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LARGE TOURNAMENT GAMES
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University of Toronto

We consider a stochastic tournament game in which each player is re-
warded based on her rank in terms of the completion time of her own task and
is subject to cost of effort. When players are homogeneous and the rewards
are purely rank dependent, the equilibrium has a surprisingly explicit charac-
terization, which allows us to conduct comparative statics and obtain explicit
solution to several optimal reward design problems. In the general case when
the players are heterogenous and payoffs are not purely rank dependent, we
prove the existence, uniqueness and stability of the Nash equilibrium of the
associated mean field game, and the existence of an approximate Nash equi-
librium of the finite-player game.
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1. Introduction. To put our mathematical problem of a large population tour-
nament into a real life context, consider the pre-Google time when a lot of players
were competing to build a successful internet search engine. This is a game in
which the future reward depends mostly on which player would come up first with
a superior product, and not so much on the actual date of the invention. This is the
type of tournament games we mostly focus on in this paper: many players with the
rewards depending only on the ranking of the times needed to complete a task, in
which the progress is gradual rather than sudden.

We formulate the large population tournament as a mean field game—a stochas-
tic game with infinitely many small players interacting through their aggregate
distribution, introduced by Lasry and Lions (2006a, 2006b, 2007), and Huang,
Caines and Malhamé (2007), Huang, Malhamé and Caines (2006). The advantage
of the mean field formulation is that the equilibrium has an appealing decentral-
ized structure: each player bases her decisions on her own state variable and a
deterministic measure of completion time distribution that is obtained from the so-
lution of a fixed-point problem. One can then use the mean field game solution to
construct an approximate Nash equilibrium of the finite-player game. Apart from
our application to the analysis of tournaments, mean field games have been applied
to macroeconomics by Achdou et al. (2014), analysis of bank runs by Carmona,
Delarue and Lacker (2017), systemic risk by Carmona, Fouque and Sun (2015)
and analysis of queueing systems with strategic servers by Bayraktar, Budhiraja
and Cohen (2019). We also refer to the works of Guéant, Lasry and Lions (2011),
Bensoussan, Frehse and Yam (2013) and Carmona and Delarue (2018) for further
reading.

What sets our set-up apart from the above is the rank-based feature of our prob-
lem: players are rewarded according to how their completion times are ranked.
The completion time is the hitting time of the player’s own diffusion process,
whose drift she controls by costly effort. Mean field games with rank-based fea-
tures are generally difficult to analyze due to the lack of a priori regularity of the
rank function that depends on the equilibrium. Except for the terminal position
ranking game of Bayraktar and Zhang (2016) and the one-stage Poisson game of
Nutz and Zhang (2017), one can usually only hope for abstract existence under the
weak formulation as in Carmona and Lacker (2015), Example 5.9. Hence, one of
the contributions of our work is the construction of a solvable mean field model,
which is rare outside the classical linear-quadratic framework. Moreover, even in
the general setup without an explicit solution, we are still able to handle reward
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functions that are discontinuous in the rank variable. A key ingredient to our anal-
ysis is recognizing that the optimally controlled state density is a distortion of the
density of Brownian motion by a factor related to the Cole–Hopf transformation
of the value function. Particle systems with rank-based interaction, but no strategic
actions, have been widely studied in the literature; see, for example, Shkolnikov
(2012), and the references therein. A recent paper by Nadtochiy and Shkolnikov
(2019) considers particles interacting through hitting times.

In economics, the analysis of tournaments goes back to the seminal paper of
Lazear and Rosen (1981), which has inspired many papers that followed, including
Akerlof and Holden (2012), Balafoutas et al. (2017), Olszewski and Siegel (2017)
and Fang, Noe and Strack (2018), among the more recent ones. Most of these
works focus on finitely many players or static models. Recently, there has been
active research on models in which the randomness is driven by Poisson arrivals,
and the player’s effort affects the probability of a breakthrough; see, for example,
Bimpikis, Ehsani and Mostagir (2019), Halac, Kartik and Liu (2017) and Nutz and
Zhang (2017). Those models are aimed more at applications to R&D with sudden
innovation breakthroughs, whereas our model is more appropriate for the cases in
which the progress is incremental.

In our model, when the players are homogeneous in their starting point and effi-
ciency (i.e., cost of effort), and the reward function depends only on the ranks and
the given deadline, we find that the equilibrium has a semi-explicit formula. This
enables us to analyze some interesting comparative statics. In particular, we find
that the aggregate welfare may be increasing in the cost of effort. This indicates, for
example, that for an economy in which building a start-up is a relatively complex
endeavor, the complexity may not be such a bad thing—if it was less complex, too
many entrepreneurs may put in an inefficiently high effort. We also find that, when
the total pie is sufficiently large, high inequality in the rewards has a demoraliz-
ing effect for many players, a phenomenon emphasized in Fang, Noe and Strack
(2018). However, in our model, when the pie is sufficiently small, the higher prize
inequality improves the welfare and the average effort. This is because then, in our
benchmark case in which the total reward amount is fixed, a higher percentage of
players give up, and it is worthwhile for the players who do not give up to exert
higher effort. In the example of internet search engines (or social media sites, or
computer operating systems) the total pie is large, but the rewards are uneven, sug-
gesting that there is loss of efficiency in that many players get discouraged from
applying effort. This logic lends some support to having government subsidies, for
example, for R&D in renewable energy, if those subsidies make the rewards more
even, assuming the profits to be made are substantial.

Having a semiexplicit equilibrium also allows us to tackle the problem of mech-
anism design, that is, designing the game rewards to optimize a social welfare
criterion, an area that has not been widely explored in the mean field game lit-
erature due to the lack of tractability. Our works adds to literature of a principal
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and many agents considered by Elie, Mastrolia and Possamaï (2019) and Nutz and
Zhang (2017).

We also consider an extension of the benchmark model where the total reward,
the “pie,” may depend on the population completion rate, as in institutions in which
the wealth created by production increases with the completion rate of individual
tasks. It turns out that, with a completion rate-dependent pie, there may be multiple
equilibria all of which can be characterized in a semiexplicit manner. Furthermore,
by interpolating between a pure contribution game and a pure competition game,
we are able to draw a bifurcation diagram of the equilibria.

While we do not have an explicit characterization of equilibrium when the play-
ers are heterogeneous or when the reward function is not purely rank-based, we
prove its existence using Schauder or Brouwer’s fixed-point theorems, and unique-
ness under an additional monotonicity condition. We also show the stability of the
fixed point, which enables us to approximate the mean field equilibrium by the so-
lution to a finite dimensional system of nonlinear equations. Finally, we construct
an approximate equilibrium for a game with a large finite number of players from
the mean field equilibrium.

The rest of the paper is structured as follows: we present the model in Section 2;
the results for homogeneous players, including comparative statics, optimal reward
design and extension to the completion rate-dependent pie in Section 3; general
existence, uniqueness, stability and the approximation to finite-player games in
Section 4; and a numerical example with heterogeneous players in Section 5; some
minor proofs are provided in the Appendix.

2. Model setup. We consider a game with a large number of independent
players, in which each player can exert effort to move her project forward, and
is rewarded based on the time needed to complete the project and/or the ranking
of that time relative to other players. The completion time is modeled as the first
time that her project value or progress process reach a target level normalized to
level zero. The tournament ends when a given deadline T ∈ (0,∞] is reached.
The total amount of the reward, or the “pie,” is fixed for now, although we extend
in Section 3.5 some of our results to a pie that depends on the terminal comple-
tion rate, that is, the percentage of players who manage to meet the deadline. The
reader can have in mind a population of technology firms competing to build a
new app/website where the reward depends on the relative time of completing a
superior product (as in the search engines example from the Introduction). More
generally, our setup might include cases in which the players derive utility from
their ranking relative to their peers, even if the ranking is not rewarded by a mon-
etary payment.

The reward a player gets for finishing at time t with rank r is given by a bounded
function R(t, r) : R+ × [0,1] �→ R. We assume R is decreasing in both variables.
Throughout the paper, increasing and decreasing are understood in the weak sense.
When T < ∞, we also impose R(t, r) ≡ R∞ for all t > T so that everyone who
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fails to complete her project by the deadline receives the same minimum partici-
pation reward or incompletion penalty. Denote the set of reward functions by R.
We start by assuming an infinite population of players, and later study how well it
approximates a finite population in the limit.

2.1. A single player’s problem. The optimization problem of a single player,
in an infinite population of players, is given as follows. Denote by μ ∈ P(R+) the
distribution of the completion times of the population, and by Fμ its cumulative
distribution function (c.d.f.). The rank of the single player who finishes at time t is
given by Fμ(t), as this is the fraction of players who finish before or at the same
time as her. In our game, μ will be nonatomic, hence whether the rank is measured
using Fμ(t) or Fμ(t−) does not matter.

Let Rμ(t) := R(t,Fμ(t)), which is then a bounded and decreasing function of t .
We assume the player is risk-neutral and has quadratic cost, and that her state pro-
cess X, representing her distance to completion, follows the stochastic differential
equation (SDE):

(2.1) dXs = −as ds + σ dBs,

where B is a Brownian motion. The player’s effort process a is admissible if it
is nonnegative, progressively measurable with respect to the filtration of B (the
filtration can be larger; see Remark 2.1), and yields a unique strong solution of
(2.1) up to the first passage time to level zero, and if that time is nonatomic. The
nonatomic condition is for technical reasons, and can be removed if Rμ is lower
semicontinuous for all μ ∈ P(R+), which will be the case in our examples. The
optimization problem of the single player has the value function

(2.2) v(t, x) = v(t, x;μ,c) := sup
a

E

[
Rμ(τ) −

∫ τ∧T

t
ca2

s ds
∣∣∣Xt = x

]
,

where c > 0 is the cost parameter and τ = inf{s ≥ t : Xs = 0} is the completion
time.

While we assume no discounting for tractability, it can be interpreted as the case
in which the cost of effort and the reward increase exactly at the same rate at which
the discount factor decreases. For example, the salaries in a certain profession in-
crease over time, as does the cost of education and job searching. If those increases
are exactly offset by the players’ discount factor, the value function is as above.
We can also consider the case in which the reward may decrease with the interval
in which completion occurs; see Remark 3.2.

For any y 	= 0, denote by τ ◦
y the first passage time of a Brownian motion to

level y. Its density is well known and given by (see, e.g., page 197 of Karatzas and
Shreve (1991))

(2.3) fτ ◦
y
(s) = |y|

s
√

2πs
exp

(
−y2

2s

)
, s > 0.
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Also introduce

(2.4)

u(t, x) = u(t, x;μ,c)

:= E

[
exp

(Rμ(t + τ ◦
x/σ )

2cσ 2

)]
= E

[
exp

(
Rμ(t + x2

σ 2 τ ◦
1 )

2cσ 2

)]
.

We have the following result.

PROPOSITION 2.1. The value function v(t, x) of the single player’s problem
is given by

v(t, x) = 2cσ 2 ln
(
u(t, x)

)
.

There exists an optimal (Markovian/feedback) action a∗ that attains v(t, x), given
by

a∗(t, x) = − 1

2c
vx(t, x)1{x>0} = −σ 2 ux(t, x)

u(t, x)
1{x>0}.

The corresponding completion time τ ∗ = τ ∗,t,x is nonatomic and has probability
density function (p.d.f.)

(2.5) fτ∗(s) = u(s,0)

u(t, x)
fτ ◦

x/σ
(s − t), s ≥ t.

PROOF. Let u be defined by (2.4), v := 2cσ 2 lnu and a∗ := −vx/(2c)1{x>0} =
−σ 2(ux/u)1{x>0}.

Step 1. Show that v is a solution to the Hamilton–Jacobi–Bellman (HJB) equa-
tion:

(2.6) vt + sup
a

{
−avx + 1

2
σ 2vxx − ca2

}
= 0,

with boundary condition v(t,0) = Rμ(t) for 0 ≤ t ≤ T , and when T < ∞, also the
terminal condition v(T , x) = R∞ = Rμ(T +) for x > 0.

By the first-order condition, (2.6) is equivalent to

vt + 1

4c
(vx)

2 + 1

2
σ 2vxx = 0,

where the supremum is attained by a∗ pointwise. To show v is a solution to the
above equation with the desired boundary and terminal conditions, it is equivalent
to show its Cole–Hopf transformation u = e(2cσ 2)−1v satisfies

(2.7) ut + 1

2
σ 2uxx = 0,

with

u(t,0) = exp
(

Rμ(t)

2cσ 2

)
, u(T , x) = exp

(
R∞

2cσ 2

)
if T < ∞.

But this is immediate from the Feynman–Kac theorem.
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Step 2. Show that the SDE (2.1) controlled by a∗ ≥ 0 has a unique strong solu-
tion X∗(= X∗,t,x) up to τ ∗(= τ ∗,t,x), the first passage time of X∗ to level zero.

By the monotonicity and boundedness of Rμ, u is decreasing in both t and x,
and

(2.8) exp
(

R∞
2cσ 2

)
≤ u(t, x) ≤ exp

(
R(0,0)

2cσ 2

)
.

Since τ ◦
1 has a smooth density, even if Rμ is not continuous, it is not hard to see

that u ∈ C1,2(R+ × (0,∞)). In fact, direct differentiation of (2.4) yields

ux(t, x) = 1

x
E

[
exp

(
Rμ(t + x2

σ 2 τ ◦
1 )

2cσ 2

)(
1 − 1

τ ◦
1

)]
,

and

uxx(t, x) = 1

x2 E

[
exp

(
Rμ(t + x2

σ 2 τ ◦
1 )

2cσ 2

)(
1

(τ ◦
1 )2 − 3

τ ◦
1

)]
.

It can be shown using the reflection principle that 1/τ ◦
1 has finite moments; in

particular, E[1/τ ◦
1 ] = 1 and E[(1/τ ◦

1 )2] = 3. So ux and uxx are bounded on any
region away from x = 0. It follows that a∗ is bounded, and Lipschitz continuous
in x on any compact subset of (0,∞). Standard SDE theory implies the existence
of a unique strong solution up to τ ∗.

Step 3. Show that τ ∗ is nonatomic and has the desired p.d.f. (2.5).
We employ a change of probability measure argument. Let B◦ be a Brownian

motion under some probability measure P
◦. Define Xs := x + σ(B◦

s − B◦
t ) and

τ := inf{s ≥ t : Xs = 0}. Let u be the function given by (2.4). Define

Zs := u(s ∧ τ,Xs∧τ )

u(t, x)
.

We have Zt = 1 and that the paths of Z are P
◦-a.s. continuous. To see the

latter, observe that if Rμ(s) is continuous at s = τ(ω), then lims→τ(ω) Zs =
exp(

Rμ(τ(ω))

2cσ 2 )/u(t, x) = Zτ(ω). Since Rμ is decreasing, it has at most countably
many points of discontinuity. Since τ is nonatomic under P◦, with P

◦-probability
one, Rμ(s) is continuous at s = τ , and thus, s �→ Zs is continuous at s = τ . Path
continuity before time τ is trivial. By Itô’s lemma,

dZs =
⎧⎪⎨⎪⎩

σux(s,Xs)

u(t, x)
dB◦

s t ≤ s < τ,

0 s ≥ τ,

where the drift of Z prior to time τ is killed using (2.7). Since Z is bounded, it is a
P

◦-martingale. Hence we can define a probability measure P via dP/dP◦ = Z∞ =
Zτ . Since Zτ is strictly positive, P is equivalent to P

◦.
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Next, we rewrite the dynamics of Z as dZs = Zs dYs where

dYs =
⎧⎨⎩

σux

u
(s,Xs) dB◦

s t ≤ s < τ.

0 s ≥ τ.

We see that Z is the stochastic exponential of Y . (We could set Zs ≡ 1 and dYs ≡ 0
for s < t if necessary.) The Girsanov theorem implies that

Bs := B◦
s − 1{s≥t}

∫ s∧τ

t

σux

u
(r,Xr) dr

is a P-Brownian motion. Replacing B◦ by B in the dynamics of X, we obtain

dXs = σ 2 ux

u
(s,Xs)1{s<τ } ds + σ dBs = −a∗(s,Xs) ds + σ dBs, s ≥ t.

That is, X has the same distribution under P as the process X∗ under the candidate
optimal effort a∗. Under P, we have

P(τ ∈ ds) = u(s,0)

u(t, x)
P

◦(τ ∈ ds), s ≥ t,

from which we conclude that τ (and hence τ ∗) is nonatomic and has the desired
p.d.f.

Step 4. Verify that v is indeed the value function and that a∗ is indeed the opti-
mal effort.

The verification argument is standard except for an extra localization step to take
care of the potential singularity of vx near x = 0. Specifically, fixing an arbitrary
admissible control a and the associated state process X, we apply Itô’s lemma to
v(s,Xs) from time t to τε ∧T , where ε > 0 and τε := {s ≥ t : Xs = ε}, and use the
HJB equation (2.6). This leads to

(2.9) v(t, x) ≥ Ev(τε ∧ T ,Xτε∧T ) − E

∫ τε∧T

t
ca2

s ds.

Now, as ε ↘ 0, since τε is increasing and bounded by inf{s ≥ t : x +σ(Bs −Bt) =
0}, it has a limit τ0 ≤ τ := inf{s ≥ t : Xs = 0}. We claim that τ0 = τ . Indeed, if
Xτ0 > 0, then by path continuity, ε = Xτε > δ for some δ > 0, for all ε sufficiently
small, which is a contradiction.

By monotone convergence theorem, we have that E
∫ τε∧T
t ca2

s ds converges
to E

∫ τ∧T
t ca2

s ds as ε ↘ 0. To obtain the limit of Ev(τε ∧ T ,Xτε∧T ), note that
τε ∧ T → τ ∧ T and Xτε∧T → Xτ∧T . If τ > T , then Xτ∧T = XT > 0, and v(τε ∧
T ,Xτε∧T ) → v(T ,XT ) = R∞ = Rμ(τ) by the continuity of v in R+ × (0,∞).
If τ ≤ T , then Xτ∧T = Xτ = 0, and v(τε ∧ T ,Xτε∧T ) → v(τ,0) = Rμ(τ) if τ

is a continuity point of Rμ. Since Rμ has at most countably many points of dis-
continuity (by monotonicity) and τ is nonatomic by admissibility, we have, after
combining the two cases, that v(τε ∧ T ,Xτε∧T ) converges to Rμ(τ) a.s. Bounded
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convergence theorem then implies Ev(τε ∧T ,Xτε∧T ) → ERμ(τ). Note that if Rμ

is lower semicontinuous, then we can directly obtain lim infε v(τε ∧ T ,Xτε∧T ) ≥
Rμ(τ) without the nonatomic property of τ . So, letting ε ↘ 0 in (2.9) yields

v(t, x) ≥ E

[
Rμ(τ) −

∫ τ∧T

t
ca2

s ds

]
.

Since a is an arbitrary admissible control, taking supremum over a leads to the
conclusion that v dominates the value function.

Replacing a by a∗ which is admissible by Steps 2 and 3, all inequalities above
become equalities, which implies that

v(t, x) = E

[
Rμ

(
τ ∗) −

∫ τ∗∧T

t
c
(
a∗(

s,X∗
s

))2
ds

]
is dominated by the value function. Putting everything together, we conclude the
verification proof. �

REMARK 2.1. From the the verification step of the proof of Proposition 2.1,
it is not hard to see that the feedback control a∗ remains optimal if admissible con-
trols are progressively measurable with respect to a filtration larger than the one
generated by the driving Brownian motion B , as long as B remains a Brownian
motion for that filtration. Later we will use this fact in the construction of an ap-
proximate Nash equilibrium for the N -player game in which each player observes
not only her private state, but also the states of her competitors.

Having computed the best response of a single player to a given distribution μ,
we are now ready to study the Nash equilibrium of this infinite population game.
Supposing every player uses the optimal feedback control a∗ = a∗(·;μ,c) given
by Proposition 2.1, we obtain a new population completion time distribution. If
this new distribution is equal to μ, then we say μ is an equilibrium (completion
time distribution). We first consider a case in which equilibrium can be fully char-
acterized in Section 3, and then discuss the general case in Section 4.

3. Homogeneous players. In this section, we assume a unit mass of homo-
geneous players with independent Brownian motions driving their state processes.
By homogeneous, we mean the players all start playing at the same time t = 0 and
the same distance x0 > 0 from the goal, and they all have the same cost param-
eter c. Moreover, we specialize to the purely rank-based reward functions of the
form

(3.1) R(t, r) = 1{t≤T }H(r) + 1{t>T }R∞,

where H ≥ R∞ is a bounded decreasing function. That is, the only time depen-
dence is through the deadline T . We will show below that there always exists a
unique equilibrium in semiexplicit form. The proof is based on considering equa-
tion (2.5) as a fixed-point equation for the p.d.f. of the population completion time.
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3.1. Explicit characterization and properties of the equilibrium. Denote by
T

μ
r the r th quantile of a completion time distribution μ, and by N(x) the c.d.f. of

the standard normal distribution. We have the following results.

THEOREM 3.1. Suppose that R ∈R is of the form (3.1).

(i) For T < ∞, the unique equilibrium completion time distribution μ has a
quantile function given by

(3.2)
T μ

r = F−1
τ ◦
x0/σ

(1 − Fτ ◦
x0/σ

(T )

1 − Fμ(T )

∫ r

0
exp

(
R∞ − H(z)

2cσ 2

)
dz

)
,

r ∈ [
0,Fμ(T )

]
,

where

(3.3) Fτ ◦
x0/σ

(t) = 2
(

1 − N

(
x0

σ
√

t

))
,

and the equilibrium terminal completion rate Fμ(T ) ∈ (0,1) is the unique solution
of

(3.4) Fτ ◦
x0/σ

(T ) =
1 − Fτ ◦

x0/σ
(T )

1 − Fμ(T )

∫ Fμ(T )

0
exp

(
R∞ − H(z)

2cσ 2

)
dz.

Moreover, the value of the game is given by

(3.5) V = v(0, x0;μ,c) = R∞ + 2cσ 2 ln
(1 − Fτ ◦

x0/σ
(T )

1 − Fμ(T )

)
.

(ii) For T = ∞, the unique equilibrium completion time distribution μ has a
quantile function given by

(3.6) T μ
r = F−1

τ ◦
x0/σ

(∫ r
0 exp(−H(z)

2cσ 2 ) dz∫ 1
0 exp(−H(z)

2cσ 2 ) dz

)
.

Moreover, the value of the game is given by

(3.7) V∞ = v(0, x0;μ,c) = −2cσ 2 ln
(∫ 1

0
exp

(
−H(z)

2cσ 2

)
dz

)
.

PROOF. (i) Suppose T < ∞. By (2.5), the fixed-point equation (in terms of
the p.d.f. of the completion time distribution) is

fμ(t) = u(t,0;μ,c)

u(0, x0;μ,c)
fτ ◦

x0/σ
(t), t ∈ [0, T ].
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Denote y(r) = Fτ ◦
x0/σ

(T
μ
r ). Since any fixed point μ has positive density on [0, T ],

y(r) is differentiable on [0,Fμ(T )] with

y′(r) =
fτ ◦

x0/σ
(T

μ
r )

fμ(T
μ
r )

= u(0, x0;μ,c)

u(T
μ
r ,0;μ,c)

=
∫ T

0 exp(
H(Fμ(s))

2cσ 2 ) dFτ ◦
x0/σ

(s) + exp( R∞
2cσ 2 )(1 − Fτ ◦

x0/σ
(T ))

exp(
H(Fμ(T

μ
r ))

2cσ 2 )

=
∫ Fμ(T )

0 exp(H(z)

2cσ 2 )y′(z) dz + exp( R∞
2cσ 2 )(1 − Fτ ◦

x0/σ
(T ))

exp(H(r)

2cσ 2 )
.

Observe that exp(H(r)

2cσ 2 )y′(r) is independent of r , hence is constant for r ∈
[0,Fμ(T )]. Let C be this constant. We have

C = CFμ(T ) + exp
(

R∞
2cσ 2

)(
1 − Fτ ◦

x0/σ
(T )

)
.

Since Fτ ◦
x0/σ

(T ) < 1, the above equation implies Fμ(T ) < 1 and

exp
(

H(r)

2cσ 2

)
y′(r) ≡ C =

1 − Fτ ◦
x0/σ

(T )

1 − Fμ(T )
exp

(
R∞

2cσ 2

)
, r ∈ [

0,Fμ(T )
]
.

It follows that

y(r) =
1 − Fτ ◦

x0/σ
(T )

1 − Fμ(T )

∫ r

0
exp

(
R∞ − H(z)

2cσ 2

)
dz, r ∈ [

0,Fμ(T )
]
.

Setting r = Fμ(T ) yields equation (3.4) for Fμ(T ). The existence and uniqueness
of solution follows from the fact that

(3.8) φ(r) := 1

1 − r

∫ r

0
exp

(
R∞ − H(z)

2cσ 2

)
dz

is a continuous, strictly increasing function on [0,1) satisfying φ(0) = 0 and
limr→1 φ(r) = ∞. Finally, we have v(0, x0;μ,c) = 2cσ 2 lnu(0, x0;μ,c) and

u(0, x0;μ,c) = CFμ(T ) + exp
(

R∞
2cσ 2

)(
1 − Fτ ◦

x0/σ
(T )

)
=

1 − Fτ ◦
x0/σ

(T )

1 − Fμ(T )
exp

(
R∞

2cσ 2

)
from which (3.5) follows.

(ii) Suppose T = ∞. First, note that any possible fixed-point μ should have
strictly increasing c.d.f. which satisfies Fμ(∞) = 1 since the effort is nonnegative
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and the first passage time of a Brownian motion is almost surely finite. Let y(r) be
defined as above. A similar calculation shows that

exp
(

H(r)

2cσ 2

)
y′(r) =

∫ 1

0
exp

(
H(z)

2cσ 2

)
y′(z) dz

is constant (denoted by C) and

Fτ ◦
x0/σ

(
T μ

r

) = y(r) = C

∫ r

0
exp

(
−H(z)

2cσ 2

)
dz.

We can then use y(1) = 1 to find that C = (
∫ 1

0 exp(−H(z)

2cσ 2 ) dz)−1. Having ob-

tained y(r), we have T
μ
r = F−1

τ ◦
x0/σ

(y(r)). The equilibrium value is v(0, x0;μ,c) =
2cσ 2 lnu(0, x0;μ,c) = 2cσ 2 lnC. �

REMARK 3.1. Observe that the finite horizon equilibrium converges to the
infinite horizon equilibrium as T → ∞. To see this, use (3.4) to rewrite the finite
horizon equilibrium quantile function and value of the game as

T μ
r (T ) = F−1

τ ◦
x0/σ

( ∫ r
0 exp(R∞−H(z)

2cσ 2 ) dz∫ Fμ(T )

0 exp(R∞−H(z)

2cσ 2 ) dz
Fτ ◦

x0/σ
(T )

)
, r ∈ [

0,Fμ(T )
]

and

V (T ) = R∞ + 2cσ 2 ln
( Fτ ◦

x0/σ
(T )∫ Fμ(T )

0 exp(R∞−H(z)

2cσ 2 ) dz

)

= 2cσ 2 ln
( Fτ ◦

x0/σ
(T )∫ Fμ(T )

0 exp(−H(z)

2cσ 2 ) dz

)
.

As T → ∞, Fτ ◦
x0/σ

(T )/(1 − Fτ ◦
x0/σ

(T )) → ∞. For (3.4) to hold, we must have

limT →∞ Fμ(T ) = 1. It follows that the finite horizon equilibrium T
μ
r (T ) and

V (T ) converge to their infinite horizon counterparts as T → ∞, where the con-
vergence is pointwise for the quantile function.

REMARK 3.2. More generally, if R ∈R is of the form

R(t, r) =
n∑

k=1

1{Tk−1<t≤Tk}δkH(r) + 1{t>T }R∞,

where 0 = T0 < T1 < · · · < Tn = T < ∞, and δk is the discounting factor on
[Tk−1, Tk], then with αk := Fτ ◦

x0/σ
(Tk) and βk := Fμ(Tk), the equilibrium quan-

tile function is given by

T μ
r = F−1

τ ◦
x0/σ

(
1 − αn

1 − βn

n∑
k=1

∫ βk∧r

βk−1∧r
exp

(
R∞ − δkH(z)

2cσ 2

)
dz

)
, r ∈ [0, βn],
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where β1, . . . , βn can be found by solving the following nonlinear system of equa-
tions:

αk − αk−1 = 1 − αn

1 − βn

∫ βk

βk−1

exp
(

R∞ − δkH(z)

2cσ 2

)
dz, k = 1, . . . , n.

The game value in this case is V = R∞ +2cσ 2 ln(1−αn

1−βn
). Similarly, a semi-explicit

formula can be derived for the case T = ∞.

The semiexplicit solution allows us to obtain the following comparative statics
analytically. The proof is based on elementary calculus and can be found in the
longer ArXiv version arXiv:1811.00076.

PROPOSITION 3.1. Suppose that R ∈ R is of the form (3.1) with H contin-
uous. Then the terminal equilibrium completion rate β := Fμ(T ) and the game
value V (written as V∞ when T = ∞) have the following properties:

(i) When T < ∞, β is increasing in T and decreasing in x0 and c, where the
monotonicity in T and x0 are strict. Moreover,

lim
T →0

β = 0, lim
T →∞β = 1, lim

x0→0
β = 1, lim

x0→∞β = 0,

lim
c→0

β = 1, lim
c→∞β = Fτ ◦

x0/σ
(T ).

(ii) When T < ∞, V is increasing in T and decreasing in x0. Moreover,

lim
T →0

V = R∞, lim
T →∞V = V∞, lim

x0→0
V = V∞, lim

x0→∞V = R∞.

(iii) V∞ is independent of x0, and increasing in c with

lim
c→0

V∞ = H(1−) = lim
r↗1

H(r), lim
c→∞V∞ =

∫ 1

0
H(r) dr.

(iv) If H1 ≥ H2, then V∞(H1) ≥ V∞(H2). When T < ∞ and Ri = 1{t≤T }Hi +
1{t>T }Ri,∞, if H1 −R1,∞ ≥ H2 −R2,∞, then β(R1) ≥ β(R2) and V (R1)−R1,∞ ≥
V (R2) − R2,∞.

The results in items (i), (ii) and (iv) are intuitive and not surprising. Somewhat
surprising, at first sight, might be the fact stated in (iii) that the value V∞ of the
infinite horizon game is increasing in the cost parameter c. Let us consider the
limiting cases. When the cost goes to zero, all the players will apply very high
effort and the value will converge to the value H(1) (if H is left continuous at 1) of
the lowest ranked player. On the other hand, when the cost goes to infinity, they will
apply very small effort and the project values be driven by pure noise, which results
in an aggregate gain of

∫ ∞
0 H(Fμ(t)) dFμ(t) = ∫ 1

0 H(r) dr , where the equilibrium

http://arxiv.org/abs/arXiv:1811.00076
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measure μ is distributed as τ ◦
x0/σ

in the limit. Since H is decreasing, the averaged
value is higher than H(1).

In effect, low cost incentivizes players to apply too much effort in competing
with each other, without resulting in good ranking. It is a rat race without winners.
Define the (total) welfare as the aggregate game value of all players. When the
population is homogeneous and have unit mass, the terms “welfare” and “game
value” are used as synonyms. For the aggregate welfare, it does not matter which
of the players finish early, and competing too hard with each other to reach the goal
sooner decreases the welfare. Thus, in this game it is beneficial if the players are
discouraged from working too hard by having a high cost of effort. For example, if
building a start-up was too easy, too many entrepreneurs may apply too high effort.
However,with a finite deadline, as we will see in the next subsection, the effect of
the cost on the value may be increasing or decreasing. Moreover, if the pie was not
fixed, but for example, if it grew with the population completion rate and the speed
of completion, then lower cost may lead to higher value.

We end the theoretical analysis with a result on the expected total effort, needed
later below for further comparative statics.

PROPOSITION 3.2. Let T < ∞. Suppose that R ∈ R is of the form (3.1). Let
μ be the unique equilibrium completion time distribution given by Theorem 3.1(i),
and a∗

t := a∗(t,Xt ;μ,c), X, τ be the associated equilibrium action, state process
and completion time, respectively. Then the expected total effort in equilibrium is
given by

(3.9) E

∫ τ∧T

0
a∗
t dt =

x0(Fμ(T ) − Fτ ◦
x0/σ

(T ))

1 − Fτ ◦
x0/σ

(T )
.

PROOF. From Xτ∧T = x0 − ∫ τ∧T
0 a∗

t dt + σBτ∧T , we get E
∫ τ∧T

0 a∗
t dt =

x0 − EXτ∧T . To compute EXτ∧T , we make use of the change of measure in-
troduced in the proof of Proposition 2.1. Let P◦ and Z∞ as in step 3 of the proof
of Proposition 2.1 with (t, x) = (0, x0). We have

EXτ∧T = E[1{τ>T }XT ] = EP
◦[Z∞1{τ>T }XT ]

= EP
◦
[
u(τ,Xτ ;μ,c)

u(0, x0;μ,c)
1{τ>T }XT

]
= EP

◦
[ exp( R∞

2cσ 2 )

u(0, x0;μ,c)
1{τ>T }XT

]

= exp( R∞
2cσ 2 )

u(0, x0;μ,c)
EP

◦
Xτ∧T .

Since X is a martingale under P◦, we have EP
◦
Xτ∧T = x0. By Theorem 3.1(i),

u(0, x0;μ,c) = exp
(

v(0, x0;μ,c)

2cσ 2

)
=

1 − Fτ ◦
x0/σ

(T )

1 − Fμ(T )
exp

(
R∞

2cσ 2

)
.

Putting all pieces together, we get (3.9). �
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We see that the expected total effort increases with the completion rate Fμ(T )

when x0, σ , T are fixed. Since Fμ(T ) decreases with c, so does the expected total
effort.

3.2. The finite deadline: Numerical comparative statics. We now perform a
numerical study of the equilibrium in games with a finite deadline. The benchmark
choice of model inputs are T = 1, σ = 0.25, x0 = 1, c = 1 and R∞ = 0. Whenever
we vary one parameter, we keep the other parameters fixed.

Figures 1 and 2 illustrate some features of the equilibrium with a smooth reward
function H(r) = 6(1 − r)2, and a step reward function H(r) = 5 · 1[0,0.25)(r) + 2 ·
1[0.25,0.5)(r) + 1[0.5,1](r), respectively. We can see the following:

FIG. 1. Equilibrium completion time distribution, value function and effort function with
H(r) = 6(1 − r)2.
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FIG. 2. Equilibrium completion time distribution, value function and effort function with
H(r) = 5 · 1[0,0.25)(r) + 2 · 1[0.25,0.5)(r) + 1[0.5,1](r).

• For a large subset of time-location pairs (t, x), the effort is low. The effort is
high initially when there are a lot of players around the same level of progress,
and close to the cutoff dates that distinguish between different rank rewards (the
only such cutoff date being the deadline in the case of a smooth reward). Thus in
Figure 2, there is, for example, a lot of completion in the short interval before Fμ

hits 0.25 because 0.25 is the cutoff point for a higher reward. Once that point is
crossed, the players apply low effort until getting close to the next cutoff point,
so that the completion rate increases very slowly in the period between a cutoff
point and close to the next cutoff point.

• Moreover, the effort is very low (but not zero) when it is hard to complete the
task due to distant location or high cost, or when the reward too small. In those
cases (figures not shown), we find that the players maintain a low effort, relying
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TABLE 1
Equilibrium quartiles, completion rates and game values under varying deadline

T 1st quartile median 3rd quartile Fμ(T ) V

0.5 0.281 – – 44.9% 0.074
1 0.285 0.613 – 61.9% 0.121
2 0.289 0.630 – 73.6% 0.166
5 0.293 0.649 2.424 83.4% 0.215

10 0.295 0.658 2.545 88.1% 0.237
100 0.296 0.666 2.661 96.0% 0.256
∞ 0.296 0.667 2.667 100% 0.257

on randomness of the project to bring them closer to completion, which happens
with low probability.

• The c.d.f of the completion time for early times is close to, but not exactly equal
to zero, because some players finish early by sheer randomness, even if they
apply low effort. After those, there is a whole bunch of players who apply the
optimal strategy and, when the reward is piecewise constant, finish about the
same time. This is where the first sudden increase in the c.d.f shows up.

In the remaining part of this section, we fix H(r) = 6(1 − r)2 except in Sec-
tion 3.2.2 where we analyze the dependence on H .

3.2.1. Dependence on the tournament horizon. Table 1 shows that as the dead-
line increases, both the equilibrium terminal completion rate and the game value
increase (as proved in Proposition 3.1). However, with a longer deadline it takes
longer to reach a fixed percentage of completion. On the other hand, we also see
that the quantile functions are not too sensitive to changes in the deadline, except
near the discontinuity r = Fμ(T ). This suggests that competition alone is often
good enough to drive the progress; the external deadline provides a little extra, but
not significant motivation.

3.2.2. Dependence on the reward function. Next, we focus on the two-
parameter family:

H(r) = K(1 + p)(1 − r)p,

where K = ∫ 1
0 H(r) dr represents the total reward budget, and p determines the

convexity of the reward function. A large p means that most of the reward is given
to highly ranked players. In many examples, including population income in US,
the prize money decreases in a very convex manner, with high “earners” earning a
very large chunk of the pie.

We see from the top left panel of Figure 3 that, with a moderate value K =
2, as p increases, the peak of fμ = F ′

μ shifts to the left, meaning most of the
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FIG. 3. Equilibrium completion time distribution and game value under different total reward K

and convexity index p. The numbers on the curves in the top panels represent their corresponding
game values.

players finish earlier. On the other hand, this is at the expense of a lower population
completion rate, since the laggards, knowing that the reward drops quickly once
the leaders have occupied the high ranks, put in less effort and give up more easily.
The lower completion rate also leads to a lower game value; see the bottom left
panel of Figure 3. Thus, when the pie is not too small, the higher the convexity of
the reward function, the lower the welfare. That is, shifting the rewards more to
the highly ranked players decreases the welfare. However, the monotonicity of the
welfare in p is only true when there is sufficient benefit for finishing early. The top
right panel of Figure 3 shows that when the reward K is small (similar behavior
can be observed when x0 or c is large), both the population terminal completion
rate and the game value are no longer decreasing in p. A more complete picture is
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shown in the bottom right panel of Figure 3. We only plot the game value, since it
moves in the same direction as the completion rate.

We focus now on the following implications of our results: since the expected
total effort increases with the (terminal) completion rate when we fix x0, σ , T

(see Proposition 3.2), the expected effort will be lower as we increase p in the top
left panel of Figure 3; that is, the expected total effort decreases with the level of
competition (more unequal rewards). Thus, when the total pie is large enough, the
competitiveness resulting from inequality in rewards has a demoralizing effect, as
in Fang, Noe and Strack (2018). However, the top right panel of Figure 3 shows
that when the total pie K is small, the completion rate, and hence the effort level
may go up with more unequal payment. This is because there is another effect
that decreases competitiveness—a higher percentage of players gives up, and if
the rewards are more uneven it is still worthwhile for the players who do not give
up to exert higher effort, bringing up the aggregate completion rate. That is, the
players who do not give up are less discouraged by the prize inequality, because
they compete within a smaller group. If we consider, for example, the competi-
tion of building internet search engines, or means of renewable energy as a large
tournament race, since the total pie is large and the rewards are uneven, our re-
sults suggest that government subsidies for R&D that make the rewards more even
among different players may be efficiency improving, by making the players less
discouraged.

3.2.3. Dependence on the cost parameter. Figure 4 illustrates the dependence
on the cost parameter c. As c increases, the welfare value first experiences an
increase before it starts to decrease. The intuition is the same as in the case of
T = ∞ (in which case the value is always increasing in cost): the aggregate welfare
does not depend on the relative ranks of the players, while, with low cost, the

FIG. 4. Game value against the cost parameter.
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players compete for those ranks “too hard” against each other, raising the realized
cost of effort and bringing down the welfare value. Thus, higher cost c can be
beneficial, by discouraging the players to work too hard. However, as c continues
to increase, the possibility of failing to finish by the deadline starts to offset the
benefit of a reduced effort, and the value starts to decrease. We note that with
Poisson type uncertainty (sudden breakthroughs), in the infinite horizon model of
Nutz and Zhang (2017), the game value is independent of c.

3.3. Reverse engineering: Realizing a target distribution. Theorem 3.1 allows
us to obtain, for a given reward function, the corresponding equilibrium distri-
bution. The opposite problem is also important: if we want to achieve a certain
equilibrium distribution, how do we go about it? The following two theorems, for
T = ∞ and T < ∞ respectively, do the following:

(i) identify which distributions μ are realized in equilibrium and by which
reward function;

(ii) identify conditions under which a distribution μ can be realized by an ex-
pected budget not higher than a given budget K .

These results are also helpful in allowing us to convert an optimization over reward
functions to an equivalent one over the set of feasible equilibrium distributions.
The latter problem is easier in some cases; see Section 3.4.3 for an example.

Let H0 be the set of bounded, decreasing reward functions from [0,1] to
[R∞,∞), and

E : H0 → P(R+) for T = ∞,

ET : H0 → P(T0) for T < ∞,

be the mappings from H to the equilibrium completion time distribution μ, where
T0 = [0, T ] ∪ {∞}. When T = ∞, the purpose of introducing R∞ is to facilitate
the study of optimal reward design in Section 3.4, where a lower bound on the
reward function is necessary for the design problem to be well-posed. Observe
that E is translation invariant, that is, E(H + C) = E(H) for any C ∈ R such that
H + C ≥ R∞. We first show that E and ET are one-to-one mappings up to a.e.
equivalence, and in the infinite horizon case, also up to an additive constant.

LEMMA 3.1. Let H1,H2 ∈ H0.

(i) Suppose E(H1) = E(H2) = μ, then H1 = H2 +C a.e. for some constant C.
(ii) Suppose ET (H1) = ET (H2) = μ, then H1 = H2 a.e. on [0,Fμ(T )].

PROOF. We only prove (ii); case (i) is similar. By (3.2),

Fτ ◦
x0/σ

(t) =
1 − Fτ ◦

x0/σ
(T )

1 − Fμ(T )

∫ Fμ(t)

0
exp

(
R∞ − Hi(z)

2cσ 2

)
dz, t ∈ [0, T ], i = 1,2.
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Differentiating both sides and rearranging terms yields

Hi

(
Fμ(t)

) = 2cσ 2 ln
(

fμ(t)

fτ ◦
x0/σ

(t)

)
+ 2cσ 2 ln

(1 − Fτ ◦
x0/σ

(T )

1 − Fμ(T )

)
+ R∞ a.e.

It follows that∫ Fμ(T )

0

∣∣H1(r) − H2(r)
∣∣dr =

∫ T

0

∣∣H1
(
Fμ(t)

) − H2
(
Fμ(t)

)∣∣fμ(t) dt = 0,

and consequently, H1 = H2 a.e. on [0,Fμ(T )]. �

Here and in the sequel, we identify a reward function H with its equivalence
class under a.e. relation.

Denote by P+(R+) (resp., P+(T0)) the set of probability distributions on R+
(resp., T0) that have strictly positive density on R+ (resp., [0, T ]). The key quantity
is the normalized density

ζμ := fμ/fτ ◦
x0/σ

,

and if T < ∞, also the normalized incompletion rate

δμ := 1 − Fμ(T )

1 − Fτ ◦
x0/σ

(T )
.

THEOREM 3.2. Fix K ≥ R∞. For μ ∈ P+(R+), define

Hμ(r) := 2cσ 2 ln ζμ

(
F−1

μ (r)
)
.

We have:

(i) μ ∈ E(H0) if and only if μ ∈ P+(R+) and ln ζμ is bounded and decreasing.
Moreover,

E−1(μ) = {
Hμ + C : C ≥ R∞ − 2cσ 2 ln(inf ζμ)

}
, μ ∈ E(H0).

(ii) For μ ∈ E(H0),
∫ 1

0 (Hμ(r) + C)dr ≤ K if and only if C ≤ K − 2cσ 2 ×∫ ∞
0 ln ζμ(t) dμ(t).

PROOF. (i) Necessity holds by Proposition 2.1. For sufficiency, given any
μ ∈ P+(R+) such that ln ζμ is bounded and decreasing, Hμ is also bounded and
decreasing. Since F−1

μ : [0,1] → R+ is bijective, Hμ + C ≥ R∞ if and only if
C ≥ R∞ − 2cσ 2 ln(inf ζμ). It is straightforward to check that μ satisfies (3.6) with
H = Hμ. Hence, E(Hμ + C) = E(Hμ) = μ by the translation invariance of E . By
Lemma 3.1(i), any admissible reward scheme realizing μ differs from Hμ by a
constant. (ii) follows from straightforward calculation. �
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THEOREM 3.3. Fix T < ∞ and K ≥ R∞. For μ ∈ P+(T0), define

H̃μ(r) := R∞ + 2cσ 21[0,Fμ(T )](r)
{
ln ζμ

(
F−1

μ (r)
) − ln δμ

}
.

We have:

(i) μ ∈ ET (H0) if and only if μ ∈ P+(T0), ln ζμ is bounded and decreasing,
and inft∈[0,T ] ζμ(t) ≥ δμ. Moreover,

E−1
T (μ) = {H ∈ H0 : H |[0,Fμ(T )] = H̃μ|[0,Fμ(T )]}, μ ∈ ET (H0).

(ii) For μ ∈ ET (H0),
∫ 1

0 H̃μ(r) dr = ∫ Fμ(T )

0 H̃μ(r) dr + (1 − Fμ(T ))R∞ ≤ K

if and only if ∫ T

0
ln ζμ(t) dμ(t) ≤ K − R∞

2cσ 2 + Fμ(T ) ln δμ.

PROOF. (i) Let μ ∈ ET (H0). By Proposition 2.1, μ ∈ P+(T0) and ln ζμ is
bounded and decreasing. Moreover, since H ≥ R∞, we have that for t ∈ [0, T ],

ζμ(t) = fμ(t)

fτ ◦
x0/σ

(t)
= u(t,0;μ,c)

u(0, x0;μ,c)
= δμ exp

(
H(Fμ(t)) − R∞

2cσ 2

)
≥ δμ.

Conversely, given any μ ∈ P+(T) such that ln ζμ is bounded and decreasing, and
inft∈[0,T ] ζμ(t) ≥ δμ, we have H̃μ ∈ H0. It is straightforward to check that μ sat-
isfies (3.2) with H = H̃μ, that is, ET (H̃μ) = μ. By Lemma 3.1(ii), any admissi-
ble reward scheme realizing μ must agree with H̃μ on [0,Fμ(T )]. On the other
hand, since the reward after rank Fμ(T ) is irrelevant in determining the individ-
ual’s best response, any H ∈ H0 which agrees with H̃μ on [0,Fμ(T )] satisfies
ET (H) = ET (H̃μ) = μ; (ii) follows from straightforward calculation. �

3.4. Optimal reward design. The semiexplicit characterization of the equilib-
rium allows us to further study the optimal reward design problem for a principal
or social planner. We continue to consider only the reward functions of the form
(3.1) with H ∈ H0, in which case there exists a unique equilibrium with comple-
tion time distribution denoted by E(H) or ET (H).

We consider three different optimization criteria: minimizing time to achieve
a given population completion rate (Section 3.4.1), maximizing welfare (Sec-
tion 3.4.2) and maximizing net profit (Section 3.4.3). To preview the results: for
the first two criteria, the optimal reward is a two-step function—the same reward
for all sufficiently high ranks, and the same minimum guaranteed payment R∞
for the low ranks. This is different from the one-stage Poisson game of Nutz and
Zhang (2017) where the quantile-minimizing reward scheme is concave for high
ranks. For the third problem where for a given profit function g, we maximize the
expected profit Eg(τ) minus the cost of reward, with τ drawn from the infinite
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horizon equilibrium distribution, the optimal reward for finishing at time t is a lin-
ear transformation of g(t) for t lower than a bonus deadline t∗b , and R∞ otherwise.

Here, we only highlight the proof of the third problem where we rely on the
result from reverse engineering. All other proofs are provided in the Appendix.

3.4.1. Minimizing the time to achieve a given completion rate. We fix a dead-
line T ∈ (0,∞], a total reward budget K , a target completion rate α ∈ (0,1) and a
minimum participation reward R∞ ≤ K , and look for reward function H(r) ≥ R∞
that minimizes the time it takes α fraction of the population to complete their
projects in equilibrium. More precisely, the feasible set of reward functions is

H :=
{
H ∈ H0 :

∫ 1

0
H(r) dr ≤ K

}
for T = ∞,

and, with β(H) := FET (H)(T ), T < ∞,

Hα
T :=

{
H ∈ H0 : β(H) ≥ α,

∫ β(H)

0
H(r) dr + (

1 − β(H)
)
R∞ ≤ K

}
.

For H ∈ H, let Tα(H) := T
E(H)
α be the α-quantile of E(H). We wish to find

T ∗
α = infH∈H Tα(H), and identify the minimizer H ∗, if it exists. Similarly, for

H ∈ HT , let Tα(H ;T ) := T
ET (H)
α be the α-quantile of ET (H). We will look for

the optimizer of T ∗
α (T ) = infH∈Hα

T
Tα(H ;T ).

REMARK 3.3. For the finite horizon problem, there are two different ways to
impose the budget constraint: (i) to require

∫ 1
0 H(r) dr ≤ K , as in the definition of

H; in this case, the budget may not be fully utilized due to a portion of the players
failing to complete by time T , but the advantage of such a constraint is that the
total reward does not go over K even out of equilibrium; (ii) to bound the total
reward only in equilibrium:

∫ β(H)
0 H(r) dr + (1 − β(H))R∞, as in the definition

of Hα
T ; such a constraint is weaker, but it might be violated if the population does

not end up in equilibrium. It turns out, as we will see in Theorem 3.5, that the two
constraints result in the same optimal value and optimal reward function.

The following two theorems present the optimal reward functions and the cor-
responding equilibria.

THEOREM 3.4. Let T = ∞. Then infH∈H Tα(H) is uniquely attained (up to
a.e. equivalence) by the uniform scheme with cutoff rank α:

H ∗(r) = R∞ + K − R∞
α

1[0,α](r).

The minimal time is

T ∗
α = Tα

(
H ∗) = F−1

τ ◦
x0/σ

(
α

α + (1 − α) exp(K−R∞
2αcσ 2 )

)
.
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The c.d.f. of μ = E(H ∗) is given by

Fμ(t) =

⎧⎪⎪⎨⎪⎪⎩
(
α + (1 − α) exp

(
K − R∞
2αcσ 2

))
Fτ ◦

x0/σ
(t) if t ≤ T ∗

α ,

Fτ ◦
x0/σ

(t) + α
(
1 − Fτ ◦

x0/σ
(t)

)(
1 − exp

(
R∞ − K

2αcσ 2

))
if t > T ∗

α .

The equilibrium value attained by each player is

V = R∞ − 2cσ 2 ln
(
α exp

(
R∞ − K

2αcσ 2

)
+ 1 − α

)
,

and the equilibrium effort, in feedback form, is

a(t, x) =
2[exp(K−R∞

2αcσ 2 ) − 1]N ′( x

σ
√

T ∗
α −t

) σ√
T ∗

α −t

1 + 2[exp(K−R∞
2αcσ 2 ) − 1][1 − N( x

σ
√

T ∗
α −t

)] ,

where N and N ′ are the c.d.f. and p.d.f. of the standard normal distribution.

THEOREM 3.5. Let the deadline T < ∞, the minimum participation reward
R∞, the total reward budget K ≥ R∞ and the target completion rate α ∈ (0,1)

be given. We have T ∗
α (T ) = infH∈Hα

T
Tα(H ;T ) = infH∈H Tα(H ;T ). Let T ∗

α be the
optimal time given by Theorem 3.4.

• If T < T ∗
α , then Hα

T =∅ and T ∗
α (T ) = ∞.

• If T ≥ T ∗
α , then T ∗

α (T ) = T ∗
α is uniquely attained (up to a.e. equivalence) by the

uniform scheme with cutoff rank α:

H ∗(r) = R∞ + K − R∞
α

1[0,α](r).

The c.d.f. of μ = ET (H ∗) on [0, T ], the equilibrium value V attained by each
player and the equilibrium effort a(t, x), t ∈ [0, T ] in feedback form have the
same expression as those of Theorem 3.4.

• The minimum budget needed to ensure that α fraction of players finish by time
T is

Kmin = R∞ + 2αcσ 2 ln
(

α

1 − α
·

1 − Fτ ◦
x0/σ

(T )

Fτ ◦
x0/σ

(T )

)
.

The reward scheme which achieves the goal with budget Kmin is given by

H(r) = R∞ + Kmin − R∞
α

1[0,α](r).

• Under the given budget K , the maximum equilibrium completion rate αmax at-
tainable at time T is the unique solution of

CT :=
Fτ ◦

x0/σ
(T )

1 − Fτ ◦
x0/σ

(T )
= αmax

1 − αmax
exp

(
R∞ − K

2αmaxcσ 2

)
,
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that is, αmax = (1 + 2cσ 2

K−R∞ W(C−1
T ))−1, where W is the Lambert-W function.

The reward scheme which yields αmax is given by

H(r) = R∞ + K − R∞
αmax

1[0,αmax](r).

3.4.2. Maximizing welfare. We now find the reward scheme that maximizes
the total welfare, that is, the aggregate game value of all players, again in the
homogeneous case.

THEOREM 3.6. Fix the participation reward R∞ and the reward budget K ≥
R∞. Then:

(i) When T = ∞, the maximum welfare supH∈H V∞(H) = K is uniquely at-
tained (up to a.e. equivalence) by the uniform scheme H ∗(r) ≡ K (thus, with zero
effort by everyone).

(ii) When T < ∞, the maximum welfare

sup
H∈H0

T

V (H) = R∞ + 2cσ 2 ln
(1 − Fτ ◦

x0/σ
(T )

1 − α

)
is uniquely attained (up to a.e. equivalence) by the uniform scheme with cutoff
rank α:

H ∗(r) = R∞ + K − R∞
α

1[0,α](r),

where α is the maximum attainable completion rate by time T , given in Theo-
rem 3.5. Moreover, H ∗ also maximizes the expected total effort given by Proposi-
tion 3.2.

3.4.3. Maximizing net profit. We now suppose that each project completed at
time t generates a profit of g(t) = g(t;x0) for a principal. We assume that g is
continuous, bounded and decreasing, and that g 	≡ g(∞). The principal wants to
maximize the expected net profit E[g(τ) − Rμ(τ)], τ ∼ μ, subject to the partici-
pation constraint R ≥ R∞. We only consider the case T = ∞.

THEOREM 3.7. Suppose T = ∞. A reward scheme H ∗ ∈ H0 is optimal if and
only if

H ∗(r) = R∞ + g
(
F−1

μ∗ (r) ∧ t∗b
) − g

(
t∗b

)
,

where the “bonus” deadline t∗b is given by t∗b = inf{z ≥ 0 : g(z) = g(z∗)} for some

z∗ = arg max
z∈[0,∞)

∫ ∞
0 g(t ∨ z)fτ ◦

x0/σ
(t) exp(

g(t∧z)

2cσ 2 ) dt∫ ∞
0 fτ ◦

x0/σ
(s) exp(

g(s∧z)

2cσ 2 ) ds
,
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and where the associated equilibrium distribution μ∗ has p.d.f.

fμ∗(t) =
fτ ◦

x0/σ
(t) exp(

g(t∧t∗b )

2cσ 2 )∫ ∞
0 fτ ◦

x0/σ
(s) exp(

g(s∧t∗b )

2cσ 2 ) ds
.

The maximum net profit is

U =
∫ ∞

0 g(t ∨ t∗b )fτ ◦
x0/σ

(t) exp(
g(t∧t∗b )

2cσ 2 ) dt∫ ∞
0 fτ ◦

x0/σ
(s) exp(

g(s∧t∗b )

2cσ 2 ) ds
− R∞.

Note that in equilibrium the players receive H ∗(Fμ∗(t)) = R∞ + g(t ∧ t∗b ) −
g(t∗b ) for finishing at time t . That is, the optimal reward for finishing at time t

is a linear transformation of g(t) for those who finish before the bonus deadline
t∗b ; otherwise it is the minimum guaranteed payment. Thus, it is optimal for the
principal to align the players’ interest with her own.

PROOF OF THEOREM 3.7. By Theorem 3.2, we only need to optimize over
μ ∈ E(H0), which can be realized by the reward Hμ + C for any constant
C ≥ R∞ − 2cσ 2 ln(inffμ/fτ ◦

x0/σ
). It is clear that among the translations of Hμ,

the principal should choose the smallest C which meets the reservation reward
constraint, namely, Cμ := R∞ − 2cσ 2 ln(inffμ/fτ ◦

x0/σ
). Hence we can rewrite the

optimization problem as

U = sup
fμ

∫ ∞
0

[
g(t) − 2cσ 2 ln

(
fμ(t)

fτ ◦
x0/σ

(t)

)
− Cμ

]
fμ(t) dt.

The proof consists of two steps: (i) Fix b = inffμ/fτ ◦
x0/σ

∈ (0,1] and solve the
constraint optimization problem:

U(b) : = sup
fμ≥bfτ◦

x0/σ

∫ ∞
0

[
g(t) − 2cσ 2 ln

(
fμ(t)

bfτ ◦
x0/σ

(t)

)]
fμ(t) dt − R∞

subject to the additional integral constraint∫ ∞
0

fμ(t) dt = 1.

In addition, we also need to fμ/fτ ◦
x0/σ

to be bounded and decreasing in order to
obtain a bounded, decreasing reward function Hμ. This can be verified after we
find the optimizer. (ii) Maximize U(b) over b ∈ (0,1].

We begin with the first step. Define

L(fμ,λ;b) : =
∫ ∞

0

[
g(t) − 2cσ 2 ln

(
fμ(t)

bfτ ◦
x0/σ

(t)

)]
fμ(t) dt

− λ

(∫ ∞
0

fμ(t) dt − 1
)
.
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For each fixed λ, the integrand, being a concave function of fμ, attains a pointwise
maximum on [bfτ ◦

x0/σ
(t),∞) at

(3.10) fμ(b)(t) = bfτ ◦
x0/σ

(t) exp
([

g(t) − λ

2cσ 2 − 1
]+)

.

We then find λ = λb via

(3.11) 1 =
∫ ∞

0
fμ(b)(s) ds =

∫ ∞
0

bfτ ◦
x0/σ

(s) exp
([

g(s) − λ

2cσ 2 −1
]+)

ds =: φ(λ).

Note that the above equation has a unique solution λb ∈ (−∞, g(0) − 2cσ 2] since
φ is continuous, strictly decreasing and satisfies φ(g(0) − 2cσ 2) = b ≤ 1 and
limλ→−∞ φ(λ) = ∞. Since any λ ≥ g(0) − 2cσ 2 (which is only possible when
b = 1) leads to the same fμ(b), we may assume without loss of generality that
λb ≤ g(0) − 2cσ 2. It is clear that for each b ∈ (0,1], fμ(b)/fτ ◦

x0/σ
is bounded and

decreasing. So the associated reward scheme Hμ(b) + Cμ(b) ∈ H0.
Next, consider the function ψ : [0,∞] → (0,1] defined by

ψ(z) :=
(∫ ∞

0
fτ ◦

x0/σ
(t) exp

(
g(t ∧ z) − g(z)

2cσ 2

)
dt

)−1
.

It can be shown that ψ is decreasing with ψ(0) = 1, and strictly decreasing on
any interval where g is strictly decreasing. This implies ψ(z1) = ψ(z2) if and only
if g(z1) = g(z2). Let b0 := ψ(∞) ∈ (0,1). It is not hard to see from (3.11) that
b ≥ b0 if and only if g(∞) ≤ 2cσ 2 + λb. We consider two cases for b.

Case 1. If 0 < b < b0, or equivalently, g(∞) > 2cσ 2 + λb, the positive part in
(3.10) and (3.11) can be removed, leading to

fμ(b)(t) =
fτ ◦

x0/σ
(t) exp(

g(t)−λb

2cσ 2 − 1)∫ ∞
0 fτ ◦

x0/σ
(s) exp(

g(s)−λb

2cσ 2 − 1) ds
= b0fτ ◦

x0/σ
(t) exp

(
g(t) − g(∞)

2cσ 2

)
.

In this case,

U(b) =
∫ ∞

0

[
g(t) − 2cσ 2 ln

(
fμ(b)(t)

bfτ ◦
x0/σ

(t)

)]
fμ(b)(t) dt − R∞

=
∫ ∞

0

[
g(∞) + 2cσ 2 ln

b

b0

]
b0fτ ◦

x0/σ
(t) exp

(
g(t) − g(∞)

2cσ 2

)
dt − R∞

<

∫ ∞
0

g(∞)b0fτ ◦
x0/σ

(t) exp
(

g(t) − g(∞)

2cσ 2

)
dt − R∞

=
∫ ∞

0 g(∞)fτ ◦
x0/σ

(t) exp(
g(t)

2cσ 2 ) dt∫ ∞
0 fτ ◦

x0/σ
(s) exp(

g(s)

2cσ 2 ) ds
− R∞ =: U0.
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Case 2. If b0 ≤ b ≤ 1, or equivalently, g(∞) ≤ 2cσ 2 + λb, let

tb := inf
{
t ≥ 0 : g(t) ≤ 2cσ 2 + λb

} ∈ [0,∞]
be the point after which the constraint fμ(b) ≥ bfτ ◦

x0/σ
will be binding. By the

continuity of g and that g(0) − λb ≥ 2cσ 2, we must have g(tb) = 2cσ 2 + λb. It
follows that[

g(s) − λb

2cσ 2 − 1
]+

=
[
g(s) − g(tb)

2cσ 2

]+
= g(s ∧ tb) − g(tb)

2cσ 2 .

Thus, we are again able to get rid of the positive part in (3.10) and (3.11), and get

(3.12) fμ(b)(t) = bfτ ◦
x0/σ

(t) exp
(

g(t ∧ tb) − g(tb)

2cσ 2

)
,

and

(3.13) b =
(∫ ∞

0
fτ ◦

x0/σ
(s) exp

(
g(s ∧ tb) − g(tb)

2cσ 2

)
ds

)−1
= ψ(tb).

Recall that ψ has the property that ψ(z1) = ψ(z2) if and only if g(z1) = g(z2).
So if z is another solution of ψ(z) = b, then we must have g(z) = g(tb), and since
tb is the first time g hits 2cσ 2 + λb, we must have z ≥ tb. In other words, tb can
be characterized as the smallest solution of ψ(z) = b. Alternatively, if b = ψ(z0),
then tb = inf{z ≥ 0 : g(z) = g(z0)}, independent of the choice of z0.

Using (3.12)–(3.13), we obtain

U(b) =
∫ ∞

0

[
g(t) − 2cσ 2 ln

(
fμ(b)(t)

bfτ ◦
x0/σ

(t)

)]
fμ(b)(t) dt − R∞

=
∫ ∞

0 g(t ∨ tb)fτ ◦
x0/σ

(t) exp(
g(t∧tb)

2cσ 2 ) dt∫ ∞
0 fτ ◦

x0/σ
(s) exp(

g(s∧tb)

2cσ 2 ) ds
− R∞, b ∈ [b0,1].

Observe that setting tb = ∞ in the above expression yields U0.
Combining the two cases, we see that U(b) < Ũ(∞) if b ∈ (0, b0) and U(b) =

Ũ (tb) if b ∈ [b0,1], where we introduce the auxiliary objective function

Ũ (z) :=
∫ ∞

0 g(t ∨ z)fτ ◦
x0/σ

(t) exp(
g(t∧z)

2cσ 2 ) dt∫ ∞
0 fτ ◦

x0/σ
(s) exp(

g(s∧z)

2cσ 2 ) ds
− R∞.

Clearly, supb∈(0,1] U(b) ≤ supz∈[0,∞] Ũ (z). Since Ũ (z) is continuous and Ũ (0) >

g(∞) − R∞ = Ũ (∞), supz∈[0,∞] Ũ (z) is attained by some z∗ < ∞ which can be
found numerically.

CLAIM. Maximizing U(b) is equivalent to maximizing Ũ (z) in the following
sense:
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(i) supb∈(0,1] U(b) = supz∈[0,∞] Ũ (z);
(ii) b∗ ∈ arg maxb∈(0,1] U(b) if and only if b∗ = ψ(z∗) for some z∗ ∈

arg maxz∈[0,∞] Ũ (z).

The proof of the claim relies on the observation that if b = ψ(z) ≥ b0, then
U(b) = Ũ (tb) ≥ Ũ (z). Indeed, b = ψ(z) implies that z ≥ tb and g(z) = g(tb) as
we have argued before, which further yields g(t ∧ z) = g(t ∧ tb). Consequently,

U(b) = Ũ (tb) =
∫ ∞

0 g(t ∨ tb)fτ ◦
x0/σ

(t) exp(
g(t∧z)

2cσ 2 ) dt∫ ∞
0 fτ ◦

x0/σ
(s) exp(

g(s∧z)

2cσ 2 ) ds
− R∞

≥
∫ ∞

0 g(t ∨ z)fτ ◦
x0/σ

(t) exp(
g(t∧z)

2cσ 2 ) dt∫ ∞
0 fτ ◦

x0/σ
(s) exp(

g(s∧z)

2cσ 2 ) ds
− R∞ = Ũ (z).

The above observation implies that if z∗ is optimal for Ũ , then we have
supb∈(0,1] U(b) ≥ U(ψ(z∗)) ≥ Ũ (z∗) = supz∈[0,∞] Ũ (z) ≥ supb∈(0,1] U(b). This
proves the first claim and the “if” part of the second claim. For the “only if” part
of the second claim, suppose b∗ is optimal for U , then U(b∗) = supb∈(0,1] U(b) =
supz∈[0,∞] Ũ (z) ≥ Ũ (∞). Since U(b) < Ũ(∞) for all b ∈ (0, b0), we must have
b∗ ∈ [b0,1]. It follows that b∗ = ψ(tb∗) and Ũ (tb∗) = U(b∗) = supb∈(0,1] U(b) =
supz∈[0,∞] Ũ (z). The latter implies tb∗ is optimal for Ũ .

In view of the claim, we can find the optimal value and all optimizers of
supb∈(0,1] U(b) by solving the auxiliary problem. For each optimizer z∗ for the
auxiliary problem, we get an optimal b∗ = ψ(z∗). We then recover fμ∗ = fμ(b∗)
by (3.12) and Hμ∗ by Theorem 3.2. The optimal reward is given by H ∗(r) =
Hμ∗(r) + R∞ − 2cσ 2 lnb∗ = R∞ + g(F−1

μ∗ (r) ∧ tb∗) − g(tb∗). �

3.5. Extension: Completion rate-dependent pie and multiple equilibria. Con-
sider a reward pie that depends on the aggregate completion rate by time T < ∞.
(That rate is 100% when T = ∞.) Specifically, we assume the reward for finishing
at time t rank r , and when the population completion rate (by time T ) is β , is given
by

(3.14) R(t, r, β) = 1{t≤T }H(r,β) + 1{t>T }R∞(β),

where H : [0,1] × [Fτ ◦
x0/σ

(T ),1] �→ R and R∞ : [Fτ ◦
x0/σ

(T ),1] �→ R are con-
tinuous in β . That is, the individual reward for finishing at time τ equals
R(τ,Fμ(τ),Fμ(T )) where μ is the completion time distribution of the popula-
tion. What we have in mind is an organization or a society in which the overall
wealth coming from individual projects is higher when more individuals complete
their goals. The role of r and β are different in that the former measures individ-
ual performance in relative terms, and the latter measures population performance.
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Moreover, the game is competitive in r and collaborative in β . Similar to the case
of a fixed pie, the equilibrium also admits a semiexplicit characterization.

THEOREM 3.8. Let T < ∞. Suppose the reward function is of the form (3.14).
Then there exist at least one equilibrium, and a distribution μ is an equilibrium
completion time distribution if and only if for r ∈ [0,Fμ(T )],

(3.15) T μ
r = F−1

τ ◦
x0/σ

(1 − Fτ ◦
x0/σ

(T )

1 − Fμ(T )

∫ r

0
exp

(
R∞(Fμ(T )) − H(z,Fμ(T ))

2cσ 2

)
dz

)
,

where

Fτ ◦
x0/σ

(t) = 2
(

1 − N

(
x0

σ
√

t

))
.

Moreover, the equilibrium terminal completion rate Fμ(T ) ∈ (0,1) is a solution of

(3.16)

Fτ ◦
x0/σ

(T )

1 − Fτ ◦
x0/σ

(T )

= 1

1 − Fμ(T )

∫ Fμ(T )

0
exp

(
R∞(Fμ(T )) − H(z,Fμ(T ))

2cσ 2

)
dz.

The associated value and expected total effort of the game are given by

(3.17) V (μ) = R∞
(
Fμ(T )

) + 2cσ 2 ln
(1 − Fτ ◦

x0/σ
(T )

1 − Fμ(T )

)
and (3.9), respectively.

The proof is similar to the case of a fixed pie, so we omitted it here. A sketch
proof can be found in arXiv:1811.00076. Note that we do not necessarily have
uniqueness under conditions of Theorem 3.8. Equation (3.16) may have multiple
solutions, leading to multiple equilibria. For example, when H(r,β) = R∞(β) +
β , one can check that equation (3.16) may have one, two or three solutions, de-
pending on the value of T , x0, c, σ (see Figure 5). Among the equilibria, the
dominant one (i.e., the one with the highest game value) corresponds to the largest
solution of (3.16). In this example, we see that by limiting the size of the projects
or imposing a long enough deadline, the “bad” equilibria can be avoided.

When reward R(t, r, β) is independent of rank r and increasing in completion
rate β , we have a contribution game in which, by gradually injecting rank depen-
dence into the game, one can analyze the effect of competition on the completion
rate and the game value.

Consider, for example,

R(t, r, β) = �(β)
[
γ + 1{t≤T }(1 − γ )Hε(r)

]

http://arxiv.org/abs/arXiv:1811.00076
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FIG. 5. The blue solid curve plots the right-hand side of (3.16) as a function of Fμ(T ) with
c = 1, σ = 0.25 and H(r,β) = R∞(β) + β . The two horizontal lines plot the left-hand side of
(3.16) in the two critical cases. We see that there is a unique equilibrium when Fτ ◦

x0/σ
< 0.0063

or Fτ ◦
x0/σ

> 0.0505, two equilibria when Fτ ◦
x0/σ

= 0.0063 or 0.0505, and three equilibria when

0.0063 < Fτ ◦
x0/σ

< 0.0505.

where �(β) := K(1+β) represents the size of the pie, γ ∈ [0,1] is the fraction of
the pie that is used to reward participation, and Hε(r) = 1+ε(1−2r) specifies how
the remaining (1−γ ) fraction of the pie is shared among players who finish by the
deadline and are ranked. A larger ε corresponds to a larger degree of competition
(or inequality) among ranked players. When ε = 0, we have a pure contribution
game. Figure 6 plots the equilibrium completion rate and game value against ε for
γ = 0.5. We see that the degree of inequality in the rewards has a positive effect
on the equilibrium completion rate and the game value when the pie (i.e., K) is
small, an adverse effect when the pie is large, and a mixed effect when the size of
the pie is moderate. The intuition is the same as in the case of a fixed pie.

4. General case: Existence, uniqueness, stability and ε-Nash equilibrium.
In this section, we work with general reward functions R ∈ R, and no longer as-
sume players are homogeneous. We introduce heterogeneity by assuming that a
tournament is characterized by the initial condition (t0, π,m), where t0 < T is the
starting time, π is the proportion of players that have already finished by time t0,
and m ∈ P(R++ × [c, c]), with 0 < c ≤ c < ∞, is the joint distribution of the
time-t0 location, denoted by ξ , and the cost of effort c of the population still play-
ing. Here for simplicity, we do not consider inhomogeneity in σ ∈ [σ ,σ ] which
could be easily incorporated by taking m to be the joint distribution of (ξ, c, σ ).
We assume that we are in the nondegenerate case π < 1.
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FIG. 6. Fμ(T ) and V against ε. Parameters are set to x0 = c = T = 1, σ = 0.25 and γ = 0.5.
When K = 1.5, there is an interval of ε where the mapping ε �→ Fμ(T ) is multivalued, meaning the
game has multiple equilibria.

4.1. Existence of a fixed point. Given an initial condition (t0, π,m), for a rep-
resentative player we introduce a binary random variable θ ∈ {0,1} with P(θ =
1) = π and P(θ = 0) = 1 − π . We interpret θ as the player’s game completion
status at time t0; θ = 1 means game is completed and θ = 0 means game is in
progress. If θ = 0, we further pick a time-t0 location ξ and cost of effort coeffi-
cient c randomly from the joint distribution m. The initial randomizations (θ, ξ, c)

are assumed to be independent of the Brownian motions driving the state process.
For a given starting time t0, fix a [t0,∞)-supported completion time distribution

μ of the population with μ({t0}) = π , that is, μ is a modification of the completion
time distribution by moving all the mass before time t0 to time t0. Since the prob-
ability for finishing exactly at time t0 is zero, such a modification does not affect
the player’s optimization problem.

The existence proof will be based on a fixed-point argument. For that purpose,
we now define the best response mapping �t0,π,m which maps μ to the distribution
L(τμ) of the optimal completion time τμ. Assume for the moment that T < ∞. If
θ = 1, we set τμ := t0. If θ = 0, we solve the player’s optimization problem with
initial randomization (ξ, c) and using payoff function Rμ(t) = R(t,Fμ(t)). Under
the convention that inf∅ = ∞, we set τμ := inf{t ∈ [t0, T ] : X

μ
t = 0} ∧ �, where

� is a fixed number in (T ,∞) corresponding to incompletion, and

dX
μ
t = −a∗(

t,X
μ
t ;μ,c

)
dt + σ dBt , X

μ
t0

= ξ.

By Proposition 2.1, we know that for t ∈ (t0, T ], the density of the optimal
completion time is given by

P(τμ ∈ dt |θ = 0, ξ, c) = u(t,0;μ,c)

u(t0, ξ ;μ,c)
fτ ◦

ξ/σ
(t − t0).
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It follows that

P(τμ = t0) = π, P(τμ = �) = 1 − P(τμ ≤ T ),(4.1)

P(τμ ≤ t) = π + (1 − π)E

[∫ t

t0

u(s,0;μ,c)

u(t0, ξ ;μ,c)
fτ ◦

ξ/σ
(s − t0) ds

]
,

(4.2)
t ∈ [t0, T ].

In terms of the p.d.f., we have

(4.3) P(τμ ∈ dt) = (1 − π)E

[
u(t,0;μ,c)

u(t0, ξ ;μ,c)
fτ ◦

ξ/σ
(t − t0)

]
, t ∈ (t0, T ].

Let T := [t0, T ] ∪ {�}. Our goal is to find a fixed point of �t0,π,m : μ �→ L(τμ) in
the space P(T) of probability measures on T, which is compact in the topology
of weak convergence We remark that P(T) can be embedded in the vector space
M(T) of finite signed measures on T, endowed with the Kantorovich–Rubinstein
norm which coincides with the 1-Wasserstein metric on P(T) and metrizes the
topology of weak convergence on P(T); see pages 119–120 and Corollary 6.13 of
Villani (2009). When T = ∞, we can define �t0,π,m in a similar fashion with � :=
∞. In this case, additional care is needed to ensure the compactness of P([t0,∞]);
see the proof of Theorem 4.1 for details.

The main ingredient of fixed-point theorems is the continuity of the best re-
sponse mapping which, in view of (4.2), amounts to the continuity of u(t, x;μ,c)

with respect to μ. We can guarantee this by restricting ourselves to reward func-
tions R ∈ R that are continuous in the rank variable, or more generally, of the form
R(t, r) = G(t,H(r)) for some functions G : R+ × R �→ R and H : [0,1] �→ R

such that y �→ G(t, y) is continuous for each t , and H is monotone. In this way,
the (potential) discontinuity in rank is decoupled from time variable. To fix nota-
tion, let

RD := {
R ∈R : R(t, r) = G

(
t,H(r)

)
,

y �→ G(t, y) is continuous for each t,H is monotone
}
,

where D stands for “decoupled” or “decomposable.”
There is another case that is sufficient for existence of a fixed point. Consider

piecewise constant H of the form

(4.4) H(r) =
d∑

k=1

Rk1[rk−1,rk)(r) + Rd+11[rd ,1], 0 = r0 < r1 < · · · < rd < 1,

and define

RS := {
R ∈ R : R(t, r) = G

(
t,H(r)

)
,H is of the form (4.4)

}
,

where S stands for “step function.” The nice thing about R ∈ RS is that Rμ de-
pends on μ only through its quantiles (T

μ
1 , . . . , T

μ
d ); the shape of μ between each
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neighboring T
μ
k ’s becomes irrelevant. In other words, each μ can be encoded to

d numbers. As a consequence, we have a fixed-point problem in a d-dimensional
space instead of the infinite dimensional space of measures.

We now state our general existence theorem.

THEOREM 4.1. Assume R ∈ RD ∪RS . Then �t0,π,m has a fixed point. Thus,
an equilibrium exists.

PROOF. Assume first T < ∞. We consider RD and RS , separately.
(a) Assume R ∈ RD . In order for Fμ not to hit the (potential) discontinuity of

H on a nonnegligible subset of [t0, T ], we need to make sure that it is not flat
there. Observe from (4.3) that any fixed-point μ of �t0,π,m, if it exists, must have
a strictly increasing c.d.f. on [t0, T ]. This motivates us to define the following
nonempty, convex subset of P(T):

(4.5) Df :=
{
μ ∈P(T) : μ([a, b]) ≥

∫ b

a
f (t) dt ∀a, b ∈ [t0, T ]

}
,

where

(4.6) f (t) := (1 − π) exp
(

R∞ − R(0,0)

2cσ 2

)
Efτ ◦

ξ/σ
(t − t0) > 0.

We claim then that:

(i) �t0,π,m(P(T)) ⊆Df .
(ii) Df is closed under weak convergence.

(iii) Any μ ∈ Df has strictly increasing c.d.f. on [t0, T ].
(i) follows from (4.3) and (2.8). (ii) holds because μn converges to μ weakly if
and only if lim supn μn(C) ≤ μ(C) for any closed sets C ⊆ T. (iii) is obvious.

(ii) implies that Df is a closed subset of the compact space P(T), hence is also
compact. To apply Schauder’s fixed-point theorem in M(T), it remains to show
that �t0,π,m is continuous on Df . For metrizable spaces, continuity is equivalent
to sequential continuity.

Let {μk} ⊆ Df converge to μ weakly. We wish to show L(τμk
) converges to

L(τμ) weakly. It suffices to show that Eϕ(τμk
) → Eϕ(τμ) for any ϕ ∈ Cb(T).

From (4.1)–(4.3), we see that

Eϕ(τμk
) = ϕ(t0)π + (1 − π)E

[∫ T

t0

ϕ(t)
u(t,0;μk, c)

u(t0, ξ ;μk, c)
fτ ◦

σ/ξ
(t − t0) dt

]

+ ϕ(�)(1 − π)

(
1 − E

[∫ T

t0

u(t,0;μk, c)

u(t0, ξ ;μk, c)
fτ ◦

σ/ξ
(t − t0) dt

])
.

Since u is bounded by a constant independent of μk , to show the expected val-
ues converge, we only need to show that for every x ≥ 0 and realization of c,
u(t, x;μk, c) converges to u(t, x;μ,c) for a.e. t ∈ (t0, T ].
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Weak convergence of μk to μ implies Fμk
(t) converges to Fμ(t) at every point

of continuity of Fμ. Since Fμ(t) and H(r) are monotone, they have at most count-
ably many points of discontinuity, denoted by t1, t2, . . . and r1, r2, . . . , respectively.
Now, since μ ∈ Df , Fμ is strictly increasing on [t0, T ] by item (iii) above. It fol-
lows that each ri can only be attained by Fμ(t) for at most one t ∈ [t0, T ], de-
noted by t̃i . For any t not belonging to the countable set {ti , t̃i}i=1,2,..., we have
that Fμk

(t) converges to Fμ(t), that H(Fμk
(t)) converges to H(Fμ(t)) and that

Rμk
(t) = G(t,H(Fμk

(t))) converges to Rμ(t) = G(t,H(Fμ(t))). The bounded
convergence theorem applied to (2.4) then yields the pointwise convergence of
u(t, x;μk, c) to u(t, x;μ,c).

(b) Assume R ∈ RS . Let T
μ
k = T

μ
rk be the (rk)-quantile of μ for k = 1, . . . , d ,

and set T
μ
0 = 0, T

μ
d+1 = �. Exploiting the piecewise constant structure of H , we

have

(4.7) Rμ(t) =
d+1∑
k=1

G(t,Rk)1[T μ
k−1,T

μ
k )(t), t ∈ [t0, T ].

Since Rμ depends on μ only through its quantiles (T
μ
1 , . . . , T

μ
d ), as pointed out

earlier, the fixed-point problem can be reduced to a finite dimensional one in the
space

Q := {
(T1, . . . , Td) ∈ T̃

d : T1 ≤ T2 ≤ · · · ≤ Td

}
,

where T̃ := [t0,�] is the convex hull of T.
We will use the notation Rq(t), u(t, x;q, c) and τq instead of Rμ(t), u(t, x;μ,c)

and τμ, where q = (T1, . . . , Td) is a vector of quantiles. The best response mapping
is reformulated as

� : q �→ (
T

L(τq)

1 , . . . , T
L(τq)

d

)
.

Any fixed-point q of � induces a fixed-point L(τq) of �t0,π,m. Note that Q is a
convex, compact set which is mapped into itself under �. Once we show � is
continuous on Q, we can use Brouwer’s fixed-point theorem to conclude that �

has a fixed point. Continuity is proved as follows.
Let qn = (T n

1 , . . . , T n
d ) → q = (T1, . . . , Td) in Q. It is easy to see from (4.7) that

Rqn(t) converges to Rq(t) if t /∈ {T1, . . . , Td}. Since τ ◦
x/σ is nonatomic, bounded

convergence theorem implies for any (t, x) ∈ [0, T ] ×R++ and any (positive) re-
alization of c,

u(t, x;qn, c) → u(t, x;q, c) as n → ∞.

Once we have the pointwise convergence of u, we can then use (4.3) to obtain

weak convergence of L(τqn) to L(τq). To show T
L(τqn)

k → T
L(τq)

k , we consider
three cases of k ∈ {1, . . . , d}.

Case (i). If rk ≤ π , then by our construction, T
L(τqn)

k = T
L(τq)

k = t0.
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Case (ii). If π < rk ≤ Fτq(T ), then we observe from (4.3) that τq has strictly
positive density in (t0, T ). So the quantile function of L(τq) is continuous in

(π,Fτq(T )]. Weak convergence of L(τqn) to L(τq) then implies T
L(τqn)

k → T
L(τq)

k .

Case (iii). If rk > Fτq(T ), then T
L(τq)

k = �. By weak convergence of L(τqn) to
L(τq) and the continuity of Fτq at time T , we have that Fτqn

(T ) → Fτq(T ). This

implies rk > Fτqn
(T ) and hence T

L(τqn)

k = � for n sufficiently large.
Finally, we consider the case T = ∞. For the case R ∈ RD , let us view

[t0,∞] as the one-point compactification of [t0,∞) which is homeomorphic to
[0,1]. Then P([t0,∞]) is again a compact, convex subset of the space of finite
signed measures M([t0,∞]) endowed with the Kantorovich–Rubinstein norm.
It can be shown that weak convergence of μk to μ in P([t0,∞]) still implies
the convergence of Fμk

to Fμ at the continuity points of Fμ (here ∞ is a con-
tinuity point of Fμ if and only if μ({∞}) = 0), from which we can obtain
u(t, x;μ,c) → u(t, x;μ,c) pointwise on [0,∞) × R+, and Eϕ(τμk

) → Eϕ(τμ)

for any ϕ ∈ Cb([t0,∞]). Thus, the proof from the case T < ∞ remains valid.
For the case R ∈ RS , we identify Q = {(T1, . . . , Td) ∈ [t0,∞]d : T1 ≤ T2 ≤

· · · ≤ Td} with the convex, compact set Y := {(y1, . . . , yd) ∈ [0,1]d : y1 ≤ y2 ≤
· · · ≤ yd} under some homeomorphism h. Since the extended real line is not a
vector space, Schauder’s fixed-point theorem does not directly apply to Q. Instead,
we look for a fixed point of � := h ◦ � ◦ h−1 in Y , where � is the original best
response mapping. Any fixed-point y of � induces a fixed- point q = h−1(y) of �.
Since h is a homeomorphism, � is continuous if and only if � is continuous. The
proof then proceeds similarly as before. �

4.2. Uniqueness of the fixed point. Denote by ACT
t0

the set of measures μ ∈
P(R+) with c.d.f. Fμ that is absolutely continuous on [t0, T ] ∩ [t0,∞). The fol-
lowing monotonicity condition, which we will show is sufficient for uniqueness, is
in the same spirit as Lasry and Lions (2007). The proofs in this section are slight
variations of those in Bayraktar and Zhang (2016), Section 3.2. So we only provide
a sketch here. Interested readers can refer to arXiv:1811.00076 for details.

ASSUMPTION 4.1. For any μ,μ′ ∈ ACT
t0

such that Fμ(t0) = Fμ′(t0), we have∫ T

t0

(Rμ − Rμ′)(t) d
(
μ − μ′)(t) ≤ 0.

PROPOSITION 4.1. Assumption 4.1 is satisfied if the function

h(t, x, y) :=

⎧⎪⎪⎨⎪⎪⎩
R(t, x) − R(t, y)

x − y
t ∈ [t0, T ] ∩ [t0,∞),0 ≤ x 	= y ≤ 1,

∂

∂x
R(t, x) t ∈ [t0, T ] ∩ [t0,∞),0 ≤ x = y ≤ 1

http://arxiv.org/abs/arXiv:1811.00076
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is well-defined, nonpositive, increasing in t , x, y, and the functions R(t,Fμ(t)),
h(t,Fμ(t),Fμ′(t)) are absolutely continuous on [t0, T ] ∩ [t0,∞) for any μ,μ′ ∈
ACT

t0
. In particular, Assumption 4.1 is satisfied for reward functions of the form

R(t, r) = 1{t≤T }H(r) + 1{t>T }R∞, where H is a convex, decreasing, C2[0,1]
function, such that H(r) ≥ R∞ for all r .

PROOF. Using integration by parts for absolutely continuous functions, one
can show that

2
∫ T

t0

(Rμ − Rμ′)(t) d
(
μ − μ′)(t) = (

Fμ(t) − Fμ′(t)
)2

h
(
t,Fμ(t),Fμ′(t)

)∣∣∣∣T
t=t0

−
∫ T

t0

(Fμ − Fμ′)2(t) dh
(
t,Fμ(t),Fμ′(t)

)
.

The boundary term is nonpositive since Fμ(t0) = Fμ′(t0) and h ≤ 0. The remaining
term is also nonpositive since h(t,Fμ(t),Fμ′(t)) is increasing. �

THEOREM 4.2. Under Assumption 4.1, �t0,π,m has at most one fixed point.

PROOF. Suppose μ and μ′ are two fixed points of �t0,π,m. Write v(t, x; c) :=
v(t, x;μ,c) and v′(t, x; c) := v(t, x;μ′, c). Let (θ, ξ, c) be a randomization ac-
cording to the initial condition (t0, π,m), and let Xμ, Xμ′

, τμ, τμ′ be con-
structed as in Section 4.1. By Assumption 4.1, Itô’s lemma, the PDE satisfied
by v and v′, and that μ = �t0,π,m(μ) = L(τμ), Rμ(t0) = R(t0, π) = Rμ′(t0) and
Rμ(t) = Rμ′(t) = R∞ for any t > T , one can show that

0 ≥
∫ T

t0

[
Rμ(t) − Rμ′(t)

]
d
(
μ − μ′)(t)

= E

[
1{θ=0}

4c

{∫ τμ∧T

t0

(
vx − v′

x

)2(
t,X

μ
t ; c)

dt

+
∫ τμ′∧T

t0

(
v′
x − vx

)2(
t,X

μ′
t ; c)

dt

}]
≥ 0.

So on the set {θ = 0}, we must have

vx

(
t,X

μ
t ; c)

1{t0≤t<τμ∧T } = v′
x

(
t,X

μ
t ; c)

1{t0≤t<τμ∧T }P × dt-a.e.

By the uniqueness of the solution of the SDE (2.1), Xμ and Xμ′
are indistinguish-

able up to time τμ ∧ T . Thus, on the set {τμ ≤ T }, we have τμ = τμ′ a.s. On the
set {τμ > T }, we also have τμ′ > T , and consequently, τμ = τμ′ = � by our con-
struction. It remains to note that τμ = τμ′ a.s. implies μ = L(τμ) = L(τμ′) = μ′.

�
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4.3. Stability of the fixed point. How stable or sensitive is the equilibrium with
respect to changes in the reward function? This question is not only of interest
in its own, but also provides the basis for numerical computation of the mean
field equilibrium (see the beginning of Section 5). Specifically, the stability result
guarantees that the sequence of equilibria of discretized (mean field) games, if
converging, will converge weakly to an equilibrium of the original game.

Introduce a Lipschitz condition:

RDL := {
R ∈ RD : ∃LG ∈R s.t.∣∣G(t, y1) − G(t, y2)

∣∣ ≤ LG|y1 − y2| ∀t ∈ R+, y1, y2 ∈ R
}
.

We then have the following stability (continuity) result.

THEOREM 4.3. Suppose {Rn(t, r) = G(t,Hn(r))} ⊆ RDL is a sequence of
reward functions which converges to R(t, r) = G(t,H(r)) ∈RDL in the following
sense:

‖Hn − H‖L1[0,1] → 0 as n → ∞.

Let μn be a fixed point of the best response mapping �
t0,π,m
n associated with Rn

(given by Theorem 4.1). Then μn has a subsequence which converges weakly to a
fixed-point μ of the best response mapping �t0,π,m associated with R.

PROOF. Assume first T < ∞. First, we construct a weak limit. Since each μn

belongs to the compact space P(T), we can extract a subsequence of μn which
converges weakly to some μ. With a slight abuse of notation, we still denote the
convergent subsequence by μn.

Next, from part (a) of the the proof of Theorem 4.1, we know �t0,π,m is continu-
ous on Df . It follows that μ̃n := �t0,π,m(μn) converges weakly to �t0,π,m(μ). The

main task is to show the the c.d.f.s of μn = �
t0,π,m
n (μn) and of μ̃n = �t0,π,m(μn)

are uniformly close for n large. More precisely, we claim that

(4.8) ‖Fμn − Fμ̃n
‖∞ ≤ C‖Hn − H‖L1[0,1]

for some constant C independent of n. Observe that by our definition of the best
response mapping, both Fμn and Fμ̃n

stay constant after time T until time � where
they jump to one. So to bound |Fμn(t)−Fμ̃n

(t)|, it suffices to restrict our attention
to t ∈ [t0, T ].

Denote by un the transformed value function associated with the reward func-
tion Rn. Using (2.4), the Lipschitz continuity of G(t, ·), the assumption that
G(t, x) = R∞ for all t > T , (4.3) and (2.8), we can obtain the following two esti-
mates:

E
∣∣un(t0, ξ ;μn, c) − u(t0, ξ ;μn, c)

∣∣ ≤ C1‖Hn − H‖L1[0,1],(4.9)
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E

∫ T

t0

∣∣un(t,0;μn, c) − u(t,0;μn, c)
∣∣fτ ◦

ξ/σ
(t − t0) dt

≤ C1‖Hn − H‖L1[0,1],
(4.10)

where

C1 := LG

2cσ 2(1 − π)
exp

(
R(0,0)

2cσ 2 + R(0,0) − R∞
2cσ 2

)
.

Then we use (4.2), (2.8), (4.9) and (4.10) to deduce that

sup
t∈[t0,T ]

∣∣Fμn(t) − Fμ̃n
(t)

∣∣
≤ C1(1 − π)

{
exp

(
R(0,0)

2cσ 2 − R∞
cσ 2

)
+ exp

(−R∞
2cσ 2

)}
‖Hn − H‖L1[0,1],

which proves (4.8).
Finally, we show the weak limit μ is a fixed point of �t0,π,m. Since μ̃n con-

verges to �t0,π,m(μ) weakly and |Fμn − Fμ̃n
| converges to zero uniformly, we

know μn also converges to �t0,π,m(μ) weakly. By uniqueness of the weak limit,
we must have �t0,π,m(μ) = μ.

For T = ∞, we use the compactification of P([t0,∞]) as in the proof of Theo-
rem 4.1. �

4.4. Approximate equilibrium of the N -player game. We want to see when we
can approximate a game with finitely many players with the game with infinitely
many players. Our results will be derived for the reward functions that are Hölder
continuous in the rank variable. For α ∈ (0,1], define

RCα := {
R ∈R : ∃Lα ∈ R s.t.∣∣R(t, r1) − R(t, r2)

∣∣ ≤ Lα|r1 − r2|α∀t ∈R+, r1, r2 ∈ R
}

⊆RD.

For simplicity of the presentation, we consider only a freshly started tournament,
that is, t0 = 0, and π = 0.

The N -player system is given by

X
ai

i,t = xi −
∫ t

0
ai,s ds + σBi,t , i = 1, . . . ,N,

where B1, . . . ,BN are independent Brownian motions, and a = (a1, . . . , aN) is a
vector of admissible actions, meaning that each ai is nonnegative and progressively
measurable with respect to the filtration of B1, . . . ,BN , and yields a unique strong
solution X

ai

i up to τ
ai

i := inf{t ≥ 0 : Xai

i,t = 0}, and if τ
ai

i is nonatomic.

Let μ̄N,a = 1
N

∑N
i=1 δ

τ
ai
i

be the empirical distribution of the completion time.
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DEFINITION 4.1. An admissible action vector a = (a1, . . . , aN) is called an
ε-Nash equilibrium action of the N -player game if for any i ∈ {1, . . . ,N} and any
admissible control β , we have

E

[
Rμ̄N,a

(
τ

ai

i

) −
∫ τ

ai
i ∧T

0
cia

2
i,t dt

]
+ ε ≥ E

[
R

μ̄
N,ai

β

(
τ

β
i

) −
∫ τ

β
i ∧T

0
ciβ

2
t dt

]
,

where ai
β = (a1, . . . , ai−1, β, ai+1, . . . , aN).

We have the following approximation result.

THEOREM 4.4. Assume R ∈ RCα for some α ∈ (0,1] and (xi, ci), i =
1, . . . ,N are i.i.d. samples from m. For any fixed-point μ of �0,0,m, the vector
ā = (ā1, . . . , āN ) with

āi,t := −(2ci)
−1vx

(
t,X

āi

i,t ;μ,ci

)
1{t<τ

āi
i }, i = 1, . . . ,N

is an O(N−α/2)-Nash equilibrium action of the N -player game, as N → ∞.

PROOF. Let μ and āi,t be defined as in the theorem statement. To sim-
plify notation, we omit the superscript of any state process Xi and its first
passage time τi if it is controlled by the optimal Markovian feedback strategy
−(2ci)

−1vx(t, x;μ,ci). For a given (deterministic) initial position x and cost c,
let

V (x, c) := v(0, x;μ,c) = E

[
Rμ

(
τx,c) −

∫ τx,c∧T

0

1

4c
v2
x

(
t,X

x,c
t ;μ,c

)
dt

]
be the value of the game with infinitely many players, where

dX
x,c
t = −vx(t,X

x,c
t ;μ,c)

2c
1{t<τx,c} dt + σ dBt , X

x,c
0 = x

and τx,c is the first passage time of Xx,c to level zero with distribution q(·;x, c).
Since Xi |(xi ,ci ) is an identical copy of Xxi,ci , we have

V (xi, ci) = E

[
Rμ(τi) −

∫ τi∧T

0
ci ā

2
i,t dt

∣∣∣xi, ci

]
.

It is also easy to see that the τi ’s are i.i.d. random variables with distribution m ⊗
q = μ. Let

μ̄N := 1

N

N∑
i=1

δτi

be their empirical distribution, and

JN
i : = E

[
Rμ̄N (τi) −

∫ τi∧T

0
ci ā

2
i,t dt

∣∣∣xi, ci

]
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be the (random) net gain of player i in an N -player game when everybody uses the
candidate approximate Nash equilibrium ā. We first show that JN

i and V (xi, ci)

are close.
Rewrite μ̄N as μ̄N = 1

N
δτi

+ N−1
N

μ̄N−i where

μ̄N−i := 1

N − 1

∑
j 	=i

δτj

is the empirical distribution of (N − 1) i.i.d. samples from the distribution μ. By
Dvoretzky–Kiefer–Wolfowitz inequality,

P
(‖Fμ̄N−i

− Fμ‖∞ > z
) ≤ 2e−2(N−1)z2 ∀ z > 0,

which implies that

E
[‖Fμ̄N−i

− Fμ‖∞
] =

∫ ∞
0

P
(‖Fμ̄N−i

− Fμ‖∞ > z
)
dz

≤
∫ ∞

0
2e−2(N−1)z2

dz = 2

(N − 1)1/2

∫ ∞
0

e−2y2
dy.

By the α-Hölder continuity of R, we then have

V (xi, ci) − JN
i

= E
[(

Rμ(τi) − Rμ̄N (τi)
)|xi, ci

] ≤ LαE
[∣∣Fμ̄N (τi) − Fμ(τi)

∣∣α|xi, ci

]
= LαE

[∣∣∣∣ 1

N

(
1 − Fμ(τi)

) + N − 1

N

(
Fμ̄N−i

(τi) − Fμ(τi)
)∣∣∣∣α∣∣∣xi, ci

]
≤ LαE

[(
1

N
+ N − 1

N
‖Fμ̄N−i

− Fμ‖∞
)α]

≤ Lα

(
1

N
+ N − 1

N
E‖Fμ̄N−i

− Fμ‖∞
)α

= O
(
N−α/2)

as N → ∞.

Note that we can drop the conditioning because μ̄N−i is independent of (xi, ci).
Next, consider the system where player i makes a unilateral deviation from

the candidate approximate Nash equilibrium ā; say, she chooses an admissible
control β . Denote her controlled state process by X

β
i , and the state processes of all

other players by Xj as before for j 	= i. Let

ν̄N := 1

N

(
δ
τ

β
i

+ ∑
j 	=i

δτj

)
= 1

N
δ
τ

β
i

+ N − 1

N
μ̄N−i

be the corresponding empirical measure of the completion times, and

J
N,β
i := E

[
Rν̄N

(
τ

β
i

) −
∫ τ

β
i ∧T

0
ciβ

2
t dt

∣∣∣xi, ci

]
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be the corresponding net gain for player i. We have

J
N,β
i − V (xi, ci)

= E
[
Rν̄N

(
τ

β
i

) − Rμ

(
τ

β
i

)|xi, ci

]
+ E

[
Rμ

(
τ

β
i

) −
∫ τ

β
i ∧T

0
ciβ

2
t dt

∣∣∣xi, ci

]
− E

[
Rμ(τi) −

∫ τi∧T

0
ci ā

2
i,t dt

∣∣∣xi, ci

]
≤ E

[
Rν̄N

(
τ

β
i

) − Rμ

(
τ

β
i

)|xi, ci

]
,

where we have used the optimality of āi for the ith player’s problem (in response
to μ) in the last step. (āi is optimal in the filtration of B1, . . . ,BN by Remark 2.1.)
Similar to how we estimated V (xi, ci) − JN

i , we can show

J
N,β
i − V (xi, ci)

≤ LαE

[∣∣∣∣ 1

N

(
1 − Fμ

(
τ

β
i

)) + N − 1

N

(
Fμ̄N−i

(
τ

β
i

) − Fμ

(
τ

β
i

))∣∣∣∣α∣∣∣xi, ci

]
≤ LαE

[(
1

N
+ N − 1

N
‖Fμ̄N−i

− Fμ‖∞
)α]

= O
(
N−α/2)

as N → ∞.

Combining the two estimates, we obtain

J
N,β
i − JN

i = J
N,β
i − V (xi, ci) + (

V (xi, ci) − JN
i

) ≤ O
(
N−α/2)

as N → ∞.

This shows ā is an O(N−α/2)-Nash equilibrium action. �

REMARK 4.1. For reward functions that are merely continuous in the rank
variable, we still have convergence of the approximation, but we do not know the
convergence rate.

5. A case with heterogeneous players. We end our discussion with a nu-
merically computed example with heterogeneous agents, assuming R(t, r) =
1{t≤T }15(1 − r)2 under which the (Nash) equilibrium is unique. When the players
are heterogeneous, there is generally no explicit characterization of the equilib-
rium. We numerically solve the fixed-point equation

Fμ(t) = E

[∫ t

0

u(z,0;μ,c)

u(0, ξ ;μ,c)
fτ ◦

ξ/σ
(z) dz

]
, t ∈ [0, T ]

by discretizing the rank space, which is equivalent to approximating R ∈ R by ele-
ments in RS .4 From the stability result (Theorem 4.3), we know that the sequence

4There is an advantage of discretizing the rank variable instead of time variable: when T is large,
a fine discretization of [0, T ] may result in a high computational burden. In contrast, the rank space
[0,1] remains fixed.
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of equilibria of the discretized games, if converging, will converge weakly to the
unique equilibrium of the original game. We also know from Section 4.1 that the
equilibrium distribution μ of the discretized game can be represented by a vector
(T

μ
1 , . . . , T

μ
d ), where T

μ
k is the (rk)-quantile of μ and 0 = r0 < r1 · · · < rd < 1

is a partition of the rank space [0,1]. This allows us to compute μ by solving a
nonlinear system of algebraic equations for (T

μ
1 , . . . , T

μ
d ).

We consider players that differ in the initial location and cost, with x0 ∈ {1,2}
and c ∈ {1,4}. Other model parameters are fixed to be T = 1 and σ = 0.25. Denote
by β the population terminal completion rate and by βx the terminal completion
rate of the players of type x relative to its initial weight. Similarly, Vx refers to the
game value for a player of type x. The total welfare in the heterogeneous setting is
given by

Total welfare =
∫

V (x0, c) dm(x0, c).

Let us call “disadvantaged” (DA) the players who start from a larger distance, or
who have a higher cost of effort. Analogously for “advantaged” (AD) players.

Table 2 shows that for those parameters, the following happens:

• As the fraction of DA players in the population increases, the population com-
pletion rate decreases, but the completion rates of the DA group and of the AD
group both increase. That is, the aggregate percentage of completions is lower
because more of the population is disadvantaged, and not because of working
less hard. In fact, both the value of DA players and the value of AD players go
up with the population fraction of DA players. This is because DA players find

TABLE 2
Equilibrium completion rates and game values under different population composition

Case m β βAD βDA VAD VDA Total welfare

0 δ(1,1) 75.9% 75.9% – 0.178 – 0.178

1 4
5 δ(1,1) + 1

5 δ(2,1) 73.8% 92.2% 0% 0.319 0 0.255

2 3
5 δ(1,1) + 2

5 δ(2,1) 60% 100% 0% 1.701 0 1.020

3 2
5 δ(1,1) + 3

5 δ(2,1) 49.8% 100% 16.4% 4.276 0.022 1.724

4 1
5 δ(1,1) + 4

5 δ(2,1) 49.8% 100% 37.3% 7.338 0.058 1.514

5 δ(2,1) 49.8% – 49.8% – 0.086 0.086

6 4
5 δ(1,1) + 1

5 δ(1,4) 73.8% 92.2% 0.1% 0.319 0 0.255

7 3
5 δ(1,1) + 2

5 δ(1,4) 60.4% 100% 0.9% 1.675 0.005 1.007

8 2
5 δ(1,1) + 3

5 δ(1,4) 51.9% 100% 19.8% 4.030 0.110 1.678

9 1
5 δ(1,1) + 4

5 δ(1,4) 51.8% 100% 39.8% 7.091 0.253 1.621

10 δ(1,4) 51.8% – 51.8% – 0.365 0.365
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it more advantageous to put in higher effort when the fraction of AD players
is lower, due to weaker competition, so that a higher percentage of DA players
completes the task and enjoys a higher value.

• The aggregate welfare is not monotone in the percentage of DA players: it goes
up with the fraction of DA players only in the lower and mid range of the DA
fraction, unlike the groups’ welfares that always go up. When the fraction of DA
players becomes very high, the total population welfare starts decreasing. This
is the result of two conflicting forces: quality (higher individual value) versus
quantity (fewer AD individuals).

These results support two (not very surprising) empirical predictions: (i) in low-
growth industries, or in nonprofit institutions we should not see tournament-based
compensation, especially when they have a high percentage of high-skilled em-
ployees; (ii) in undeveloped countries with large differences in access to good
education, those with less access would give up early.

To recap, a more efficient society (more AD workers) has a higher productivity
(larger β) and may have a higher total welfare, but it makes, in this example, the
individuals worse off, because the efficient workers tend to work too hard and the
inefficient workers tend to work too little.

Figure 7 shows the equilibrium effort corresponding to Cases 6 and 9 in Ta-
ble 2, varying the fraction of low cost versus high cost players. (Other cases lead
to similar observations.) Comparing the effort level between the left two panels
and the right two panels, we see that the low-cost players exert higher effort than
the high-cost players. Their effort region is also larger. On the other hand, players
also tend to play to their opponents’ level. A comparison of the top left panel with
the bottom left panel demonstrates that the effort peak of AD players is signif-
icantly lower when they face weaker competition. Similarly, DA players tend to
raise their effort when they face stronger competition until the competition gets
too strong for them to keep up.

APPENDIX

A.1. Proofs of Theorems 3.4, 3.5 and 3.6. We first solve an auxiliary prob-
lem. Define

(A.1) J (h) :=
∫ α

0
h(r) dr, K(h) :=

∫ α

0
− lnh(r) dr

and

(A.2)

h :=
{
h : [0, α] → R : h is increasing,0 < h ≤ exp

(
− R∞

2cσ 2

)
,

K(h) ≤ K − R∞(1 − α)

2cσ 2

}
.
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FIG. 7. Effort function in an equilibrium formed by 80% low-cost players and 20% high-cost play-
ers (top two panels) and 20% low-cost players and 80% high-cost players (bottom two panels).
Everyone starts at x0 = 1.

LEMMA A.1. Let α ∈ (0,1] and K ≥ R∞. Then infh∈hJ (h) is uniquely at-
tained (up to a.e. equivalence) at

h∗ ≡ exp
(
−K − R∞(1 − α)

2αcσ 2

)
.

PROOF. We first show uniqueness. Suppose h1, h2 ∈ h both minimize J .
Then, since J is linear and h is convex, hε := (1 − ε)h1 + εh2 is optimal for any
ε ∈ [0,1]. Note that any optimizer h necessarily satisfies K(h) = (K − R∞(1 −
α))/(2cσ 2), otherwise we can find λ ∈ (0,1) such that λh ∈ h and J (λh) < J (h).
This implies K(hε) = (1 − ε)K(h1) + εK(h2) for any ε ∈ [0,1]. However, by the
strict convexity of z �→ − ln z (and thus of K), this can only happen when h1 = h2
a.e. on [0, α].
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Next, we show h∗ is an optimizer. Let h ∈ h be arbitrary. We have by Jensen’s
inequality that

J
(
h∗) = α exp

(
−K − R∞(1 − α)

2αcσ 2

)
≤ α exp

(
− 1

α
K(h)

)
= α exp

(
1

α

∫ α

0
lnh(r) dr

)
≤ α exp

(
ln

(
1

α

∫ α

0
h(r) dr

))
= J (h). �

PROOF OF THEOREM 3.4. By Theorem 3.1(ii), we have

Tα(H) = F−1
τ ◦
x0/σ

(∫ α
0 exp(−H(r)

2cσ 2 ) dr∫ 1
0 exp(−H(r)

2cσ 2 ) dr

)
.

First of all, it is clear from the above expression that one should only pay R∞
beyond rank α, because H1[0,α] +R∞1(α,1] performs no worse than H . Assuming
H = R∞ on (α,1], we further let h(r) := exp(−H(r)

2cσ 2 ) and write

Tα(H) = F−1
τ ◦
x0/σ

( ∫ α
0 h(r) dr∫ α

0 h(r) dr + (1 − α) exp(− R∞
2cσ 2 )

)
.

Then, to minimize Tα(H), it suffices to minimize J (h). Moreover, the feasibility
constraint H ∈ H precisely translates to h ∈ h, under the assumption that H = R∞
on (α,1]. Thus, the solution to our minimum quantile problem is in one-to-one
correspondence to the solution to our auxiliary problem, given by Lemma A.1. All
the statements of the theorem can now be derived in a straightforward manner. �

PROOF OF THEOREM 3.5. By Theorem 3.1(i), we have

Tα(H ;T ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F−1

τ ◦
x0/σ

(1 − Fτ ◦
x0/σ

(T )

1 − β(H)

∫ α

0
exp

(
R∞ − H(r)

2cσ 2

)
dr

)
≤ T

α ≤ β(H),

� α > β(H),

where β(H) = FET (H)(T ) ∈ (0,1) is the unique solution of

Fτ ◦
x0/σ

(T )

1 − Fτ ◦
x0/σ

(T )
= 1

1 − z

∫ z

0
exp

(
R∞ − H(r)

2cσ 2

)
dr = φ(z;H).

CLAIM. The optimal value does not change if we restrict ourselves to reward
function H which satisfies H(r) = R∞ for all r > α.

To prove the claim, let H ∈ Hα
T and define Ĥ := H1[0,α] + R∞1(α,1]. We first

check the feasibility of Ĥ . Since φ(β(Ĥ ); Ĥ ) = φ(β(H);H) ≤ φ(β(H); Ĥ ) and
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φ(z; Ĥ ) is increasing, we must have β(Ĥ ) ≤ β(H). Using this, together with H ≥
Ĥ ≥ R∞, we get∫ β(Ĥ )

0
Ĥ (r) dr + (

1 − β(Ĥ )
)
R∞ ≤

∫ β(H)

0
H(r) dr + (

1 − β(H)
)
R∞ ≤ K.

Thus, Ĥ also satisfies the budget constraint. Since β(H) ≥ α, we have by the
monotonicity of φ that φ(β(Ĥ ); Ĥ ) = φ(β(H);H) ≥ φ(α;H) = φ(α; Ĥ ), and
thus, β(Ĥ ) ≥ α. So we conclude that Ĥ ∈ Hα

T . Next, we have

Fτ ◦
x0/σ

(
Tα(Ĥ ;T )

) =
1 − Fτ ◦

x0/σ
(T )

1 − β(Ĥ )

∫ α

0
exp

(
R∞ − Ĥ (r)

2cσ 2

)
dr

≤
1 − Fτ ◦

x0/σ
(T )

1 − β(H)

∫ α

0
exp

(
R∞ − H(r)

2cσ 2

)
dr

= Fτ ◦
x0/σ

(
Tα(H ;T )

)
,

which is equivalent to Tα(Ĥ ;T ) ≤ Tα(H ;T ), and the claim has been verified.
Its immediate consequence is that if β(H) ≥ α and H(r) = R∞ for all r > α,

then ∫ β(H)

0
H(r) dr + (

1 − β(H)
)
R∞ =

∫ 1

0
H(r) dr,

which implies Hα
T ∩ {H |(α,1] ≡ R∞} = H ∩ {β(H) ≥ α} ∩ {H |(α,1] ≡ R∞}. Thus,

we can work with the simpler feasible set H instead of the equilibrium-dependent
Hα

T .
As in the T = ∞ case, we let h(r) := exp(−H(r)

2cσ 2 ). In view of the claim above,

we can set h(r) ≡ exp(− R∞
2cσ 2 ) for r ∈ (α,1] and only search for the optimal h

on [0, α]. With a slight abuse of notation, we also use β(h) to denote the unique
solution z in (0,1) of

(A.3) CT :=
Fτ ◦

x0/σ
(T )

1 − Fτ ◦
x0/σ

(T )
= 1

1 − z

(∫ z∧α

0
exp

(
R∞

2cσ 2

)
h(r) dr + (z − z ∧ α)

)
.

The feasibility condition translates to h ∈ hT := h∩ {β(h) ≥ α} where h is defined
in (A.2). Equation (A.3) implies that β(h) ≥ α if and only if

J (h) =
∫ α

0
h(r) dr ≤ CT (1 − α) exp

(
− R∞

2cσ 2

)
.

By Lemma A.1,

inf
h∈hJ (h) = J

(
h∗) = α exp

(
−K − (1 − α)R∞

2αcσ 2

)
.
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Therefore, we arrived at the following feasibility criteria:

hT 	= ∅ ⇐⇒ β
(
h∗) ≥ α ⇐⇒ J

(
h∗) ≤ CT (1 − α) exp

(
− R∞

2cσ 2

)
⇐⇒ T ≥ F−1

τ ◦
x0/σ

(
α

α + (1 − α) exp(K−R∞
2αcσ 2 )

)
= T ∗

α .

If hT = ∅, then there is no feasible reward scheme which attains, in equilibrium,
the desired completion rate of α by time T . Suppose h ∈ hT 	= ∅. Then

Fτ ◦
x0/σ

(
Tα(H ;T )

) = (
1 − Fτ ◦

x0/σ
(T )

)
exp

(
R∞

2cσ 2

)∫ α
0 h(r) dr

1 − β(h)
.

Thus, to minimize Tα(H ;T ), we only need to minimize

L(h) := J (h)

1 − β(h)
exp

(
R∞

2cσ 2

)
, h ∈ hT .

From (A.3), we also obtain

β(h) = CT + α − exp( R∞
2cσ 2 )J (h)

1 + CT

, h ∈ hT .

It follows that

L(h) = J (h)

1 − α + exp( R∞
2cσ 2 )J (h)

, h ∈ hT .

Hence, to minimize L(h), it suffices to minimize J (h) over h ∈ hT . Note
that when hT 	= ∅, we have β(h∗) ≥ α and thus, h∗ ∈ hT . This implies h∗ =
arg minh∈hJ (h) is also the (unique) optimizer of infh∈hT

J (h). From h∗, we can
recover the optimal H ∗ and the associated T ∗

α (T ).
As in the case T = ∞, all the statements of the theorem but the last two can now

be derived in a straightforward manner. For the last two, setting T ∗
α = T yields the

minimum budget and the maximum terminal completion rate. �

PROOF OF THEOREM 3.6. (i) By (3.7), maximizing V∞ over H is equiva-
lent to minimizing J (h) = ∫ 1

0 h(z) dz over h (defined in (A.2)) with α = 1. By
Lemma A.1, arg minh∈hJ (h) = h∗ ≡ exp(−K/(2cσ 2)). It follows that H ∗ =
arg maxH∈H V∞(H) = −2cσ 2 lnh∗ ≡ K and V∞(H ∗) = K .

(ii) By (3.5) and Proposition 3.2, maximizing the welfare or the expected total
effort is equivalent to maximizing the terminal completion rate, which we have
solved in Theorem 3.5. �
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