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Generalized Multiple Importance Sampling
Víctor Elvira, Luca Martino, David Luengo and Mónica F. Bugallo

Abstract. Importance sampling (IS) methods are broadly used to approxi-
mate posterior distributions or their moments. In the standard IS approach,
samples are drawn from a single proposal distribution and weighted ade-
quately. However, since the performance in IS depends on the mismatch be-
tween the targeted and the proposal distributions, several proposal densities
are often employed for the generation of samples. Under this multiple impor-
tance sampling (MIS) scenario, extensive literature has addressed the selec-
tion and adaptation of the proposal distributions, interpreting the sampling
and weighting steps in different ways. In this paper, we establish a novel
general framework with sampling and weighting procedures when more than
one proposal is available. The new framework encompasses most relevant
MIS schemes in the literature, and novel valid schemes appear naturally. All
the MIS schemes are compared and ranked in terms of the variance of the as-
sociated estimators. Finally, we provide illustrative examples revealing that,
even with a good choice of the proposal densities, a careful interpretation of
the sampling and weighting procedures can make a significant difference in
the performance of the method.

Key words and phrases: Monte Carlo methods, multiple importance sam-
pling, Bayesian inference.

1. INTRODUCTION

Importance sampling (IS) is a well-known Monte
Carlo technique that can be applied to compute in-
tegrals involving target probability density functions
(p.d.f.’s) (Robert and Casella, 2004; Liu, 2008). The
standard IS technique draws samples from a single pro-
posal p.d.f. and assigns them weights based on the ra-
tio between the target and the proposal p.d.f.’s, both
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evaluated at the sample value. The choice of a suitable
proposal p.d.f. is crucial for obtaining a good approxi-
mation of the target p.d.f. using the IS method. Indeed,
although the validity of this approach is guaranteed un-
der mild assumptions, the variance of the estimator de-
pends on the discrepancy between the shape of the pro-
posal and the target (Robert and Casella, 2004; Liu,
2008).

Several advanced strategies have been proposed in
the literature to design more robust IS schemes (Liu,
2008, Chapter 2; Owen, 2013, Chapter 9; Liang, 2002).
A powerful approach is based on using a population of
different proposal p.d.f.’s. This approach is often re-
ferred to as multiple importance sampling (MIS) and
several possible implementations have been proposed
depending on the specific assumptions of the problem,
for example, the knowledge of the normalizing con-
stants, prior information of the proposals, etc. (Veach
and Guibas, 1995, Hesterberg, 1995; Owen and Zhou,
2000; Tan, 2004; He and Owen, 2014; Elvira et al.,
2015). In general, MIS strategies provide more ro-
bust algorithms, since they avoid entrusting the perfor-
mance of the method to a single proposal. Moreover,
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many algorithms have been proposed in order to conve-
niently adapt the set of proposals in MIS (Cappé et al.,
2004; Martino et al., 2017; Elvira et al., 2017).

When a set of proposal p.d.f.’s is available, the way
in which the samples can be drawn and weighted is
not unique, unlike the case of using a single proposal.
Indeed, different MIS algorithms in the literature (both
adaptive and nonadaptive) have implicitly and indepen-
dently interpreted the sampling and weighting proce-
dures in different ways (Owen and Zhou, 2000; Cappé
et al., 2004, 2008; Elvira et al., 2015; Martino et al.,
2015a; Cornuet et al., 2012; Bugallo et al., 2017).
Namely, there are several possible combinations of
sampling and weighting schemes, when a set of pro-
posal p.d.f.’s is available, which lead to valid MIS ap-
proximations of the target p.d.f. However, these differ-
ent possibilities can largely differ in terms of perfor-
mance of the corresponding estimators.

In this paper, we introduce a unified framework for
MIS schemes, providing a general theoretical descrip-
tion of the possible sampling and weighting proce-
dures when a set of proposal p.d.f.’s is used to pro-
duce an IS approximation. Within this unified con-
text, it is possible to interpret that all the MIS algo-
rithms draw samples from an equally-weighted mix-
ture distribution obtained from the set of available pro-
posal p.d.f.’s. Three different sampling approaches and
five different functions to calculate the weights of the
generated samples are proposed and discussed. More-
over, we state two basic rules for possibly devising new
valid sampling and weighting strategies within the pro-
posed framework. All the analyzed combinations of
sampling/weighting provide consistent estimates of the
parameters of interest.

The proposed generalized framework includes all
of the existing MIS methodologies that we are aware
of (applied within different algorithms, e.g., in Elvira
et al., 2015, 2017; Cappé et al., 2004; Cornuet et al.,
2012; Martino et al., 2015a, 2017) and allows the de-
sign of novel techniques (here we propose three new
schemes, but more can be introduced). An exhaustive
theoretical analysis is provided by introducing general
expressions for sampling and weighting in this general-
ized MIS context, and by proving that they yield con-
sistent estimators. Furthermore, we compare the per-
formance of the different MIS schemes (the proposed
and existing ones) in terms of the variance of the esti-
mators.

The rest of this paper is organized as follows. In
Section 2, we describe the problem and we revisit

the standard IS methodology. In Section 3, we dis-
cuss the sampling procedure in MIS, propose three
new sampling strategies, and analyze some distribu-
tions of interest. In Section 4, we propose five differ-
ent weighting functions, some of them completely new,
and show their validity. The different combinations
of sampling/weighting strategies are analyzed in Sec-
tion 5, establishing the connections with existent MIS
schemes, and describing three novel MIS schemes. In
Section 6, we analyze the performance of the different
MIS schemes in terms of the variance of the estima-
tors. Then Section 7 discusses some relevant aspects
about the application of the proposed MIS schemes,
including their use in adaptive settings. Finally, Sec-
tion 8 presents some descriptive numerical examples
where the different MIS schemes are simulated, and
Section 9 contains some concluding remarks. A run-
ning example is introduced in Section 3 and continued
in Section 4, Section 5, Section 6 and Section 8 in or-
der to clarify the flow of the paper. In addition, we per-
form numerical simulations on the running example,
where the proposal p.d.f.’s are intentionally well cho-
sen, to evidence the significant effects produced by the
different interpretations of the sampling and weighting
schemes.

2. PROBLEM STATEMENT AND BACKGROUND

Let us consider a system characterized by a vector
of dx unknown parameters, x ∈ R

dx and a set of dy

observed data, y ∈ R
dy .1 A general objective is to ex-

tract the complete information about the latent state,
x, given the observations, y, by means of studying the
posterior distribution defined as

(2.1) π̃(x|y) = �(y|x)h(x)

Z(y)
∝ π(x|y) = �(y|x)h(x),

where �(y|x) is the likelihood function, h(x) is the
prior p.d.f. and Z(y) is the normalization factor.2 The
objective is to approximate the p.d.f. of interest (re-
ferred to as target p.d.f.) by Monte Carlo-based sam-
pling (Kong et al., 2003; Robert and Casella, 2004;
Liu, 2008; Owen, 2013). The resulting approximation
of π̃ (x) will be denoted as π̂(x) and will be attained
using IS techniques.

1Vectors are denoted by bold-faced letters, for example, x, while
regular-faced letters are used for scalars, for example, x.

2In the sequel, to simplify the notation, the dependence on y is
removed, for example, Z ≡ Z(y).
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FIG. 1. Approximation of the target p.d.f., π(x), by the random measure χ .

2.1 Standard Importance Sampling

IS is a general Monte Carlo technique for the ap-
proximation of a p.d.f. of interest by a random measure
composed of samples and weights (Robert and Casella,
2004). In its original formulation, a set of N samples,
{xn}Nn=1, is drawn from a single proposal p.d.f., q(x),
with heavier tails than those of the target p.d.f., π(x). A
particular sample, xn, is assigned an importance weight
given by

(2.2) wn = π(xn)

q(xn)
, n = 1, . . . ,N,

which represents the ratio between the target p.d.f.,
π and the proposal p.d.f., q , both evaluated at xn.
The samples and weights form the random measure
χ = {xn,wn}Nn=1 that approximates the measure of the
target p.d.f. as

(2.3) π̂IS(x) = 1

NẐ

N∑
n=1

wnδxn(x),

where δxn(x) is the unit delta measure concentrated
at xn and Ẑ = 1

N

∑N
j=1 wj is an unbiased estimator

of Z = ∫
π(x) dx (Robert and Casella, 2004). Fig-

ure 1(a) displays an example of a target p.d.f. and a
proposal p.d.f., as well as the samples and weights that
form a random measure approximating the posterior.
Note that, unlike Markov chain Monte Carlo (MCMC)
methods, all the generated samples are used to build
the estimators, for example, there is no burn-in period.

2.2 Estimators in Importance Sampling

Let us consider the integral I = ∫
g(x)π̃(x) dx,

where g is any integrable function w.r.t. π̃(x). When

Z is known, an unbiased IS estimator of I is given by

(2.4) Î = 1

NZ

N∑
n=1

wng(xn).

Otherwise, if the target distribution is only known up
to the normalizing constant, Z, one can use the self-
normalized estimator

(2.5) Ĩ = 1

NẐ

N∑
n=1

wng(xn),

where Z is approximated by the estimate

Ẑ = 1

N

N∑
n=1

wn.(2.6)

Under some mild assumptions regarding the tails of
the proposal and target distributions, Z is an unbiased
and consistent estimator of Z, and Ĩ is a consistent
estimator of I (Robert and Casella, 2004). Further-
more, the variance of Î and Ĩ is directly related to
the discrepancy between π̃(x)|g(x)| and q(x) (Robert
and Casella, 2004; Kahn and Marshall, 1953). For a
general g, a common strategy is decreasing the mis-
match between the proposal q(x) and the target π̃ (x).
A very common strategy consists in using several pro-
posal p.d.f.’s.

3. SAMPLING IN MULTIPLE IMPORTANCE
SAMPLING

MIS schemes consider a set of N proposal p.d.f.’s,
{qn(x)}Nn=1 ≡ {q1(x), . . . , qN(x)}, and proceed by
drawing M samples, {xm}Mm=1 (where M �= N , in gen-
eral) and properly weighting them. As a visual exam-
ple, Figure 1(b) displays a target p.d.f. and two pro-
posal p.d.f.’s, as well as the samples and weights that
form a random measure approximating the posterior.
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It is in the way that the sampling and the weight-
ing are performed that different variants of MIS can be
devised. In this section, we focus on the generation of
samples {xm}Mm=1. For clarity in the explanations and
the theoretical proofs, we always consider M = N ,
that is, the number of samples to be generated coin-
cides with the number of proposal p.d.f.’s. All the con-
siderations can be automatically extended to the case
with M = kN samples, with k ∈ N

+. The sampling and
weighting procedures that we propose in the following
can be easily applied to each block of N samples. Then
the estimators described in the previous section would
use all the M = kN samples. In this work, we con-
sider that we have no prior information about the ade-
quacy of the proposals. Hence, all the proposals will be
equally used for sampling purposes (see more details in
Section 3.1). The use of the complete set of N proposal
p.d.f.’s with no prior information about them can also
represent a single equally weighted mixture proposal,

(3.1) ψ(x) ≡ 1

N

N∑
n=1

qn(x).

Unequal weights could also be considered in the mix-
ture. In He and Owen (2014), the weights can be opti-
mized to minimize the variance for a certain integrand.

3.1 Sampling from the Set of Proposal P.d.f.’s

Let us consider a generic mechanism for the simula-
tion of N samples from the set of N proposals. Starting
with n = 1:

1. Choose an index jn ∈ {1, . . . ,N}, which corre-
sponds to the selection of the proposal p.d.f. qjn .

2. Generate a sample xn from the selected proposal
p.d.f., that is, xn ∼ qjn(xn).

3. Set n = n + 1 and go to step 1.

Note that, in step 1, the probabilities associated to each
possible value of jn are not specified yet. The graphical
model corresponding to this sampling scheme is shown
in Figure 2.

Therefore, obtaining the set of samples {xn}Nn=1 ≡
{x1, . . . ,xN } is in general a two step sequential pro-
cedure. First, the nth index jn is drawn according to
some conditional p.d.f., P(jn|j1:n−1), where j1:n−1 ≡
{j1, . . . , jn−1} is the sequence of the previously gen-
erated indexes.3 Then the nth sample is drawn from

3We use a simplified argument-wise notation, where p(xn) de-
notes the p.d.f. of the continuous random variable (r.v.) Xn, while
P(jn) denotes the probability mass function (p.m.f.) of the discrete

FIG. 2. Graphical model associated to the generic sampling
scheme.

the selected proposal p.d.f. as xn ∼ p(xn|jn). The joint
probability distribution of the current sample and all
the indexes used to generate the samples from 1 to n is

p(xn, j1:n) = P(j1:n−1)P (jn|j1:n−1)p(xn|jn)
(3.2)

= P(j1)

[
n∏

i=2

P(ji |j1:i−1)

]
qjn(xn),

where p(xn|jn) = qjn(xn) is the nth selected proposal
p.d.f., qjn(xn).

3.2 Selection of the Proposal P.d.f.’s

In the sequel, we describe three mechanisms for ob-
taining the sequence of indexes, j1:N . All the mecha-
nisms share the property that

(3.3)
1

N

N∑
n=1

P(Jn = k) = 1

N
∀k ∈ {1, . . . ,N},

that is, all the indexes have the same (marginal) proba-
bility of being selected.

S1: Random index selection with replacement: The
N indexes are independently drawn from the set
{1, . . . ,N} with equal probability. Thus, we have

(3.4) P(jn|j1:n−1) = P(jn) = 1

N
.

With this type of index sampling, there may be more
than one sample drawn from some proposal, and
there may be proposal p.d.f.’s that are not used at
all.

S2: Random index selection without replacement: The
indexes are uniformly and sequentially drawn from
different sets as j1 ∈ I1 = {1, . . . ,N}, . . . , jn ∈ In =

r.v. Jn. Also, p(xn, jn) denotes the joint p.d.f. and p(xn|jn) is the
conditional p.d.f. of Xn given Jn = jn. If the argument of p(·) is
different from xn, then it denotes the evaluation of the p.d.f. as a
function, for example, p(z|jn) denotes the p.d.f. p(xn|jn) evalu-
ated at xn = z.
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{1, . . . ,N}\ {j1:n−1}, that is, removing the proposals
previously used. Hence, the conditional probability
mass function (p.m.f.) of the nth index given the pre-
vious ones is now

P(Jn = k|j1:n−1) =
⎧⎨
⎩

1

N − n + 1
if k ∈ In,

0 if k /∈ In,

(3.5)

where |In| = N − n + 1. Note that the marginal
p.m.f. of the j th index is still given by (3.4).4 How-
ever, exactly one sample is drawn from each of the
proposal p.d.f.’s by following this strategy.

S3: Deterministic index selection without replace-
ment: This sampling is a particular case of sam-
pling S2, where a fixed deterministic sequence of
indexes is drawn. For instance, and without loss of
generality: j1 = 1, j2 = 2, . . . , jn = n, . . . , jN = N .
Therefore, xn ∼ qjn(xn) = qn(xn), and the condi-
tional p.m.f. of the nth index given the n − 1 previ-
ous ones becomes

(3.6) P(jn|j1:n−1) = P(jn) = 1jn=n,

where 1 denotes the indicator function. Again, each
of the N proposal p.d.f.’s is used to generate exactly
one sample of the set {xn}Nn=1. This index selection
procedure has been used by several MIS algorithms
(e.g., in Cornuet et al., 2012, Elvira et al., 2017),
and it is also implicitly used in some particle filters
(PFs), such as the bootstrap PF (Gordon, Salmond
and Smith, 1993).

The connexions of the sampling mechanisms with
some resampling schemes are discussed in
Appendix B.

3.3 Running Example

Let us consider N = 3 Gaussian proposal p.d.f.’s
q1(x) = N (x;μ1, σ

2
1 ), q2(x) = N (x;μ2, σ

2
2 ) and

q3(x) = N (x;μ3, σ
2
3 ) with predefined means and vari-

ances. In S1, a possible realization of the indexes is the
sequence {j1, j2, j3} = {3,3,1}. Therefore, in this sit-
uation, x1 ∼ q3, x2 ∼ q3, and x3 ∼ q1. In S2, the real-
ization could result from the permutation {j1, j2, j3} =
{3,1,2}. In S3, the sequence is deterministically ob-
tained as {j1, j2, j3} = {1,2,3}.

4There are N ! equiprobable configurations (permutations) of the
sequence {j1, . . . , jN }, and in (N −1)! the kth index is drawn at the
nth position ∀k,n = 1, . . . ,N . Therefore, P(Jn = k) = (N−1)!

N ! =
1
N

∀k,n = 1, . . . ,N .

3.4 Distributions of Interest of the nth Sample, xn

In the following, we discuss some important distri-
butions related to the set of samples drawn. These dis-
tributions are of utmost importance to understand the
different methods for weighting the samples discussed
in the following section.

Note that the distribution of the nth sample given
all the knowledge of the process up to that point is
p(xn|j1:n−1,x1:n−1) = p(xn|j1:n−1). In S1, this distri-
bution corresponds to p(xn|j1:n−1) = ψ(xn). We recall
that ψ is the mixture of proposals defined in equation
(3.1). In S2, we have p(xn|j1:n−1) = 1

|In|
∑

∀k∈In
qk(x).

Finally, under S3, p(xn|j1:n−1) = qn(xn). Once the nth
index jn has been selected, the nth sample, xn, is dis-
tributed as p(xn|jn) = qjn(xn) in any sampling method
within the proposed framework. The marginal distribu-
tion of this nth sample, xn, is then given by

(3.7) p(xn) =
N∑

k=1

qk(xn)P (Jn = k),

where we have used the fact that p(xn|Jn = k) =
qk(xn), and the marginal distribution, P(Jn = k), de-
pends on the sampling method. When randomly se-
lecting the indexes (S1 or S2), P(Jn = k) = 1

N
,∀n, k,

and thus p(xn) = 1
N

∑N
k=1 qk(xn) = ψ(xn). In the case

of the deterministic index selection (S3), P(Jn = k) =
1k=n, and thus p(xn) = qn(xn), that is, the distribution
of the r.v. Xn is the nth proposal p.d.f., and not the
whole mixture.

3.5 Distributions of Interest Beyond xn

The traditional IS approach focuses just on the dis-
tribution of the r.v. Xn. In MIS, we are also interested
in the statistical properties of the set of samples, re-
gardless of their index n, since the N samples are used
jointly in the estimators, regardless their order of ap-
pearance. Hence, we introduce a generic r.v.,

(3.8) X = Xn with n ∼ U{1,2, . . . ,N},
where U{1,2, . . . ,N} is the discrete uniform distribu-
tion on the set {1,2, . . . ,N}. The density of X is then
given by

(3.9) f (x) = 1

N

N∑
n=1

pxn(x) = ψ(x),

where pxn(x) denotes the marginal p.d.f. of Xn, given
by equation (3.7), evaluated at x, and ψ(x) is the mix-
ture p.d.f.5 Moreover, one can also obtain the condi-

5For the sake of clarity, in equation (3.9) we have used the nota-
tion pxn(x), instead of p(x) as in equation (3.7) and the rest of the
paper, to denote the marginal p.d.f. of Xn evaluated at x.
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tional p.d.f. of X given the sequence of indexes as

f (x|j1:N) = 1

N

N∑
k=1

pxk
(x|j1:N)

(3.10)

= 1

N

N∑
k=1

qjk
(x).

Note that, in this case, f (x|j1:N) = ψ(x) for the
schemes without replacement at the index selection (S2
and S3), but f (x|j1:N) = 1

N

∑N
n=1 qjn(x) for the case

with replacement (S1), that is, some proposal p.d.f.’s
may not appear while others may appear repeated.

REMARK 3.1 (Sampling). In the proposed frame-
work, we consider valid, any sequential sampling
scheme for generating the set {X1, . . . ,XN } such that
the p.d.f. of the r.v. X defined in equation (3.8) is
given by ψ(x). Further considerations about the r.v.
X and connections with variance reduction methods
(Robert and Casella, 2004; Owen, 2013) are given in
Appendix A.

Table 1 summarizes all the distributions of interest.
Note that, the p.d.f. of the r.v. X is always the mixture
ψ(x), but different sampling procedures yield differ-
ent conditional and marginal distributions that will be
exploited to justify different strategies for calculation
of the importance weights in the next section. Finally,
the last row of the table shows the joint distribution
p(x1:N) of the variables X1, . . . ,XN , that is, p(x1:N) =∏N

n=1 ψ(xn) and p(x1:N) = ∏N
n=1 qn(xn) for S1 and

S3, respectively. For S2,

(3.11) p(x1:N) = ψ(x1)

N∏
n=2

1

|In|
∑
�∈In

q�(xn),

with In = {1, . . . ,N} \ {j1:n−1}.
4. WEIGHTING IN MULTIPLE IMPORTANCE

SAMPLING

Our approach is based on analyzing which weighting
functions yield proper MIS estimators. We consider
that the set of weighting functions {wn}Nn=1 is proper
if

Ep(x1:N ,j1:N)[ 1
N

∑N
n=1 wng(xn)]

Ep(x1:N,j1:N)[ 1
N

∑N
n=1 wn]

(4.1)
= Eπ

[
g(x)

]
.

This is equivalent to imposing the restriction

Ep(x1:N ,j1:N)[ZÎ ]
Ep(x1:N,j1:N)[Ẑ] = I,(4.2)

which is fulfilled if E[Î ] = I and E[Ẑ] = Z. In order
to narrow down the set of all possible proper func-
tions, we impose the weight function to have the (de-
terministic) structure wn = π(xn)

ϕPn (xn)
, where ϕPn is a

generic function parametrized by a set of parameters
Pn ⊆ {j1, . . . , jN } (further details are given below).
Note that ϕPn plays the role of the interpreted proposal
from which xn is drawn. It is on this interpretation of
what the proposal p.d.f. used for the generation of the
sample is that different weighting strategies can be de-
vised.6 The expectation of the generic estimator Î of
equation (2.4) can be computed as

E[Î ] = 1

ZN

N∑
n=1

∑
j1:N

∫
π(xn)g(xn)

ϕPn(xn)

(4.3)
· P(j1:N)p(xn|jn) dxn,

where we use the joint distribution of indexes and sam-
ples from equation (3.2).

REMARK 4.1. (Weighting): In the proposed frame-
work, we consider valid any weighting scheme (i.e.,
any function ϕPn at the denominator of the weight)
that yields E[Î ] ≡ I in equation (4.3).

4.1 Weighting Functions

Here we present several possible functions ϕPn , that
yield an unbiased estimator of I according to equation
(4.3). The different choices for ϕPn , used in the denom-
inator of the weight wn = π(xn)

ϕPn (xn)
, come naturally from

the sampling densities discussed in Section 3. More
precisely, they correspond to the five different func-
tions in Table 1 related to the distributions of the gener-
ated samples. From now on, p(·) and f (·), which cor-
respond to the p.d.f.’s of Xn and X, respectively, are
used as functions and the argument represents a func-
tional evaluation.

W1: ϕPn(xn) = ϕj1:n−1(xn) = p(xn|j1:n−1)

Since the sampling process is sequential, this op-
tion is of particular interest. It interprets the pro-
posal p.d.f. as the conditional density of xn given
all the previous proposal indexes of the sampling
process.

W2: ϕPn(xn) = ϕjn(xn) = p(xn|jn) = qjn(xn)

It interprets that if the index jn is known, ϕPn is
the proposal qjn .

6In an even more generalized framework, wn could hypotheti-
cally depend on more than one sample of the set x1:N if one could
properly design the function ϕn that yields valid estimators.
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TABLE 1
Summary of the distributions of the r.v.’s Jn, Xn and X, for the three different sampling procedures

Selection of the indexes

Without replacement

Distributions With replacement S1 Random selection S2 Deterministic selection S3 Text references

Jn ∼ P(jn) 1
N

1
N

1jn=n Eqs. (3.4) and (3.6)

Jn|J1:n−1 ∼ P(jn|j1:n−1) 1
N

1
|In|1jn∈In

1jn=n Eqs. (3.4)–(3.5)–(3.6)

Xn|J1:n−1 ∼ p(xn|j1:n−1) ψ(xn) 1
|In|

∑
∀k∈In

qk(xn) qn(xn) Section 3.4

Xn|Jn ∼ p(xn|jn) qjn
(xn) qjn

(xn) qjn
(xn) = qn(xn) Section 3.1

Xn ∼ p(xn) ψ(xn) ψ(xn) qn(xn) Eq. (3.7)

X|J1:N ∼ f (x|j1:N) 1
N

∑N
n=1 qjn

(x) ψ(x) ψ(x) Eq. (3.10)
X ∼ f (x) ψ(x) ψ(x) ψ(x) Eq. (3.9)

X1:N ∼ p(x1:N)
∏N

n=1 ψ(xn) ψ(x1)
∏N

n=2
1

|In|
∑

�∈In
q�(xn)

∏N
n=1 qn(xn) Section 3.5; Eq. (3.11)

W3: ϕPn(xn) = p(xn)

It interprets that xn is a realization of the marginal
p(xn). This is probably the most “natural” option
(as it does not assume any further knowledge in the
generation of xn) and is a usual choice for the cal-
culation of the weights in some of the existing MIS
schemes (see Section 5).

W4: ϕPn(xn) = ϕj1:N (xn) = f (xn|j1:N) =
1
N

∑N
k=1 qjk

(xn)

This interpretation makes use of the distribution
of the r.v. X conditioned on the whole set of indexes
(defined in Section 3.5).

W5: ϕPn(xn) = ϕ(xn) = f (xn) = 1
N

∑N
k=1 qk(xn)

This option considers that all the xn are realiza-
tions of the r.v. X defined in Section 3.5 (see Ap-
pendix A for a thorough discussion of this interpre-
tation).

Table 2 summarizes the discussed functions ϕPn . Al-
though some of the selected functions ϕPn may seem
more natural than others, all of them yield valid es-
timators. The proofs can be found in Appendix C.
Other proper weighting functions are described in Sec-
tion 7.2.

4.2 Connection with Liu-Properness of Single IS

We consider the definition of properness by Liu
(2008), Section 2.5 and we extend (or relax) it to the
MIS scenario. Namely, Liu-properness in standard IS
states that a weighted sample {xn,wn} drawn from a
single proposal q is proper if, for any square integrable
function g,

Eq[g(x)w(x)]
Eq[π(x)] = Eπ

[
g(x)

]
,(4.4)

that is, w can be in any form as long as the condition of
equation (4.4) is fulfilled. Note that, for a determinis-
tic weight assignment, the only proper weights are the
ones considered by the standard IS approach. Note also
that the MIS properness is a relaxation of the one pro-
posed by Liu, that is, any Liu-proper weighting scheme
is also proper a according to our definition, but not vice
versa.

4.3 Running Example

Here we follow the running example of Section 3.3.
For instance, let us consider the sampling method S1
and let the realization of the indexes be the sequence

TABLE 2
Summary of the different generic functions ϕPn

. The distributions depend on the specific sampling scheme used for drawing the samples as
shown in Table 3

W1 W2 W3 W4 W5
ϕPn

p(xn|j1:n−1) p(xn|jn) p(xn) f (x|j1:N) f (x)

wn = π(xn)
ϕPn (xn)

π(xn)
p(xn|j1:n−1)

π(xn)
p(xn|jn)

π(xn)
p(xn)

π(xn)
f (xn|j1:N )

π(xn)
f (xn)
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TABLE 3
Specific function, ϕPn

, at the denominator of weight, wn = π(xn)
ϕPn (xn)

, resulting from the combination of the different sampling schemes

(Section 3.5) and weighting functions (Section 4.1)

W1 W2 W3 W4 W5
ϕPn

p(xn|j1:n−1) p(xn|jn) p(xn) f (x|j1:N) f (x)

S1: with replacement ψ(xn) [R3] qjn
(xn) [R1] ψ(xn) [R3] 1

N

∑N
k=1 qjk

(xn) [R2] ψ(xn) [R3]
S2: w/o (random) 1

|In|
∑

∀k∈In
qk(xn) [N2] qjn

(xn) [N1] ψ(xn) [N3] ψ(xn) [N3] ψ(xn) [N3]

S3: w/o (deterministic) qn(xn) [N1] qn(xn) [N1] qn(xn) [N1] ψ(xn) [N3] ψ(xn) [N3]

{j1, j2, j3} = {3,3,1}. Under the weighting scheme
W2, the weights would be computed as w1 = π(x1)

q3(x1)
,

w2 = π(x2)
q3(x2)

, and w3 = π(x3)
q1(x3)

. However, under W4,

w1 = π(x1)
1
3 (q1(x1)+2q3(x1))

, w2 = π(x2)
1
3 (q1(x2)+2q3(x2)

and w3 =
π(x3)

1
3 (q1(x3)+2q3(x3))

. Note that all weighing schemes re-

quire the same number of target evaluations (which are
usually more expensive) but different numbers of pro-
posal evaluations.

5. MULTIPLE IMPORTANCE SAMPLING SCHEMES

In this section, we describe the different possible
combinations of the three sampling strategies consid-
ered in Section 3 and the five weighting functions de-
vised in Section 4. Once combined, the fifteen possibil-
ities only lead to six unique MIS methods. Three of the
methods are associated to the sampling scheme with
replacement (S1), while the other three methods cor-
respond to the sampling schemes without replacement
(S2 and S3). Table 3 summarizes the possible combina-
tions of sampling/weighting and indicates the resulting
MIS method within brackets. The six MIS methods are
labeled either by an R (sampling with replacement) or
with an N (sampling with no replacement). We remark
that these schemes are examples of proper MIS tech-
niques fulfilling Remarks 3.1 and 4.1.

5.1 MIS Schemes with Replacement

In all R schemes, the nth sample is drawn with re-
placement (i.e., S1) from the whole mixture ψ :

[R1]: Sampling with replacement, S1, and weight de-
nominator W2:
For the weight calculation of the nth sample, only the
proposal selected for generating the sample is evalu-
ated in the denominator.

[R2]: Sampling with replacement, S1, and weight de-
nominator W4:

With the N selected indexes jn, for n = 1, . . . ,N ,
one forms a mixture comprising all the correspond-
ing proposal p.d.f.’s. The weight calculation of the
nth sample considers this a posteriori mixture eval-
uated at the nth sample in the denominator, that is,
some proposals might be used more than once while
other proposals might not be used.

[R3]: Sampling with replacement, S1, and weight de-
nominator W1, W3 or W5:
For the weight calculation of the nth sample, the de-
nominator applies the value of the nth sample to the
whole mixture ψ composed of the set of initial pro-
posal p.d.f.’s (i.e., the function in the denominator
of the weight does not depend on the sampling pro-
cess). This is the approach followed by the so-called
mixture PMC method (Cappé et al., 2008).

5.2 MIS Schemes Without Replacement

In all N schemes, exactly one sample is generated
from each proposal p.d.f. This corresponds to having a
sampling strategy without replacement.

[N1]: Sampling without replacement (random or de-
terministic), S2 or S3, and weight denominator W2
(for S2) or W1, W2 or W3 (for S3):
For calculating the denominator of the nth weight,
the specific proposal used for the generation of the
sample is used. This is the approach frequently used
in particle filtering (Gordon, Salmond and Smith,
1993) and in the standard PMC method (Cappé et al.,
2004).

[N2]: Sampling without replacement (random), S2,
and weight denominator W1:
This MIS implementation draws one sample from
each proposal, but the order matters (it must be
random) since the calculation of the nth weight
uses for the evaluation of the denominator the mix-
ture p.d.f. formed by the proposal p.d.f.’s that were
still available at the generation of the nth sam-
ple.
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TABLE 4
Summary of the sampling procedure and the weighting function of each MIS scheme

MIS scheme Sampling w(xn) Used in

R1 S1
π(xn)

qjn (xn)
Novel scheme

R2 S1
π(xn)

1
N

∑N
k=1 qjk

(xn)
Novel scheme

R3 S1
π(xn)
ψ(xn)

Cappé et al. (2008)

N1 S3
π(xn)
qn(xn)

Cappé et al. (2004)

N2 S2
π(xn)

1
|In|

∑
∀k∈In

qk(xn)
Novel scheme

N3 S3
π(xn)
ψ(xn)

Martino et al. (2015a); Cornuet et al. (2012)

[N3]: Sampling without replacement (random or
deterministic), S2 or S3, and weight denomina-
tor W3, W4 or W5 (for S2), or W4 or W5 (for
S3):
In the calculation of the nth weight, one uses for
the denominator the whole mixture. This is the
approach, for instance, of Martino et al. (2015a),
Cornuet et al. (2012). As shown in Section 6, this
scheme has several benefits over the others.

Table 4 summarizes the six resulting MIS schemes
and their references in literature, indicating the sam-
pling procedure and weighting function that are ap-
plied to obtain the nth weighted sample xn. We
consider N1 and N3 associated to S3 (they can also
be obtained with S2) since it is simpler than S2. All
the different algorithms in the literature (as far as we
know) correspond to one of the MIS schemes described
above (see Section 7.3). Moreover, several new valid
schemes have also appeared naturally (R1, R2 and
N2), and new ones can be proposed within this frame-
work.

5.3 Running Example

Let us consider the example from Section 3.3 where
the realizations of the sequence of indexes for the
sampling schemes S1, S2 and S3 are respectively
{j1, j2, j3} = {3,3,1}, {j1, j2, j3} = {3,1,2} and {j1,

j2, j3} = {1,2,3}. Figure 3(a) shows the three first
schemes of Table 4 related to the sampling with re-
placement, S1. The figure shows a possible realiza-
tion of all MIS schemes with M = N = 3 samples
and p.d.f.’s. For the nth sample, we show the set of
available proposals, the index jn of the proposal p.d.f.
that was actually selected to draw the sample, the func-
tion ϕn, and the importance weight. Similarly, Fig-

ures 3(b)–(c) depict the three schemes of Table 4 re-
lated to the sampling without replacement, S2 and S3,
where exactly one sample is drawn from each available
proposal.

6. VARIANCE ANALYSIS OF THE SCHEMES

Although the six different MIS schemes that appear
in Section 5 yield the estimator Î of equation (2.4) un-
biased (see Appendix C), the performance of each of
the possible obtained estimators can be dramatically
different. In this section, we provide an exhaustive vari-
ance analysis of the MIS schemes presented in the pre-
vious section. The details of the derivations are in Ap-
pendix D.2. The estimators of the three methods with
replacement present the following variances:

Var(ÎR1) = 1

Z2N2

N∑
k=1

∫
π2(x)g2(x)

qk(x)
dx

(6.1)

− I 2

N
,

Var(ÎR2) = 1

Z2N

1

NN

∑
j1:N

∫
π2(x)g2(x)

f (x|j1:N)
dx

− 1

Z2N2

1

NN
(6.2)

· ∑
j1:N

N∑
n=1

(∫
π(xn)g(xn)

f (xn|j1:N)
qjn(xn) dxn

)2

and

Var(ÎR3) = 1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx − I 2

N
.(6.3)

On the other hand, the variances associated to the es-
timators of the three methods with no replacement
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are

Var(ÎN1) = 1

Z2N2

N∑
n=1

∫
π2(xn)g

2(xn)

qn(xn)
dxn

(6.4)

− I 2

N
,

Var(ÎN2)

=
[

1

Z2N2

N∑
n=1

∑
j1:n−1

∫
π2(xn)g

2(xn)

p(xn|j1:n−1)

· P(j1:n−1) dxn

]
(6.5)

−
[

1

Z2N2

N∑
n=1

∑
j1:n

(∫
π(xn)g(xn)

p(xn|j1:n−1)
qjn dxn

)2
]

· P(j1:n)
and

Var(ÎN3)

= 1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx(6.6)

− 1

Z2N2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x) dx

)2
.

One of the goals of this paper is to provide the prac-
titioner with solid theoretical results about the superi-
ority of some specific MIS schemes. In the following,
we state two theorems that relate the variance of the
estimator with these six methods, establishing a hier-
archy among them. Note that obtaining an IS estima-
tor with finite variance essentially amounts to having a
proposal with heavier tails than the target. See Robert
and Casella (2004), Geweke (1989) for sufficient con-
ditions that guarantee this finite variance.

THEOREM 6.1. For any target distribution π(x),
any square integrable function g, and any set of pro-
posal densities {qn(x)}Nn=1 such that the variance of the
corresponding MIS estimators is finite,

Var(ÎR1) = Var(ÎN1) ≥ Var(ÎR3) ≥ Var(ÎN3).

PROOF. See Appendix D.2. �
THEOREM 6.2. For any target distribution π(x),

any square integrable function g, and any set of pro-
posal densities {qn(x)}2

n=1 such that the variance of the
corresponding MIS estimators is finite,

Var(ÎR1) = Var(ÎN1) ≥ Var(ÎR2) = Var(ÎN2)
(6.7)

≥ Var(ÎN3).

PROOF. See Appendix D.3. �
First let us note that the scheme N3 outperforms (in

terms of the variance) any other MIS scheme in the
literature that we are aware of. Moreover, for N = 2,
it also outperforms the other novel schemes R2 and
N2. While the MIS schemes R2 and N2 do not appear
in Theorem 6.1, we hypothesize that the conclusions
of Theorem 6.2 might be extended to N > 2. The in-
tuitive reason is that, regardless of N , both methods
partially reduce the variance of the estimators by plac-
ing more than one proposal at the denominator of some
or all the weights. A possible interpretation of the su-
periority of N3 is that it uses the whole mixture at
the denominator of each weight, thus providing an ex-
change of information between all the proposals. This
exchange of information is essential in multimodal sce-
narios, where the whole set of proposals, seen as a mix-
ture, should mimic the whole target, but each proposal
should adapt locally to the target. Since the variance of
the IS weight depends on the mismatch of the target
(numerator) w.r.t. the proposal (denominator), the use
of the whole mixture in the denominator reduces the
variance of the weight in general and, therefore, also
the variance of the estimator (see the variance analy-
sis in Appendix D). The scheme N3 goes a step further
w.r.t. R3, drawing deterministically one sample from
each component of ψ(x), which can be seen as draw-
ing N samples from the mixture ψ(x) with a modified
version of stratified sampling, a well-known variance
reduction technique (see Appendix A and Owen, 2013,
Section 9.12), which is also related to the residual re-
sampling.

The variance analysis of the self-normalized estima-
tor Ĩ in equation (2.5) implies a ratio of dependent r.v.’s
and, therefore, it cannot be performed without resort-
ing to an approximation, for example, by means of a
Taylor expansion as it is performed in Kong (1992),
Kong, Liu and Wong (1994), Owen (2013). In this case,
the bias of Ĩ is usually considered negligible compared
to the variance for large N . With this approximation,
the variance depends on the variances of the numera-
tor (which is a scaled version of Î ), the variance of Ẑ,
and the covariance of both. Therefore, the variance re-
sults that we have proved above for Î and Ẑ, cannot
be directly extrapolated for Ĩ . However, it is reason-
able to assume that methods that reduce the variance
of Î and Ẑ, in general will also reduce the variance of
Ĩ . In Section 8, this hypothesis is reinforced by means
of numerical simulations. Therefore, N3 should always
be used whenever possible (it requires extra proposal
evaluations). See a detailed discussion in Section 7.
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FIG. 3. (a) Example of a realization of the indexes selection (N = 3) with the sampling procedure S1 (with replacement), and all weighting
possibilities, yielding the MIS schemes R1, R2 and R3. (b) Example of a realization of the indexes selection (N = 3) with the sampling pro-
cedure S2 (without replacement) yielding the MIS scheme N2. (c) Sampling procedure S3 (deterministic index selection), and all weighting
possibilities, yielding the MIS schemes N1 and N3.

6.1 Running Example: Exact Variances of the MIS
Estimators of Z

Here we focus on computing the exact variances of
estimators related to the running example. We simplify
the case study to N = 2 proposals, for the sake for con-

ciseness in the proofs. The proposal p.d.f.’s are then
q1(x) = N (x;μ1, σ

2) and q2(x) = N (x;μ,σ 2) with
means μ1 = −3 and μ2 = 3, and variance σ 2 = 1.
We consider a normalized bimodal target p.d.f. π(x) =
1
2N (x;ν1, c

2
1) + 1

2N (x;ν2, c
2
2) and set ν1 = μ1, ν2 =

μ2 and c2
1 = c2

2 = σ 2. Then both proposal p.d.f.’s can
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be seen as a whole mixture that exactly replicates the
target, that is, π(x) = 1

2q1(x) + 1
2q2(x). This is the de-

sired situation pursued by an AIS algorithm: Each pro-
posal is centered at each target mode, and the scale pa-
rameters perfectly match the scale of the modes. The
goal consists in estimating the normalizing constant
with the six schemes described in Section 5. We use
the Ẑ estimator of equation (2.6) and the estimator Î

of (2.4) when g = x, both with N = 2 samples. The
closed-form variance expressions of the six schemes
are presented in the following:

The variances of the estimators of the normalizing
constant (true value Z = ∫

π(x)dx = 1) are given by

Var(ẐR1) = Var(ẐN1) = 3 + exp (
4μ2

σ 2 )

8
− 1

2

= exp (36) − 1

8
≈ 5.4 · 1014,

Var(ẐR2) = Var(ẐN2) = 3 + exp (
4μ2

σ 2 )

16
− 1

4

= exp (36) − 1

16
≈ 2.7 · 1014,

and

Var(ẐR3) = Var(ẐN3) = 0.

The variances of the estimators of the target mean
(true value I = ∫

xπ(x) dx = 0) are given by

Var(ÎR1) = Var(ÎN1) = 3(σ 2 + μ2)

8

+ σ 2 + 9μ2

8
exp

(
4μ2

σ 2

)

= 30

8
+ 82

8
exp (36) ≈ 4.42 · 1016,

Var(ÎR2) = Var(ÎN2) = 3(σ 2 + μ2)

16

+ σ 2 + 9μ2

16
exp

(
4μ2

σ 2

)
+ σ 2

4

= 30

16
+ 82

16
exp (36) + 1

4
≈ 2.21 · 1016,

Var(ÎR3) = σ 2 + μ2

2
= 5

and

Var(ÎN3) = σ 2

2
= 1

2
.

The derivations can be found in Appendix D.4. We
observe that, for a very simple bimodal scenario where
the proposals are perfectly placed in the target modes,
the schemes R3 and N3 present a good performance
while the other schemes do not work.

7. APPLYING THE MIS SCHEMES

7.1 Computational Complexity

Table 5 compares the total number of target and pro-
posal evaluations in each MIS scheme. First note that
the estimators of any MIS scheme within the proposed
general framework perform N target evaluations in to-
tal. However, depending on the function ϕPn used by
each specific scheme at the weight denominator, a dif-
ferent number of proposal evaluations is performed.
We see that R3 and N3 always require the largest
number of proposal evaluations. In R2, the number of
proposal evaluations is variable: although each weight
evaluates N proposals, some proposals may be re-
peated, whereas others may not be used.

In many relevant scenarios, the cost of evaluating the
proposal densities is negligible compared to the cost of
evaluating the target function. In this scenario, the MIS
scheme N3 should always be chosen, since it yields a
lower variance with a negligible increase in compu-
tational cost. For instance, this is the case in the Big
Data Bayesian framework, where the target function is
a posterior distribution with a large amount of data in
the likelihood function. However, in some other sce-
narios, for example, when the number of proposals N

is too large and/or the target evaluations are not very
expensive, limiting the number of proposal evaluations
can result in a better cost-performance trade off.

Unlike most MCMC methods, several strategies of
parallelization can be applied in IS-based techniques.
In the adaptive context, the adaptation of all propos-
als usually depends on the performance of all pre-
vious proposals and, therefore, the adaptivity is the
bottleneck of the parallelization. The six schemes pro-
posed in this paper can be parallelized to some extent.
Once all the proposals are available, the schemes R1,
N1, R3 and N3 can draw and weight the N samples
in parallel, which represents a large advantage w.r.t.
MCMC methods. In the schemes R2 and N2, the sam-
ples can be drawn independently, but the denominator
of the weight cannot be computed in a parallel way.
However, since the target evaluation in the numera-
tor of the weights is fully parallelizable, the drawback
of these schemes can be considered negligible for a
small/medium number of proposals.
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TABLE 5
Number of target and proposal evaluations for the different MIS schemes. Note that the number of proposal evaluations for R2 is a random

variable with a range from N to N2

MIS Scheme R1 N1 R2 N2 R3 N3

Target Evaluations N N N N N N

Proposal Evaluations N N ≤ N2 N(N + 1)/2 N2 N2

7.2 A Priori Partition Approach

The extra computational cost of some MIS schemes
occurs because each sample must be evaluated in more
than one proposal qn, or even in all of the available
proposals (e.g., the MIS scheme N3). In order to limit
the number of proposal evaluations, let us first define
a partition of the set of the indexes of all proposals,
{1, . . . ,N}, into P disjoint subsets of L elements (in-
dexes), Jp with p = 1, . . . ,P , s.t.

(7.1) J1 ∪J2 ∪ · · · ∪JP = {1, . . . ,N},
where Jk ∩ Jq = ∅ for all k, q = 1, . . . ,P and k �=
q .7 Therefore, each subset, Jp = {jp,1, jp,2, . . . , jp,L},
contains L indexes, jp,� ∈ {1, . . . ,N} for � = 1, . . . ,L

and p = 1, . . . ,P .
After this a priori partition, one could apply any

MIS scheme in each (partial) subset of proposals, and
then perform a suitable convex combination of the par-
tial estimators. This general strategy is inspired by a
specific scheme, partial deterministic mixture MIS (p-
DM-MIS), which was recently proposed in Elvira et al.
(2015). That work applies the idea of the partitions
just for the MIS scheme N3, denoted there as full de-
terministic mixture MIS (f-DM-MIS). The sampling
procedure is then S3, that is, exactly one sample is
drawn from each proposal. The weight of each sam-
ple in p-DM-MIS, instead of evaluating the whole set
of proposals (as in N3), evaluates only the proposals
within the subset that the generating proposal belongs
to. Mathematically, the weights of the samples corre-
sponding to the pth mixture are computed as

(7.2) wn = π(xn)

ψp(xn)
= π(xn)

1
L

∑
j∈Jp

qj (xn)
, n ∈ Jp.

Note that the number of proposal evaluations is N ≤
N2

P
≤ N2. Specifically, we have the particular cases

7Note that, for the sake of simplifying the notation, we assume
that all P subsets have the same number of elements. However, this
is not necessary, and it is straightforward to extend the conclusions
of this section to the case where each subset has different number
of elements.

P = 1 and P = N corresponding to the MIS schemes
N3 (best performance) and N1 (worst performance),
respectively. In Elvira et al. (2015), it is proved that for
a specific partition with P subsets of proposals, merg-
ing any pair of subsets decreases the variance of the
estimator Î of equation (2.4).

The previous idea can be applied to the other MIS
schemes presented in Section 5 (not only N3). In par-
ticular, one can make an a priori partition of the pro-
posals as in equation (7.1), and apply independently
any different MIS scheme in each set. For instance,
and based on some knowledge about the performance
of the different proposals, one could make two disjoint
sets of proposals, applying the MIS scheme N1 in the
first set, and the MIS scheme N3 in the second set. Re-
cently, a novel partition approach has been proposed in
Elvira et al. (2016). In this case, the sets of proposals
are performed a posteriori, once the samples have been
drawn. The variance of the estimators is reduced at the
price of introducing a bias.

7.3 Generalized Adaptive Multiple Importance
Sampling

Adaptive importance sampling (AIS) methods iter-
atively update the parameters of the proposal p.d.f.’s
using the information of the past samples (see a survey
in Bugallo et al., 2017). The sampling and weighting
options, described in this work within a static frame-
work for the sake of simplicity, can be straightfor-
wardly applied in the adaptive context. Let us consider
a set of proposal p.d.f.’s {qj,t (x)}, with j = 1, . . . , J

and t = 1, . . . , T , where the subscript t indicates the it-
eration index of the adaptive algorithm, T is the total
number of adaptation steps, J is the number of pro-
posals per iteration and N = JT is the total number of
proposal p.d.f.’s. A general adaptation procedure takes
into account, at the t th iteration, statistical information
about the target p.d.f. gathered in all of the previous it-
erations. Several algorithms have been proposed in the
last decade (Cappé et al., 2008; Cornuet et al., 2012;
Martino et al., 2015a, 2017; Elvira et al., 2017).
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FIG. 4. Graphical representation of the N = JT proposal
p.d.f.’s used in the generalized adaptive MIS scheme, spread
through the state space R

dx (j = 1, . . . , J ) and adapted over time
(t = 1, . . . , T ).

The MIS schemes considered in Section 5 can be di-
rectly applied to the adaptive context. Moreover, the
a priori partition approach of Section 7.2 can be very
useful to limit the computational cost of the differ-
ent MIS schemes when the number of iterations grows
(and therefore also the total number of proposals).

Let us assume that, at the t th iteration, one sample is
drawn from each proposal qj,t (sampling S3), that is,

xj,t ∼ qj,t (xj,t ),

j = 1, . . . , J and t = 1, . . . , T . Then an importance
weight wj,t is assigned to each sample xj,t . As de-
scribed exhaustively in Section 4, several strategies can
be applied to build wj,t considering the different MIS
approaches. Figure 4 provides a graphical representa-
tion of this scenario, by showing both the spatial and
temporal evolution of the J = NT proposal p.d.f.’s. In
a generic AIS algorithm, one weight

(7.3) wj,t = π(xj,t )

ϕj,t (xj,t )
,

is associated to each sample xj,t . In the MIS scheme
N1, the function employed in the denominator is

(7.4) ϕj,t (x) = qj,t (x).

In the following we focus on the MIS scheme N3
in the adaptive framework, considering several choices
of the partitioning of the set of proposals, since this
scheme attains the best performance, as shown in Sec-
tion 6. In the full N3 scheme, the function ϕj,t is

(7.5) ϕj,t (x) = ψ(x) = 1

JT

J∑
k=1

T∑
r=1

qk,r (x),

where ψ(x) is now the mixture of all the spatial and
temporal proposal p.d.f.’s. This case corresponds to the
blue rectangle in Figure 4. However, note that the com-
putational complexity can become prohibitive as the

product JT increases. Furthermore, two natural alter-
natives of partial N3 schemes appear in this scenario.
The first one uses the following partial mixture:

(7.6) ϕj,t (x) = ξj (x) = 1

T

T∑
r=1

qj,r (x),

with j = 1, . . . , J , as mixture-proposal p.d.f. in the IS
weight denominator, that is, using the temporal evolu-
tion of the j th single proposal qj,t at the weight de-
nominator. In this case, there are P = J mixtures, each
one formed by L = T components (red rectangle in
Figure 4). Another possibility is considering the mix-
ture of all the qj,t ’s at the t th iteration, that is,

(7.7) ϕj,t (x) = φt (x) = 1

J

J∑
k=1

qk,t (x),

with t = 1, . . . , T , so that we have P = T mixtures,
each one formed by L = J components (green rectan-
gle in Figure 4). The function ϕj,t in equation (7.4)
is used in the standard PMC scheme (Cappé et al.,
2004), equation (7.6), in the particular case of J =
1, has been considered in the adaptive multiple im-
portance sampling (AMIS) algorithm (Cornuet et al.,
2012). Note that the schemes that consider at the de-
nominator of the weight the temporal sequence of
adapted proposals can introduce a bias in the IS esti-
mators (see Cornuet et al., 2012, Section 5 for more de-
tails). The choice in equation (7.7) has been applied in
the adaptive population importance sampling (APIS)
(Martino et al., 2015a,) the layered adaptive impor-
tance sampling (LAIS) (Martino et al., 2017), and the
deterministic mixture population Monte Carlo (DM-
PMC) (Elvira et al., 2017) algorithms. In other tech-
niques, such as mixture PMC (M-PMC) (Douc et al.,
2007a, 2007b, Cappé et al., 2008), a similar strategy is
employed, but using sampling S1 in the mixture φt(x),
that is, with the MIS scheme R3.

Table 6 summarizes all the possible cases discussed
above. The last row corresponds to a generic grouping
strategy of the proposal p.d.f.’s qj,t . As previously de-
scribed, we can also divide the N = JT proposals into
P = JT

L
disjoint groups of P mixtures with L com-

ponents. Namely, we denote the set of L pairs of in-
dexes corresponding to the pth mixture (p = 1, . . . ,P )
as Jp = {(kp,1, rp,1), . . . , (kp,L, rp,L)}, where kp,� ∈
{1, . . . , J }, r�,p ∈ {1, . . . , T } (i.e., |Jp| = L, with each
element being a pair of indexes), and Jp ∩Jq = ∅ for
any pair p,q = 1, . . . ,P , and p �= q . In this scenario
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TABLE 6
Summary of possible MIS strategies in an adaptive framework

LP = N

MIS scheme Function ϕj,t (x) N P L Corresponding algorithm

N1 qj,t (x) JT JT 1 PMC (Cappé et al., 2004)
Full N3 ψ(x) = 1

JT

∑J
j=1

∑T
t=1 qj,t (x) JT 1 JT suggested in Elvira et al. (2015)

Partial (temporal) N3 ξj (x) = 1
T

∑T
t=1 qj,t (x) JT J T AMIS (Cornuet et al., 2012), with J = 1

Partial (spatial) N3 φt (x) = 1
J

∑J
j=1 qj,t (x) JT T J APIS (Martino et al., 2015a)

Partial (spatial) R3 φt (x) = 1
J

∑J
j=1 qj,t (x) JT T J Cappé et al. (2008), Douc et al. (2007a, 2007b)

Partial (generic) N3 generic ϕj,t (x) in equation (7.8) JT P L suggested in Elvira et al. (2015)

we have

ϕj,t (x) = 1

L

∑
(k,r)∈Jp

qk,r (x)

(7.8)
with (j, t) ∈ Jp.

Note that using ψ(x) and ξj (x) the computational
cost per iteration increases as the total number of itera-
tions T grows. Indeed, at the t th iteration all the previ-
ous proposals qj,1, . . . , qj,t−1 (for all j ) must be eval-
uated at all the new samples xj,t . Hence, algorithms
based on these proposals quickly become unfeasible as
the number of iterations grows. On the other hand, us-
ing φt(x) the computational cost per iteration is con-
trolled by J , remaining constant regardless of the num-
ber of adaptive steps performed.

7.4 Guidelines for Applying MIS

The superiority of N3 is theoretically proved for the
unnormalized estimator in Theorems 6.1 and 6.2, and
practically shown by means of several numerical simu-
lations for the self-normalized estimator (see next sec-
tion). However, the associated computational complex-
ity is also increased w.r.t. the other MIS schemes in
terms of proposal evaluations. If N is small or the
target evaluations are expensive (w.r.t. the cost of the
proposal evaluations), N3 should be used. However,
when the target evaluation is cheap and/or the number
of proposals is large, the use of N3 increases notably
the computational complexity. In this case, the novel
schemes R2 or N2 seem to provide very good results,
and their theoretical properties are superior to those of
N1 and R1. However, future studies will be required to
characterize these novel schemes and investigate effi-
cient parallelization techniques. We also recommend to
combine adaptive schemes with the partition approach
proposed in Elvira et al. (2015, 2016), and summarized

in Section 7.2. Note that further investigation is also
needed for efficiently constructing the partitions of the
proposals that allow to reduce the computational com-
plexity while retaining most of the variance reduction
associated to the N3 scheme.

In the adaptive context, there is a big potential for the
MIS schemes where all spatial and temporal proposals
are used at the denominator of all weights (blue square
in Figure 4). However, the computational complexity
for large number of proposals is prohibitive, and fur-
ther theoretical analysis about the bias of the estima-
tors is needed (see Cornuet et al., 2012, Section 5). The
adaptivity of MIS algorithms is essential in challenging
high-dimensional setups. The N3 scheme has exhib-
ited a very good performance when used within adap-
tive MIS algorithms due to two main reasons. First, the
variance of the estimators at each iteration is reduced
as proved in Theorems 6.1 and 6.2, which explains part
of the variance reduction attained in AMIS (Cornuet
et al., 2012), LAIS (Martino et al., 2017) or GAPIS
(Elvira et al., 2015b). Second, when the IS weights
are used for adaptive purposes (e.g., in APIS (Martino
et al., 2015a) or DM-PMC (Elvira et al., 2017)), the use
of the whole mixture of proposals in the denominator
of the weights can be seen as a cooperative adaptive
procedure (see Elvira et al., 2017 for further details).

Finally, one of the strengths of the N3 scheme is
its performance in multimodal scenarios, where N1
should always be avoided. If N is comparable to the
number of modes, an adaptive N3 scheme should be
employed; the aforementioned cooperation in the pro-
posals adaptation has an implicit repulsive behavior
that promotes the adaptation to different modes. How-
ever, if N is much larger, the adaptive algorithm may
use R2 or N2 with potentially similar performance but
less computational complexity.
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FIG. 5. (Ex. of Section. 8.1) Performance of the estimators of the target mean for the different MIS schemes.

8. NUMERICAL EXAMPLES

In the previous sections we have provided sev-
eral theoretical results for comparing different MIS
schemes according to different quality measures, for
example, ranking them in terms of the variance of the
corresponding estimators. In this section, we provide
different numerical results in order to quantify numer-
ically the gap among these methods. In the following,
we show that even in the case where the different pro-
posals are well tuned (in the sense of a small or no
mismatch with a multimodal target), the choices of the
sampling and weighting procedures dramatically affect
the performance of the MIS estimator.

8.1 Running Exmple: Estimation of the Target
Mean

Let us consider again the target p.d.f. of the running
example

π(x) = 1

3
N

(
x;ν1, c

2
1
) + 1

3
N

(
x;ν2, c

2
2
)

+ 1

3
N

(
x;ν3, c

2
3
)
,

with means ν1 = −3, ν2 = 0, and ν3 = 3, and vari-
ances c2

1 = c2
2 = c2

3 = 1. As proposal functions, we use
qi(x) = N (x;μi, σ ), with μi = νi and i = 1,2,3 and
σ 2 = 1, that is, the proposal p.d.f.’s can be seen as a
whole mixture that exactly replicates the target, that is,
π(x) = ψ(x) = 1

3q1(x) + 1
3q2(x) + 1

3q3(x).
The goal is to estimate the mean of the target p.d.f.

with the six MIS schemes. Figure 5(a) shows the MSE
of the estimator Î for all the methods w.r.t. the num-
ber of total samples (note that some schemes require
that the total number of samples is multiple of M = 3).
The results have been averaged over 5 · 106 runs. The

solid black line shows the variance of the natural esti-
mator, that is, sampling directly from the target p.d.f.
(since this is possible in this easy example). Note that
the method ÎR3 exactly replicates the performance of Ī :
this method samples from the mixture of Gaussians in
the traditional way and the weights, due to the perfect
match, are always w = 1, that is, ÎR3 and Ī are equiva-
lent. We can see that ÎN3 is the best estimator in terms
of variance, while ÎR1 and ÎN1 present a high variance.
Note that, surprisingly, ÎN3 has better performance than
sampling from the target, that is, estimator Ī . This is
because the sampling S3 can be seen as a sampling
from the mixture of proposals ψ(x) (which coincides
with the target in this example) with a variance reduc-
tion technique, as we discuss in Appendix A. Note also
that the inequality proved in Theorem 6.1 holds since
all methods are unbiased and, therefore, the MSE is
due only to the variance. We can see that ÎR2 and ÎN2
also behave badly in terms of variance.

Figure 5(b) shows the variance of the estimator Ĩ

of equation (2.5) for all methods. First note that the
MSE of R3 and N3 is the same as in Figure 5(b), since
the estimators Î and Ĩ are equivalent in this scenario
(since they perfectly estimate the normalizing constant,
that is, Ẑ = Z). Note that the relations observed and
proved for the different MIS schemes in terms of the
variance of the estimator Î , are also kept here when we
increase the number of samples. The MSE curves are
compared with the same number of samples M , that
is, the same number of target evaluations. Note that
each MIS scheme requires a different number of pro-
posal evaluations per sample (see Table 5). However, a
fair comparison is fully target dependent, and with few
number of proposals we can consider that the compu-
tational complexity is similar in all schemes.
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TABLE 7
(Ex. of Section 8.2.1) MSE of the LAIS and PMC algorithms with the different MIS schemes at the lower layer. J = 100 proposals and

T = 200 iterations

Alg. R1-LAIS N1-LAIS R2-LAIS N2-LAIS R3-LAIS N3-LAIS N1-PMC N3-PMC

Var(Ẑ) 0.6471 0.6380 0.0004 0.0024 0.0005 0.0001 0.1528 0.0006
Var(Ĩ ) 1.4509 2.0466 0.0335 0.0295 0.0423 0.0088 0.3847 0.0363

8.2 Applying the MIS Schemes in Adaptive IS (AIS)

We apply the different MIS schemes within an AIS
context. In particular, we focus on the LAIS algo-
rithm, recently proposed in Martino et al. (2017). The
method consists of an upper layer with a MCMC that
draws samples from the target, while a lower layer uses
those samples as location parameters (means) of some
proposal p.d.f.’s for applying IS. In its basic version,
J Metropolis–Hastings chains independently run at the
upper layer, and hence MIS is applied in the lower layer
with J proposals at each iteration. In the following, we
implement the six adaptive MIS schemes in a spatial
manner for two different target p.d.f.’s. For instance,
the N3 scheme is implemented by sampling exactly
one sample from each of the J proposals at the t th iter-
ation, and applying at the denominator of the IS weight
the whole mixture of J proposals as in equation (7.7)
(see the green square of Figure 4).

8.2.1 Mixture of bivariate Gaussians. Let us first
consider a mixture of five bivariate Gaussians,

(8.1) π(x) = 1

5

5∑
i=1

N (x;νi ,�i ), x ∈ R
2,

where N (x;μ,C) denotes a Gaussian p.d.f. with mean
vector μ and covariance matrix C, ν1 = [−10,−10]�,
ν2 = [0,16]�, ν3 = [13,8]�, ν4 = [−9,7]�, ν5 =
[14,−14]�, �1 = [2,0.6;0.6,1], �2 = [2,−0.4;
−0.4,2], �3 = [2,0.8;0.8,2], �4 = [3,0;0,0.5] and
�5 = [2,−0.1;−0.1,2]. We run the LAIS algorithm
with J = 100 spatial proposals that are adapted over
T = 200 iterations. The proposals of the upper and
lower layers are isotropic Gaussians with σupper = 5
and σlower = 2, respectively. We also run the stan-
dard PMC algorithm of Cappé et al. (2004), com-
puting at each iteration the weights according to N1,
which represents the standard PMC, and N3 which
corresponds to the DM-PMC algorithm recently pro-
posed in Elvira et al. (2017). The means of the pro-
posals are randomly and uniformly initialized within
the [−4,4] × [−4,4] square. Table 7 shows the MSE

of the self-normalized estimator of the target mean, Ĩ ,
and the estimator of the normalizing constant (the true
values are E[X] = [1.6,1.4]� and Z = 1, resp.). The
scheme N3 presents again the best performance in the
adaptive setup, both in LAIS and PMC. Note that the
novel schemes R2 and N2 show again a satisfactory
performance.

8.2.2 Multidimensional banana-shaped distribution.
We consider the banana shape target example used in
Haario, Saksman and Tamminen (1999, 2001) which
“can be be calibrated to become extremely challeng-
ing” (Cornuet et al., 2012). The target is based on a dx-
dimensional multivariate Gaussian x ∼ N (x;0dx ,�)

with � = diag(σ 2,1, . . . ,1), where the second vari-
able is nonlinearly transformed from x2 to x2 − b(x2

1 −
σ 2). This transformation leads to a banana-shaped dis-
tribution with zero mean and uncorrelated components
(note that the target dimension dx ≥ 2).

We implement the MIS schemes within the LAIS
algorithm as described in the previous example. We
set J = 200 proposals that are adapted over T =
1000 iterations, and isotropic Gaussian proposals with
σupper = 0.2 and σlower = 0.5. The means of the pro-
posals are randomly and uniformly initialized within
the [−4,4] × [−5,5] square. In Figure 6, we vary the
dimension of the state space dx with, 2 ≤ dx ≤ 40, and
we show the MSE of the self-normalized estimator Ĩ

of the target mean. The results have been averaged over
300 runs. We observe that N3 and R3 schemes provide
a similar good performance as in previous examples,
although if N were smaller, N3 would clearly outper-
form R3. When the dimension increases, the perfor-
mance of all schemes decays, but the same hierarchy
in performance holds for all schemes. N2 presents a
similar performance than N3 in high dimensions.

8.3 Discussion on the Experimental Results

First of all, note that the numerical simulations pro-
vided in this section corroborate the variance analysis
of Section 6. More specifically, the hierarchy shown in
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FIG. 6. (Ex. of Section 8.2.2) LAIS algorithm with different MIS
schemes in a multidimensional banana-shaped target. J = 100
proposals and T = 200 iterations.

Figure 5, based on MSE of Î , corresponds to the hier-
archy in terms of variance of Î given in Theorems 6.1
and 6.2. The same hierarchy is represented graphically
in Figure 7. Furthermore, Figure 5(b) depicts the MSE
of the self-normalized estimator Ĩ : for large enough
values of M (so that a good approximation of Z is
attained), the MIS schemes are ordered exactly as in
Figure 5 (as discussed in Section 6).

The numerical experiments confirm that N3 provides
the best performance. The scheme R3 also presents a
good performance in most cases. The performance of
R1 and N1 is, in general, much worse than the per-
formance of the other schemes. Both schemes account
at the weight denominator only for the proposal from
which the sample is drawn, which in a multimodal sce-
nario can be problematic. While R1 is a novel scheme
that has naturally arisen in this work, and it proba-
bly has little interest from a practical point of view,
N1 has been applied in different adaptive MIS algo-
rithms, such as the original version of PMC (Cappé
et al., 2004).

The novel schemes R2 and N2 have appeared in this
new framework and deserve a further analysis. The hi-
erarchy theoretically proved for N = 2 proposals in
Theorem 6.2 still holds in the numerical examples for
N > 2, for example, in Figures 5(a) and 5(b). In some
scenarios, for instance where there is a big number of
proposals compared to the modes of the target, these
schemes can attain most of the variance reduction of
N1 and N3 while reducing the number of proposal
evaluations w.r.t. N3. In the example with AIS meth-
ods, both R2 and N2 present a very competitive perfor-
mance w.r.t. to N3.

Finally, observe that in Figure 5, when a small num-
ber of samples M is employed, the schemes N1, N2

and N3, that is, those with index selection without re-
placement (S2 and S3), behave better. This occurs be-
cause the variance associated to the index selection is
reduced by guaranteeing that all proposal p.d.f.’s are
always used.

9. CONCLUSIONS

In this work we have introduced a unified frame-
work for sampling and weighting in the context of
multiple importance sampling (MIS). This approach
extends the concept of a proper weighted sample,
enabling the design of a wide range of sampling/
weighting combinations. In particular, we have consid-
ered three specific sampling procedures and we have
proposed five types of generic weighting functions (re-
lated to different conditional and marginal distributions
which depend on the sampling scheme). As a result
of the combinations of sampling and weighting pro-
cedures, we have analyzed the six unique resulting
schemes (three of them are not present in the litera-
ture to the best of our knowledge). We have provided
a theoretical comparison of these schemes in terms of
variance, establishing a ranking of the different meth-
ods in terms of performance and computational com-
plexity. Moreover, we have discussed the application
of the MIS schemes within adaptive procedures. In ad-
dition, we have provided the practitioner with several
useful and easy-to-follow guidelines for applying the
MIS schemes in different scenarios. We have analyzed
the behavior of the MIS schemes in three different nu-
merical examples which corroborate the previous the-
oretical analysis.

APPENDIX A: FURTHER OBSERVATIONS ABOUT
THE SAMPLING S3

In the sampling procedure S3, Xn ∼ qn(x) for n =
1, . . . ,N , that is, the selection of the index is deter-
ministic. Note that the set of samples {xn}Nn=1 is used
in the IS estimators regardless of the order they are
drawn. It can be interpreted that the N samples are
drawn from the mixture ψ(x) = 1

N

∑N
n=1 qn(x) via

Rao–Blackwellization (see Owen, 2013, Section 9.12,
for more details). More formally, if we define the r.v.
X = Xn with n ∼ U{1,2, . . . ,N}, then X ∼ ψ(x). The
procedure S3 follows a similar principle as a well-
known variance reduction method, known as the strat-
ified sampling (Robert and Casella, 2004, Liu, 2008),
where the domain of X is divided into different regions
that, in the case of sampling S3, are unbounded and
overlapped (Owen, 2013, Section 9.12). Finally, note
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that the approach S3 can also be seen as the applica-
tion of a quasi-Monte Carlo technique (Niederreiter,
1992) for generating the deterministic sequence of in-
dexes j1 = 1, j2 = 2, . . . , jN = N (uniform, in the
sense of low-discrepancy sequence) and then drawing
xn ∼ qjn(x) = qn(x) for n = 1, . . . ,N . Note also, that
S3 can be seen as a residual resampling step of the in-
dexes of the proposals. Since all weights of the propos-
als are the same, the resampling is fully deterministic,
which explains part the variance reduction of the MIS
schemes with sampling S3.

APPENDIX B: CONNECTIONS WITH RESAMPLING
METHODS

Resampling methods are used in PFs to replace a
set of weighted particles with another set of equally
weighted particles. The way we address the sampling
process in MIS has clear connections with the resam-
pling step in PFs (e.g., see Douc and Cappé, 2005).
An important difference of the proposed framework is
that the MIS proposals are equally weighted in the mix-
ture. The sampling method S1 is then equivalent to the
multinomial resampling, whereas the sampling meth-
ods S2 and S3 correspond to residual resampling (note
that, since M = N and all the proposals are equally
weighted, exactly one sample per proposal is drawn).
In future works, it would be interesting to analyze sam-
pling schemes related to residual, stratified and sys-
tematic resamplings, which can be incorporated quite
naturally in MIS schemes, when the weights of the pro-
posals are different (see, for instance, He and Owen,
2014).

APPENDIX C: PROOFS OF UNBIASEDNESS OF
THE MIS ESTIMATORS

In this Appendix, we prove the unbiasedness of the
estimator Î of equation (2.4) for the five weighting op-
tions described in Section 4. We recall that the general
expression for the expectation of Î within the proposed
framework is

E[Î ] = 1

ZN

N∑
n=1

∑
j1:N

∫
π(xn)g(xn)

ϕPn(xn)

(C.1)
· P(j1:N)p(xn|jn) dxn.

OPTION 1 (W1): ϕPn(xn) = ϕj1:n−1(xn) = p(xn|
j1:n−1). We first marginalize in equation (C.1) over all
indexes that do not affect the nth weight (jn:N ):

E[Î ] = 1

ZN

N∑
n=1

∑
j1:n−1

∫
π(xn)g(xn)

ϕj1:n−1(xn)

· p(xn, j1:n−1) dxn

(C.2)

= 1

ZN

N∑
n=1

∑
j1:n−1

∫
π(xn)g(xn)

ϕj1:n−1(xn)

· p(xn|j1:n−1)P (j1:n−1) dxn.

Then, substituting ϕj1:n−1(xn) = p(xn|j1:n−1) into
equation (C.2), cancelling terms and marginalizing
j1:n−1, we have

E[Î ] = 1

ZN

N∑
n=1

∫
π(xn)g(xn) dxn

= 1

Z

∫
π(x)g(x) dx = I.

OPTION 2 (W2): ϕPn(xn) = ϕjn(xn) = p(xn|jn).
We substitute ϕjn(xn) = p(xn|jn) into equation (C.1),
which cancels the denominator:

E[Î ] = 1

ZN

N∑
n=1

∑
j1:N

∫
π(xn)g(xn)P (j1:N)dxn

= 1

ZN

N∑
n=1

∫
π(xn)g(xn) dxn

= 1

Z

∫
π(x)g(x) dx = I.

OPTION 3 (W3): ϕPn(xn) = ϕn(xn) = p(xn). Since
ϕn does not depend on any index, we can first marginal-
ize over the whole set of indexes j1:N in equation (C.1):

E[Î ] = 1

ZN

N∑
n=1

∫
π(xn)g(xn)

ϕn(xn)
p(xn) dxn.(C.3)

Then, substituting ϕn = p(xn) in equation (C.3):

E[Î ] = 1

ZN

N∑
n=1

∫
π(xn)g(xn) dxn

= 1

Z

∫
π(x)g(x) dx = I.

OPTION 4 (W4): ϕPn(x) = ϕj1:N (x) = f (x|j1:N) =
1
N

∑N
n=1 qjn(x). In this case, the expectation of Î can

be expressed as

E[Î ] = 1

ZN

∑
j1:N

P (j1:N)

(C.4)

·
∫

π(x)g(x)

ϕj1:N (x)

N∑
n=1

qjn(x) dx.
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Substituting ϕj1:N (x) = f (x|j1:N) = 1
N

∑N
n=1 qjn(x) in

equation (C.4), and cancelling the denominator:

E[Î ] = 1

Z

∑
j1:N

∫
π(x)g(x)P (j1:N)dx

= 1

Z

∫
π(x)g(x) dx = I.

OPTION 5 (W5): ϕPn(x) = ϕ(x) = f (x) =
1
N

∑N
n=1 qn(x) = ψ(x). Now the expectation of Î be-

comes

E[Î ] = 1

Z

∫
π(x)g(x)

ϕ(x)

· ∑
j1:N

[
1

N

N∑
n=1

qjn(x)

]
P(j1:N)dx(C.5)

= 1

Z

∫
π(x)g(x)

ϕ(x)
ψ(x) dx,

where, in the last step, we have used the identity

∑
j1:N

[
1

N

N∑
n=1

qjn(x)

]
P(j1:N) = f (x) = ψ(x)

for any valid sampling procedure within this frame-
work (see Remark 3.1 and Section 3.5 for more de-
tails). Substituting ϕ(x) = ψ(x) in equation (C.5)

E[Î ] = 1

Z

∫
π(x)g(x)

ψ(x)
ψ(x) dx

(C.6)

= 1

Z

∫
π(x)g(x) dx = I.

APPENDIX D: VARIANCE ANALYSIS OF THE MIS
ESTIMATORS

Let us consider the unbiased estimator,

Î = 1

ZN

N∑
n=1

wn(xn)g(xn),(D.1)

that approximates I . The variance of Î can be ex-
pressed in the general form as

Var(Î ) = Ep(x1:N ,j1:N)

[(
Î − Ep(x1:N ,j1:N)[Î ])2]

(D.2)
= Ep(x1:N ,j1:N)

[
Î 2] − E2

p(x1:N ,j1:N)[Î ].
In the general case of equation (D.2), the N terms of

the sum of the estimator in Î are dependent. However,
in the specific cases where they are independent, the

variance of a sum of r.v.’s can be simplified as the sum
of the variances, that is,

Var(Î ) = 1

Z2N2

[
N∑

n=1

Ep(xn,jn)

[
w2

n(xn)g
2(xn)

]

−
N∑

n=1

E2
p(xn,jn)

[
wn(xn)g(xn)

]]

= 1

Z2N2

[
N∑

n=1

N∑
jn=1

∫
π2(xn)g

2(xn)

ϕ2
Pn

(xn)

(D.3)
· p(xn|jn)P (jn) dxn

−
N∑

n=1

(
N∑

jn=1

∫
π(xn)g(xn)

ϕPn(xn)

· p(xn|jn)P (jn) dxn

)2]
.

In some MIS schemes, the N terms are dependent
(due to a sampling without replacement or because the
nth weight depends on several indexes jk , with at least
one k �= n). However, conditioned to the whole set of
indexes j1:N , the terms of the sum in equation (D.1) are
always conditionally independent, so we can apply

Var(Î )

= 1

Z2N2

∑
j1:N

[
N∑

n=1

Ep(xn|jn)

[
w2

n(xn)g
2(xn)

]

−
N∑

n=1

E2
p(xn|jn)

[
wn(xn)g(xn)

]]
P(j1:N)

(D.4)

= 1

Z2N2

∑
j1:N

[
N∑

n=1

∫
π2(xn)g

2(xn)

ϕ2
Pn

(xn)
p(xn|jn) dxn

−
N∑

n=1

(∫
π(xn)g(xn)

ϕPn(xn)
p(xn|jn) dxn

)2
]

· P(j1:N).

D.1 Variance of the Estimators of the MIS Schemes

In the following, we analyze the variance of the six
MIS schemes discussed through this paper under the
assumptions described in Theorem 6.1 (see Section 6
for more details). Since some schemes arise under
more than one sampling/weighting combination (see
Table 3), here we always use the combination that fa-
cilitates the analysis.



GENERALIZED MULTIPLE IMPORTANCE SAMPLING 149

1. [R1] Sampling 1/Weighting 2: In this scheme, all
the terms of the sum in equation (D.1) are independent,
so we can use equation (D.3) for computing the vari-
ance of Î . Substituting ϕjn(xn) = p(xn|jn) = qjn(xn)

in D.3,

Var(ÎR1)

= 1

Z2N2

N∑
n=1

N∑
jn=1

[∫
π2(xn)g

2(xn)

p2(xn|jn)

· p(xn|jn)P (jn) dxn

]
− I 2

N

= 1

Z2N2

N∑
n=1

[∫ N∑
jn=1

π2(xn)g
2(xn)

qjn(xn)

(D.5)

· P(jn) dxn

]
− I 2

N

= 1

Z2N2

N∑
n=1

[∫ 1

N

N∑
k=1

π2(xn)g
2(xn)

qk(xn)
dxn

]

− I 2

N

= 1

Z2N2

N∑
k=1

∫
π2(x)g2(x)

qk(x)
dx − I 2

N
,

were we have used that P(jn) = 1
N

, ∀jn ∈ {1, . . . ,N}.
2. [R2] Sampling 1/Weighting 4: The expression for

the conditional independence of equation (D.4) is used
substituting ϕj1:N (xn) = f (xn|j1:N) = 1

N

∑N
k=1 qjk

(xn)

and averaging it over the NN equiprobable sequences
of indexes j1:N :

Var(ÎR2)

= 1

Z2N2

[∑
j1:N

[
N∑

n=1

∫
π2(xn)g

2(xn)

ϕ2
j1:N (xn)

p(xn|jn) dxn

−
N∑

n=1

(∫
π(xn)g(xn)

ϕj1:N (xn)
p(xn|jn) dxn

)2
]

· P(j1:N)

]

= 1

Z2N2

1

NN

[∑
j1:N

N∑
n=1

∫
π2(xn)g

2(xn)

f 2(xn|j1:N)
qjn(xn) dxn

(D.6)

− ∑
j1:N

N∑
n=1

(∫
π(xn)g(xn)

f (xn|j1:N)
qjn(xn) dxn

)2
]

= 1

Z2N

1

NN

[∑
j1:N

∫
π2(x)g2(x)

f 2(x|j1:N)

(
1

N

N∑
n=1

qjn(x)

)
dx

− 1

N

∑
j1:N

N∑
n=1

(∫
π(xn)g(xn)

f (xn|j1:N)
qjn(xn) dxn

)2
]

= 1

Z2N

1

NN

[∑
j1:N

∫
π2(x)g2(x)

f (x|j1:N)
dx

− 1

N

∑
j1:N

N∑
n=1

(∫
π(xn)g(xn)

f (xn|j1:N)
qjn(xn) dxn

)2
]
,

where we have used the identity f (x|j1:N) =
1
N

∑N
n=1 qjn(xn). This expression for the variance re-

sembles that of scheme [N3], averaged over the NN

possible mixtures (combinations) that can arise with
sampling S1.

3. [R3] Sampling 1/Weighting 3: All the elements
are independent in the sum, and the weights do not de-
pend on any index of the set j1:N . Therefore, we can
start with equation (D.3), marginalize over the indexes
and substitute ϕn(xn) = p(xn) = ψ(xn),

Var(ÎR3)

= 1

Z2N2

N∑
n=1

∫
π2(xn)g

2(xn)

ϕ2
n(xn)

p(xn) dxn

− 1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

ϕn(xn)
p(xn) dxn

)2

(D.7)

= 1

Z2N2

N∑
n=1

∫
π2(xn)g

2(xn)

ψ2(xn)
ψ(xn) dxn

− 1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

ψ(xn)
ψ(xn) dxn

)2

= 1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx − I 2

N
.

4. [N1] Sampling 3/Weighting 3: The methods that
use sampling without replacement introduce correla-
tion at the selection of the proposals. However, un-
der the perspective of the deterministic sampling (S3),
the nth sample xn is a realization of the r.v. Xn ∼ qn

and is independent of the other samples. Marginalizing
first equation (D.3) over the indexes, and substituting
ϕn(xn) = p(xn) = qn(xn):

Var(ÎN1)

= 1

Z2N2

N∑
n=1

∫
π2(xn)g

2(xn)

ϕ2
n(xn)

p(xn) dxn
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− 1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

ϕn(xn)
p(xn) dxn

)2

(D.8)

= 1

Z2N2

N∑
n=1

∫
π2(xn)g

2(xn)

q2
n(xn)

qn(xn) dxn

− 1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

qn(xn)
qn(xn) dxn

)2

= 1

Z2N2

N∑
n=1

∫
π2(xn)g

2(xn)

qn(xn)
dxn − I 2

N
.

5. [N2] Sampling 2/Weighting 1: In this scheme,
we use again the expression for conditional inde-
pendence of equation (D.4). Substituting ϕj1:n−1 =
p(xn|j1:n−1),

Var(ÎN2)

= 1

Z2N2

∑
j1:N

[
N∑

n=1

∫
π2(xn)g

2(xn)

ϕ2
j1:n−1

(xn)
p(xn|jn) dxn

−
N∑

n=1

(∫
π(xn)g(xn)

ϕj1:n−1(xn)
p(xn|jn) dxn

)2
]
P(j1:N)

= 1

Z2N2

N∑
n=1

∑
j1:n

[∫
π2(xn)g

2(xn)

p2(xn|j1:n−1)
p(xn|jn) dxn

(D.9)

−
(∫

π(xn)g(xn)

p(xn|j1:n−1)
p(xn|jn) dxn

)2]
P(j1:n)

= 1

Z2N2

N∑
n=1

∑
j1:n−1

∫
π2(xn)g

2(xn)

p(xn|j1:n−1)
P (j1:n−1) dxn

− 1

Z2N2

N∑
n=1

∑
j1:n

(∫
π(xn)g(xn)

p(xn|j1:n−1)
qjn dxn

)2

· P(j1:n).

Since the the integrals only depend on the set of
indexes j1:n, each term of the sum has been first
marginalized over jn+1:N . The first term in the sum
can then be further marginalized over jn to obtain
the final expression. Note that the variance is the
average of the variance of all the N ! possible se-
quences of indexes in the sampling without replace-
ment.

6. [N3] Sampling 3/Weighting 5: We have fol-
lowed the same arguments of scheme N1. Marginaliz-
ing equation (D.3) over all the set of indexes j1:N , and

substituting ϕn(xn) = f (xn) = ψ(xn):

Var(ÎN3)

= 1

Z2N2

N∑
n=1

∫
π2(xn)g

2(xn)

ψ2(xn)
qn(xn) dxn

− 1

Z2N2

N∑
n=1

(∫
π(xn)g(xn)

ψ(xn)
qn(xn) dxn

)2

= 1

Z2N

∫
π2(x)g2(x)

ψ2(x)

(
1

N

N∑
n=1

qn(x)

)
dx(D.10)

− 1

Z2N2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x) dx

)2

= 1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx

− 1

Z2N2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x) dx

)2
,

where we have used the identity ψ(x) =
1
N

∑N
n=1 qn(x) dx.

D.2 Proof of Theorem 6.1

The proof of Theorem 6.1 is split in the next three
propositions.

PROPOSITION D.1. Var(ÎR1) = Var(ÎN1)

PROOF. See that equations (D.5) and (D.8) are
equivalent. �

PROPOSITION D.2. Var(ÎN1) ≥ Var(ÎR3).

PROOF. Subtracting equations (D.7) and (D.8), we
get

Var(ÎR3) − Var(ÎN1)

= 1

Z2N2

∫ (
N

1
N

∑N
j=1 qj (x)

−
N∑

i=1

1

qi(x)

)
g2(x)π2(x) dx.

Since g2(x)π2(x) ≥ 0 ∀x ∈ R
dx , it is sufficient to show

that

(D.11)
1

1
N

∑N
j=1 qj (x)

≤ 1

N

N∑
i=1

1

qi(x)
.

Now let us note that the left-hand side of equa-
tion (D.11) is the inverse of the arithmetic mean of
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q1(x), . . . , qN(x),

AN = 1

N

N∑
j=1

qj (x),

whereas the right-hand side of equation (D.11) is the
inverse of the harmonic mean of q1(x), . . . , qN(x),

1

HN

= 1

N

N∑
i=1

1

qi(x)
.

Therefore, the inequality in equation (D.11) is equiv-
alent to stating that 1

AN
≤ 1

HN
, or equivalently AN ≥

HN , which is the well-known arithmetic mean-
harmonic mean inequality for positive real numbers
(Hardy, Littlewood and Pólya, 1952, Abramowitz and
Stegun, 1992, Gwanyama, 2004). �

PROPOSITION D.3. Var(ÎR3) ≥ Var(ÎN3).

PROOF. Subtracting (D.7) and (D.10), we get

Var(ÎN3) − Var(ÎR3)

= −I 2

N
+ 1

Z2N2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x) dx

)2
.

Therefore, the proposition is proved if

1

Z2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x) dx

)2
≥ NI 2.

If we substitute I = ∫
g(x)π̃(x) dx, multiplying both

numerator and denominator by ψ(x) in the integral of
the right-hand side,

1

Z2

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x) dx

)2

≥ N

(
1

Z

∫
π(x)g(x)

ψ(x)
ψ(x) dx

)2
,

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x) dx

)2

≥ N

(∫
π(x)g(x)

ψ(x)

(
1

N

N∑
n=1

qn(x)

)
dx

)2

,(D.12)

N∑
n=1

(∫
π(x)g(x)

ψ(x)
qn(x) dx

)2

≥ 1

N

(
N∑

n=1

∫
π(x)g(x)

ψ(x)
qn(x) dx

)2

,

N

N∑
n=1

a2
n ≥

(
N∑

n=1

an

)2

with an = ∫ π(x)g(x)
ψ(x)

qn(x) dx. The inequality of equa-
tion (D.12) holds, since it is the definition of the
Cauchy–Schwarz inequality (Hardy, Littlewood and
Pólya, 1952),(

N∑
n=1

a2
n

)(
N∑

n=1

b2
n

)
≥

(
N∑

n=1

anbn

)2

,(D.13)

with bn = 1 for n = 1, . . . ,N . �
PROOF OF THEOREM 6.1. The proof is obtained

by applying Propositions D.1, D.2 and D.3. �
D.3 Proof of Theorem 6.2

Let us first particularize the variance expression for
N = 2. From equation (D.8),

Var(ÎN1) = Var(ÎR1)

= 1

4Z2

(∫
π2(x)g2(x)

q1(x)
dx(D.14)

+
∫

π2(x)g2(x)

q2(x)
dx

)
− I 2

2
.

From equation (D.7),

(D.15) Var(ÎR3) = 1

2Z2

∫
π2(x)g2(x)

q1(x)+q2(x)
2

dx − I 2

2
.

From equation (D.10),

Var(ÎN3) = 1

2Z2

∫
π2(x)g2(x)

q1(x)+q2(x)
2

dx

− 1

4Z2

(∫
π(x)g(x)

q1(x)+q2(x)
2

q1(x) dx
)2

(D.16)

− 1

4Z2

(∫
π(x)g(x)

q1(x)+q2(x)
2

q2(x) dx
)2

.

From equation (D.6),

Var(ÎR2)

= 1

8Z2

(∫
π2(x)g2(x)

q1(x)
dx +

∫
π2(x)g2(x)

q2(x)
dx

)

− I 2

4
+ 1

4Z2

∫
π2(x)g2(x)

q1(x)+q2(x)
2

dx(D.17)

− 1

8Z2

(∫
π(x)g(x)

q1(x)+q2(x)
2

q1(x) dx
)2

− 1

8Z2

(∫
π(x)g(x)

q1(x)+q2(x)
2

q2(x) dx
)2

.
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From equation (D.9),

Var(ÎN2)

= 1

4Z2

∫
π2(x)g2(x)

q1(x)+q2(x)
2

dx

+ 1

8Z2

∫
π2(x)g2(x)

q1(x)
dx

(D.18)

+ 1

8Z2

∫
π2(x)g2(x)

q2(x)
dx

− 1

8Z2

(∫
π(x)g(x)

q1(x)+q2(x)
2

q1(x) dx
)2

− 1

8Z2

(∫
π(x)g(x)

q1(x)+q2(x)
2

q2(x) dx

)2
− I 2

4
.

�
PROPOSITION D.4. For N = 2, Var(ÎR2) =

Var(ÎN2).

PROOF. See that equations (D.17) and (D.18) are
equivalent. �

PROPOSITION D.5. For N = 2, Var(ÎN1) ≥
Var(ÎR2) ≥ Var(ÎN3).

PROOF. Analyzing equations (D.14) and (D.16),
we see that equation (D.17) can be rewritten as

Var(ÎR2) = 1

2
Var(ÎN1) + 1

2
Var(ÎN3).(D.19)

Since in Theorem 6.1 it is proved that Var(ÎN1) ≥
Var(ÎN3) for any N , the proposition holds at least for
N = 2. �

PROOF OF THEOREM 6.2. The proof is obtained
by applying Propositions D.4 and D.5. �

REMARK D.1. We hypothesize that Theorem 6.2
might also hold for N > 2. The MIS schemes R2 and
N2 seem to average estimators with variance reduction
(related to N3) with estimators with worse variance (re-
lated to N1).

REMARK D.2. Note that the scheme R3 does not
appear in Theorem 6.2. Equation (D.17) can be rewrit-
ten as

Var(ÎR2)

= 1

2
Var(ÎR3) + 1

8Z2

(∫
π2(x)g2(x)

q1(x)
dx

+
∫

π2(x)g2(x)

q2(x)
dx

)

− 1

8Z2

(∫
π(x)g(x)

q1(x)+q2(x)
2

q1(x) dx
)2

− 1

8Z2

(∫
π(x)g(x)

q1(x)+q2(x)
2

q2(x) dx
)2

.

The question is then whether the last four terms are
larger than 1

2 Var(ÎR3). We hypothesize that no inequal-
ity can be established in a general case, that is, whether
the scheme R3 would outperform R2 or not for a given
π(x) and g(x), might depend on the proposals q1(x)

and q2(x).

D.4 Example with Closed-Form Variances

Let us derive the expressions of the example of Sec-
tion 6.1 by considering the targeted distribution

π(x) = 1

2

[
N

(
x|−μ,σ 2) +N

(
x|μ,σ 2)]

.(D.20)

We consider N = 2 proposal densities, q1(x) = N (x|
−μ,σ 2) and q2(x) = N (x|μ,σ 2). Note that the mix-
ture of proposals is exactly the targeted distribution,
that is, ψ(x) = π(x). We address the case where we
want to estimate a specific moment g of π with the
M = 2 samples. In the following, we provide explicit
variances of the unnormalized estimator of equation
(2.4) for the six MIS schemes. From equation (D.5),

Var(ÎN1) = 1

4

[∫
π2(x)g2(x)

q1(x)
dx +

∫
π2(x)g2(x)

q2(x)
dx

]

− I

2
(D.21)

= 1

4
[S1 + S2] − I

2
.

Let us first compute

S1 =
∫

g2(x)1
2(q1(x) + q2(x))

q1(x)
π(x) dx

= 1

2

[∫
g2(x)π(x) dx +

∫
q2(x)

q1(x)
g2(x)π(x) dx

]

= 1

4

[∫
g2(x)q1(x) dx +

∫
g2(x)q2(x) dx

+
∫

g2(x)
q1(x) + q2(x)

q1(x)
q2(x) dx

]

= 1

4

[∫
g2(x)q1(x) dx + 2

∫
g2(x)q2(x) dx

+
∫

g2(x)
q2(x)

q1(x)
q2(x) dx

]
.



GENERALIZED MULTIPLE IMPORTANCE SAMPLING 153

Since the proposals are Gaussian,

q2(x)

q1(x)
q2(x)

=
1√

2πσ 2
exp (− (x−μ)2

2σ 2 )

1√
2πσ 2

exp (− (x+μ)2

2σ 2 )

1√
2πσ 2

· exp
(
−(x − μ)2

2σ 2

)

= exp
(

4μx
2σ 2

)
1√

2πσ 2
exp−(x − μ)2

2σ 2

= 1√
2πσ 2

exp
(
−x2 + μ2 − 2μx − 4μx

2σ 2

)

= 1√
2πσ 2

exp
(
−(x − 3μ)

2σ 2

)
exp

(
−8μ2

2σ 2

)
.

Then

S1 = 1

4

[∫
g2(x)q1(x) dx + 2

∫
g2(x)q2(x) dx

+ exp
(
−8μ2

2σ 2

)∫
g2(x)

1√
2πσ 2

· exp
(
−(x − 3μ)

2σ 2

)
dx

]

= 1

4

[∫
g2(x)q1(x) dx

+ 2
∫

g2(x)q2(x) dx

+ exp
(
−8μ2

2σ 2

)∫
g2(x)N

(
3μ,σ 2)

dx
]
.

Similarly,

S2 = 1

4

[∫
g2(x)q2(x) dx

+ 2
∫

g2(x)q1(x) dx

+
∫

g2(x)
q1(x)

q2(x)
q1(x) dx

]
,

where
q1(x)

q2(x)
q1(x)

= 1√
2πσ 2

exp
(
−x2 + μ2 + 2μx + 4μx

2σ 2

)

= 1√
2πσ 2

exp
(
−(x + 3μ)

2σ 2

)
exp

(
8μ2

2σ 2

)
.

Finally, from equation (D.21),

Var(ÎN1)

= 1

16

[
3

∫
g2(x)q1(x) dx + 3

∫
g2(x)q2(x) dx

+
(∫

g2(x)N
(
x|3μ,σ 2)

dx

+
∫

g2(x)N
(
x|−3μ,σ 2)

dx
)

exp
(

4μ2

σ 2

)]

− I

2
.

Note that Var(ÎR1) = Var(ÎN1). From equation (D.7),

Var(ÎR3) = 1

2

∫
g2(x)π(x)

π(x)
π(x) dx − I

2

= 1

2

∫
g2(x)π(x) dx − 1

2

∫
g(x)π(x) dx(D.22)

= 1

2

∫
g(x)

(
g(x) − 1

)
π(x)dx.

From equation (D.10),

Var(ÎN3)

= 1

2

∫
g2(x)π(x) dx − 1

4

[(∫
g(x)q1(x) dx

)2

+
(∫

g(x)q2(x) dx
)2]

.

From equation (D.19), Var(ÎR2) = Var(ÎN1)+Var(ÎN3)
2 .

Therefore,

Var(ÎR2)

= 1

32

[
3

∫
g2(x)q1(x) dx + 3

∫
g2(x)q2(x) dx

+
(∫

g2(x)N
(
x|3μ,σ 2)

dx

+
∫

g2(x)N
(
x|−3μ,σ 2)

dx
)

· exp
(

4μ2

σ 2

)]
− I

4

+ 1

4

∫
g2(x)π(x) dx − 1

8

[(∫
g(x)q1(x) dx

)2

+
(∫

g(x)q2(x) dx
)2]

.

Moreover, from Proposition D.4, ÎN2 = ÎR2.
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APPENDIX E: MULTIDIMENSIONAL MIXTURE OF
GENERALIZED GAUSSIAN DISTRIBUTIONS

Let us consider a mixture of multivariate generalized
Gaussian distributions (GGD) as a target p.d.f. In par-
ticular,

(E.1) π(x) = 1

3

3∑
k=1

GG(x;μk,αk,βk), x ∈ R
dx ,

where μk = [μk,1, . . . ,μk,dx ]�, αk = [αk,1, . . . ,

αk,dx ]� and βk = [βk,1, . . . , βk,dx ]� are respectively
the mean, scale and shape parameters of each compo-
nent of the mixture. Each component of the mixture
factorizes in all dimensions, that is, the multivariate
GGD p.d.f. is the product of N unidimensional GGD
p.d.f.’s. Namely,

GG(x;μk,αk,βk)

=
dx∏

d=1

κk,d exp
(
−

( |xd − μk,d |
αk,d

)βk,d
)
,

where κk,d = βk,d

2αk,d�( 1
βk,d

)
, �(·) is the gamma function,

and xd is the dth dimension of x. This family of dis-
tributions includes both Gaussian and Laplace distri-
butions with β = 2 and β = 1, respectively. In this
example, μ1,d = −3, μ2,d = 1, μ3,d = 5, β1,d = 1.1,
β2,d = 1.8, β3,d = 5, α1,d = α2,d = α3,d = 1 for all
d = 1, . . . , dx . The expected value of the target π(x)

is then Eπ [Xd ] = 1 for d = 1, . . . , dx . In order to study
the performance of the different MIS schemes, we vary
the dimension of the state space in equation (E.1) test-
ing different values of dx (with 2 ≤ dx ≤ 10). We con-
sider the problem of approximating via Monte Carlo
the expected value of the target density, and we com-
pare the performance of all MIS schemes. In this exam-
ple, we use N = 500 nonstandardized t-student densi-
ties as proposal functions, where each location param-
eter has been selected uniformly within the [−6,6]dx

square, and the scale parameters and the degree of
freedom parameters have been selected as σn,d = 5
and νn,d = 5, respectively, for n = 1, . . . ,N and d =
1, . . . , dx . For each method, we draw M = kN sam-
ples, with k = 32, and we average all the results over
200 runs.

Figure 7 shows the MSE in the estimation of the
mean of the target (averaged over all dimensions) when
we increase the dimension dx . Note that the hierarchy
established in Section 6 also holds in this example re-
gardless the dimension. In this case, methods R1 and
N1 behave poorly even at lower dimensions, while the

FIG. 7. (Ex. of Section E) MSE of the self-normalized estimator
Ĩ for all MIS schemes when we increase the dimension dx of the
state space.

other MIS schemes have a similar behavior. When we
increase the dimension, all the methods degrade, and,
at certain point (dx ≥ 6), the performance of all of them
is similar. Note that the proposal p.d.f.’s are fixed in
random locations of the space, which is well covered at
low dimensions (since we are using N = 500 p.d.f.’s),
but this coverage becomes worse as the dimension in-
creases. This can probably explain the similar perfor-
mance of all the methods in higher dimensions.
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