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Comment: Will Competition-Winning
Methods for Causal Inference Also
Succeed in Practice?
Qingyuan Zhao, Luke J. Keele and Dylan S. Small

Abstract. First, we would like to congratulate the authors for successfully
hosting the causal inference data competition (referred to as Competition
henceforth) and contributing a unique and thought-provoking article to the
literature. The authors have provided a comprehensive and timely platform
to evaluate the ever-growing number of methods used for covariate adjust-
ment in observational studies. In our comment, we don’t generally question
the results of the competition, but we do wish to emphasize several other key
elements about the role statistics plays in causal inference and observational
studies.

Key words and phrases: Observational studies, machine learning, study de-
sign.

TESTING GROUNDS FOR CAUSAL INFERENCE:
“IN VITRO” VERSUS “IN VIVO”

One of the main conclusions learned from this con-
test was that, “methods that flexibly model the response
surface perform better overall than methods that fail to
do so.” In view of Breiman’s (2001) famous dichotomy,
this would appear to be another triumph for the algo-
rithmic culture of statistical modeling. Just like hun-
dreds of online machine learning competitions (for ex-
ample those hosted by Kaggle), highly adaptive black
box algorithms are shown once again to outperform
“traditional” statistical methods such as linear regres-
sion.
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However, unlike the winners of machine learn-
ing competitions, we believe it is not obvious that a
“competition-winning” method for causal inference
should be immediately deployed in practice, even if
the competition is as comprehensive as the one in the
paper being discussed. The first reason for our cau-
tion is the inherent differences between predictive in-
ference and causal inference. In predictive tasks, it is
often straightforward to evaluate the performance of
machine learning methods in real life by simply hold-
ing out a test dataset. Thus, it is easy to create a fair
testing ground for predictive methods. Unfortunately,
causal inference methods cannot be evaluated this way
because a successful method needs to predict the out-
come in different interventional settings, which are not
available in observational datasets.

Besides the simulation-based comparisons, another
testing ground for causal inference methods is the
within-study comparison, where the control group of
a randomized experiment is replaced with an obser-
vational comparison group (this is discussed in Sec-
tion 2.1 of the main paper). A good analogue is in vitro
(meaning “in the glass” or “in the test tube”) versus in
vivo (meaning “in the living”) experiments in biology.
How about change the last two sentences to: Like in
vitro experiments, simulation-based comparisons can
test the performance of statistical methods in highly
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controlled settings, thus they are simple to implement
and automate. However, they often make the simpli-
fying assumptions that there is no unmeasured con-
founding and the overlap assumption is reasonably sat-
isfied, and thus may not reflect the performance in real
studies. Like in vivo experiments, within-study com-
parisons yield critical information about the statistical
methods in actual practice, but they are often costly and
difficult to conduct. The authors should be congratu-
lated for a clear advance in the design of “in vitro” ex-
periments for causal inference methods. Just as the pre-
dictive competitions have been so instrumental in ad-
vancing the field of machine learning, the competition
presented in the article has shed new light on the effi-
cacy of flexible black box methods in causal inference.
However, we think further developments of “in vivo”
studies are also extremely important to understand the
efficacy and limitations of causal inference methods in
realistic scenarios. The studies in Cook, Shadish and
Wong (2008) and Shadish, Clark and Steiner (2008)
are all too rare examples of what can be learned from
“in vivo” investigations.

SOURCES OF ESTIMATION ERROR

A key limitation of the “in vitro” design is the lack
of consideration of hidden bias in real studies. In gen-
eral, we can describe the estimation error of any causal
effect estimator with the following equation:

Estimator − True causal effect

= Hidden bias
︸ ︷︷ ︸

Due to unmeasured confounding

+ Misspecification bias
︸ ︷︷ ︸

Due to parametric modeling

+ Noise
︸ ︷︷ ︸

Due to finite sample

.

(1)

The first term “hidden bias” is due to poor design of the
study and can include unmeasured confounding bias or
collider bias. The next two terms reflect the familiar
bias-variance tradeoff of statistical estimators.

Before commenting on the competition results, we
want to emphasize one point about the decomposition
(1). An implicit claim in (1) is that the hidden bias does
not depend on the particular statistical method used to
analyze the data. In other words, the hidden bias is de-
cided once we determine what data will be collected.
A simple conceptual proof of this is to imagine two
estimators that both converge to the true causal effect
when there is no unmeasured confounding. They must

also converge to the same limit when there is unmea-
sured confounding, because otherwise the ignorability
assumption would be testable by empirical data.

In the competition (and usually any “in vitro” com-
parison), the hidden bias was fixed at zero. Thus, the
submitted methods were judged entirely by their abil-
ity to find an appealing bias-variance tradeoff between
the last two terms of (1) in a wide range of simulation
settings. While such a comparison certainly provides
valuable information, we worry that readers will lose
the big picture and simply interpret the competition
results as saying that using flexible machine learning
methods is foolproof for valid causal inference. In ac-
tual studies we have been involved with, however, the
foremost concern has almost always been the hidden
bias, the first term in (1). The rationale is that, while
misspecification error is a concern, it is still fixable
by statistical methods (at least in principle). as demon-
strated by the competition In contrast, once hidden bias
is present, it cannot be detected or corrected by any
statistical method and will stick with any subsequent
analysis. We will discuss more about designing an ob-
servational study in the next section.

The usefulness of any “in vitro” comparison thus de-
pends on the relative magnitude of the non-statistical
hidden bias and the statistical error, that is, the ra-
tio between the first term and the last two terms in
(1). We think it is quite possible that the data generat-
ing processes in the competition overstated the magni-
tude of misspecification bias relative to what is present
in most applications. That is, the competition demon-
strated clearly that flexible black boxes are very good at
minimizing misspecification bias, but how large is this
quantity in real data? In a recent paper, Keele and Small
(2018) find that in a variety of applications, differences
in causal effect estimates between different methods
due to misspecification error tended to be quite small.
This suggests that while methods flexibly modeling the
response surface are more robust when misspecifica-
tion bias is very large, in many data applications this
bias might be much smaller.

DESIGN TRUMPS ANALYSIS: TWO NEW
INTERPRETATIONS

In an influential article, Rubin (2008) advocated the
motto “design trumps analysis” and argued that objec-
tive observational studies must “be carefully designed
to approximate randomized experiments, in particular,
without examining any final outcome data.” Although
the three authors of this commentary have different
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views on how to use outcome data in the design of ob-
servational studies, we all agree that Rubin’s emphasis
on design is appropriate in a broader sense. Here, we
want to offer two new interpretations of “design trumps
analysis.”

Our first interpretation is motivated by the decompo-
sition (1), as the hidden bias due to poor design cannot
be corrected by any statistical estimator. We believe the
most critical stage of an observational study remains
the design, in particular, the selection of the identifi-
cation strategy. The competition was conducted in a
setting where “selection on observables” holds. Under
this identification strategy, the quality of the observa-
tional study largely depends on which confounders the
investigator decides to collect in the design stage of the
study. As a side remark, frequently it will be more fruit-
ful to find an alternative identification strategy based
on an instrument, a regression discontinuity design, or
a natural experiment. We would argue that evidence for
a causal effect is strengthened by finding that different
plausible identification strategies with different sources
of bias yield similar conclusions (Rosenbaum, 2001).

Even when an observational study is based on se-
lection on observables, other aspects of the design
stage may reduce hidden bias or increase the qual-
ity of the evidence. Specifically, observational stud-
ies based on selection on observables will tend to
yield better evidence when combined with the use of
quasi-experimental devices such as multiple control
groups and baseline outcomes that examine whether
certain sources of bias are large enough in magni-
tude to change the qualitative conclusions of a study
(Cook, Campbell and Shadish, 2002), the selection
of more focused comparisons that reduce unmeasured
confounding (Rosenbaum, 2005), making use of paral-
lel treatments (Rosenbaum, 2006), exploiting instances
instances of “refutability” including testing for hid-
den bias using negative control outcomes that aren’t
thought to be affected by the treatment (Angrist and
Krueger, 1999, Rosenbaum, 2002, Lipsitch, Tchet-
gen Tchetgen and Cohen, 2010), reporting results from
sensitivity analyses (Rosenbaum, 1987, Imbens, 2003),
and using “pattern specificity” to make claims convinc-
ing (Hill, 1965).

The second new interpretation comes from the main
finding of the paper being discussed: the competition-
winning methods all use flexible models for the re-
sponse surface and thus have small misspecification
bias. Among the methods that do not model the re-
sponse surface, ones which flexibly model the assign-
ment mechanism are also more robust than those which

do not. Furthermore, in Section 7.3 the authors find that
as long as the response surface is modeled flexibly, no
other characteristic of the methods seems to be associ-
ated with the cross-method performance variation. The
authors’ results thus all point to the same conclusion:
the use of a nonparametric model for the response sur-
face (and also the treatment assignment) is more im-
portant than the specific nonparametric estimator used.

THE ROLE OF STATISTICS IN CAUSAL INFERENCE

When causal inference methods are applied to an-
swer questions in scientific research, most of the time
the investigation team will also include at least one if
not several substantive experts. As statisticians, our job
is not just to develop methods that are most efficient
and robust in the statistical sense. Another important
part of our job is to communicate and interact with
our collaborators. For this we would like to offer an
quote from Box (1979) in his Presidential Address to
the American Statistical Association:

It is widely recognized that the advance-
ment of learning does not proceed by con-
jecture alone, nor by observation alone, but
by an iteration involving both. Certainly,
scientific investigation proceeds by such it-
eration. Examination of empirical data in-
spires a tentative explanation which, when
further exposed to reality, may lead to its
modification. This modified explanation is
again put in jeopardy by further exposure to
reality, and so on, in a continued alternation
between induction and deduction.

When collaborating with scientists as described by
Box, we can think of at least three other practical con-
cerns beyond the efficiency and robustness properties
examined by the Competition:

Exploratory data analysis (EDA): Can meaningful
EDA be performed to detect/remove anomalies, vi-
sualize the data, and assess assumptions of the sta-
tistical inference?

Ease to explain: Is it easy for us to explain the statis-
tical method to our collaborators who may lack the
technical skill? Is it easy for our collaborators to ex-
plain the method to their peers?

Substantive Input: Can we effectively interact with
our collaborators to incorporate their expert knowl-
edge to improve the analysis? Transparency of the
analysis may aid such interactions.
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In our experience, these are all critical in a suc-
cessful scientific collaboration. For example, in the
context of observational studies, the statistical method
should facilitate the removal of treated units that are far
away from the support of the control group. This can
often be examined after matching by the covariates.
As another example, if certain covariates are believed
to be more important confounders by our collabora-
tors, our statistical method should be able to incorpo-
rate this information. This is straightforward for meth-
ods based on the treatment assignment such as match-
ing (cf. Zubizarreta, 2012, Pimentel et al., 2015) and
propensity score weighting (cf. Zhao, 2019) by requir-
ing more stringent balancing constraint on these co-
variates. These methods may perform slightly (or even
much) worse in the competition because the response
surface is not explicitly modeled, but their transparency
may better aid the data visualization and other collab-
orative needs listed above.

Unfortunately, it is nearly impossible to incorporate
these considerations into simulation-based compar-
isons. In fact, such “in vitro” testing is more challeng-
ing for design-based method because domain knowl-
edge cannot be used (the covariates are usually coded
as X1,X2, . . . , with no physical meaning attached).
In an “in vivo” comparison using five empirical ap-
plications, Keele and Small (2018) find that carefully
designed matching methods and black box machine
learning methods only modeling the regression sur-
face mostly produce identical results. Interestingly, in
one case they find that prioritizing certain covariates
in matching can substantially change the causal effect
estimate. Thus, a priori knowledge can possibly play
an important role in observational studies in practice.

CONCLUSION

We want to thank the authors again for their efforts
in creating this data competition. The main message
that the response surface should be flexibly modeled is
well received. We welcome the usage of machine learn-
ing in causal inference and we are also thinking about
incorporating it in future research designs. One possi-
bility is to use matching with covariate prioritization
and black box methods in conjunction and check if the
results agree, see Keele and Small (2018).

Our main conclusion is that, while machine learning
methods have become indispensable instruments for
statisticians in modern large-scale problems, we should
not be complacent and become the “data analyst” of the
study. On the contrary, we should be even more consci-
entious about the design of an observational study and

continue to find ways to better interact with our scien-
tific collaborators. For this, we would like to end with
another quote from Box (1979):

Please can Data Analysts get themselves to-
gether again and become whole Statisticians
before it is too late? Before they, their em-
ployers, and their clients forget the other
equally important parts of the job statisti-
cians should be doing, such as designing
investigations and building models? By in-
vention of the concept of Experimental De-
sign, Fisher promoted the statistician from
a curator of dusty relics to a valued member
of a scientific team, responsible for planning
and taking part in the conduct of an investi-
gation. Let us not allow him to be relegated
to his previous passive and inferior role by
an injudicious choice of a name, “Our Data
Analyst” is too close for my liking to “Our
Tame Statistician,” a poor thing if that is all
he is.
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