DC

xi in (7.29). From (7.7), we can express the boundary as the union of{
ζ(xi ,y) : y ∈R, (xi ,y) ∈L

}∪ {
ζ(xi ,y) : y ∈R, (xi ,y) ∈L

}
up to finitely many points in the set difference. Let Yxi = {y ∈ R : (xi ,y) ∈ L } which is a union of finitely many open
intervals. Parametrizing the boundary of DC

xi by ζ(xi ,y) and its conjugate, we may rewrite (7.29) as the sum

− 1

4πkikj t2

∫
Yxj

∫
Yxi

e−kity1e−kj ty2

(ζ(xi ,y1)− ζ(xj ,y2))2

∂ζ

∂y1
(xi ,y1)

∂ζ

∂y2
(xj ,y2) dy1 dy2

+ 1

4πkikj t2

∫
Yxj

∫
Yxi

e−kity1e−kj ty2

(ζ(xi ,y1)− ζ (xj ,y2))2

∂ζ

∂y1
(xi ,y1)

∂ζ

∂y2
(xj ,y2) dy1 dy2

+ 1

4πkikj t2

∫
Yxj

∫
Yxi

e−kity1e−kj ty2

(ζ (xi ,y1)− ζ(xj ,y2))2

∂ζ

∂y1
(xi ,y1)

∂ζ

∂y2
(xj ,y2) dy1 dy2

− 1

4πkikj t2

∫
Yxj

∫
Yxi

e−kity1e−kj ty2

(ζ (xi ,y1)− ζ (xj ,y2))2

∂ζ

∂y1
(xi ,y1)

∂ζ

∂y2
(xj ,y2) dy1 dy2. (7.30)
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Integrate by parts on y1 and y2 for each summand in (7.30), observing that the boundary terms cancel since the value of
ζ(x, ·) at the end points of any connected component of Yx is real, to obtain

− 1

4π

∫
Yxj

∫
Yxi

e−kity1e−kj ty1
(
log

(
ζ(xi ,y1)− ζ(xj ,y1)

)− log
(
ζ(xi ,y1)− ζ (xj ,y1)

)
− log

(
ζ (xi ,y1)− ζ(xj ,y1)

)+ log
(
ζ (xi ,y1)− ζ (xj ,y1)

))
dy1 dy1

=− 1

2π

∫
Yxj

∫
Yxi

e−kity1e−kj ty1 log

∣∣∣∣ ζ(xi ,y1)− ζ(xj ,y1)

ζ(xi ,y1)− ζ (xj ,y1)

∣∣∣∣,
where the final equality follows from the fact that this covariance is real so there is no imaginary part arising from branch
considerations of the logarithms. The latter term is exactly the covariance

Cov

(∫
H

(
ζ(xi ,y)

)
e−kity dy,

∫
H

(
ζ(xj ,y)

)
e−kj ty dy

)
.

The case xi = xj follows from taking the limit. �

Appendix

We recall the notion of cumulants and some basic properties.

Definition A.1. For any positive integer ν, let �ν be the collection of all set partitions of [[1, ν]], namely

�ν =
{
{U1, . . . ,Ud} : d > 0,

d⋃
i=1

Ui = [[1, ν]], Ui ∩Uj =∅ ∀i �= j, Ui �=∅ ∀i ∈ [[1, d]]
}
.

For a random vector u= (u1, . . . , um) and any v1, . . . , vν ∈ {u1, . . . , um}, define the (order ν) cumulant κ(v1, . . . , vν) as

κ(v1, . . . , vν)=
∑
d>0

{U1,...,Ud }∈�ν

(−1)d−1(d − 1)!
d∏
�=1

E

[ ∏
i∈U�

vi

]
. (A.1)

From the definition we see that for any random vector u, the existence of all cumulants of order up to ν is equivalent
to the existence of all moments of order up to ν. Note that the cumulants of order 2 are exactly the covariances:

κ(v1, v2)= Cov(v1, v2).

We have the following alternative definition for cumulants.

Definition A.2. Let u= (u1, . . . , um) be a random vector. For any v1, . . . , vν ∈ {u1, . . . , um}, define the (order ν) cumu-
lant κ(v1, . . . , vν) as

κ(v1, . . . , vν)= (−i)ν ∂ν

∂t1 · · ·∂tm logE

[
exp

(
i
ν∑
j=1

tj vj

)]∣∣∣∣
t1=···=tν=0

. (A.2)

For further details see [27, Section 3.1, Section 3.2] wherein the agreement between Definitions A.1 and A.2 is shown
by taking the second definition and proving (A.1).

As a consequence of the second definition we have the following lemma.

Lemma A.3. A random vector is Gaussian if and only if all cumulants of order ≥ 3 vanish.
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We have the following formal versions of (A.1) and (A.2). Let En1,...,nν ∈ C with E0,...,0 = 1. Define the following
formal power series

E(t1, . . . , tν)=
∑

n1,...,nν≥0

En1,...,nν

n1! · · ·nν ! t
n1
1 · · · tnνν ,

K(t1, . . . , tν)= logE(t1, . . . , tν)=:
∑

n1,...,nν≥0

Kn1,...,nν

n1! · · ·nν ! t
n1
1 · · · tnνν .

Let E(U)=En1,...,nν where nj = 1 if j ∈U and 0 otherwise, and likewise define K(U). Letting �U be the collection of
all set partitions of U , we have

K(U)=
∑
d>0

{U1,...,Ud }∈�U

(−1)d−1(d − 1)!
d∏
�=1

E(U�). (A.3)

By exponentiating K(t1, . . . , tν) we also obtain

E(U)=
∑
d>0

{U1,...,Ud }∈�U

d∏
�=1

K(U�), (A.4)

where the sum is over all set partitions of U . This gives us the following lemma.

Lemma A.4. Suppose that K and E are functions which take values on nonempty subsets of [[1, ν]]. Then

E(U)=
∑
d>0

{U1,...,Ud }∈�U

d∏
i=1

K(Ui). (A.5)

if and only if

K(U)=
∑
d>0

{U1,...,Ud }∈�U

(−1)d−1(d − 1)!
d∏
i=1

E(Ui). (A.6)
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