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Abstract. We study a class of Rd -valued continuous strong Markov processes that are generated, only locally, by an ultra-parabolic
operator with coefficients that are regular w.r.t. the intrinsic geometry induced by the operator itself and not w.r.t. the Euclidean one.
The first main result is a local Itô formula for functions that are not twice-differentiable in the classical sense, but only intrinsically
w.r.t. to a set of vector fields, related to the generator, satisfying the Hörmander condition. The second main contribution, which builds
upon the first one, is an existence and regularity result for the local transition density.

Résumé. Dans cet article on étudie une classe de processus de type Markov fort continus à valeurs dans R
d qui sont engendrés,

seulement localement, par un opérateur ultra-parabolique avec des coefficients réguliers par rapport à la géométrie intrinsèque induite
par l’opérateur lui-même et non par rapport à la géométrie euclidienne. On obtient deux résultats importants. Le premier est une formule
locale d’Itô valable pour des fonctions qui ne sont pas deux fois différentiables dans le sens classique, mais seulement intrinsèquement
par rapport à un ensemble de champs de vecteurs, liés au générateur, satisfaisant à la condition d’Hörmander. La deuxième contribution,
qui s’appuie sur la première, est un résultat d’existence et de régularité pour la densité de transition locale.

MSC: 60J60; 60J35; 35H20

Keywords: Hörmander condition; Intrinsic geometry; Intrinsic Hölder spaces; Kolmogorov equations; Local densities; Strong Feller property

1. Introduction

We study an R
d -valued continuous strong Markov process X that is generated, in a way that will be specified later, only

locally on a domain D ⊆R
d by the degenerate operator

At := 1

2

p0∑
i,j=1

aij (t, x)∂xixj
+

p0∑
i=1

ai(t, x)∂xi
+ 〈Bx,∇x〉 t ∈ [0, T0[ , x ∈ D. (1.1)

Above, p0 ≤ d and B is a (d × d)-matrix with constant real entries. In this paper, the focus is mainly on the case p0 < d ,
which implies that no ellipticity condition on At is satisfied (i.e. the second order part is fully degenerate). The main
structural assumption on the local-generator At is the following

Assumption 1.1. The matrix B is such that the Kolmogorov operator

K := 1

2

p0∑
i=1

∂2
xi

+ 〈Bx,∇x〉 + ∂t︸ ︷︷ ︸
=:Y

, x ∈R
d, (1.2)

is hypoelliptic on R×R
d . Equivalently, the vector fields ∂x1 , . . . , ∂xp0

and Y satisfy the Hörmander condition

rank Lie(∂x1 , . . . , ∂xp0
, Y ) = d.
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Assumption 1.1 is the only hypothesis required for the first main result of the paper, namely the instrinsic Itô’s formula.
The second main result, about the local density of X, is stated under the following additional

Assumption 1.2. There exist α ∈ (0,1], N ∈ N∪ {0} and M > 0 such that:

(i) aij , ai ∈ C
N,α
B (]0, T0[×D) for any i, j = 1, . . . , p0, with all the (Lie) derivatives bounded by M ;

(ii) the following coercivity condition holds on D:

M−1|ξ |2 ≤
p0∑

i,j=1

aij (t, x)ξiξj ≤ M|ξ |2, t ∈]0, T0[ , x ∈ D,ξ ∈ R
p0 .

The spaces C
N,α
B (]0, T0[×D) appearing above are the intrinsic Hölder spaces induced by the vector fields ∂x1 , . . . , ∂xp0

and Y : their definition is recalled, for the reader’s convenience, in Section 2. Thanks to condition (ii) above, (∂t + At )

can be seen as a perturbation of the hypoelliptic operator K in (1.2).
Operators of the form (1.1) appear in various applicative fields; in physics, they describe the dynamics of some stochas-

tic Hamiltonian systems (see e.g. [19] and [21]). In mathematical finance, a relevant prototype example that fits Assump-
tions 1.1 and 1.2 is the stochastic process X = (X1,X2) defined by{

dX1
t = X1

t dWt ,

dX2
t = X1

t dt,
(1.3)

which is generated by the operator

A = x2
1

2
∂x1x1 + x1∂x2 , (x1, x2) ∈ R

2
>0. (1.4)

This operator is related to the valuation of a class of path-dependent financial derivatives known as arithmetic Asian
options. The process X1

t is a geometric Brownian motion and represents the price of a risky asset, whereas X2
t represents

its time-average. The operator fulfills Assumption 1.1 in that the commutator

[∂x1 , Y ] := ∂x1Y − Y∂x1 = ∂x2 ,

and also satisfies Assumption 1.2 for any D =]a,∞[ with a > 0. Although more sophisticated models, with more flexible
dynamics (local-stochastic volatility) for the price of the underlying asset, were proposed to price Asian options, the
prototype process (1.3) is complex enough to exhibit some interesting mathematical properties. In fact, the problem of
analytically characterizing its joint transition density is still partially open, and sharp upper/lower bounds were established
only recently in [4].

We remark that, besides the fact that the partial derivative ∂x2x2 is missing in the generator A in (1.4), the coefficient
of the second order derivative ∂x1x1 also degenerates near zero. Nevertheless, the local nature of our study allows us to
handle such diffusions and derive local results on a suitable domain. More generally (see Proposition 3.4 below for the
precise statement), the class of stochastic processes that we consider includes locally-integrated diffusions of the form

dXt = μ(t,Xt ) dt + σ(t,Xt ) dWt ,

with μ : [0, T0[×R
d −→ R

d and σ : [0, T0[×R
d −→R

d×n such that, for any (t, x) ∈ [0, T0[×D,

μ(t, x) = (
a1(t, x), . . . , ap0(t, x),0, . . . ,0

)+ Bx, (1.5)

σ σ�(t, x) =
(

A(t, x) 0p0×(d−p0)

0(d−p0)×p0 0(d−p0)×(d−p0)

)
, A = (

aij (t, x)
)
i,j=1,...,p0

, (1.6)

and with B and aij , ai satisfying Assumptions 1.1 and 1.2 respectively. We mention that SDEs with a similar
chained/blocks structure of the drift (in the sense of Lemma 2.1 below, but not necessarily linear) were studied in [5]. In
this reference, the coercivity condition on the first p0 components of Assumption 1.2(ii) is also common, and the Hölder-
regularity of coefficients and their derivatives is similar. On the other hand, the norms used to account for the multiscale
behavior of the process, due to the Hörmander condition, are different from those used in this paper.

We emphasize that no assumption is required on the generator of X outside the domain D, although the process X

“lives” on R
d , meaning that its trajectories are allowed to go in and out D.
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1.1. Main results and comparison with the literature

Here we report and discuss the main results of the paper comparing them to the related literature. Granted that precise
definitions will be given in the sequel, namely in Sections 2 and 3, we will provide here a heuristic explanation of all the
objects that appear in the statements below.

The first main result of this paper is a local intrinsic Itô formula for X. In the following statement, Pt,x represents the
probability under which the process X starts from the point x at time t with probability one and F t is a filtration to which
(XT )T ≥t is adapted. Moreover, we denote by L the differential operator

L := 1

2

p0∑
i,j=1

aij (t, x)∂xixj
+

p0∑
i=1

ai(t, x)∂xi
+ Y (1.7)

where Y is the vector field as defined in (1.2).

Theorem 1.3 (Intrinsic Itô formula). Let X be a local diffusion on R
d generated by At on D (in the sense of Defini-

tion 3.2) and let Assumption 1.1 be in force. Then, for any fixed (t, x) ∈]0, T0[×R
d , α ∈]0,1] and f ∈ C

2,α
B with compact

support in ]0, T0[×D, we have

f (T ,XT ) = f (t,Xt ) +
∫ T

t

Lf (u,Xu)du + Mt
T , t ≤ T < T0, (1.8)

where Mt is a zero-mean F t -martingale under Pt,x , and

Et,x

[∣∣Mt
T

∣∣2]= Et,x

[∫ T

t

p0∑
i,j=1

aij (s,Xs)∂xi
f (s,Xs)∂xj

f (s,Xs) ds

]
. (1.9)

Formula (1.8) is a local result since no assumption is made on the generator of X outside D. Moreover, the Itô formula
above is stronger than the classical one as it is proved for a class of functions that are not twice-differentiable in the
classical sense, but only with respect to the non-Euclidean geometry induced by the vector fields ∂x1 , . . . , ∂xp0

and Y in

Assumption 1.1. Roughly speaking, we say that f ∈ C
2,α
B (]0, T0[×D) if ∂x1f, . . . , ∂xp0

f and Yf exist on ]0, T0[×D and
they are α-Hölder continuous with respect to the semi-distance

|T − t |1/2 + ∣∣y − e(T −t)Bx
∣∣
B
, (t, x), (T , y) ∈R×R

d,

with | · |B as in (2.2). Note that Yf is meant as a Lie derivative and not as a combination of Euclidean derivatives: in
principle, ∂tf and ∂xi

f with i > p0 do not exist; on the other hand, the Euclidean space C2,α is included in C
2,α
B . We

also highlight the fact that Assumption 1.2 is not required in Theorem 1.3. Deferring the precise definition untill the next
section, | · |B is an anisotropic quasi-norm on R

d that accounts for multi-scale behavior of the diffusion. As an example,
in the case of the model seen before for arithmetic Asian options, the quasi-norm reads as∣∣(x1, x2)

∣∣
B

= |x1| + |x2| 1
3 , (x1, x2) ∈ R

2,

and

u(t, x1, x2) = |x2 − c| 3
2 , c ∈R,

is an instance of function of class C
2,1
B , but only C1,1/2 in the classical sense. We refer the reader to [13, Section 3.3]

for more examples of functions whose intrinsic regularity is strictly higher than the Euclidean one, including functions of
class C

2,α
B but only C0,α in the classical meaning.

Just like the classical Itô formula is based on the standard Taylor expansion, the cornerstone of (1.8) is a non-Euclidean
Taylor formula, proved in [13] and [14] for functions in C

2,α
B , which roughly states that

f (T , y) = T
(2)
(t,x)f (T , y) + O

(|T − t | 2+α
2
)+ O

(∣∣y − e(T −t)Bx
∣∣2+α

B

)
as (T , y) → (t, x) ∈]0, T0[×D, (1.10)
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where

T
(2)
(t,x)f (T , y) = f (t, x) + (T − t)Yf (t, x) +

p0∑
i=1

(
y − e(T −t)Bx

)
i
∂xi

f (t, x)

+ 1

2

p0∑
i,j=1

(
y − e(T −t)Bx

)
i

(
y − e(T −t)Bx

)
j
∂xi ,xj

f (t, x). (1.11)

With (1.10)–(1.11) at hand, it is possible to outline the main arguments the proof of Theorem 1.3 is built upon. Analo-
gously to the classical case, the key step is proving that

Et,x[f (T ,XT )] − f (t, x)

T − t
−→ Lf (t, x) as T − t → 0+, (1.12)

uniformly w.r.t. x ∈ R
d , for any f ∈ C

2,α
B with compact support in ]0, T0[×D. Applying (1.10) yields

Et,x[f (T ,XT )] − f (t, x)

T − t
= Et,x[T(2)

(t,x)
f (T ,XT ) − f (t, x)]

T − t︸ ︷︷ ︸
=:g1(t,T )

+ Et,x[O(|XT − e(T −t)Bx|2+α
B )]

T − t︸ ︷︷ ︸
=:g2(t,T )

+ O
(|T − t | α

2
)
.

It is then clear that (1.12) holds true if

g1(t, T ) −→ Lf (t, x), g2(t, T ) −→ 0, as T − t → 0+,

uniformly w.r.t. x ∈ R
d . Now, while the proof of the first limit above is quite straightforward and stems simply from the

fact that X is locally generated by At on D (see Definition 3.2), the second limit is a deeper result and represents the
main element of novelty in the proof of Theorem 1.3. In particular, we note that g2(t, T ) −→ 0 is a consequence of the
fact that

lim
T −t→0+

Et,x[1{|XT −x|<δ}|XT − e(T −t)Bx|2+α
B ]

T − t
= 0, δ > 0,

uniformly w.r.t. x ∈ H compact subset of D, and we emphasize that the latter is stronger than the classical general estimate
for diffusion processes (see [8] or [2])

lim
T −t→0+

Et,x[1{|XT −x|<δ}|XT − x|2+α]
T − t

= 0, δ > 0,

since the intrinsic quasi-norm | · |B on R
d is such that |x| = o(|x|B) as x → 0 along the degenerate directions.

The second main result of the paper is the theorem below that states the existence of a local (on D) transition density
�(t, x;T , ξ) for X, reveals its intrinsic regularity w.r.t. both the forward and backward variables, and shows that it solves
a forward and a backward Kolmogorov equation on ]t, T0[×D and ]0, T [×D, respectively. Before stating the result, we
need to introduce the last additional assumption, which is only needed to prove the regularity w.r.t. the backward variables.

Assumption 1.4. X is a Feller process on D, i.e. for any T ∈]0, T0[ and bounded ϕ ∈ C(Rd) the function (t, x) 
→
Et,x[ϕ(XT )] is continuous on ]0, T [×D.

Note that, since the coercivity condition in Assumption 1.2(ii) only holds on D, the Feller property for the semigroup
ϕ 
→ Et,·[ϕ(XT )] is not ensured. This is due to the fact that the trajectories of X are allowed to leave and re-enter the
domain D, but no assumption is made on the generator of X outside D. Had Assumption 1.2 been satisfied for D = R

d ,
the Feller property would stem from PDEs arguments, namely the existence and regularity results for the fundamental
solution of L on R

d that were proved in [17] and [6] be means of the so-called parametrix method.

Theorem 1.5. Let X be a local diffusion on R
d generated by At on D (in the sense of Definition 3.2) and let Assump-

tion 1.1 be in force. Denoting by p(t, x;T , ·) the transition distribution of X, we have:
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(a) if Assumption 1.2 with N = 0 is also in force, then X has a local transition density � on D, namely a non-negative
measurable function �(t, x;T ,y) defined for any 0 < t < T < T0 and x ∈R

d , y ∈ D, such that

p(t, x;T ,A) =
∫

A

�(t, x;T ,y) dy, A ∈ B(D).

Furthermore, �(t, x;T , ·) is continuous on D and locally bounded uniformly w.r.t. x ∈R
d ;

(b) if Assumption 1.2 with N = 2 is also in force, then for any (t, x) ∈]0, T0[×R
d the function �(t, x; ·, ·) ∈

C
2,α
B (]t, T0[×D) and solves the forward Kolmogorov equation

L∗u = 0, on ]t, T0[×D, (1.13)

where L∗ is the formal adjoint of L;
(c) if Assumption 1.2 with N = 0 and Assumption 1.4 are also in force, then for any (T , y) ∈]0, T0[×D the function

�(·, ·;T ,y) ∈ C
2,α
B (]0, T [×D) and solves the backward Kolmogorov equation

Lu = 0, on ]0, T [×D. (1.14)

This statement partially generalizes [9], Section 4, where analogous results were obtained under the assumption that
the coefficients of the generator are smooth on D. In particular, the main assumption in the latter reference is a sort of local
hypoellipticity condition for the generator, expressed in terms of Malliavin’s matrix, on a given domain D of Rd . So, if on
the one hand the framework in [9] is more general, on the other hand our assumptions are weaker in that we assume the
coefficients belonging to the intrinsic Hölder space C

0,α
B (or C

2,α
B for the regularity w.r.t. the forward variables). Again,

we stress the fact that C
0,α
B (C2,α

B ) not only does contain C∞, but also includes the standard Hölder space C0,α (C2,α).
Recent results on the local density assuming standard regularity of the coefficients were proved in [3], under local strong
Hörmander-type conditions, and in [16], under local weak Hörmander-type conditions for two-dimensional diffusions.

The proof of Theorem 1.5 partially relies on some existence and regularity results (see [6] and [7] among others)
obtained in a PDEs’ context for the fundamental solution and the Green functions of Kolmogorov operators, as well as on
some Schauder estimates (see again [7]). However, it is important to stress that the latter results alone are not enough to
prove Theorem 1.5. This is due to the fact that our structural assumptions on the generator of X only hold on D, whereas
there is no assumption on what is the behavior of the process outside D. For this reason, it will be necessary to combine
the PDE results mentioned above with some probabilistic interlacing techniques and a crucial role will be played by the
Itô formula of Theorem 1.3.

More in detail, we adapt and customize the localization technique introduced in [9], Section 4. We first prove a
Feynman–Kac formula (Lemma 4.2) that allows to link the solutions of the Cauchy–Dirichlet problem for L on suit-
able cylinders of ]0, T0[×D to the semigroup of the stopped diffusion. As this step is based on the application of Itô
formula to the solution of the Cauchy–Dirichlet problem and the latter is not of class C2,α in the classical sense but only
intrinsically, it is clear that the Itô formula needed here is the one in Theorem 1.3 and not the classical one. The proof of
the existence of the local density can be then completed by following closely the procedure employed by Kusuoka and
Stroock, which makes use of a sequence of stopping times that keep track of when the process exits and re-enters the
domain D.

Once Part (a) is proved, we need to depart from the latter procedure in order to prove part Part (b) and Part (c). In
particular, to obtain the intrinsic regularity of the local density �(t, x;T ,y) w.r.t. the forward variables (T , y) ∈ D, it
will be crucial to employ the Schauder internal estimates for the solutions of Lu = 0 proved in [7], combined with the
Gaussian upper bounds for the Green function of L proved in the same reference. Once we have proved that �(t, x; ·, ·) ∈
C

2,α
B (]t, T0[×D), then the fact that �(t, x; ·, ·) solves (1.13) simply follows because the latter is satisfied by the transition

probability kernel of X in the distributional sense (see Remark 3.7).
To prove that �(·, ·;T ,y) ∈ C

2,α
B (]0, T [×D) and solves (1.14), we first show that the same holds true for the function

(t, x) → Et,x[ϕ(XT )] for any ϕ ∈ Cb(R
d). This step is based again on a Feynman–Kac formula and a crucial role is

played one more time by the intrinsic Itô formula of Theorem 1.3. Finally, Part (c) follows by proving that the same
properties hold true for any bounded measurable function ϕ on R

d . We remark that this last step is based on the fact that
X actually enjoys the strong Feller property, namely the property in Assumption 1.4 extended to bounded measurable
functions, which we prove in Lemma 4.6 by assuming the standard Feller property. Here we heavily rely again on the
Schauder estimates in [7]. We point out that the latter result, i.e. proving the strong Feller property starting from the
standard one, might enjoy an independent interest as it generalizes some previous results obtained in [18] under stronger
assumptions, basically existence and uniform boundedness of the global transition density.
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The rest of the paper is organized as follows. In Section 2 we recall the definition of B-quasi-norm, the B-intrinsic
Hölder spaces and the related intrinsic Taylor formula. In Section 3 we give the precise definition of At -local diffusion
on R

d and prove Theorem 1.3. In Section 3 we prove Theorem 1.5. In Appendix A we collect some useful PDE results
for L-like operators, and in Appendix B we recall some classic construction procedures for Markov processes.

2. Preliminaries: Hölder spaces and Taylor formula

We recall the following useful characterization of Assumption 1.1, proved in [10].

Lemma 2.1. Assumption 1.1 is fulfilled if and only if B takes the block form

B =

⎛⎜⎜⎜⎜⎜⎝
∗ ∗ · · · ∗ ∗
B1 ∗ · · · ∗ ∗
0 B2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · Br ∗

⎞⎟⎟⎟⎟⎟⎠ (2.1)

where Bj is a (pj × pj−1)-matrix with full rank (equal to pj ) for j = 1, . . . , r , the ∗-blocks are arbitrary, p0 ≥ p1 ≥
· · · ≥ pr ≥ 1 and p0 + p1 + · · · + pr = d .

We introduce the quasi-norm in R
d

|x|B :=
r∑

j=0

p̄j∑
i=p̄j−1+1

|xi |1/(2j+1), p̄j :=
j∑

k=0

pk, p̄−1 := 0, (2.2)

that is homogeneous with respect to the dilations group

D0(λ) = diag
(
λIp0, λ

3Ip1, . . . , λ
2r+1Ipr

)
, λ > 0. (2.3)

For any (t, x) ∈ R×R
d and i = 1, . . . , p0, we denote by

eδ∂xi (t, x) = (t, x + δei), eδY (t, x) = (
t + δ, eδBx

)
, δ > 0,

the integral curves of the vector fields ∂x1 , . . . , ∂xp0
, Y starting at (t, x). Here ei denotes the i-th element of the canonical

basis of Rd . Now, let Q be a domain in R×R
d . For any (t, x) ∈ Q we set

δ(t,x) := sup
{
δ̄ ∈]0,1] | eδ∂x1 (t, x), . . . , e

δ∂xp0 (t, x), eδY (t, x) ∈ Q for any δ ∈ [−δ̄, δ̄]}.
If V is compactly contained in Q (hereafter we write V � Q), we set δV = inf(t,x)∈V δ(t,x). Note that δV ∈]0,1].

Definition 2.2. Let α1 ∈]0,1], α2 ∈]0,2] and i = 1, . . . , p0. We say that f ∈ C
α1
∂xi

(Q) and g ∈ C
α2
Y (Q) if the following

semi-norms are finite

‖f ‖
C

α1
∂xi

(V )
:= sup

(t,x)∈V
0<|δ|<δV

|f (eδ∂xi (t, x)) − f (t, x)|
|δ|α1

, ‖g‖
C

α2
Y (V )

:= sup
(t,x)∈V

0<|δ|<δV

|g(eδY (t, x)) − g(t, x)|
|δ| α2

2

,

for any V � Q.

We can now define the so-called B-Hölder spaces. We point out that slightly different versions of such spaces were
previously adopted in several works (see [7] and [11] among others). Here we use the definition given [13], which is
basically the one required in order to prove an intrinsic Taylor formula where the remainder is in terms of the intrinsic
quasi-norm.

Definition 2.3. Let Q a domain of R×R
d and let α ∈]0,1], then:

(i) f ∈ C
0,α
B (Q) if f ∈ Cα

Y (Q) and f ∈ Cα
∂xi

(Q) for any i = 1, . . . , p0;



1446 A. Lanconelli, S. Pagliarani and A. Pascucci

(ii) f ∈ C
1,α
B (Q) if f ∈ C1+α

Y (Q) and ∂xi
f ∈ C

0,α
B (Q) for any i = 1, . . . , p0;

(iii) for n ∈ N with n ≥ 2, f ∈ C
n,α
B (Q) if Yf ∈ C

n−2,α
B (Q) and ∂xi

f ∈ C
n−1,α
B (Q) for any i = 1, . . . , p0.

Moreover, for f ∈ C
n,α
B (Q) and V � Q, we set

‖f ‖C
n,α
B (V ) :=

⎧⎪⎪⎨⎪⎪⎩
‖f ‖Cα

Y (V ) +∑p0
i=1 ‖f ‖Cα

∂xi
(V ), n = 0

‖f ‖
Cα+1

Y (V )
+∑p0

i=1 ‖∂xi
f ‖

C
0,α
B (V )

, n = 1

‖Yf ‖
C

n−2,α
B (V )

+∑p0
i=1 ‖∂xi

f ‖
C

n−1,α
B (V )

, n ≥ 2.

If f ∈ C
n,α
B (Q) and has compact support then we write f ∈ C

n,α
0,B(Q).

The next result was proved in [13] in the particular case when the ∗-blocks in (2.1) are null and then extended to the
general case in [14].

Theorem 2.4. Let Q be a domain of R×R
d , α ∈]0,1] and n ∈N0. If f ∈ C

n,α
B (Q) then we have:

(1) there exist

Y k∂β
x f ∈ C

n−2k−[β]B,α
B (Q), 0 ≤ 2k + [β]B ≤ n,

where [β]B denotes the height of the multi-index β defined as

[β]B :=
r∑

j=0

p̄j∑
i=p̄j−1+1

(2j + 1)βi;

(2) for any (t0, x0) ∈ Q, there exist two bounded domains U , V , such that (t0, x0) ∈ U ⊆ V ⊆ Q and∣∣f (t, x) −T
(n)
(s,y)f (t, x)

∣∣≤ cB,U‖f ‖C
n,α
B (V )

(|t − s|1/2 + ∣∣x − e(t−s)By
∣∣
B

)n+α
, (t, x), (s, y) ∈ U, (2.4)

where cB,U is a positive constant and T
(n)
(s,y)

is the n-th order intrinsic Taylor polynomial of f centered at (s, y) given
by

T
(n)
(s,y)f (t, x) =

∑
k∈N0, β∈Nd

0
0≤2k+[β]B≤n

1

k!β!
(
Y k∂β

y f (s, y)
)
(t − s)k

(
x − e(t−s)By

)β
, (t, x) ∈ R×R

d .

Corollary 2.5. If f ∈ C
n,α
0,B(Q), then (2.4) holds true with U = supp(f ) and V = Q.

3. Local diffusions and intrinsic Itô formula

For a given T0 > 0 we consider a continuous Rd -valued strong Markov process X = (Xt )t∈[0,T0[ (in the sense of [8] as it
is recalled in Appendix B) with transition probability function p = p(t, x;T ,dξ), defined on a space(

�,F,
(
F t

T

)
0≤t≤T <T0

, (Pt,x)0≤t<T0,x∈Rd

)
.

For any bounded Borel measurable function ϕ, we denote by

Et,x

[
ϕ(XT )

] := (Tt,T ϕ)(x) :=
∫
Rd

p(t, x;T ,dξ)ϕ(ξ), 0 ≤ t < T ≤ T0, x ∈R
d ,

the Pt,x -expectation and the semigroup associated with the transition probability function p, respectively (cf. Chapter 2.1
in [8]). Hereafter we also fix a domain D, which is an open and connected subset of Rd .

Notation 3.1. For a given function f (t, T ) with T ∈]0, T0[ and t ∈ [0, T [, we set

lim
T −t→0+ f (t, T ) := lim

h→0+ f (t, t + h) = lim
h→0+ f (t − h, t), t ∈ [0, T0[,

when the second and the third limits exist and coincide with each other.
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The following two sets of limits will be used to give the definition of local diffusion.

(Lim-i) For any t ∈ [0, T0[, δ > 0, and H compact subset of D, there exist the limits

lim
T −t→0+

∫
{|ξ−x|>δ}∩H

p(t, x;T ,dξ)

T − t
= 0, uniformly w.r.t. x ∈R

d, (3.1)

lim
T −t→0+

∫
|ξ−x|>δ

p(t, x;T ,dξ)

T − t
= 0, uniformly w.r.t. x ∈ H . (3.2)

(Lim-ii) For any t ∈ [0, T0[, δ > 0, and H compact subset of D, and for any i = 1, . . . , d , there exist the limits

lim
T −t→0+

∫
|ξ−x|<δ

(ξ − x)i
p(t, x;T ,dξ)

T − t
=
{

ai(t, x) + (Bx)i if i = 1, . . . , p0

(Bx)i if i = p0 + 1, . . . , d,
(3.3)

lim
T −t→0+

∫
|ξ−x|<δ

(ξ − x)i(ξ − x)j
p(t, x;T ,dξ)

T − t
=
{

aij (t, x) if i, j = 1, . . . , p0

0 if i or j = p0 + 1, . . . , d,
(3.4)

uniformly w.r.t. x ∈ H , for some B as in (2.1) and aij , ai ∈ L∞
loc([0, T0[×D).

Definition 3.2. Let At an operator as in (1.1). We say that X is a local diffusion generated by At on D (an At -local
diffusion in short) if (Lim-i) and (Lim-ii) hold. In case they hold with D =R

d then we call X a global diffusion generated
by At (an At -global diffusion in short).

The following proposition is useful for the applications because several models are defined in terms of solutions to
stochastic differential equations. It shows that (stopped) solutions of SDEs are local diffusions in the sense of Defini-
tion 3.2.

Remark 3.3. Since we are dealing with stopping times, we point that we did not impose any right-continuity assumption
on the filtrations F t . This is justified by the fact that, in the next proposition as well as in the rest of the paper, we will only
consider hitting times of closed sets, which appear to be stopping times even if the the filtration is not right-continuous
(see [8], Theorem 2.2 p. 25).

Proposition 3.4. Let (Xt )t∈[0,T0[ be a continuous Markov process defined as Xt = X̂t∧τ , where:

(i) X̂ is a solution of the SDE

dX̂t = μ(t, X̂t ) dt + σ(t, X̂t ) dWt

where W is a n-dimensional Brownian motion and the coefficients μ and σ are continuous and as in (1.5)–(1.6);
(ii) τ is the first exit time of X̂ from a domain D′ containing D.

Then X is a At -local diffusion on R
d in the sense of Definition 3.2.

Proof. The statement is a particular case of Lemma 2.3 in [12], which proves that (Lim-i) and (Lim-ii) hold for the kernel
of X. �

We have the first key result, whose proof is deferred to Section 3.3.

Proposition 3.5. Let Assumptions 1.1 be in force. Then X is an At -local diffusion on R
d if and only if (Lim-i) holds and

for any t ∈ [0, T0[, δ > 0, and H compact subset of D, we have

lim
T −t→0+

∫
|ξ−x|<δ

(
ξ − e(T −t)Bx

)
i

p(t, x;T ,dξ)

T − t
= ai(t, x), (3.5)

lim
T −t→0+

∫
|ξ−x|<δ

(
ξ − e(T −t)Bx

)
i

(
ξ − e(T −t)Bx

)
j

p(t, x;T ,dξ)

T − t
= aij (t, x), (3.6)

lim sup
T −t→0+

∫
|ξ−x|<δ

∣∣ξ − e(T −t)Bx
∣∣2
B

p(t, x;T ,dξ)

T − t
< ∞, (3.7)

for any i, j = 1, . . . , p0, uniformly w.r.t. x ∈ H , for some B as in (2.1) and aij , ai ∈ L∞
loc([0, T0[×D).
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The following proposition, whose proof is also deferred to Section 3.2, formalizes the fact that At as in (1.1) is
the generator of X on [0, T0[×D, and shows that the function space for which the semi-group is differentiable is
C

2,α
0,B(]0, T0[×D).

Proposition 3.6. Let X be a At -local diffusion on R
d and Assumption 1.1 be in force. Then, for any ϕ ∈ C0(]0, T0[×D)

and f ∈ C
2,α
0,B(]0, T0[×D) we have

lim
T −t→0+ sup

x∈Rd

∣∣(Tt,T ϕ(T , ·))(x) − ϕ(t, x)
∣∣= 0, (3.8)

lim
T −t→0+ sup

x∈Rd

∣∣∣∣ (Tt,T f (T , ·))(x) − f (t, x)

T − t
− Lf (t, x)

∣∣∣∣= 0, (3.9)

for any t ∈]0, T0[. Moreover, it holds that

d

dt

(
Tt,T f (T , ·))(x) = Tt,T

(
Lf (T , ·))(x), 0 < t < T < T0, x ∈R

d . (3.10)

Remark 3.7. By Theorem 1.3 it is clear that, for any (t, x) ∈]0, T0[×R
d , p(t, x; ·, ·) satisfies

L∗u = 0 on ]t, T0[×D,

in the sense of distributions, with L∗ being the formal adjoint of L, i.e.∫ T0

t

∫
D

p(t, x;T ,dξ)Lf (T , ξ) dT = 0, f ∈ C∞
0

(]t, T0[×D
)
. (3.11)

The rest of this section is devoted to the proofs of Theorem 1.3, Proposition 3.6, and Proposition 3.5. The following
scheme summarizes the logical implications among these statements:⎧⎪⎨⎪⎩

Proposition 3.5
(non-Euclidean limits)

Theorem 2.4
(intrinsic Taylor formula)

=⇒ Proposition 3.6
(differentiability of the semigroup)

=⇒ Theorem 1.3
(intrinsic Itô formula)

.

3.1. Proof of Theorem 1.3 (Intrinsic Itô formula)

We prove here the intrinsic Itô formula in Theorem 1.3. The proof relies on the results of Proposition 3.6.

Proof of Theorem 1.3. First observe that the right-hand side term in (3.10) is bounded. This stems from the fact that
the coefficients of L are locally bounded on D (by Definition 3.2), f ∈ C

2,α
0,B(]0, T0[×D), and Tt,τ is a contraction.

Therefore, we can integrate (3.10), and obtain the identity

(
Tt,T f (T , ·))(x) − f (t, x) =

∫ T

t

Tt,τ

(
Lf (τ, ·))(x) dτ, T ∈]t, T0[. (3.12)

Consider now the process Mt defined through (1.8). For τ ∈ [t, T ] we have

Et,x

[
Mt

T | F t
τ

]= Mt
τ + Et,x

[
f (T ,XT ) − f (τ,Xτ ) −

∫ T

τ

Lf (u,Xu)du

∣∣∣F t
τ

]
= Mt

τ + 
(τ,Xτ )

where, by the Markov property,


(τ, x) = Eτ,x

[
f (T ,XT ) − f (τ, x) −

∫ T

τ

Lf (u,Xu)du

]
(by Fubini’s theorem)

= (
Tτ,T f (T , ·))(x) − f (τ, x) −

∫ T

τ

Tτ,u

(
Lf (u, ·))(x) du

which is 0 by (3.12).
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To conclude we need to show that

Y t
T := (

Mt
T

)2 −
∫ T

t

p0∑
i,j=1

aij (s,Xs)∂xi
f (s,Xs)∂xj

f (s,Xs) ds,

has null Pt,x -expectation. First note that

p0∑
i,j=1

aij (s,Xs)∂xi
f (s,Xs)∂xj

f (s,Xs) = Lf 2(s,Xs) − 2f (s,Xs)Lf (s,Xs),

which implies

Y t
T = Y

1,t
T + Y

2,t
T + Y

3,t
T ,

with

Y
1,t
T = f 2(T ,XT ) −

∫ T

t

Lf 2(u,Xu)du + f 2(t,Xt ),

Y
2,t
T = 2f (t,Xt )

(∫ T

t

Lf (u,Xu)du − f (T ,XT )

)
,

Y
3,t
T = −2

∫ T

t

(
f (T ,XT ) − f (u,Xu)

)
Lf (u,Xu)du +

(∫ T

t

Lf (u,Xu)du

)2

.

Now, by applying the first part of Theorem 1.3 to f 2 and f respectively, it is clear that Y 1,t and Y 2,t are martingales with
null Pt,x -expectation. Finally, the identity(∫ T

t

Lf (u,Xu)du

)2

= 2
∫ T

t

(∫ T

u

Lf (s,Xs) ds

)
Lf (u,Xu)du

along with (1.8) yields

Y
3,t
T = −2

∫ T

t

(
Mt

T − Mt
u

)
Lf (u,Xu)du,

which shows that Y 3,t has null Pt,x -expectation and thus concludes the proof. �

3.2. Proof of Proposition 3.6

We prove here Proposition 3.6. The key ingredients of the proof are the limits in Proposition 3.5, combined with the
intrinsic Taylor formula reported in Section 2.

Proof of Proposition 3.6. The proof of (3.8) is identical to the proof of [12, Eq. (2.6)] as it is only based on the limits
(3.1) and (3.2). The same goes for (3.10), which is a corollary of (3.8)–(3.9) and whose proof coincides with the proof of
[12, Eq. (2.9)].

Therefore, we only need to prove (3.9). Set f ∈ C
2,α
0,B(]0, T0[×D) whose support is contained in the interior of

]0, T0[×H , with H ⊂ D a compact subset. We have

Tt,T f (T , x) − f (t, x)

T − t
= It,T ,1(x) + It,T ,2(x)

where

It,T ,1(x) =
∫

H

p(t, x;T ,dξ)
f (T , ξ) − f (t, x)

T − t
, It,T ,2(x) = −f (t, x)

T − t

∫
Rd\H

p(t, x;T ,dξ). (3.13)

First note that, by (3.1), if x /∈ H it holds that

It,T ,1(x) + It,T ,2(x) = It,T ,1(x) −→ 0 as T − t → 0+, unif. w.r.t. x ∈ R
d \ H.
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We now consider the case x ∈ H . By (3.2) the term It,T ,2(x) is negligible in the limit. As for It,T ,1(x), the intrinsic Taylor
formula of Corollary 2.5 yields

f (T , ξ) − f (t, x) = (T − t)Yf (t, x) +
p0∑
i=1

(
ξ − e(T −t)Bx

)
i
∂xi

f (t, x)

+ 1

2

p0∑
i,j=1

(
ξ − e(T −t)Bx

)
i

(
ξ − e(T −t)Bx

)
j
∂xi ,xj

f (t, x) + R(t, x;T , ξ) (3.14)

with R such that∣∣R(t, x;T , ξ)
∣∣≤ cH,B

(|T − t |1/2 + ∣∣ξ − e(T −t)Bx
∣∣
B

)2+α
, (t, x), (T , ξ) ∈]0, T0[×H. (3.15)

Next we prove that

lim
T −t→0+

∫
H

∣∣ξ − e(T −t)Bx
∣∣2+α

B

p(t, x;T ,dξ)

T − t
= 0, unif. w.r.t. x ∈ H. (3.16)

For any x ∈ H and δ > 0 suitably small we have∫
H

∣∣ξ − e(T −t)Bx
∣∣2+α

B

p(t, x;T ,dξ)

T − t
≤ C

∫
H\Dδ(t,x,T )

p(t, x;T ,dξ)

T − t

+ δα

∫
Dδ(t,x,T )

∣∣ξ − e(T −t)Bx
∣∣2
B

p(t, x;T ,dξ)

T − t
,

where Dδ(t, x, T ) = {ξ ∈ R
d | |ξ − e(T −t)Bx|B ≤ δ} and C is a positive constant. By (3.2) and (3.7) we obtain

lim sup
T −t→0+

∫
H

∣∣ξ − e(T −t)Bx
∣∣2+α

B

p(t, x;T ,dξ)

T − t
≤ C1δ

α, unif. w.r.t. x ∈ H.

This proves (3.16) since δ is arbitrary.
Eventually, (3.9) follows by plugging (3.14) into (3.13) and passing to the limit using (3.20), (3.5), (3.6) and (3.15)–

(3.16). This concludes the proof. �

3.3. Proof of Proposition 3.5

The following preliminary result is necessary in order to carry on with the proof of Proposition 3.5. It states that the results
in Theorem 1.3 hold true if the transformation f is twice differentiable in the Euclidean sense with compact support on
]0, T0[×D.

Proposition 3.8 (Classical Itô formula). Let X be a local diffusion on R
d generated by At on D (in the sense of

Definition 3.2) and let Assumption 1.1 be in force. Then, for any fixed (t, x) ∈]0, T0[×R
d , and f ∈ C2(]0, T0[×D) with

compact support in ]0, T0[×D, Eq’s (1.8)–(1.9) hold true with Mt zero-mean F t -martingale under Pt,x .

Proof. In [12, Lemma 2.2] it was proved that (3.8), (3.9) and (3.10) hold true for any ϕ ∈ C0(]0, T0[×D), f ∈
C2

0(]0, T0[×D). In particular, with (3.10) at hand, the proof of Proposition 3.8 is identical to the proof of Theorem 1.3.
Note that no circular argument is employed here, because, for ϕ ∈ C0(]0, T0[×D) and f ∈ C2

0(]0, T0[×D), the proof of
(3.8)–(3.9)–(3.10) does not rely on Proposition 3.5. �

The proof of Proposition 3.5 also relies on the following

Lemma 3.9. Under the hypothesis (Lim-i), for any H � D and for any 0 ≤ t < T < T0, δ < δ̄ := dist(H, ∂D), we have

lim
T −t→0+

∫
{|ξ−x|≥δ}∩H

p(t, x;T ,dξ)

(T − t)m
= 0, m ≥ 1, (3.17)

uniformly w.r.t. x ∈ H .
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Proof. Let ϕ(x) ∈ C∞
0 (D) be a family of functions with partial derivatives uniformly bounded w.r.t. x ∈ H , and such that

ϕ(x)(x) = 0 and

ϕ = ϕ(x) = 1 on H \ B(x, δ).

Note that Proposition 3.8 gives

ϕ(XT ) = ϕ(Xt) +
∫ T

t

Asϕ(Xs) ds + Mt
T ,

where Mt is an F t -martingale under Pt,x with

Et,x

[∣∣Mt
T

∣∣2]= Et,x

[∫ T

t

p0∑
k,l=1

akl(s,Xs)
(
∂xk

ϕ(Xs)
)(

∂xl
ϕ(Xs)

)
ds

]
. (3.18)

Thus we obtain∫
{|ξ−x|≥δ}∩H

p(t, x;T ,dξ)

≤ Et,x

[(
ϕ(XT )

)2(m+1)]≤ 22m+1Et,x

[∣∣∣∣∫ T

t

Asϕ(Xs) ds

∣∣∣∣2(m+1)

+ ∣∣Mt
T

∣∣2(m+1)
]

≤ 22m+1
(

Et,x

[∣∣∣∣∫ T

t

Asϕ(Xs) ds

∣∣∣∣2(m+1)]
+
(

2(m + 1)

2m + 1

)2(m+1)

Et,x

[∣∣Mt
T

∣∣2]m+1
)

,

where we used [8, Lemma 3.8, p. 71] and Jensen’s inequality in the last step. Eventually, (3.17) stems from (3.18)
combined with the fact that ϕ ∈ C∞

0 (D) and the coefficients of A are in L∞
loc([0, T0[×D). �

We are now in the position to prove Propostion 3.5.

Proof of Proposition 3.5.
Part 1: if. We assume (Lim-i) to be satisfied together with the limits (3.5)–(3.6)–(3.7), and prove that (Lim-ii) holds.

Let t ∈ [0, T0[, δ > 0, and H compact subset of D be fixed. All the following limits are uniform w.r.t. x ∈ H .
We first prove (3.3). For any i = 1, . . . , d , it holds that:

lim
T −t→0+

∫
|x−ξ |<δ

(ξ − x)i
p(t, x;T ,dξ)

T − t

= lim
T −t→0+

∫
|x−ξ |<δ

(
ξ − e(T −t)Bx + e(T −t)Bx − x

)
i

p(t, x;T ,dξ)

T − t

= lim
T −t→0+

∫
|x−ξ |<δ

(
ξ − e(T −t)Bx

)
i

p(t, x;T ,dξ)

T − t
+ (Bx)i . (3.19)

Here we used the property

lim
T −t→0+

∫
|x−ξ |<δ

p(t, x;T ,dξ) = 1, (3.20)

which follows from (Lim-i). Now, for i = 1, . . . , p0, (3.3) stems from (3.5) and (3.19). On the other hand, for i =
p0 + 1, . . . , d , note that condition (3.7) is equivalent to

lim sup
T −t→0+

∫
|ξ−x|<δ

∣∣(ξ − e(T −t)Bx
)
i

∣∣ 2
qi

p(t, x;T ,dξ)

T − t
< ∞
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for a certain qi ≥ 3. Therefore, fixing ε > 0, for any ρ ∈]0, δ] we obtain

lim sup
T −t→0+

∫
|ξ−x|<δ

∣∣(ξ − e(T −t)Bx
)
i

∣∣ 2
qi

+ε p(t, x;T ,dξ)

T − t

= lim sup
T −t→0+

∫
|ξ−x|<ρ

∣∣(ξ − e(T −t)Bx
)
i

∣∣ 2
qi

+ε p(t, x;T ,dξ)

T − t

+
∫

ρ≤|ξ−x|<δ

∣∣(ξ − e(T −t)Bx
)
i

∣∣ 2
qi

+ε p(t, x;T ,dξ)

T − t

≤ lim sup
T −t→0+

∫
|ξ−x|<ρ

∣∣(ξ − e(T −t)Bx
)
i

∣∣ 2
qi

+ε p(t, x;T ,dξ)

T − t

+ (
δ + |x|∣∣Id − e(T −t)B

∣∣) 2
qi

+ε
∫

ρ≤|ξ−x|<δ

p(t, x;T ,dξ)

T − t

(by (3.2))

= lim sup
T −t→0+

∫
|ξ−x|<ρ

∣∣(ξ − e(T −t)Bx
)
i

∣∣ 2
qi

+ε p(t, x;T ,dξ)

T − t

≤ lim sup
T −t→0+

(
ρ + |x|∣∣Id − e(T −t)B

∣∣)ε ∫
|ξ−x|<ρ

∣∣(ξ − e(T −t)Bx
)
i

∣∣ 2
qi

p(t, x;T ,dξ)

T − t

≤ ρε lim sup
T −t→0+

∫
|ξ−x|<δ

∣∣(ξ − e(T −t)Bx
)
i

∣∣ 2
qi

p(t, x;T ,dξ)

T − t
,

which in turn implies

lim sup
T −t→0+

∫
|ξ−x|<δ

∣∣(ξ − e(T −t)Bx
)
i

∣∣ 2
qi

+ε p(t, x;T ,dξ)

T − t
= 0, (3.21)

and thus, as ε is arbitrary,

lim
T −t→0+

∫
|x−ξ |<δ

(
ξ − e(T −t)Bx

)
i

p(t, x;T ,dξ)

T − t
= 0.

The latter, combined with (3.19), proves (3.3) for i = p0 + 1, . . . , d .
We now prove (3.4). By using (3.3) it is straightforward to show that

lim
T −t→0+

∫
|ξ−x|<δ

(ξ − x)i(ξ − x)j
p(t, x;T ,dξ)

T − t

= lim
T −t→0+

∫
|ξ−x|<δ

(
ξ − e(T −t)Bx

)
i

(
ξ − e(T −t)Bx

)
j

p(t, x;T ,dξ)

T − t
. (3.22)

Now, for i, j = 1, . . . , p0, (3.4) simply stems from (3.6). In the case i > p0 or j > p0, by the Cauchy–Schwarz inequality
we get∫

|ξ−x|<δ

∣∣(ξ − e(T −t)Bx
)
i

(
ξ − e(T −t)Bx

)
j

∣∣p(t, x;T ,dξ)

T − t
≤
(∫

|ξ−x|<δ

(
ξ − e(T −t)Bx

)2
i

p(t, x;T ,dξ)

T − t

) 1
2

×
(∫

|ξ−x|<δ

(
ξ − e(T −t)Bx

)2
j

p(t, x;T ,dξ)

T − t

) 1
2

,

and the limits of the right-hand side integrals are both finite, at least one of each being zero. Indeed, by (3.6) and (3.21)
we obtain∫

|ξ−x|<δ

(
ξ − e(T −t)Bx

)2
k

p(t, x;T ,dξ)

T − t
=
{

akk(t, x) if k = 1, . . . , p0

0 if k = p0 + 1, . . . , d.
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Therefore, we can conclude that for i > p0 or j > p0

lim
T −t→0+

∫
|ξ−x|<δ

(
ξ − e(T −t)Bx

)
i

(
ξ − e(T −t)Bx

)
j

p(t, x;T ,dξ)

T − t
= 0,

which, combined with (3.22), yields (3.4).
Part 2: only if. We now assume (Lim-i)–(Lim-ii) and prove the limits (3.5)–(3.6)–(3.7) to be true. Fix t ∈ [0, T0[, δ > 0,

and H compact subset of D. Again, all the following limits are uniform w.r.t. x ∈ H .
The limits (3.5) and (3.6) stem again from (3.19)–(3.22) with i, j = 1, . . . , p0. Thus to conclude we only need to prove

(3.7). We remark that, by (3.2), it is not restrictive to assume δ < dist(H, ∂D). By (3.6) and by Jensen’s inequality, it is
sufficient to prove

lim sup
T −t→0+

1

T − t
Et,x

[∣∣(XT − e(T −t)Bx
)
j

∣∣1{|XT −x|<δ}
] 2

2i+1 < ∞, (3.23)

for any fixed i ∈ {1, . . . , r} and j ∈ {∑i−1
k=0 pk + 1, . . . , d}. We prove (3.23) in two different steps:

Step 1. We prove that

lim sup
T −t→0+

1

T − t
Et,x

[∣∣(XT − e(T −t)Bx
)
j

∣∣1{|XT −x|<δ}
] 2

2i+1

≤ lim sup
T −t→0+

1

T − t

(∫ T

t

Et,x

[∣∣〈B(j),Xs − e(s−t)Bx
〉∣∣1{|Xs−x|<δ}

]
ds

) 2
2i+1

, (3.24)

for any i ≥ 1 and j = {p0 + 1, . . . , d}. Here and further on, B(j) denotes the j -th row of B .
Let ϕ

(t,x)
j ∈ C∞

0 ([t, T0[×D), j = p0 + 1, . . . , d , be a family of functions with partial derivatives uniformly bounded
w.r.t. (t, x) ∈ [0, T0[×H and such that

ϕj (s, ξ) = ϕ
(t,x)
j (s, ξ) = ξj − (

e(s−t)Bx
)
j
, |ξ − x| < δ. (3.25)

Note that we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂sϕj (s, ξ) = −〈B(j), e(s−t)Bx〉,
∂ξj

ϕj (s, ξ) = 1,

∂ξk
ϕj (s, ξ) = 0 for k �= j,

∂ξkξl
ϕj (s, ξ) = 0,

s ∈ [t, T0[ , |ξ − x| < δ. (3.26)

By Proposition 3.8 we have

ϕj (T ,XT ) = ϕj (t,Xt ) +
∫ T

t

(∂s + As)ϕj (s,Xs) ds + Mt
T

(by (3.25)–(3.26))

= ϕj (t,Xt ) +
∫ T

t

〈
B(j),Xs − e(s−t)Bx

〉
1{|Xs−x|<δ} ds

+
∫ T

t

(∂s + As)ϕj (s,Xs)1{|Xs−x|≥δ} ds + Mt
T ,

where Mt is an F t -martingale under Pt,x with

Et,x

[∣∣Mt
T

∣∣2]= Et,x

[∫ T

t

p0∑
k,l=1

akl(s,Xs)
(
∂xk

ϕj (s,Xs)
)(

∂xl
ϕj (s,Xs)

)
ds

]
. (3.27)

Therefore, for any i ≥ 1 and j = p0 + 1, . . . , d one obtains

Et,x

[∣∣(XT − e(T −t)Bx
)
j

∣∣1{|XT −x|<δ}
] 2

2i+1 ≤ Et,x

[∣∣ϕj (T ,XT )
∣∣] 2

2i+1 ≤
3∑

k=1

I
2

2i+1
k (t, x;T ),
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where

I1(t, x;T ) = Et,x

[∣∣∣∣∫ T

t

(∂s + As)ϕj (s,Xs)1{|Xs−x|≥δ} ds

∣∣∣∣], I2(t, x;T ) = Et,x

[∣∣Mt
T

∣∣],
I3(t, x;T ) = Et,x

[∣∣∣∣∫ T

t

〈
B(j),Xs − e(s−t)Bx

〉
1{|Xs−x|<δ} ds

∣∣∣∣],
where we used that ϕj (t,Xt ) = 0 Pt,x -almost surely. Since the coefficients of A are locally bounded on [0, T0[×D and
ϕj ∈ C∞

0 ([t, T0[×D), we obtain

I1(t, x;T ) ≤ C

∫ T

t

Et,x[1{|Xs−x|≥δ}1{Xs∈supp(ϕj )}]ds

= C

∫ T

t

(s − t)
2i+1

2

∫
(|ξ−x|≥δ)∩supp(ϕj )

p(t, x; s, dζ )

(s − t)
2i+1

2

ds

(by (3.17) with m = 2i+1
2 )

≤ C

∫ T

t

(s − t)
2i+1

2 ds ≤ C(T − t)
2i+1

2 +1,

for any i ≥ 1, which proves

lim
T −t→0+

1

T − t
I

2
2i+1

1 (t, x;T ) = 0, i ≥ 1.

Similarly, Jensen’s inequality yields

I2(t, x;T ) ≤ Et,x

[∣∣Mt
T

∣∣2] 1
2

(by (3.27) combined with (3.26))

= Et,x

[∫ T

t

1{|Xs−x|≥δ}
p0∑

k,l=1

akl(s,Xs)
(
∂xk

ϕj (s,Xs)
)(

∂xl
ϕj (s,Xs)

)
ds

] 1
2

(by using again the local boundedness of akl on [0, T0[×D and ϕj ∈ C∞
0 ([0, T0[×D))

≤ CEt,x

[∫ T

t

1{|Xs−x|≥δ}1{Xs∈supp(ϕj )} ds

] 1
2

,

and by proceeding as we did to estimate I1(t, x;T ) it easily follows that

lim
T −t→0+

1

T − t
I

2
2i+1

2 (t, x;T ) = 0, i ≥ 1.

Finally,

lim sup
T −t→0+

1

T − t
I

2
2i+1

3 (t, x;T ) ≤ lim sup
T −t→0+

1

T − t

(∫ T

t

Et,x

[∣∣〈B(j),Xs − e(s−t)Bx
〉∣∣1{|Xs−x|<δ}

]
ds

) 2
2i+1

yields (3.24) for any i ≥ 1.
Step 2. We prove (3.23) by induction on i. To start the inductive procedure, set i = 0 and prove (3.23) for any j ∈

{1, . . . , d}. If j ∈ {1, . . . , p̄0}, then (3.23) stems from (3.6) by applying Jensen’s inequality. If j ∈ {p̄0 + 1, . . . , d}, then
(3.23) follows trivially from (3.24) by observing that∣∣〈B(j),Xs − e(s−t)Bx

〉∣∣1{|Xs−x|<δ}

is uniformly bounded.
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Set now ī ∈ {0, . . . , r − 1}, assume (3.23) true for i = ī and j ∈ {∑ī−1
k=0 pk + 1, . . . , d} and prove it true for i = ī + 1

and j ∈ {∑ī
k=0 pk + 1, . . . , d}. Now, by the block structure of B (2.1), we obtain

∫ T

t

Et,x

[∣∣〈B(j),Xs − e(s−t)Bx
〉∣∣1{|Xs−x|<δ}

]
ds ≤ C

d∑
k=∑ī−1

k=0 pk+1

∫ T

t

Et,x

[∣∣(Xs − e(s−t)Bx
)
k

∣∣1{|Xs−x|<δ}
]
ds

(by inductive hypothesis)

≤ C

∫ T

t

(s − t)
2ī+1

2 ds ≤ C(T − t)
2(ī+1)+1

2 ,

which, combined with (3.24), yields exactly (3.23) for i = ī + 1 and concludes the proof. �

4. Local densities

This section is devoted to the proof of Theorem 1.5. We will adapt and customize a localization procedure first introduced
in [9]. From now on, throughout the rest of this section, we will always assume the structural Assumption 1.1 for the matrix
B to be in force, and that the coefficients aij , ai satisfy Assumption 1.2 for some α, M and with N = 0. Assumption 1.2
with N = 2 and Assumption 1.4 will be only required in the proof of Part (b) and Part (c) of Theorem 1.5, respectively.

4.1. Proof of Theorem 1.5, Part (a), (b)

We start by observing that the nature of Theorem 1.5(a), (b) is strictly local for what concerns the existence of the transition
density and its regularity w.r.t. the forward space-variable. In other words, it is enough to prove it for �(t, x;T , ξ) defined
for any 0 < t < T < T0 and x ∈R

d , ξ ∈ D′ and for any sub-domain D′ � D. Therefore, it is not restrictive to assume that
there exists a family ãij , ãi : ]0, T0[×R

d → R, i, j = 1, . . . , p0, such that (̃aij , ãi) coincide with (aij , ai) on ]0, T0[×D

and, if Assumption 1.2 is satisfied for a certain N , then:

(̃i) ãij , ãi ∈ C
N,α
B (]0, T0[×R

d) for any i, j = 1, . . . , p0, with all the (Lie) derivatives bounded by M ;
(̃ii) the following coercivity condition holds on R

d

M−1|ξ |2 ≤
p0∑

i,j=1

ãij (t, x)ξiξj ≤ M|ξ |2, t ∈]0, T0[ , x ∈ R
d, ξ ∈R

p0 .

Let us denote by Ãt the operator defined as

Ãt := 1

2

p0∑
i,j=1

ãij (t, x)∂xixj
+

p0∑
i=1

ãi (t, x)∂xi
+ 〈Bx,∇x〉 t ∈ [0, T0[ , x ∈ R

d,

where B is as in (2.1). We consider an auxiliary R
d -valued continuous strong Markov process X̃ = (X̃t )t∈[0,T0[ defined on

a space (�̃, F̃, (F̃ t
T )0≤t≤T <T0 , (P̃t,x)0≤t<T0,x∈Rd ), with transition probability function p̃ = p̃(t, x;T ,dξ), such that X̃ is

an Ãt -global diffusion on R
d in the sense of Definition 3.2; in Appendix B we briefly recall the standard construction of

such X̃. In particular, it will result in p̃(t, x;T ,dξ) having a density �̃(t, x;T , ξ), which coincides with the fundamental
solution of the operator

L̃ = Ãt + ∂t = 1

2

p0∑
i,j=1

ãij (t, x)∂xixj
+

p0∑
i=1

ãi (t, x)∂xi
+ Y, t ∈ [0, T0[ , x ∈R

d . (4.1)

In Theorem A.1 in Appendix A, some previous results are reported about the existence of �̃, its regularity and some sharp
Gaussian upper bounds for �̃ and its derivatives.

Notation 4.1. For any x ∈R
d , t < T and ε ∈]0,1[, we set the cylinder

Hε(t, x;T ) := ]t, T [×Sε(x), Sε(x) := B1(x − εe1) ∩ B1(x + εe1),
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where Br(x) ⊂ R
d is the Euclidean (open) ball with radius r centered at x and e1 = (1,0, . . . ,0) is the first vector of the

canonical basis of Rd . We define the lateral boundary and parabolic boundary of Hε(t, x;T ), respectively, as

∂�Hε(t, x;T ) := ]t, T [×∂Sε(t, x), ∂P Hε(t, x;T ) := ∂�Hε(t, x;T ) ∪ ({T } × Sε(x)
)
.

We also denote by G = G(t, x;T , ξ) the Green function of (∂t + At ) for Hε(0, x0;T0), which is defined for any 0 <

t < T < T0 and x, ξ ∈ Sε(x0) and enjoys the properties listed in Lemma A.2. In the latter, we report some preliminary
existence (and uniqueness) and regularity results for the solution of the Cauchy–Dirichlet problem on Hε(0, x0;T0) and
in particular for the Green function G.

Roughly speaking, the following result shows that, prior to the exit time from Sε(x0), X and X̃ have the same law
whose density coincides with the Green function G. The proof is based on the crucial fact that the Itô formula (1.8) is
valid for functions that are C2 in the intrinsic sense, i.e. C2

B , and not only for functions the are C2 in the Euclidean sense.

Lemma 4.2. Let x0 ∈ D and ε ∈]0,1[ such that Sε(x0) ⊂ D. Then, for any (t, x) ∈ Hε(0, x0;T0) we have

Pt,x

(
XT ∈ A,τ (t) > T

)=
∫

A

G(t, x;T , ξ) dξ = P̃t,x

(
X̃T ∈ A, τ̃ (t) > T

)
, T ∈]t, T0[ ,A ∈ B

(
Sε(x0)

)
, (4.2)

where τ (t) and τ̃ (t) are the t -stopping times defined, respectively, as

τ (t) := inf
{
s ≥ t : Xs /∈ Sε(x0)

}
, τ̃ (t) := inf

{
s ≥ t : X̃s /∈ Sε(x0)

}
. (4.3)

Before proving Lemma 4.2 we want to stress the following

Remark 4.3. By (4.2) we obtain∫
A

G(t, x;T , ξ) dξ ≤ P̃t,x(X̃T ∈ A) =
∫

A

�̃(t, x;T , ξ) dξ, A ∈ B
(
Sε(x0)

)
,

which implies

G(t, x;T , ξ) ≤ �̃(t, x;T , ξ), 0 < t < T < T0, x, ξ ∈ Sε(x0). (4.4)

Proof of Lemma 4.2. Throughout the proof we will set τ := τ (t) to shorten notation. Note that (4.2) is equivalent to

Et,x

[
ϕ(XT )1τ>T

]=
∫

Sε(x0)

G(t, x;T , ξ)ϕ(ξ) dξ = Ẽt,x

[
ϕ(X̃T )1τ̃>T

]
, ϕ ∈ C∞

0

(
Sε(x0)

)
.

Denote by f the unique solution in C
2,α
B (Hε(0, x0;T )) ∩ C((Hε ∪ ∂P Hε)(t, x0;T )) (see Lemma A.2) of⎧⎪⎨⎪⎩

Lf = 0 on Hε(0, x0;T ),

f = 0 on ∂�Hε(0, x0;T ),

f (T , ·) = ϕ on Sε(x0)

(4.5)

which is given by

f (t, x) =
∫

Sε(x0)

G(t, x;T , ξ)ϕ(ξ) dξ.

Now, by Corollary 1.3 combined with Optional Sampling Theorem, the process Mt·∧τ with Mt as in (1.8) and f as in
(4.5), is an F t -martingale under Pt,x : we notice explicitly that, even if f is not defined on [0, T0[×D as required by
Theorem 1.3, a standard extension-truncation argument can be employed. Thus

Et,x

[
ϕ(XT )1T <τ

]= Et,x

[
f (T ∧ τ,XT ∧τ )

]= f (t, x).

On the other hand, since A = Ã on ]0, T0[×D, X̃ is also an At -local diffusion on D and thus it holds

Ẽt,x

[
ϕ(X̃T )1T <τ̃

]= Ẽt,x

[
f (T ∧ τ̃ ,XT ∧τ̃ )

]= f (t, x),

which proves (4.2) and concludes the proof. �
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Proof of Theorem 1.5(a), (b). Fix (t, x) ∈]0, T0[×R
d and x0 ∈ D and let ε ∈]0,1[ such that Sε(x0) ⊆ D. Let also U

and V be two non-empty open subsets such that x0 ∈ U � V � Sε(x0).
Define now τ

(t)
0 ≡ t and the families (σ

(t)
n )n∈N and (τ

(t)
n )n∈N through the following recursion:

σ (t)
n := inf

{
s ≥ τ

(t)
n−1 : Xs ∈ V

}
,

and τ
(t)
n := τ (σ

(t)
n ) according to notation (4.3), which is

τ (t)
n = inf

{
s ≥ σ (t)

n : Xs /∈ Sε(x0)
}
.

Hereafter, whenever it is clear from the context, we will drop the suffix (t) in τ
(t)
n , σ

(t)
n to ease the notation.

Part (a): note that for any T ∈]t, T0[ the event XT ∈ U is included in the disjoint union
⋃

n∈N(σ
(t)
n < T < τ

(t)
n ).

Therefore, for any A ∈ B(U) one obtains

p(t, x;T ,A) =
∞∑

n=1

Pt,x(XT ∈ A,σn < T < τn) =
∞∑

n=1

Pt,x

(
XT ∈ A,σn < T < τ(σn)

)
=

∞∑
n=1

Et,x

[
Pt,x

(
XT ∈ A,σn < T < τ(σn)|Fσn

)]
=

∞∑
n=1

Et,x

[
Pt,x

(
XT ∈ A,T < τ(σn)|Fσn

)
1σn<T

]
(by the strong Markov property)

=
∞∑

n=1

Et,x

[
Ps,y

(
XT ∈ A,τ (s) > T

)|s=σn,y=Xσn
1σn<T

]
=

∞∑
n=1

Et,x

[∫
A

G(σn,Xσn;T , ξ) dξ1σn<T

]
, (4.6)

where we used (4.2) in the last equality. Our derivation of (4.6) follows closely the original argument by [9] even if here
we go a step further using the representation in terms of the Green kernel (4.2), which is crucial in the subsequent study
of the regularity properties of the local density of X.

From (4.6) and since x0 is arbitrary, it follows that p(t, x;T , ·) is absolutely continuous w.r.t. the Lebesgue measure
on D and therefore admits a density �(t, x;T , ξ). Moreover, for any x0 ∈ D and ε ∈]0,1[ such that Sε(x0) ⊂ D, we have
the local representation

�(t, x;T , ξ) =
∞∑

n=1

Et,x

[
G(σn,Xσn;T , ξ)1σn<T

]
, T ∈]t, T0[ , ξ ∈ Sε(x0). (4.7)

Assume now that there exists C1 > 0, independent of t , x and T , such that

∞∑
n=1

Pt,x

(
σ (t)

n < T
)≤ C1, T ∈]t, T0[. (4.8)

Then, by the continuity of G(t, x;T , ·) on Sε(x0) combined with (4.4) and the estimates (A.1), it follows that �(t, x;T , ·)
is continuous and bounded on Sε(x0), uniformly w.r.t. x ∈ R

d . Therefore, to conclude the proof of Part (a) we only need
to prove (4.8).

Start by observing that

∞∑
n=2

Pt,x(σn < T ) ≤
∞∑

n=1

Pt,x(τn < T ), (4.9)
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and that, by classical maximal estimates (e.g. [15], p. 296), it holds that

Ps,y

(
τ (s) < T

)≤ Ce
− 1

C(T −s) , 0 < s < T < T0, y ∈ ∂V, (4.10)

where C > 0 only depends on T0 and At , but not on s, T and y. Therefore, for any n ≥ 1 we have

Pt,x(τn < T ) = Et,x

[
Et,x[1τ (σn)<T |Fσn]

]= Et,x

[
Es,y[1τ (s)<T ]|s=σn,y=Xσn

]
(by (4.10))

≤ Ce
− 1

C(T −t) Pt,x(σn < T ) ≤ Ce
− 1

C(T −t) Pt,x(τn−1 < T ),

which yields Pt,x(τn < T ) ≤ (Ce
− 1

C(T −t) )n. This combined with (4.9) proves (4.8) for T − t ≤ T ∗ and for a positive T ∗
suitably small only dependent on T0 and At . To prove (4.8) for a generic T ∈]t, T0[ consider a partition t = t0 < t1 <

· · · < tN̄ = T , such that tk+1 − tk < T ∗. Define ik := inf{n ∈N : σ (t)
n ≥ tk}. We first observe that

∞∑
n=1

1
tk≤σ

(t)
n <tk+1

=
∞∑

n=ik

1
σ

(t)
n <tk+1

=
∞∑

m=0

1
σ

(t)
ik+m<tk+1

(since we have σ
(t)
ik

∈ {σ (tk)
1 , σ

(tk)
2 } and thus, by induction, σ

(t)
ik+m ≥ σ

(tk)
1+m)

≤
∞∑

m=1

1
σ

(tk )
m <tk+1

, k = 0, . . . , N̄ − 1.

Hence

∞∑
n=1

Pt,x

(
σ (t)

n < T
)=

N̄−1∑
k=0

∞∑
n=1

Pt,x

(
tk ≤ σ (t)

n < tk+1
)≤

N̄−1∑
k=0

∞∑
m=1

Pt,x

(
σ (tk)

m < tk+1
)

=
N̄−1∑
k=0

∞∑
m=1

Et,x

[
Pt,x

(
σ (tk)

m < tk+1|F t
tk

)]=
N̄−1∑
k=0

Et,x

[ ∞∑
m=1

Ptk,y

(
σ (tk)

n < tk+1
) ∣∣∣∣∣

y=Xtk

]
,

which proves (4.8).
Part (b): We assume here Assumption 1.2 to be in force for N = 2. By combining the representation of G in [7], p. 36,

with the internal estimates in the same reference that are reported in Theorem A.3(b) below, it follows that∣∣∂ξi
G(s, y;T , ξ)

∣∣+ ∣∣∂ξiξj
G(s, y;T , ξ)

∣∣+ ∣∣YT,ξG(s, y;T , ξ)
∣∣≤ C2, 0 < s < T < T0, y ∈ ∂V, ξ ∈ U, (4.11)

for any i, j = 1, . . . , p0. This and (4.8) allow us to employ bounded convergence theorem and differentiate twice under
the sign of expectation the right-hand side of (4.7) w.r.t. ξ . For any T ∈]t, T0[, ξ ∈ U we obtain:

∂ξi
�(t, x;T , ξ) =

∞∑
n=1

Et,x

[
∂ξi

G(σn,Xσn;T , ξ)1σn<T

]
,

∂ξiξj
�(t, x;T , ξ) =

∞∑
n=1

Et,x

[
∂ξiξj

G(σn,Xσn;T , ξ)1σn<T

]
,

for i, j = 1, . . . , p0. As for Y�(t, x; ·, ·), we have

YT,ξ�(t, x;T , ξ) = lim
h→0

�(t, x;T + h, ehBξ) − �(t, x;T , ξ)

h

= lim
h→0

1

h

∞∑
n=1

(
Et,x

[
G
(
σn,Xσn;T + h, ehBξ

)
1σn<T +h

]− Et,x

[
G(σn,Xσn;T , ξ)1σn<T

])
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= lim
h→0

1

h

∞∑
n=1

Et,x

[
G
(
σn,Xσn;T + h, ehBξ

)
1T ≤σn<T +h︸ ︷︷ ︸

=:I1,n(h)

]

+ lim
h→0

1

h

∞∑
n=1

Et,x

[(
G
(
σn,Xσn;T + h, ehBξ

)− G(σn,Xσn;T , ξ)
)
1σn<T︸ ︷︷ ︸

I2,n(h)

]
.

Remark 4.3 together with (A.1) on one hand, and mean value theorem on the other, yield

1

h
I1,n(h) ≤ C1T ≤σn<T +h,

1

h
I2,n(h) = YT,ξG

(
σn,Xσn;T + h̃, eh̃Bξ

)
1σn<T , with |̃h| ≤ h.

Here the low index in YT,ξ is meant to stress that Y is computed with respect to the variables (T , ξ). By (4.8) and (4.11)
we can apply bounded convergence theorem and obtain

YT,ξ�(t, x;T , ξ) =
∞∑

n=1

Et,x

[
1σn<T YT,ξG(σn,Xσn;T , ξ)

]
, T ∈]t, T0[ , ξ ∈ U.

Proceeding analogously, by employing again the Schauder estimates reported in Theorem A.3(b), one also proves

∂ξi
�(t, x; ·, ·) ∈ C1+α

Y

(]t, T0[×U
)
, ∂ξiξj

�(t, x; ·, ·), Y�(t, x; ·, ·) ∈ C
0,α
B

(]t, T0[×U
)
, i, j = 1, . . . , p0,

which is �(t, x; ·, ·) ∈ C
2,α
B (]t, T0[×U). Eventually, �(t, x; ·, ·) ∈ C

2,α
B (]t, T0[×D) follows from the fact that x0 is arbi-

trary. The fact that �(t, x; ·, ·) solves (1.13) is now a straightforward consequence of Remark 3.7, by integrating by parts
the left-hand side of (3.11) and since f is arbitrary. �

4.2. Proof of Theorem 1.5, Part (c)

Hereafter throughout this section we assume Assumption 1.4 to be in force as well.

Notation 4.4. For any T ∈]0, T0[ and any ϕ bounded and Borel-measurable on R
d (in short ϕ ∈ mBb), let uϕ,T :

]0, T [×D →R be the function defined as uϕ,T (t, x) := (Tt,T ϕ)(x).

Lemma 4.5. Let T ∈]0, T0[ and ϕ ∈ mBb such that uϕ,T ∈ C(]0, T [×D). Then, uϕ,T ∈ C
2,α
B (]0, T [×D) and solves the

backward Kolmogorov equation (1.14).

Again, the proof is based on the crucial fact that the Itô formula (1.8) is valid for functions that are C2 in the intrinsic
sense, i.e. C2

B , and not only for functions the are C2 in the Euclidean sense.

Proof. Let δ > 0, x0 ∈ D, ε ∈]0,1[ such that Sε(x0) ⊂ D and denote by f the unique solution in C
2,α
B (Hε(0, x0;T −

δ)) ∩ C((Hε ∪ ∂P Hε)(0, x0;T − δ)) (see Theorem A.2) of{
Lf = 0 on Hε(0, x0;T − δ),

f = uϕ,T on ∂P Hε(0, x0;T − δ).
(4.12)

For any t ∈]0, T − δ[ let now τ = τ (t) be the t -stopping time as defined in (4.3). By Theorem 1.3 combined with Optional
Sampling Theorem, the process Mt·∧τ , with Mt as in (1.8) and f as in (4.12), is an F t -martingale under Pt,x . Thus

f (t, x) = Et,x

[
uϕ,T

(
(T − δ) ∧ τ,X(T −δ)∧τ

)]= Et,x

[
Es,y

[
ϕ(XT )

]|s=(T −δ)∧τ,y=X(T −δ)∧τ

]
(by Strong Markov property)

= Et,x

[
Et,x

[
ϕ(XT )|F(T −δ)∧τ

]]= Et,x

[
ϕ(XT )

]= uϕ,T (t, x).

Since x0 and δ are arbitrary, then uϕ,T ∈ C
2,α
B (]0, T [×D) and solves (1.14). �
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Lemma 4.6 (Strong Feller property). For any T ∈]0, T0[ and any ϕ ∈ mBb , uϕ,T ∈ C(]0, T [×D).

Proof. First note that, by Assumption 1.4 combined with Lemma 4.5, uψ,T ∈ C
2,α
B (]0, T [×D) and solves the backward

Kolmogorov equation (1.14), for any ψ ∈ Cb(R
d). Thus, by the internal Schauder estimates reported in Theorem A.3(a),

for any bounded domain V � ]0, T [×D we have

‖uψ,T ‖
C

0,α
B (V )

≤ C sup
]0,T [×D

|uψ,T | ≤ C‖ψ‖∞,

where C is a positive constant independent of ψ . In particular, by Theorem 2.4, for any (t0, x0) ∈]0, T [×D there exists
a neighborhood U(t0,x0) such that∣∣uψ,T (t, x) − uψ,T

(
t ′, x′)∣∣≤ C‖ϕ‖∞

∥∥(t ′, x′)−1 ◦ (t, x)
∥∥

B
, (t, x),

(
t ′, x′) ∈ U(t0,x0),

for any ψ ∈ Cb(R
d) such that ‖ψ‖∞ ≤ ‖ϕ‖∞. Therefore, in order to prove that uϕ,T is continuous in (t0, x0) it suffices

to prove that, for any (t, x) ∈ U(t0,x0), there exist a sequence of functions ψn ∈ Cb(R
d) with ‖ψn‖∞ ≤ ‖ϕ‖∞ such that

uψn,T (t, x) −→ uϕ,T (t, x), uψn,T (t0, x0) −→ uϕ,T (t0, x0) as n → ∞. (4.13)

To see this, let μ be the measure on B(Rd) defined as

μ(dz) = p(t, x;T ,dz) + p(t0, x0;T ,dz).

Note that we have

p(t, x;T , dz), p(t0, x0;T , dz) � μ(dz). (4.14)

Moreover, μ is a finite measure and thus, by Proposition 3.16 in [1], there exists a sequence of ψn ∈ Cb(R
d) with

‖ψn‖∞ ≤ ‖ϕ‖∞ such that

‖ψn − ϕ‖L1(B(Rd ),μ) −→ 0 as n → ∞.

Therefore, by (4.14), ψn → ϕ both p(t, x;T , dz)- and p(t0, x0;T , dz)-almost everywhere. Thus bounded convergence
theorem yields (4.13) and concludes the proof. �

Proposition 4.7. For any T ∈]0, T0[ and any ϕ ∈ mBb , uϕ,T ∈ C
2,α
B (]0, T [×D) and solves the backward Kolmogorov

equation (1.14).

Proof. It is an immediate consequence of Lemmas 4.5 and 4.6. �

Lemma 4.8. For any 0 < t < T < T0 and ξ ∈ D, the function �(t, ·;T , ξ) ∈ mBb , and

�(t, x;T , ξ) = Et,x

[
�(s,Xs;T , ξ)

]= (
Tt,s�(s, ·;T , ξ)

)
(x), t < s < T,x ∈ R

d . (4.15)

Proof. The boundedness is already contained in Part (a) of Theorem 1.5. We first prove the measurability of �(t, ·;T , ξ).
Let (ϕn)n∈N a family of functions in C0(D) such that ϕn → δξ , i.e.∫

D

f (y)ϕn(y) dy → f (ξ) as n → ∞, f ∈ C(D).

Therefore, since �(t, x;T , ·) ∈ C(D) (again by Part (a) of Theorem 1.5), we have

�(t, x;T , ξ) = lim
n→∞

∫
D

ϕn(y)�(t, x;T ,y) dy = lim
n→∞uϕn,T (t, x), x ∈R

d, (4.16)

and since uϕn,T (t, ·) is continuous (by Assumption 1.4), �(t, ·;T , ξ) is measurable as it is the pointwise limit of a sequence
of measurable functions.
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We now prove (4.15). By (4.16) along with Markov property, it holds that

�(t, x;T , ξ) = lim
n→∞Et,x

[
ϕn(XT )

]= lim
n→∞Et,x

[
Et,x

[
ϕn(XT )|F t

s

]]= lim
n→∞Et,x

[
Es,y

[
ϕn(XT )

]|y=Xs

]
= lim

n→∞Et,x

[
uϕn,T (s,Xs)

]= Et,x

[
�(s,Xs;T , ξ)

]
,

where, in the last equality, we employed again (4.16) with t = s and x = Xs along with bounded convergence theorem (it
is not restrictive to assume ‖ϕn‖L1(D) = 1 and thus, since �(s, x;T , ·) is locally bounded on D uniformly w.r.t. x ∈ R

d ,
uϕn,T (s,Xs) is bounded uniformly w.r.t. n). �

Proof of Theorem 1.5(c). It is a straightforward consequence of Proposition 4.7 and Lemma 4.8. �

Appendix A: Preliminary PDE results

In this appendix we collect some useful results about the operators L in (1.7) and L̃ in (4.1).

Theorem A.1. Let Assumption 1.1 be in force and let the coefficients ãij , ãi in (1.7) satisfy Assumptions (̃i) with N = 0
and (̃ii) at the beginning of Section 4.1. There exists a unique fundamental solution for L̃, namely a continuous non-
negative function �̃ = �̃(t, x;T , ξ) defined for any 0 < t < T < T0 and x, ξ ∈ R

d enjoying the following properties:

(a) for any (T , ξ) ∈]0, T0[×R
d , the function �̃(·, ·;T , ξ) ∈ C

2,α
B (]0, T [×R

d) and is a solution of{
L̃u = 0 on ]0, T [×R

d ,

u(T , ·) = δξ ,

where the terminal condition is in the distributional sense, i.e.

lim
t→T −

∫
Rd

�̃(t, x;T , ξ)ϕ(x) dx = ϕ(ξ), ϕ ∈ C0
(
R

d
);

Moreover, for any 0 < t < T < T0, x, ξ ∈R
d and i, j = 1, . . . , p0, we have

�̃(t, x;T , ξ) ≤ C�̄M(t, x;T , ξ),∣∣∂xi
�̃(t, x;T , ξ)

∣∣≤ C√
T − t

�̄M(t, x;T , ξ), (A.1)

∣∣∂xixj
�̃(t, x;T , ξ)

∣∣+ ∣∣Yt,x�̃(t, x;T , ξ)
∣∣≤ C

T − t
�̄M(t, x;T , ξ),

where C is a positive constant that depends only on B , M , T0 and where

�̄M(t, x;T , ξ) = 1√
(2π)d det C(T − t)

exp

(
−1

2

〈
C−1(T − t)

(
y − e(T −t)Bx

)
,
(
y − e(T −t)Bx

)〉)
is the fundamental solution of a constant coefficient Kolmogorov operator of the form (1.2) with covariance matrix

C(s) =
∫ s

0
erB

(
MIp0 0p0×(d−p0)

0(d−p0)×p0 0(d−p0)×(d−p0)

)
erB∗

dr.

(b) if Assumption (̃i) with N = 2 is also in force, then for any (t, x) ∈]0, T0[×R
d , the function �̃(t, x; ·, ·) ∈

C
2,α
B (]t, T0[×R

d) and is solution to{
L̃∗u = 0 on ]t, T0[×R

d ,

u(t, ·) = δx,
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where L̃∗ is the formal adjoint of L̃. Moreover, for any 0 < t < T < T0, x, ξ ∈R
d and i, j = 1, . . . , p0, we have

∣∣∂ξi
�̃(t, x;T , ξ)

∣∣≤ C√
T − t

�̄M(t, x;T , ξ),

∣∣∂ξiξj
�̃(t, x;T , ξ)

∣∣+ ∣∣YT,ξ �̃(t, x;T , ξ)
∣∣≤ C

T − t
�̄M(t, x;T , ξ).

Proof. See Theorems 1.4 and 1.5 in [6]. �

In the next result, the sets Sε(x0) ⊆R
d are as defined in Notation 4.1.

Theorem A.2. Let x0 ∈ D and ε ∈]0,1[ such that Sε(x0) ⊆ D. Then, under Assumptions 1.1 and 1.2 with N = 0, for any
T ∈]0, T0[ and h ∈ C(∂P Hε(0, x0;T )), there exists a unique solution in C

2,α
B (Hε(0, x0;T )) ∩ C((Hε ∪∂P Hε)(0, x0;T ))

to {
Lf = 0, on Hε(0, x0;T ),

f = h, on ∂P Hε(0, x0;T ).

Moreover, if h|∂�Hε(0,x0;T ) ≡ 0, then the following representation holds:

f (t, x) =
∫

Sε(x0)

G(t, x;T , ξ)h(T , ξ) dξ, (t, x) ∈ (Hε ∪ ∂P Hε)(0, x0;T ),

where G denotes the Green function of L for Hε(0, x0;T0), namely a continuous non-negative function G(t, x;T , ξ)

defined for any 0 < t < T < T0 and x, ξ ∈ Sε(x0) enjoying the following properties:

(a) for any (T , ξ) ∈ Hε(0, x0;T0), the function G(·, ·;T , ξ) ∈ C
2,α
B (Hε(0, x0;T ))∩C((Hε ∪∂�Hε)(0, x0;T )) and solves⎧⎪⎨⎪⎩

Lf = 0 on Hε(0, x0;T ),

f = 0 on ∂�Hε(0, x0;T ),

f (T , ·) = δξ on Sε(x0);
(b) if Assumption 1.2 with N = 2 is also in force, then G is also the Green function of the formal adjoint L∗ for

Hε(0, x0;T0). In particular, for any (t, x) ∈ Hε(0, x0;T0), the function G(t, x; ·, ·) ∈ C
2,α
B (Hε(t, x0;T0)) ∩ C((Hε ∪

∂�Hε)(t, x0;T0)) and solves⎧⎪⎨⎪⎩
L∗f = 0 on Hε(t, x0;T0),

f = 0 on ∂�Hε(t, x0;T0),

f (t, ·) = δx on Sε(x0).

Proof. See [11] and [7, Section 4]. �

Theorem A.3. Let Q ⊂R×R
d be a bounded domain. Then, under Assumptions 1.1 and 1.2 with N = 0, for any domain

Q0 � Q there exists c > 0 such that:

(a) if u is a bounded function in C
2,α
B (Q) such that Lu = 0 on Q, we have

sup
Q0

(
p0∑
i=1

|∂xi
u| +

p0∑
i,j=1

|∂xixj
u| + |Yu|

)
+ ‖u‖

C
0,α
B (Q0)

+ ‖u‖
C

1,α
B (Q0)

+ ‖u‖
C

2,α
B (Q0)

≤ c sup
Q

u, (A.2)

(b) if Assumption 1.2 with N = 2 is also in force, and u is a bounded function in C
2,α
B (Q) such that L∗u = 0 on Q, then

(A.2) holds.

Proof. It is a particular case of [7, Theorem 1.3]. �
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Appendix B: Fundamental solutions and Markov processes

We recall some basic notions about Markov processes as given in [8] and [20]. A transition distribution is a kernel
p(t, x;T , ·) that satisfies:

(1) p(t, x;T , ·) is a probability measure on (Rd,B(Rd)) for all 0 ≤ t < T < T0 and x ∈R
d ;

(2) p(t, ·;T ,A) is B(Rd)-measurable for any 0 ≤ t < T < T0 and A ∈ B(Rd);
(3) if 0 ≤ t < s < T < T0, x ∈ R

d and A ∈ B(Rd), the following Chapman–Kolmogorov identity holds:

p(t, x;T ,A) =
∫
Rd

p(s, ξ ;T ,A)p(t, x; s, dξ).

A Markov process with transition distribution p is a stochastic process X = (Xt )0≤t<T0 defined on the quartet
(�,F, (F t

T )0≤t≤T <T0, (Pt,x)0≤t<T0,x∈Rd ) such that:

(a) (�,F) is a measurable space and (F t
T )0≤t≤T <T0 is a family of filtrations satisfying F t

T ⊆ F t ′
T ′ for t ′ ≤ t, T ≤ T ′ and

F =F0
T0

(i.e. F is the smallest σ -algebra containing all F t
T );

(b) (XT )t≤T <T0 is adapted to F t for any t ∈ [0, T0[;
(c) for any (t, x) ∈ [0, T0[×R

d , Pt,x is a probability measure on (�,F t
T0

) satisfying

Pt,x(Xt = x) = 1,

Pt,x

(
XT ∈ A|F t

s

)= p(s,Xs;T ,A), t ≤ s < T < T0,A ∈ B
(
R

d
)
.

Theorem 2.2.2 in [20] guarantees that for any transition distribution p there exists a Markov process X = (Xt )t∈[0,T0[
having p as transition distribution.

A transition distribution can be defined from a differential operator L̃ of the form (4.1) satisfying conditions (̃i)–(̃ii) at
the beginning of Section 4.1. Indeed, if �̃ denotes the fundamental solution of L̃ in Theorem A.1 then

p̃(t, x;T ,A) :=
∫

A

�̃(t, x;T , ξ) dξ, 0 ≤ t < T < T0, x ∈R
d,A ∈ B

(
R

d
)

(B.1)

defines a transition distribution. In virtue of the properties of � in Theorem A.1, if p̃ is as in (B.1) then the associated
Markov process admits a continuous version and is an At -global diffusion on R

d in the sense of Definition 3.2. This is
a consequence of Kolmogorov continuity theorem (see, for instance, Theorems 2.1.6 and 2.2.4 in [20]) and the estimate
given in the following

Lemma B.1. Let X̃ = (X̃t )t∈[0,T0[ be a Markov process with transition distribution p̃ in (B.1). Then for any q ≥ 1 there
exists a positive constant C such that

Et,x

[|X̃T − X̃s |q
]≤ C

(
1 + |x|q)|T − s| q

2 , t ≤ s < T < T0, x ∈ R
d . (B.2)

Proof. We recall the definition of D0 in (2.3) and notice that

|z| = ∣∣D0(λ)D0
(
λ−1)z∣∣≤ Cλ

∣∣D0
(
λ−1)z∣∣, z ∈R

d ,0 < λ < 1. (B.3)

Now we have

Et,x

[|X̃T − X̃s |q
]= Et,x

[
Es,X̃s

[|X̃T − X̃s |q
]]=

∫
Rd

�̃(t, x; s, ξ)

∫
Rd

�̃(s, ξ ;T ,y)|y − ξ |q dy dξ

≤ C

∫
Rd

�̄M(t, x; s, ξ)

∫
Rd

�̄M(s, ξ ;T ,y)
(∣∣y − e(T −s)Bξ

∣∣q + ∣∣(e(T −s)B − I
)
ξ
∣∣q)dy dξ

(applying estimate (B.3) with z = y − e(T −s)Bξ , λ = (T − s)
q
2 and by Proposition 3.5 in [6], for some M ′ > M)

≤ C(T − s)
q
2

∫
Rd

�̄M(t, x; s, ξ)

∫
Rd

�̄M ′(s, ξ ;T ,y) dy dξ

+ C(T − s)q
∫
Rd

�̄M(t, x; s, ξ)

∫
Rd

|ξ |q�̄M(s, ξ ;T ,y) dy dξ

that yields (B.2). �
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We finally observe that Theorem A.1 also implies that X̃ is a Feller process on D in the sense of Assumption 1.4, and
as such it is a strong Markov process (see [8], Corollary 2.6, p. 28).

Acknowledgements

The authors are grateful to the anonymous Reviewer for their thorough reading and for their useful suggestions.

References

[1] L. Ambrosio, G. Da Prato and A. Mennucci. Introduction to Measure Theory and Integration. Appunti. Scuola Normale Superiore di Pisa (Nuova
Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)] 10. Edizioni della Normale, Pisa, 2011. MR3379909 https://doi.org/10.
1007/978-88-7642-386-4

[2] P. Baldi. An Introduction Through Theory and Exercises. Stochastic Calculus. Universitext. Springer, Cham, 2017. MR3726894 https://doi.org/10.
1007/978-3-319-62226-2

[3] V. Bally, L. Caramellino and P. Pigato. Tube estimates for diffusions under a local strong Hörmander condition. Ann. Inst. Henri Poincaré Probab.
Stat. 55 (2019) 2320–2369. https://doi.org/10.1214/18-AIHP950

[4] G. Cibelli, S. Polidoro and F. Rossi. Sharp Estimates for Geman–Yor Processes and applications to Arithmetic Average Asian options. J. Math.
Pures Appl. (9) 129 (2019) 87–130. MR3998791 https://doi.org/10.1016/j.matpur.2018.12.009

[5] F. Delarue and S. Menozzi. Density estimates for a random noise propagating through a chain of differential equations. J. Funct. Anal. 259 (6)
(2010) 1577–1630. MR2659772 https://doi.org/10.1016/j.jfa.2010.05.002

[6] M. Di Francesco and A. Pascucci. On a class of degenerate parabolic equations of Kolmogorov type. Appl. Math. Res. Express. AMRX 3 (2005)
77–116. MR2180050

[7] M. Di Francesco and S. Polidoro. Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-
divergence form. Adv. Differential Equations 11 (11) (2006) 1261–1320. MR2277064

[8] A. Friedman. Stochastic Differential Equations and Applications. Vol. 1. Probability and Mathematical Statistics 28. Academic Press [Harcourt
Brace Jovanovich, Publishers], New York–London, 1975. MR0494490

[9] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 32 (1) (1985) 1–76. MR0783181
[10] E. Lanconelli and S. Polidoro. On a class of hypoelliptic evolution operators. Rend. Semin. Mat. Univ. Politec. Torino 1 (1994) 29–63. Partial

differential equations, II (Turin, 1993). MR1289901
[11] M. Manfredini. The Dirichlet problem for a class of ultraparabolic equations. Adv. Differential Equations 2 (5) (1997) 831–866. MR1751429
[12] S. Pagliarani and A. Pascucci. The exact Taylor formula of the implied volatility. Finance Stoch. 21 (3) (2017) 661–718. MR3663640

https://doi.org/10.1007/s00780-017-0330-x
[13] S. Pagliarani, A. Pascucci and M. Pignotti. Intrinsic Taylor formula for Kolmogorov-type homogeneous groups. J. Math. Anal. Appl. 435 (2)

(2016) 1054–1087. MR3429628 https://doi.org/10.1016/j.jmaa.2015.10.080
[14] S. Pagliarani and M. Pignotti Intrinsic Taylor formula for non-homogeneous Kolmogorov-type Lie groups. Preprint, 2017. Available at

arXiv:1707.01422v2.
[15] A. Pascucci. PDE and Martingale Methods in Option Pricing. Bocconi & Springer Series 2. Springer, Milan; Bocconi University Press, Milan,

2011. MR2791231 https://doi.org/10.1007/978-88-470-1781-8
[16] P. Pigato. Tube estimates for diffusion processes under a weak Hörmander condition. Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018) 1.

MR3765891 https://doi.org/10.1214/16-AIHP805
[17] S. Polidoro. On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type. Matematiche (Catania) 49 (1) (1994) 53–105.

MR1386366
[18] R. L. Schilling and J. Wang. Strong Feller continuity of Feller processes and semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15

(2) (2012), 1250010, 28. MR2957137 https://doi.org/10.1142/S0219025712500105
[19] C. Soize. The Fokker–Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. Series on Advances in Mathemat-

ics for Applied Sciences. 17. World Scientific Publishing Co., Inc., River Edge, NJ, 1994. MR1287386 https://doi.org/10.1142/9789814354110
[20] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Classics in Mathematics. Springer-Verlag, Berlin, 2006. Reprint of

the 1997 edition. MR2190038
[21] D. Talay. Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme.

Markov Process. Related Fields 8 (2) (2002) 163–198. Inhomogeneous random systems (Cergy-Pontoise, 2001). MR1924934

http://www.ams.org/mathscinet-getitem?mr=3379909
https://doi.org/10.1007/978-88-7642-386-4
http://www.ams.org/mathscinet-getitem?mr=3726894
https://doi.org/10.1007/978-3-319-62226-2
https://doi.org/10.1214/18-AIHP950
http://www.ams.org/mathscinet-getitem?mr=3998791
https://doi.org/10.1016/j.matpur.2018.12.009
http://www.ams.org/mathscinet-getitem?mr=2659772
https://doi.org/10.1016/j.jfa.2010.05.002
http://www.ams.org/mathscinet-getitem?mr=2180050
http://www.ams.org/mathscinet-getitem?mr=2277064
http://www.ams.org/mathscinet-getitem?mr=0494490
http://www.ams.org/mathscinet-getitem?mr=0783181
http://www.ams.org/mathscinet-getitem?mr=1289901
http://www.ams.org/mathscinet-getitem?mr=1751429
http://www.ams.org/mathscinet-getitem?mr=3663640
https://doi.org/10.1007/s00780-017-0330-x
http://www.ams.org/mathscinet-getitem?mr=3429628
https://doi.org/10.1016/j.jmaa.2015.10.080
http://arxiv.org/abs/arXiv:1707.01422v2
http://www.ams.org/mathscinet-getitem?mr=2791231
https://doi.org/10.1007/978-88-470-1781-8
http://www.ams.org/mathscinet-getitem?mr=3765891
https://doi.org/10.1214/16-AIHP805
http://www.ams.org/mathscinet-getitem?mr=1386366
http://www.ams.org/mathscinet-getitem?mr=2957137
https://doi.org/10.1142/S0219025712500105
http://www.ams.org/mathscinet-getitem?mr=1287386
https://doi.org/10.1142/9789814354110
http://www.ams.org/mathscinet-getitem?mr=2190038
http://www.ams.org/mathscinet-getitem?mr=1924934
https://doi.org/10.1007/978-88-7642-386-4
https://doi.org/10.1007/978-3-319-62226-2

	Introduction
	Main results and comparison with the literature

	Preliminaries: Hölder spaces and Taylor formula
	Local diffusions and intrinsic Itô formula
	Proof of Theorem 1.3 (Intrinsic Itô formula)
	Proof of Proposition 3.6
	Proof of Proposition 3.5

	Local densities
	Proof of Theorem 1.5, Part (a), (b)
	Proof of Theorem 1.5, Part (c)

	Appendix A: Preliminary PDE results
	Appendix B: Fundamental solutions and Markov processes
	Acknowledgements
	References

