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We study accuracy of bootstrap procedures for estimation of quantiles of
a smooth function of a sum of independent sub-Gaussian random vectors. We
establish higher-order approximation bounds with error terms depending on
a sample size and a dimension explicitly. These results lead to improvements
of accuracy of a weighted bootstrap procedure for general log-likelihood ra-
tio statistics. The key element of our proofs of the bootstrap accuracy is a
multivariate higher-order Berry–Esseen inequality. We consider a problem of
approximation of distributions of two sums of zero mean independent ran-
dom vectors, such that summands with the same indices have equal moments
up to at least the second order. The derived approximation bound is uniform
on the sets of all Euclidean balls. The presented approach extends classical
Berry–Esseen type inequalities to higher-order approximation bounds. The
theoretical results are illustrated with numerical experiments.

1. Introduction. In this paper, we study accuracy of bootstrap procedures for estimation
of quantiles of statistics of the form ‖Sn‖ or f (Sn), where ‖·‖ denotes the �2-norm, and f (·) :
R

p �→R is a twice continuously differentiable function with bounded second derivative,

Sn := n−1/2
n∑

i=1

Xi,

for independent sub-Gaussian random vectors X1, . . . ,Xn ∈ R
p with positive definite co-

variance matrices Var(Xi) ∀i = 1, . . . , n. We consider the non-asymptotic setting, when the
leading approximation errors depend on n and the dimension p explicitly. This setting allows
to assess accuracy and limitations of a bootstrap approximation in terms of the dimension p

and the sample size n. Estimation of distribution of statistics of the types ‖Sn‖ or f (Sn) is
necessary for construction of confidence sets and hypothesis testing in some important sta-
tistical models and problems, such as linear regression model with unknown distribution of
errors, general log-likelihood ratio statistic, construction of confidence sets for multivariate
sample mean.

We focus on two basic bootstrapping procedures. The first method considered here is the
Efron’s bootstrap (introduced by Efron [14] in 1979), where the resampling is performed
uniformly at random with replacement from the i.i.d. data X1, . . . ,Xn ∈ R

p . In this case,
the bootstrap samples X∗

1, . . . ,X∗
n have the distribution P∗(X∗

j = Xi − X̄) = 1/n ∀i, j =
1, . . . , n, where X̄ = n−1 ∑n

i=1 Xi , and P∗(·) := P(·|X1, . . . ,Xn). Define for the sum Sn its
bootstrap version:

S∗
n := n−1/2

n∑
i=1

X∗
i .
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One of the main results of the paper is the following uniform approximation bound on the set
B of all Euclidean balls in R

p which holds with high probability:

sup
B∈B

∣∣P(Sn ∈ B) − P∗(
S∗

n ∈ B
)∣∣ ≤ Cσ,K,z

{
pK/(K−2)/n

}1/2
,(1.1)

where K ≥ 3 is a natural number, and constant Cσ,K,z depends (up to log-terms) on
K , on value Cz introduced in (2.4) in Section 2, and on constant σ 2 > 0 which comes
from the following condition on the moment generating function of Xi : E{exp(α
Xi)} ≤
exp(‖α‖2σ 2/2) ∀α ∈ R

p (see also Remark 4.3 in Section 4.3 for an asymptotic version of
the statement).

The second of the considered methods is the weighted bootstrap. Here, X1, . . . ,Xn ∈ R
p

are assumed to be zero mean, independent but not necessarily identically distributed. We
introduce the following random variables:

ε1, . . . , εn ∈ R, i.i.d., independent of {Xi}ni=1,

Eεi = 0, E
(
ε2
i

) = 1, E
(
ε3
i

) = 1, E
(
ε4
i

)
< ∞.

(1.2)

The weighted or the multiplier bootstrap approximation of Sn is

(1.3) S
��

n := n−1/2
n∑

i=1

Xiεi.

For this version of the bootstrap estimator, we derive the following bound which holds with
high probability:

sup
B∈B

∣∣P(Sn ∈ B) − P∗(
S
��

n ∈ B
)∣∣ ≤ Cσ,z

(
p2/n

)1/6(1.4)

for p ≤ C
√

n, where constant Cσ,z depends on value C̄z introduced in (2.7) in Section 2,
and on constants σ 2

i > 0 which come from conditions on m.g.f.-s of Xi for each i = 1, . . . , n

(an asymptotic version of the statement is given in Remark 4.3, Section 4.3). Bounds (1.1)
and (1.4) imply, in particular, that if the random vector X1 is sub-Gaussian, and the ratio
pK/(K−2)/n (or p2/n for bound (1.4)) is rather small, then the bootstrap approximation is
accurate. In addition, we give an example of {Xi}ni=1 which justifies that the condition p =
o(n) (or p = o(n1/2) for the weighted bootstrap) as n → ∞ is necessary for the consistency

result supB∈B |P(Sn ∈ B)− P∗(S∗
n ∈ B)| P→ 0 (or supB∈B |P(Sn ∈ B)− P∗(S ��

n ∈ B)| P→ 0 for
the weighted bootstrap method) as n → ∞.

An important feature of the present results is that they do not involve any asymptotic meth-
ods such as, for example, Edgeworth expansions that are frequently employed for studying
the rates of convergence of bootstrap estimators. We develop a new nonasymptotic approach
that allows to study higher-order accuracy of bootstrap in high-dimensional setting. The key
element in the proofs of our theoretical results about bootstrapping is a multivariate Berry–
Esseen inequality in a nonclassical form which might be interesting by itself.

We consider the problem of approximation of a probability distribution of the sum
Sn = n−1/2 ∑n

i=1 Xi , where Xi ∈ R
p are independent random vectors such that EXi = 0

and E(‖Xi‖K) < ∞ for some K ≥ 3. The approximating distribution corresponds to the sum
S̃n := n−1/2 ∑n

i=1 Yi , where Y1, . . . , Yn ∈ R
p are independent random vectors, independent

of {Xi}ni=1 such that E(‖Yi‖K) < ∞,

E
(
Xk

i

) = E
(
Y k

i

) ∀k = 1, . . . ,K − 1,(1.5)

and Yi=Zi + Ui for some independent random vectors Zi,Ui ∈ R
p , where Zi are nor-

mally distributed with EZi = 0. Throughout the paper, the condition E(Xk) = E(Y k) ∀k =
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1, . . . ,K on the higher-order moments of random vectors X = (x1, . . . , xp)
 ∈ R
p and

Y = (y1, . . . , yp)
 ∈ R
p denotes that for all degrees k = 1, . . . ,K and for all indices

1 ≤ i1, . . . , ik ≤ p

E(xi1 . . . xik ) = E(yi1 . . . yik ).(1.6)

In Lemma 3.1, we show that if a cardinality of a support of Xi is sufficiently large, then
the corresponding random vectors Zi,Ui always exist. The probability distribution of such
constructed random vector S̃n turns out to be a rather good approximation of a distribution of
the initial sum Sn. One of the main results in the paper is the following uniform Berry–Esseen
type bound: for the set B of all Euclidean balls in R

p and for i.i.d. {Xi}ni=1

sup
B∈B

∣∣P(Sn ∈ B) − P(S̃n ∈ B)
∣∣

≤ C�,K

{
E

(‖X1‖K + ‖Y1‖K)}1/(K−2)
n−1/2,

(1.7)

where constant C�,K depends on K and on eigenvalues of (VarZ1)
−1. Bound (1.7) includes

the classical Berry–Esseen inequality, where the approximating distribution is multivariate
normal, that is, Yi ∼ N (0,VarXi) and K = 3. If K > 3, this bound exploits more informa-
tion about coinciding moments, than the normal approximation does, which leads to a better
accuracy.

Our proof of bound (1.7) is based on the work of Bentkus [4], where the author obtained
a multivariate Berry–Esseen inequality involving the standard normal distribution, uniformly
on the set of all Euclidean balls, and also on the set of all convex sets in R

p . In this paper,
we extend the proof in the work of Bentkus [4] to the “quasi-normal” case, that is, for the
approximation with the sum S̃n of the convolutions Yi = Zi + Ui , where Zi are normally
distributed. This approach allows us to use both the properties of the normal distribution and
the higher moments condition (1.5). Furthermore, if ‖X1‖2 ≤ p a.s., then inequality (1.7)
implies

sup
B∈B

∣∣P(Sn ∈ B) − P(S̃n ∈ B)
∣∣ ≤ C�,K

{
pK/(K−2)/n

}1/2
.

In Lemma 2.1, in Section 2 we show that for K ≥ 3 the requirement p = o(n(K−2)/K) as
n → ∞ is necessary for supx∈R |P(‖Sn‖ ≤ x) − P(‖S̃n‖ ≤ x)| → 0, n → ∞ for some ap-
proximating distribution S̃n, satisfying conditions of Theorem 2.1.

Now let us discuss how the Berry–Esseen type bound (1.7) leads to the results (1.1), (1.4)
about bootstrap. In the framework of the Efron’s bootstrapping scheme, condition (1.5) is
modified with concentration bounds for the higher-order bootstrap moments (equal to the
empirical moments) E∗(X∗

i
k) = n−1 ∑n

i=1(Xi − X̄)k for k = 2, . . . ,K − 1, where E∗(·) :=
E(·|X1, . . . ,Xn). For the case of the weighted bootstrap, condition (1.2) implies E∗(X ��

i
k) =

Xk
i E(εk

i ) = Xk
i , k = 2,3. In this way, the concentration properties of the empirical moments

around the theoretical ones together with the higher-order Berry–Esseen bounds of the form
(1.7) determine accuracy of the bootstrap procedures. Let us emphasize that the considered
higher-order approximations play a key role for obtaining the improved accuracy of bootstrap
procedures in terms of the ratio of p and n. For example, consider the weighted bootstrap
procedure with a simplified condition on the random weights εi . If Eεi = 0 and E(ε2

i ) = 1,
then

ESn = ES
��

n, E
(
SnS



n

) = E
(
S
��

nS
��

n

)

.(1.8)

Using (1.8) and a normal approximation between probability distributions of ‖Sn‖ and ‖S ��

n‖
(e.g., the results of Bentkus [4], or the inequalities by Spokoiny and Zhilova [35] for the
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non-i.i.d. case), one can obtain an approximation bound similar to (1.4), with an error term
(C3

�E(‖X1‖3)/
√

n)1/4 which is less sharp than (1.4) in the ratio between p and n. Using also
the condition E(ε3

i ) = 1, we obtain

∀α ∈R
pE

{(
α
Sn

)3} = E
{(

α
S
��

n

)3}
,(1.9)

and this property leads to the improved error term in (1.4). In order to employ the information
about the third moments, as in (1.9), one needs to use an approximation scheme that is more
general than the normal approximation. For this purpose, we establish the multivariate higher-
order Berry–Esseen inequalities (Section 2).

The methods introduced in the paper allow to consider an important and a more general
model, namely, the smooth function model introduced by Bhattacharya and Ghosh [6] and
Hall [16] (Chapter 2.4). In this model, the object of interest is f (μ), where f : Rp �→ R is a
smooth function and μ is an unknown expected value if Xi . The bootstrap estimators allow
to approximate f (X̄) − f (μ) in distribution and, therefore, to establish a confidence set for
f (μ). This also includes the case, when one aims at constructing a confidence set for μ in
the form f (X̄ − μ). In Section 4, we establish the approximation bounds similar to (1.1) and
(1.4) for the smooth function model.

The weighted or the multiplier bootstrap procedure is useful in the situations when it is
required to resample a solution of estimating equations, or a maximum likelihood estimator,
or in the case when the random summands {Xi}ni=1 are not necessarily identically distributed
(see, e.g., Mammen [27], Chatterjee and Bose [9]). The present results for the weighted boot-
strap lead also to an improvement of accuracy of a weighted bootstrap procedure for general
log-likelihood ratio statistics under possible model misspecification. Spokoiny and Zhilova
[35] considered the weighted bootstrap for estimation of quantiles of a log-likelihood ratio,
they showed that if a parametric model is not severely misspecified, then the accuracy of
bootstrap log-likelihood ratio quantiles corresponds to the accuracy of the normal approxi-
mation between statistics of the type ‖Sn‖ and ‖S ��

n‖. Using inequality (1.4), we infer that the
accuracy of the weighted bootstrap for log-likelihood ratio depends rather on accuracy of the
Wilks-type bounds, than on the normal approximation. We employ this result for construction
of likelihood-based confidence sets.

Below we give an overview of the existing literature about bootstrap accuracy. Resampling
methods are widely used for statistical inference in various applications. The bootstrap is
well known for its good performance in the situations when the amount of data is small (see,
e.g. Horowitz [19]), however, there are relatively few results about accuracy of the bootstrap
in a nonasymptotic set-up. Most of the existing results are quite recent. Arlot, Blanchard
and Roquain [2] studied generalized weighted bootstrap for construction of non-asymptotic
confidence bounds in �r -norm (r ∈ [1,∞]) for the mean value of high-dimensional random
vectors with a symmetric and bounded (or with the normal) distribution. Chernozhukov et al.
[10] established Gaussian approximation results, as well as accuracy of the multiplier and
the Efron’s bootstrap for maxima of sums of high-dimensional vectors in a very general set-
up. Chernozhukov et al. [11] extended the results from maxima to general hyperrectangles
and sparsely convex sets. The results of Chernozhukov et al. [10, 11] allow the dimension p

grow as O(exp(Cnc)) for some constants c,C > 0. Spokoiny and Zhilova [35] considered the
multiplier bootstrap for estimation of quantiles of a general log-likelihood ratio under model
misspecification. Zhilova [40] extended this methodology for the simultaneous likelihood-
based inference in the case of exponentially large number of models.

In the asymptotic high-dimensional setting when both the parameter dimension p and
the sample size n are large, Bickel and Freedman [7], Mammen [25, 27] studied accuracy
of the Efron’s and the wild bootstrap for the linear regression model and for M-estimators;
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Chatterjee and Bose [9] studied generalized bootstrap for estimating equations also in high-
dimensional asymptotic framework. Mammen [27] studied validity and higher-order accu-
racy of the wild bootstrap (or Wu’s bootstrap, first proposed by Wu [38]) under the condition
E(ε3

i ) = 1 on the weights, in context of linear contrasts in high-dimensional linear models
and for bootstrapping F-tests. Liu [23] used the condition E(ε3

i ) = 1 in order to obtain the
second-order accuracy of the wild bootstrap.

One of the basic ways of studying the properties of bootstrap procedures is to consider
asymptotic approximations of distributions of an initial statistic and its bootstrap estimate, for
example, using central limit theorems or their refinements with Edgeworth expansions (see
Præstgaard [29], Præstgaard and Wellner [30], Hall [16], Mammen [26], Barbe and Bertail
[3], Shao and Tu [33], van der Vaart and Wellner [37], Janssen and Pauls [22] and references
therein). Berry–Esseen type inequalities had been first used by Singh [34] and Liu [23] in
the framework of bootstrap. Holmes and Reinert [17] established bootstrap consistency in
various settings using Stein’s method.

Below we discuss the literature about Berry–Esseen type bounds. The problem of ap-
proximation of a probability distribution of the sum Sn belongs to the class of central limit
problems which has a long history of studies; see the paper by Loève [24] for a detailed
overview. Ibragimov [21] studied convergence of a distribution of Sn in case of i.i.d. scalar
summands, to the standard normal law, under the higher moments condition; the author ob-
tained a higher-order accuracy using Edgeworth expansion. Zolotarev [43] introduced pseu-
domoments, which characterize closeness of moments of two distributions, for estimation of
convergence rates in limit theorems; such limit theorems are called non-classical. In the mul-
tivariate case, some of the first nonclassical results about normal approximation on closed
convex sets had been obtained by Paulauskas [28], Rotar’ [31] and Ul’yanov [36]. To the best
of our knowledge, the problem of approximation of a probability distribution of Sn under the
higher moments condition (1.5) and with an explicit dependence on the dimension p, had not
been studied before.

Now let us summarize the contribution of this paper to the existing literature. In order
to study the properties in a high-dimensional nonasymptotic setting, one needs to use new
approaches and techniques. The methodology developed in this paper allows to consider
higher-order properties of bootstrap methods in the modern set-up. To the best of our knowl-
edge, this had not been done in the earlier literature. The main theoretical tools, namely, the
multivariate higher-order Berry–Esseen inequalities might be interesting by themselves. The
approximation bounds established here allow to track the dependence of the error terms on
the dimension, on the sample size, and on the moments of the considered distributions. We
provide examples, showing that the obtained error rates cannot be improved under the con-
sidered conditions. In addition, we refined an accuracy of the weighted/multiplier bootstrap
procedure for the general log-likelihood ratio statistics.

Structure of the paper. The results about accuracy of bootstrap rely on Berry–Essen type
inequalities; for this reason, we first present the latter results in Sections 2 and 3. Section 4
contains theoretical results about accuracy of the bootstrap. Sections A and B in the Sup-
plementary Material (Zhilova [41]) contain proofs of the statements from Sections 2 and 4,
respectively. Section 5 presents results of numerical experiments.

Notation. ‖ ·‖ denotes the Euclidean norm for vectors and the operator norm for matrices
or tensors; S+

p denotes the set of symmetric positive definite real-valued matrices of size
p ×p; B is the set of all closed Euclidean balls in R

p; Ip is the identity matrix of size p ×p;
if X is a vector in R

p , Xk stands for the tensor power X⊗k ; for f : Rp �→ R and h ∈ R
p ,

f (s)(x)hs denotes the higher-order directional derivative (h
∇)sf (x); C indicates a positive
generic constant unless specified otherwise.
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2. Higher-order Berry–Esseen inequalities. Consider independent random vectors
X1, . . . ,Xn ∈ R

p such that ∀i = 1, . . . , n EXi = 0, Var(Xi) ∈ S+
p , E(‖Xi‖K) < ∞ for

some integer K ≥ 3. Let Y1, . . . , Yn ∈ R
p be independent random vectors, and such that

∀i = 1, . . . , n,

Yi is independent of X1, . . . ,Xn,E
(‖Yi‖K)

< ∞,

E
(
Xk

i

) = E
(
Y k

i

) ∀k = 1, . . . ,K − 1.
(2.1)

A formal definition of the equality of the higher-order moments of vector-valued random
variables (as in (2.1)) is given in (1.6). We assume also that ∀i = 1, . . . , n,

∃ independent r.v. Zi,Ui ∈ R
p s.t. Yi

d= Zi + Ui,

EZi = EUi = 0,Zi ∼ N (0,�z,i) for some �z,i ∈ S+
p .

(2.2)

Consider the following sums of mutually independent random vectors with zero mean:

Sn := n−1/2
n∑

i=1

Xi, S̃n := n−1/2
n∑

i=1

Yi.(2.3)

We establish uniform approximation bounds between probability distributions of Sn and S̃n

on the set B of all Euclidean balls in R
p . Theorems 2.1 and 2.2 treat the cases when {Xi}ni=1

are i.i.d. and independent but not necessarily identically distributed vectors correspondingly.
For the case of i.i.d. summands Xi (and hence, i.i.d. Zi) denote

(2.4) �z := �z,i = Var(Zi), Cz := ∥∥�−1/2
z

∥∥.
THEOREM 2.1. Consider the random vectors {Xi}ni=1 introduced above, suppose that

they are i.i.d., and that there exist i.i.d. approximating random vectors {Yi}ni=1 meeting con-
ditions (2.1) and (2.2). It holds for the sums Sn and S̃n defined in (2.3)

sup
B∈B

∣∣P(Sn ∈ B) − P(S̃n ∈ B)
∣∣ ≤ CB,i.i.d.

{CK
z E(‖X1‖K + ‖Y1‖K)}1/(K−2)

n1/2 ,

where constant CB,i.i.d. > 0 depends only on K ; a detailed definition of CB,i.i.d. is given in
the proof (see (A.52) in Section A.2 of the Supplementary Material, Zhilova [41]).

REMARK 2.1 (The case of the normal approximation). If the approximating random
vectors Yi are normally distributed, then Ui ≡ 0, Yi ∼ N (0,Var(Xi)), �z = Var(Xi) and
Cz = ‖{Var(Xi)}−1/2‖. Furthermore, if K = 3 and Yi are standard normal, then the bound in
Theorem 2.1 is similar to the classical multivariate Berry–Esseen inequality by Bentkus [4].
If K > 3 and Yi are normally distributed, the term ‖X1‖ enters the bound above with a better
power, than in the classical case where K = 3. In this way, Theorem 2.1 extends the classical
normal approximation result.

REMARK 2.2 (Dependence on Cz). The approximation bound in Theorem 2.1 depends
on Cz = ‖�−1/2

z ‖, where �z is a covariance matrix of the normal component Zi of the ap-
proximating distribution Yi . In Lemma 3.1 (Section 3), we show that if a cardinality of a
support of Xi is sufficiently large, then there exist random vectors Ui such that �z is positive
definite. Therefore, it holds λ−1

� ≤ Cz < ∞, where λ2
� is the smallest eigenvalue of VarXi .

In Lemma 3.2, we consider the case when the number of coinciding moments between Xi

and Yi is K − 1 = 3; we show that for any c0 ∈ (0, λ�), there exists distribution Yi = Zi +Ui

such that Cz < c−1
0 . Hence Cz can be taken as a generic constant for K = 4. Moreover, if the

coordinates of the vector Xi are mutually independent, then the problem of characterizing �z

and Cz becomes one-dimensional and, therefore, Cz does not depend on p in this case.
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REMARK 2.3 (Accuracy of the approximation). The error term in Theorem 2.1 is pro-
portional to {pn−(K−2)/K)}1/(K−2) if ‖X1‖,‖Y1‖ ≤ √

p a.s. In Lemma 2.1 below, we show
that for K ≥ 3 condition p = o(n(K−2)/K) as n → ∞ is necessary for supx∈R |P(‖Sn‖ ≤
x) − P(‖S̃n‖ ≤ x)| → 0, n → ∞ under the conditions of Theorem 2.1.

LEMMA 2.1 (Necessity of the condition p = o(n(K−2)/K)). Let {Xi}ni=1 be random vec-
tors as in Theorem 2.1. Suppose that E(‖Xi‖K+2) < ∞ for an integer K > 3. There ex-
ist random vectors {Yi}ni=1 satisfying conditions of Theorem 2.1, and s.t. that the condition
p = o(n(K−2)/K) for n → ∞ is necessary for supx∈R |P(‖Sn‖ ≤ x) − P(‖S̃n‖ ≤ x)| → 0 as
n → ∞.

REMARK 2.4. In the recent paper, Zhai [39] considers a multivariate CLT in W2-
distance. The author shows that if X1, . . . ,Xn ∈ R

p are i.i.d. with mean zero and such that
‖Xi‖ ≤ β a.s. for some constant β > 0, then

W2(Sn,Z) ≤ 5
√

pβ(1 + logn)/
√

n,(2.5)

where Z ∼ N (0,VarX1), and W2 is the 2-Wasserstein distance. This result implies, that
if β ≤ C

√
p, then W2(Sn,Z) ≤ Cp(1 + logn)/

√
n. In Lemma 2.2 below, we consider a

uniform bound on supB∈B |P(Sn ∈ B) − P(Z ∈ B)|, using the result (2.5). It turns out that
under conditions (2.1), (2.2) for K ≥ 4, the higher-order Berry–Esseen type inequality in
Theorem 2.1 yields a better accuracy w.r.t. the sample size n, and w.r.t. the ratio between p

and n. Indeed, inequality (2.6) below, which follows from the results of Zhai [39], has an error
term of order (p2/n)1/3 (up to logn), whereas Theorem 2.1 (for the case Yi ∼ N (0,VarXi))
provides a smaller error term of order (pK/(K−2)/n)1/2 for K ≥ 4.

LEMMA 2.2. Let X1, . . . ,Xn ∈ R
p be i.i.d. random vectors, such that VarXi = Ip and

‖Xi‖ ≤ β a.s. for some constant β > 0. Let Z ∼ N (0, Ip). The results of Zhai [39] imply

sup
B∈B

∣∣P(Sn ∈ B) − P(Z ∈ B)
∣∣ ≤ C1p

1/3β2/3(1 + logn)/n1/3

≤ C2p
2/3(1 + logn)/n1/3,

(2.6)

where in the latter inequality one takes β ≤ c
√

p. Here, c,C1 and C2 denote positive generic
constants.

Now let us consider the case when the random summands Xi are independent but not
necessarily identically distributed (non-i.i.d.). Denote

(2.7) �̄z := n−1
n∑

i=1

�z,i, C̄z := ∥∥�̄−1/2
z

∥∥.
THEOREM 2.2. Consider random vectors {Xi}ni=1 introduced above, suppose that they

are independent but not necessarily identically distributed, and that there exist independent
approximating vectors {Yi}ni=1 meeting conditions (2.1) and (2.2). It holds for the sums Sn

and S̃n defined in (2.3)

sup
B∈B

∣∣P(Sn ∈ B) − P(S̃n ∈ B)
∣∣ ≤ CB,ind

{
C̄K

z

n∑
i=1

E
(‖Xi‖K + ‖Yi‖K)

n−K/2

} 1
K+1

,

where constant CB,ind > 0 depends only on K , it is defined in the proof (see (A.57) in Sec-
tion A.3 of the Supplementary Material, Zhilova [41]).
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REMARK 2.5. The proof of Theorem 2.1 largely exploits the assumption that the sum-
mands {Xi}ni=1 are identically distributed, and it does not directly apply to the non-i.i.d. case.
This causes a difference between the error terms in Theorems 2.2 and 2.1, however, the criti-
cal ratio of p and n (namely, pK/(K−2)/n) in the error terms remains the same in both results.
We leave an improvement of the power 1/(K+1) in the non-i.i.d. case for future work.

REMARK 2.6. The proofs of the Berry–Esseen type inequalities (Theorems 2.1 and 2.2)
exploit the following properties of the set B (cf. Bentkus [4, 5] and Chernozhukov et al. [10,
11]):

• Invariance under rescaling and under taking shifts, that is, if B ∈ B, then ∀x ∈ R
p and

∀a ∈ R, a > 0 it holds aB + x ∈ B.
• Invariance under taking ε-neighborhood w.r.t. the �2-norm: consider an arbitrary B ∈ B,

B = Br(x0) := {x ∈ R
p : ‖x − x0‖ ≤ r}, then the ε-neighborhood of B reads as Bε =

Br+ε(x0), if r + ε ≥ 0, and Bε = ∅ otherwise. Therefore, Bε ∈ B.

The same properties hold for the set H of all half-spaces in R
p . In Proposition A.1 (Sec-

tion A.3 of the Supplementary Material, Zhilova [41]), we consider a higher-order Berry–
Esseen approximation for Sn uniformly over the set H , similar to Theorems 2.1 and 2.2.

Corollary 2.1 below follows directly from the previous theorems and the triangle inequal-
ity. It justifies a higher-order accuracy of approximation between two probability distributions
with matching moments.

COROLLARY 2.1. Consider random vectors {Xi}ni=1 introduced above, and suppose
that there exist independent approximating vectors {Yi}ni=1 meeting conditions (2.1) and
(2.2). Consider also independent random vectors X′

1, . . . ,X
′
n ∈ R

p , that are independent

of {Xi}ni=1, {Yi}ni=1, and such that ∀i = 1, . . . , n E(‖X′
i‖K) < ∞, E(Xk

i ) = E(X′
i
k
) ∀k =

1, . . . ,K − 1. Let also S′
n := n−1/2 ∑n

i=1 X′
i , and 	′

n := supB∈B |P(Sn ∈ B) − P(S′
n ∈ B)|.

1. If conditions of Theorem 2.1 are fulfilled and {X′
i}ni=1 are i.i.d. Let also LK := E(‖X1‖K +

‖Y1‖K) and L′
K := E(‖X′

1‖K + ‖Y1‖K), then

	′
n ≤ CB,i.i.d.C

K/(K−2)
z

{
L

1/(K−2)
K + L

′1/(K−2)
K

}
n−1/2.

2. If conditions of Theorem 2.2 are fulfilled and {X′
i}ni=1 are not necessarily identically dis-

tributed. Let also L̄K := n−1 ∑n
i=1 E(‖Xi‖K + ‖Yi‖K) and L̄′

K := n−1 ∑n
i=1 E(‖X′

i‖K +
‖Yi‖K), then

	′
n ≤ CB,indC̄

K/(K+1)
z

{
L̄

1/(K+1)
K + L̄

′1/(K+1)
K

}
n−0.5(K−2)/(K+1).

3. Properties of the approximating distribution.

LEMMA 3.1 (Existence of the approximating distribution). Let a random vector X be
supported in a closed set A ⊆ R

p , and let X be such that EX = 0, VarX ∈ S+
p , E(‖X‖K+2) <

∞ for some integer K ≥ 2. If X is continuously distributed, there exists a random vector
Y := Z + U , such that E(‖Y‖K+2) < ∞, where Z,U ∈ R

p are independent, Z ∼ N (0,�z)

for some �z ∈ S+
p , and E(Xk) = E(Y k) for all k = 0, . . . ,K . Furthermore, if X is a sub-

Gaussian random vector, then there exists a sub-Gaussian approximating distribution Y sat-
isfying the above conditions. If X has a discrete probability distribution supported on M

points in R
p such that each coordinate of X is supported on at least m points in R, then the

lemma’s statement holds for X when M ≥ 1 + (K + 2)mp−1.
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PROOF OF LEMMA 3.1. Denote mk := E(Xk), and uk := E(Uk) for k = 0,1,2, . . . Con-
ditioning on U leads to L (Y |U) = N (U,�z) and to the following system of linear equa-
tions:

m0 = E(Z + U)0 = u0, m2 = E(Z + U)2 = u2 + �z,

m1 = E(Z + U) = u1, m3 = E(Z + U)3 = u3,

mK = E(Z + U)K = K!
[K/2]∑
l=0

Sp1K
uK−2l ⊗ vec(�z)

l{l!(K − 2l)!2l}−1
,

where Sp1K
is the symmetrizer operator acting on the K th tensor power of Rp; this formula

for the raw moments of the multivariate normal distribution is given in the work Holmquist
[18]. The solution {uk(�z)}Kk=0 of this system depends on �z continuously. Moreover,

(3.1) if �z = 0, then uk(�z) = mk ∀k = 0, . . . ,K .

In order to prove the lemma’s statement, it is sufficient to show that there exists �z ∈ S+
p , s.t.

the solution {uk(�z)}Kk=0 also solves the following multivariate truncated moment problem:

Given a p-dimensional real multisequence {uk(�z)}Kk=0, does there exist a positive Borel
measure μ s.t. suppμ ⊆ A and

∫
Rp xk dμ(x) = uk(�z) ∀k = 0, . . . ,K?

The work of Curto and Fialkow [13] provides necessary and sufficient conditions for solv-
ability of multivariate truncated moment problems. Before stating these conditions, we intro-
duce some notation. Let PK denote the space of polynomials: Rp �→ R, of degree ≤ K , and
with real coefficients. A polynomial p = p(x) = ∑

|i|≤K aix
i ∈ PK is positive (or strictly

positive) on A, if p(x) ≥ 0 (or p(x) > 0) for all x ∈ A. Here, i := (i1, . . . , ip) ∈ N
p
0 denotes

multiindex, |i| = ∑p
j=1 ij , and xi := x

i1
1 . . . x

ip
p . For a multisequence {ui}|i|≤K , the Riesz

functional L : PK �→ R is defined as L(
∑

|i|≤K aix
i) := ∑

|i|≤K aiui . If the truncated mo-
ment problem is soluble, we can write

(3.2) L(p) = ∑
|i|≤K

aiui =
∫
Rp

p(x) dμ(x).

Curto and Fialkow [13] showed that a multisequence {ui}|i|≤K solves the multivariate
truncated moment problem on the set A iff there exists an extension {ũi}|i|≤K+2 of
{ui}|i|≤K (i.e., ũi = ui for all i : |i| ≤ K), such that for the corresponding Riesz functional
L̃(

∑
|i|≤K+2 aix

i) := ∑
|i|≤K+2 ai ũi it holds:

(3.3) if p ∈ PK+2 and p is positive on A, then L̃(p) ≥ 0.

First, consider the case of a continuously distributed X. Due to the definitions of mk

and uk , and by the theorem of Curto and Fialkow [13] there exists an extension {mk}K+2
k=0 ,

s.t. its corresponding Riesz functional L̃m(
∑

|i|≤K+2 aix
i) := ∑

aimi satisfies (3.3). More-

over, if p ∈ PK+2 is s.t. p(x) > 0 ∀x ∈ A, then L̃(p) > 0; if L̃(p) = 0 for some p ∈ PK+2
nonnegative on A, then P(∀x ∈ A p(x) = 0) = 1. The extension {mk}K+2

k=0 leads to the ex-
tended sequence {ũk(�z)}K+2

k=0 . Property (3.1), continuity of the solutions {ũk(�z)}K+2
k=0 w.r.t.

�z, and (3.2) imply that there exists some �z ∈ S+
p s.t. the corresponding Riesz functional

L̃u(p) := ∑
|i|≤K+2 ai ũi(�z) > 0 for all p = ∑

|i|≤K+2 aix
i ∈ PK+2 such that p > 0 on A

(here we use that S+
p is a dense subset of the set of symmetric positive semidefinite matrices

in R
p×p; see, e.g., Chapter 2.4 in Boyd and Vandenberghe [8]). This finalizes the proof for

the continuous case.
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Now let X have a discrete probability distribution. Let m denote the minimal cardinality
of the supports of X’s coordinates. Consider a polynomial q ∈ PK+2 of degree K + 2, such
that q �≡ 0 on the support A. According to the Schwartz–Zippel lemma by Schwartz [32] and
Zippel [42], the number of zeros of q is ≤ (K + 2)mp−1. Hence, if the set A contains at least
1 + (K + 2)mp−1 points, then for any nonzero and positive polynomial q , L̃(q) > 0, where
L̃ is the Riesz functional, considered in the previous paragraph. This allows to apply here the
arguments for the continuous case.

If X is sub-Gaussian, then |mkγ
k|1/k ≤ {E|γ 
X|k}1/k ≤ C

√
k ∀k ≥ 1, ∀γ ∈ R

p : ‖γ ‖ =
1. Since the solutions uk(�z) are linearly dependent on {mk}, the sub-Gaussian property
holds for the moments uk(�z) as well. �

LEMMA 3.2 (Choice of Cz for 3 coinciding moments). Let X ∈ R
p be a random vector

satisfying conditions of Lemma 3.1 for K = 3. Let λ� denote the smallest eigenvalue of � :=
Var(X). Then for any c0 ∈ (0, λ�) there exist independent random vectors Z,U ∈ R

p , such
that for Y=Z+U , it holds E(‖Y‖4) < ∞, E(Xk) = E(Y k) for k = 1,2,3 and Z ∼ N (0,�z),
where �z is some symmetric matrix with the smallest eigenvalue > c0.

PROOF OF LEMMA 3.2. Consider random variable ε ∈ R independent of X and s.t. Eε =
0,E(ε2) = α,E(ε3) = 1 for some α ∈ (0,1). Such distribution exists by the criterion for
solubility of the truncated Hamburger moment problem (see Curto and Fialkow [12]). Indeed,

if the Hankel matrix
( 1 0

0 α

)
has a positive Hankel extension

(
1 0 α
0 α 1
α 1 β

)
for some β = E(ε4), then

there exists such random variable ε.
Take X̃ := Xε, then EX̃ = 0,E(X̃2) = α�,E(X̃3) = E(X3). By Lemma 3.1 ∃ r.v. Ỹ =

Z̃ + Ũ ∈ R
p s.t. Z̃ and Ũ are independent of each other, Z̃ ∼ N (0, �̃z) for some �̃z ∈

S+
p , and E(X̃k) = E(Ỹ k) ∀k = 0,1,2,3. Let Z̃1 ∼ N (0, (1 − α)�) be independent of all

random vectors considered in the proof; take Y := Ỹ + Z̃1 = Z̃ + Z̃1 + Ũ , then it holds
E(Y ) = 0,E(Y 2) = α� + (1 − α)� = �, and E(Y 3) = E(Ỹ 3) = E(X3). The normal part of
Y is Z := Z̃ + Z̃1 ∼ N (0, (1 − α)� + �̃z). Let λz denote the smallest eigenvalue of VarZ,
then (1 − α)λ� < λz < λ� , where λ� > 0 is the smallest eigenvalue of �. Hence, taking
α = 1 − c0/λ� , we obtain the lemma’s statement. �

4. Validity and accuracy of the bootstrap procedures. Here, we study accuracy of the
Efron’s and the weighted bootstrap procedures in various settings. We begin with the Efron’s
bootstrap in Section 4.1; Sections 4.2, 4.4 present the results for the weighted bootstrap.

4.1. Efron’s bootstrap. Let X1, . . . ,Xn be i.i.d. random vectors with � := Var(Xi) ∈ S+
p ,

let also Xi be sub-Gaussian, that is, it holds for some σ 2 > 0 and for all α ∈R
p

E
{
exp

(
α
Xi

)} ≤ exp
(‖α‖2σ 2/2

)
.(4.1)

Assume that there exist i.i.d. random vectors Y1, . . . , Yn satisfying (2.1), (2.2) for some in-
teger K ≥ 3. Introduce resampled variables X∗

1, . . . ,X∗
n with zero mean, according to the

Efron’s bootstrap methodology (Efron [14], Efron and Tibshirani [15]): P∗(X∗
i = Xj − X̄) =

1/n∀i, j = 1, . . . , n, where X̄ = n−1 ∑n
i=1 Xi , and P∗(·) = P(·|X1, . . . ,Xn). In this way,

{X∗
j }nj=1 are i.i.d., E∗(X∗

j ) = 0, and E∗(X∗
j
k) = n−1∑n

i=1(Xi − X̄)k , for k ≥ 1. The boot-

strap approximation of the sum Sn is S∗
n := n−1/2∑n

i=1X
∗
i . Denote CX := ‖�−1/2‖. By this

definition, CX < Cz. Assume also that a p.d.f. of X is bounded with a constant cf > 0. In
the statements in Section 4, including the theorems below, we use notation from the previous
Section 2, for example, constant CB,i.i.d.. Let also C̃x,k := (1 + 2

√
x/p + 2x/p)k/2.
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THEOREM 4.1 (Accuracy of the bootstrap for Sn on the set B). Suppose that the above
conditions are fulfilled, then the following uniform bound holds on the set B of all Euclidean
balls with probability ≥ 1 − 6e−x for x > 0:

sup
B∈B

∣∣P(Sn ∈ B) − P∗(
S∗

n ∈ B
)∣∣

≤ 	∗
B,i.i.d. := CB,i.i.d.

{
CK

z E
(‖X1‖K + ‖Y1‖K)}1/(K−2)

n−1/2

+ CB,i.i.d.(2C̃x,K)1/(K−2)(Czσp1/2)K/(K−2)
n−1/2 + Rn,K,

where Rn,K ≤ C
√

p/nC2
z σK+1CK−1

X Cx,K , and Cx,K is defined in (B.27); a detailed defini-
tion of Rn,K is given in (B.9), (B.10) (Section B.1 in the Supplementary Material, Zhilova
[41]).

REMARK 4.1. The error term 	∗
B,i.i.d. in the above result consists of two parts: one

part corresponds to the higher-order Berry–Esseen type inequalities, another part Rn,K

comes from concentration bounds for higher-order empirical moments of Xi . If the ratio
pK/(K−2)/n is small, then the first part is small as well. Furthermore, ∀K ≥ 3 pK/(K−2)/n ≥
p/n. In Lemma 4.1 (in Section 4.3), we consider an example where the condition p/n = o(1)

for n → ∞ is required for the bootstrap consistency.

In the following theorem, we study accuracy of the Efron’s bootstrap procedure for the
smooth function model introduced by Bhattacharya and Ghosh [6] and Hall [16] (Chap-
ter 2.4). In this model, the object of interest is f (μ), where f :Rp �→R is a smooth function
and μ is an unknown expected value if Xi . The bootstrap estimators allow to approximate
f (X̄) − f (μ) in distribution and, therefore, to establish a confidence set for f (μ). This also
includes the case, when we aim at constructing a confidence set for μ in the form f (X̄ − μ).
Consider i.i.d. X1, . . . ,Xn ∈ R

p with mean μ and sub-Gaussian tail behavior, that is, con-
dition (4.1) holds for Xi − μ. Let f : Rp �→ R be at least twice continuously differentiable
function, s.t. ∀h ∈ R

p supx∈Rp |f (2)(x)h2| ≤ Cf,2‖h‖2 for some constant Cf,2 > 0. Assume
also that f ′(μ) �= 0, and ‖f ′(μ)‖ > Cf,l

√
p for some constant Cf,l > 0. Denote the resam-

pled i.i.d. data X∗
1, . . . ,X∗

n and the bootstrap empirical mean as follows:

P∗(
X∗

i = Xj

) = 1/n ∀i, j = 1, . . . , n, and X̄∗ := n−1
n∑

i=1

X∗
i .

Theorem 4.2 shows that the c.d.f. of f (X̄) − f (μ) is uniformly well approximated by the
c.d.f. of f (X̄∗) − f (X̄) conditioned on {Xi}ni=1.

THEOREM 4.2 (Accuracy of the bootstrap for the smooth function model). Let the above
assumptions and conditions of Theorem 4.1 be fulfilled. It holds with probability ≥ 1 − 6e−x

for x > 0:

sup
t∈R

∣∣P(
f (X̄) − f (μ) ≤ t

) − P∗(
f

(
X̄∗) − f (X̄) ≤ t

)∣∣
≤ 	∗

f,i.i.d. := 2Cf,2Czσ
2C̃x,2C

−1
f,l (p/n)1/2 + CB,i.i.d.C

K/(K−2)
z CM,Kn−1/2

+ CB,i.i.d.(2C̃x,K)1/(K−2){Czσ }K/(K−2)n−1/2 + R1,n,K,

where CM,K := [‖E(X1 − μ)K‖ + ‖E(Y1 − μ)K‖]1/(K−2), the term C̃x,K is described in the
previous statement, and R1,n,K ≤ Cn−1/2C2

z σK+1CK−1
X Cx,K is defined in (B.14) and (B.15)

(Section B.1 in the Supplementary Material, Zhilova [41]).
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COROLLARY 4.1. Consider the following upper quantile functions of the bootstrap ap-
proximations: Q∗

2(α) := inf{t ∈ R : P∗(‖S∗
n‖ > t) ≤ α}, Q∗

f (α) := inf{t ∈ R : P∗(f (X̄∗) −
f (X̄) > t) ≤ α} for α ∈ (0,1). Let x > 0. Theorems 4.1 and 4.2 imply the following two
bounds: ∣∣P(‖Sn‖ > Q∗

2(α)
) − α

∣∣ ≤ 2	∗
B,i.i.d. + 6e−x,∣∣P(

f (X̄) − f (μ) > Q∗
f (α)

) − α
∣∣ ≤ 2	∗

f,i.i.d. + 6e−x.

4.2. Weighted bootstrap. Let X1, . . . ,Xn be independent random vectors with �i :=
Var(Xi) ∈ S+

p , let also {Xi}ni=1 be sub-Gaussian, that is, it holds for some σ 2
i > 0, ∀α ∈ R

p ,

and ∀i = 1, . . . , n E{exp(α
Xi)} ≤ exp(‖α‖2σ 2
i /2). Denote σ̄ 2

k := n−1 ∑n
i=1 σ 2k

i . Assume
that there exist i.i.d. random vectors Y1, . . . , Yn satisfying (2.1) and (2.2) for K = 4. As-
sume also that p.d.f.-s of Xi are bounded with a constant cf > 0. The bootstrap ran-
dom weights ε1, . . . , εn, are taken as in (1.2). These are some examples of such random
weights (here zi ∼ N (0,1), independent of ei, ci, bi): (1 − 2−2/3)1/2zi + 2−1/3(ei − 1) for
ei ∼ exp(1); 2−1/2zi + 2−1(ci − 1) for ci ∼ χ2

1 ; (1 − 3−2/3)1/2zi + 3−1/32(bi − 0.5) for
bi ∼ Bernoulli(0.5). More examples of the bootstrap weights satisfying (1.2) can be found in
the works of Liu [23] and Mammen [27].

The weighted bootstrap approximation of the sum Sn is S
��

n := n−1/2∑n
i=1Xiεi . The prob-

ability distribution of S
��

n is taken conditioned on {Xi}ni=1.

THEOREM 4.3 (Accuracy of the weighted bootstrap for Sn on the set B). Let the above
conditions be fulfilled, then it holds with probability ≥ 1 − 6e−x for x > 0:

sup
B∈B

∣∣P(Sn ∈ B) − P∗(
S
��

n ∈ B
)∣∣

≤ 	
��

B,w,ind := CB,w,ind

{
C̄4

z

n∑
i=1

E
(‖Xi‖4 + ‖Yi‖4)

/n2

}1/5

+ R2,3,

where for p ≤ C
√

n it holds R2,3 ≤ C(C̄z ∨ σ̄ 4
1 C̃x,4{1 + E(ε4

i )})(p/
√

n)1/3; a detailed defi-
nition of R2,3 is given in (B.17), and constant CB,w,ind > 0 is defined in (B.16) (Section B.2
in the Supplementary Material, Zhilova [41]).

REMARK 4.2. Lemma 3.2 implies (see also Remark 2.2) that for the case K = 4, C̄z in
Theorem 2.2 can be taken as a generic constant independent of the dimension p. The result
in Theorem 4.3 relies on the Berry–Esseen type inequality in Theorem 2.2 and, therefore, we
can take C̄z = const in the above statement.

COROLLARY 4.2. Consider the following upper quantile function of the approximating
sum obtained using the weighted bootstrap: Q

��

2,w(α) := inf{t ∈ R : P∗(‖S ��

n‖ > t) ≤ α}, α ∈
(0,1). Theorem 4.3 implies the following bound:∣∣P(‖Sn‖ > Q

��

2,w(α)
) − α

∣∣ ≤ 2	
��

B,w,ind + 6e−x for x > 0.

4.3. Some remarks about accuracy of the bootstrap procedures.

REMARK 4.3 (Theorems 4.1, 4.3 in the asymptotic form). If the conditions of Theo-
rem 4.1 are fulfilled and Cz is dimension-free, then taking x = log(2n), using the Borel–
Cantelli lemma, and the deviation inequality for ‖X‖2 by Hsu et al. [20] (see also Section B.4



1934 M. ZHILOVA

in the Supplementary Material, Zhilova [41]), we have with probability one,

sup
B∈B

∣∣P(Sn ∈ B) − P∗(
S∗

n ∈ B
)∣∣

= O
({

pK/(K−2)/n
}1/2{

1 + log(n)/p
} K

2(K−2) + (p/n)1/2{
1 + log(Kn)/p

} (K−1)
2

)
for n → ∞ and K ≥ 3. Similarly, given the conditions of Theorem 4.3, it holds with proba-
bility one

sup
B∈B

∣∣P(Sn ∈ B) − P∗(
S
��

n ∈ B
)∣∣

= O
(
(p/

√
n)1/3{

1 + log(n)/p7/6 + (
p2/n

)1/5{
1 + log(n)/p

}2/5}
+ (p/

√
n)2/3{

1 + log(n)/p
}2)

for p ≤ Cn and n → ∞.

Theorem 4.3 implies that if the ratio p2/n (up to logn) is small, then the weighted
bootstrap approximation has a good accuracy. Lemma 4.1 below shows that the condition
p2/n = o(1) for n → ∞ is necessary for the weighted bootstrap consistency.

LEMMA 4.1 (Necessary conditions on p and n for the bootstrap consistency). Let Xi ∼
N (0, Ip), i = 1, . . . , n be i.i.d. random vectors. Consider Sn, S∗

n , and S
��

n as in Theorems 4.1
and 4.3. Then

(a) p = o(n) for n → ∞ is necessary for supx∈R |P∗(‖S∗
n‖2 ≤ x) − P(‖Sn‖2 ≤ x)| P→ 0,

(b) p2 = o(n) for n → ∞ is necessary for supx∈R |P∗(‖S ��

n‖2 ≤ x) − P(‖Sn‖2 ≤ x)| P→ 0.

REMARK 4.4. In Theorem 4.3, the bootstrap weights ε1, . . . , εn satisfy the 3rd moment
condition (1.2). This is very similar to taking K = 4 in Theorem 4.1 for the Efron’s bootstrap.
It is not possible to continue the sequence of moments (1.2) like E(ε4

i ) = 1, . . . , since the cor-

responding Hankel matrix
(

1 0 1
0 1 1
1 1 1

)
fails the criterion for solubility of the Hamburger moment

problem (see, e.g., Akhiezer [1]). Together with Lemma 4.1 and the preceding results in Sec-
tion 4, this implies that under the conditions of Theorem 4.1, the Efron’s bootstrap yields
a better accuracy w.r.t. the ratio between p and n, than the considered weighted bootstrap
scheme.

REMARK 4.5. In Theorems 4.1–4.3, the sub-Gaussian tail behavior (condition (4.1)) is
required in order to apply concentration bounds for the higher-order moments of Xi (see
Section B.4 in the Supplementary Material, Zhilova [41]). In the asymptotic set-up, one can
relax this condition, assuming, for example, boundedness of the K th moments of Xi, i =
1, . . . , n.

4.4. Weighted bootstrap for log-likelihood ratio statistics. Here, we consider a weighted
(or a multiplier) bootstrap procedure for estimation of quantiles of log-likelihood ratio statis-
tics. Before describing the procedure and formulating a theoretical result, we give some nec-
essary definitions.

Let y = (y1, . . . , yn) denote the data sample, y1, . . . , yn are i.i.d. random observations
from a probability space (�,F,P). Introduce some known parametric family {Pθ } := {Pθ �
μ0, θ ∈ � ⊆ R

p}; here, μ0 is a σ -finite measure on (�,F) which dominates all Pθ for
θ ∈ �. The true data distribution P is not assumed to belong to the family {Pθ }, thus our
analysis includes the case when the parametric family {Pθ } is misspecified. {Pθ } induces the
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following (quasi)log-likelihood function for the sample y: L(θ) = L(θ,y) := log( dPθ

dμ0
(y)).

The target parameter θ0 is defined by projecting the true probability distribution P on the
parametric family {Pθ }, using Kullback–Leibler divergence: θ0 := argminθ∈� KL(P,Pθ ) =
argmaxθ∈� EL(θ). The (quasi) maximum likelihood estimate (MLE) is defined as θ̃ :=
argmaxθ∈� L(θ). Let QL(α) denote the upper quantile function of square root of the two
times log-likelihood ratio statistic: QL(α) := inf{t ≥ 0 : P(L(θ̃)−L(θ) > t2/2) ≤ α}. QL(α)

is a critical value of the likelihood-based confidence set E (α):

E (t) := {
θ : L(θ̃) − L(θ) ≤ t2/2

}
, P

{
θ0 ∈ E

(
QL(α)

)} ≥ 1 − α.(4.2)

Probability distribution of L(θ̃)−L(θ0) depends on the unknown parameter θ0 and P; hence,
in general, quantiles of L(θ̃) − L(θ0) are also unknown.

Consider the weighted (or the multiplier) bootstrap procedure which allows to estimate the
distribution of L(θ̃) − L(θ0). Let u1, . . . , un be i.i.d. random variables:

ui := εi + 1, for εi defined in (1.2), independent of y.

The bootstrap log-likelihood function L
��

(θ) equals to the initial one L(θ) weighted with the
random bootstrap weights ui :

L
��

(θ) :=
n∑

i=1

log
(

dPθ

dμ0
(yi)

)
ui.

Recall that P∗(·) := P(·|{yi}ni=1) and E∗(·) := E(·|{yi}ni=1). It holds E∗L ��

(θ) = L(θ), there-
fore, θ̃ = argmaxθ∈� L(θ) = argmaxθ∈� E∗L ��

(θ), and the MLE θ̃ can be considered as a
bootstrap analogue of the unknown target parameter θ0. The bootstrap likelihood ratio statis-
tic is defined as

L
��(
θ̃
��) − L

��

(θ̃) := sup
θ∈�

L
��

(θ) − L
��

(θ̃).

L
��

(θ̃
��

) − L
��

(θ̃) can be computed for each i.i.d. sample of the bootstrap weights u1, . . . , un,
thus we can calculate empirical probability distribution function of L

��

(θ̃
��

) − L
��

(θ̃) and esti-
mate its quantiles. Denote

Q
��

L(α) := inf
{
t ≥ 0 : P∗(

L
��(
θ̃
��) − L

��

(θ) > t2/2
) ≤ α

}
.(4.3)

Theorem 4.4 below provides a two-sided bound on the coverage error of the likelihood con-
fidence set (4.2) based on the bootstrap quantile Q

��

L(α). Let us introduce some additional
notation before stating the theorem. Denote �i(θ) := log( dPθ

dμ0
(yi)), d2

0 := −E�′′
1(θ0), here

�′
i (θ) := ∇θ �i(θ). Take Xi := d−1

0 �′
i (θ0). By previous definitions, such defined {Xi}ni=1 are

i.i.d with zero mean. Moreover, if conditions from Section B.3 in the Supplementary Mate-
rial (Zhilova [41]) are fulfilled, then E(‖Xi‖4) < ∞. Let Y1, . . . , Yn be i.i.d. vectors meeting
conditions (2.1) and (2.2) for K = 4, and Cz,L := ‖{Var(Zi)}−1/2‖. Now we are ready to
formulate the following.

THEOREM 4.4. If the conditions from Section B.3 in the Supplementary Material
(Zhilova [41]) are fulfilled, then it holds with probability ≥ 1 − 10e−x for x > 0,

sup
t≥0

∣∣P{
L(θ̃) − L(θ0) ≤ t

} − P∗{
L
��(
θ̃
��) − L

��

(θ̃) ≤ t
}∣∣ ≤ 	L, and

∣∣P{
θ0 /∈ E

(
Q

��

L(α)
)} − α

∣∣ ≤ 2	L + 10e−x, where

	L ≤ CB,w,ind
{
C4

z,LE
(∥∥d−1

0 �′
1(θ0)

∥∥4 + ‖Y1‖4)
/n

}1/5

+ RL,2,3 + Cz,LC(p + x)n−1/2,

(4.4)
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FIG. 1. Distribution functions of Sn and S̃n for n = 50, p = 1, K = 4.

where for p ≤ C
√

n it holds RL,2,3 ≤ C(Cz,L ∨ (νa)4C̃x,4{1 + E(ε4
i )})(p/

√
n)1/3; is defined

in (B.17); a more detailed definition of the error term 	L is given in (B.20), CB,w,ind is
defined in (B.16) (Section B.2 in the Supplementary Material, Zhilova [41]).

REMARK 4.6. The third term in bound (4.4) comes from Wilks type approximations for
the likelihood ratios L(θ̃) − L(θ0) and L

��

(θ̃
��

) − L
��

(θ̃) (see the proof in Section B.3 in the
Supplementary Material, Zhilova [41], for more details); the first two terms in (4.4) come
from the Berry–Esseen type inequality justifying the weighted bootstrap procedure on the set
B (Theorem 4.3). Due to the assumed sub-Gaussian tail behavior of d−1

0 �′
i (θ0), the first term

is bounded from above with Cpn−1/2 with large probability. Thus, in Theorem 4.4 both Wilks
type bound and the higher-order Berry–Esseen type inequality yield similar ratios between p

and n in the error of approximation 	L.

5. Numerical experiments. This section presents results of simulation studies, illustrat-
ing accuracy of the considered Berry–Esseen bounds and the bootstrap procedures.

5.1. Berry–Esseen inequality. Figure 1 shows the c.d.f.-s of Sn, S̃n and N (0,1) for the
sample size n = 50, dimension p = 1 and number K − 1 = 3 of equal moments of Sn and S̃n.
Similarly Figure 2 shows c.d.f.-s of ‖Sn‖2, ‖S̃n‖2 and χ2

p for n = 50, p = 7 and K − 1 = 3.
Distributions of Xi and Yi are described in the bottom of each of the Figures 1 and 2. The
c.d.f.-s are obtained from 15 ·103 i.i.d. samples. Both figures agree with the theoretical results
about the higher-order Berry–Esseen bounds: the latter approximation has a better accuracy
than the Gaussian approximation.

5.2. Bootstrap. Here, we examine accuracy of the bootstrap procedures for ‖Sn‖ (de-
scribed in Section 4) by computing coverage probabilities using bootstrap quantiles Q

��

2(α).
All the results are collected in Table 1. Columns n, p, L (εi), L (Xi,j ) show the sample size,
the dimension, the distribution of the bootstrap weights εi , and the distribution of Xi,j , where
i.i.d. coordinates Xi,j are s.t. Xi = (Xi,1, . . . ,Xi,p)
. Nominal coverage probabilities 1 − α

are given in the second row 0.975,0.95, 0.90,0.85, . . . ,0.50. All of the rest of the numbers
represent frequencies of the event {‖Sn‖ ≤ Q

��

(α)}, computed for different n, p, α, L (εi) and
L (Xi,j ), from 7 ·103 i.i.d. samples {Xi}ni=1 and {εi}ni=1. We consider three types of the boot-
strap weights: first one εi = zi + ui , with ui ∼ (Bernoulli(b) − b)σu, b = 0.276, σu ≈ 2.235
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FIG. 2. Distribution functions of ‖Sn‖2 and ‖S̃n‖2 for n = 50, p = 7, K = 4.

TABLE 1
Coverage probabilities P(‖Sn‖ ≤ Q◦

2(α))

Confidence levels

n p L (Xi,j ) L (εi) 0.975 0.95 0.90 0.85 0.80 0.70 0.60 0.50

400 40 χ2
1 − 1 L (zi + ui) 0.982 0.957 0.910 0.855 0.804 0.701 0.595 0.491

N (0,1) 0.984 0.960 0.914 0.862 0.810 0.704 0.597 0.495
Multinom . 0.983 0.960 0.916 0.864 0.812 0.702 0.593 0.492

Pareto∗ L (zi + ui) 0.984 0.964 0.917 0.865 0.813 0.704 0.593 0.490
N (0,1) 0.986 0.972 0.925 0.873 0.821 0.707 0.589 0.480
Multinom . 0.989 0.969 0.927 0.875 0.822 0.710 0.591 0.475

lnN ∗(2.5) L (zi + ui) 0.996 0.987 0.958 0.912 0.863 0.711 0.555 0.416
N (0,1) 0.998 0.992 0.973 0.934 0.880 0.725 0.543 0.387
Multinom . 0.998 0.994 0.967 0.914 0.847 0.678 0.511 0.390

150 15 χ2
1 − 1 L (zi + ui) 0.983 0.958 0.907 0.855 0.807 0.703 0.596 0.492

N (0,1) 0.986 0.965 0.915 0.863 0.811 0.706 0.595 0.485
Multinom . 0.986 0.964 0.912 0.855 0.826 0.683 0.576 0.468

Pareto∗ L (zi + ui) 0.985 0.967 0.920 0.869 0.807 0.695 0.585 0.472
N (0,1) 0.990 0.974 0.931 0.882 0.820 0.697 0.580 0.459
Multinom . 0.988 0.973 0.926 0.866 0.804 0.683 0.561 0.449

lnN ∗(2.5) L (zi + ui) 0.992 0.978 0.936 0.889 0.830 0.674 0.514 0.386
N (0,1) 0.995 0.987 0.956 0.910 0.851 0.693 0.507 0.357
Multinom . 0.996 0.987 0.949 0.891 0.818 0.656 0.494 0.349

50 5 χ2
1 − 1 L (zi + ui) 0.985 0.961 0.906 0.853 0.798 0.688 0.582 0.483

N (0,1) 0.988 0.969 0.915 0.862 0.804 0.688 0.572 0.466
Multinom . 0.985 0.959 0.900 0.845 0.785 0.667 0.555 0.454

Pareto∗ L (zi + ui) 0.983 0.960 0.911 0.852 0.795 0.675 0.560 0.460
N (0,1) 0.986 0.967 0.923 0.866 0.804 0.673 0.546 0.432
Multinom . 0.984 0.960 0.908 0.844 0.777 0.650 0.528 0.424

lnN ∗(1.5) L (zi + ui) 0.977 0.956 0.903 0.839 0.775 0.638 0.532 0.411
N (0,1) 0.983 0.965 0.920 0.858 0.795 0.645 0.506 0.382
Multinom . 0.980 0.958 0.901 0.833 0.763 0.621 0.493 0.383

Here, Pareto∗ and lnN ∗(σ 2) denote zero mean distributions Pareto(0.5,4.1) − 0.661 and lnN (0, σ 2) − eσ 2/2

correspondingly.
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and zi ∼ N (0, σ 2
z ), σ 2

z ≈ 0.038, for this case Eεi = 0, E(ε2
i ) = E(ε3

i ) = 1, therefore εi meet
conditions (1.2). The second type is εi ∼ N (0,1), in this case E(ε3

i ) �= 1, and the approxi-
mation accuracy corresponds to the classical normal approximation with a larger error term.
In this numerical experiment, we check whether the additional condition E(ε3

i ) = 1 improves
numerical performance of the weighted bootstrap for ‖Sn‖. The third type of the weights
Multinom. corresponds to the multinomial distribution Multinomial(n;1/n, . . . ,1/n), that
is, to the classical Efron’s bootstrap scheme. Table 1 confirms the higher-order properties of
the bootstrap schemes for most of the computed coverage probabilities.
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SUPPLEMENTARY MATERIAL

Supplement to “Nonclassical Berry–Esseen inequalities and accuracy of the boot-
strap” (DOI: 10.1214/18-AOS1802SUPP; .pdf). The supplementary material contains proofs
of the results from Sections 2 and 4.
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