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PHASE TRANSITION IN THE SPIKED RANDOM TENSOR WITH
RADEMACHER PRIOR1

BY WEI-KUO CHEN

University of Minnesota

We consider the problem of detecting a deformation from a symmetric
Gaussian random p-tensor (p ≥ 3) with a rank-one spike sampled from the
Rademacher prior. Recently, in Lesieur et al. (Barbier, Krzakala, Macris, Mi-
olane and Zdeborová (2017)), it was proved that there exists a critical thresh-
old βp so that when the signal-to-noise ratio exceeds βp , one can distinguish
the spiked and unspiked tensors and weakly recover the prior via the mini-
mal mean-square-error method. On the other side, Perry, Wein and Bandeira
(Perry, Wein and Bandeira (2017)) proved that there exists a β ′

p < βp such
that any statistical hypothesis test cannot distinguish these two tensors, in
the sense that their total variation distance asymptotically vanishes, when the
signa-to-noise ratio is less than β ′

p . In this work, we show that βp is indeed
the critical threshold that strictly separates the distinguishability and indistin-
guishability between the two tensors under the total variation distance. Our
approach is based on a subtle analysis of the high temperature behavior of
the pure p-spin model with Ising spin, arising initially from the field of spin
glasses. In particular, we identify the signal-to-noise criticality βp as the crit-
ical temperature, distinguishing the high and low temperature behavior, of the
Ising pure p-spin mean-field spin glass model.

1. Introduction. The problem of detecting a deformation in a symmetric
Gaussian random tensor is concerned about whether there exists a statistical hy-
pothesis test that can reliably distinguish the deformation from the noise. In the
matrix case, if W is a Gaussian Wigner ensemble and u is a unit vector, the goal
is to distinguish the unspiked matrix W and the spiked matrix W + βuuT for a
given signal-to-noise ratio β . It is well known that in this case the top eigenvalue
of the spiked matrix exhibits the so-called BBP (Baik, Ben Arous and Péché) tran-
sition [3, 13, 15, 41]. Namely, the top eigenvalue successfully detects the signal
if the strength of β exceeds the critical threshold 1, while it fails to provide in-
dicative information if β < 1. It was further proved in [32, 35, 43] that in the case
of spherical, central Gaussian and Rademacher priors, every statistical hypothesis
test cannot reliably distinguish the spiked and unspiked matrices.
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In recent years, the above phenomenon was also studied in the spiked symmetric
Gaussian random p-tensor model of the form, T = W +βu⊗p . Earlier results were
obtained by Montanari and Richard [33] and Montanari, Reichman and Zeitouni
[32] in the setting of spherical prior, where they showed that there exist β−

p and
β+

p with β−
p < β+

p such that if the signal-to-noise ratio exceeds β+
p , it is possible

to distinguish the spiked and unspiked tensors and weakly recover the signal, but
these are impossible if the signal-to-noise ratio is less than β−

p . More recently,
Lesieur et al. [29] studied this detection problem for more general priors by means
of the minimal mean-square-error (MMSE), that is,

MMSEN(β) = inf
E

∑
1≤i1,...,ip≤N

E
(
βui1 · · ·uip − Ei1,...,ip (T )

)2
,

where the infimum is taken over all bounded measurable functions E = (Ei1,...,ip )

defined on the space of symmetric tensors. Here, evidently the minimizer to this
problem is attained by the MMSE estimator

Êi1,...,ip (T ) := E[ui1 · · ·uip |T ].
In [29], it was proved that there exists a critical threshold βMMSE

p (depending on
the prior) so that when β < βMMSE

p , the MMSE estimator fails to distinguish the
two tensors and in fact it is no better than a random guess under the mean square
error, while for β > βMMSE

p , detection is possible since now MMSE estimator has
the best performance among all possible choices. On the other side, Perry, Wein
and Bandeira [42] studied the detection problem with spherical, Rademacher, and
sparse Rademacher priors. In the case of spherical prior, they provided an improve-
ment on the bounds in [32, 33]. Moreover, in the latter two cases, their results
showed that there exists a β ′

p < βMMSE
p such that for any β < β ′

p , it is impossible
to distinguish the two tensors in the sense that the total variation distance between
the spiked and unspiked tensors asymptotically vanishes. As a consequence, ev-
ery statistical hypothesis test fails to distinguish the two tensors. The paper [42]
then left with a conjecture that indistinguishability between the two tensors should
be valid up to the critical threshold βMMSE

p for both the Rademacher and sparse
Rademacher priors.

The aim of this paper is to study the symmetric Gaussian random p-tensor
(p ≥ 3) with Rademacher prior as in the setting of [42]. We show that there exists
a critical value βp that strictly separates the distinguishability and indistinguisha-
bility between the spiked and unspiked tensors under the total variation distance.
More precisely, it is established that when the signal-to-noise ratio is less than the
critical value βp , the total variation distance between the spiked and unspiked ten-
sors converges to zero. This establishes the aforementioned prediction in [42]. In
particular, we identify the critical value βp as the critical temperature, distinguish-
ing the high and low temperature behavior, of the Ising pure p-spin mean-field spin
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glass model. This constant also agrees with the critical threshold βMMSE
p suggested

by the MMSE method when applying to the Rademacher prior.
Our approach is based on the methodologies originated from the study of mean-

field spin glasses, especially those for the Sherrington–Kirkpatrick model and the
mixed p-spin models; see [37, 46, 47]. Roughly speaking, spin glass models are
disordered spin systems initially invented by theoretical physicists in order to ex-
plain the strange magnetic behavior of certain alloys, such as CuMn. Mathemat-
ically, they are usually formulated as stochastic processes with high complexity
and present several crucial features, for example, quenched disorder and frustra-
tion, that are commonly shared in many real world problems, involving random-
ized combinatorial optimization. Over the past decades, the study of spin glasses
has received a lot of attention in both physics and mathematics communities; see
[30] for a physics overview and [37, 46, 47] for mathematical development.

One way to investigate the detection problem in the symmetric Gaussian ran-
dom tensor is through the total variation distance between the spiked and unspiked
tensors. While in the detection problem β represents the signal-to-noise ratio, we
regard β as a (inverse) temperature parameter in the pure p-spin model. Notably,
under this setting, the ratio of the densities between the two tensors can be com-
puted as the partition function of the pure p-spin model with temperature β . In [32,
42], the authors controlled the total variation distance by the second moment of the
partition function. Different than their consideration, we relate this distance to the
free energy of the pure p-spin model with Ising spin; see Lemma 3.2. This relation
allows us to show that the critical threshold βp can be determined by the critical
temperature of the pure p-spin model. In bounding the total variation distance, the
most critical ingredient is played by a sharp upper bound concerning the fluctuation
of the free energy up to the critical temperature for all p ≥ 3. In the case p = 2, the
pure p-spin model is famously known as the Sherrington–Kirkpatrick model and
its free energy was shown to possess a Gaussian central limit theorem in the weak
limit up to the critical temperature βp = 1 by Aizenman, Lebowitz and Ruelle [1].
As for even p ≥ 4, Bovier, Kurkova and Löwe [14] showed that the same result
also holds (with different scaling than that in the Sherrington–Kirkpatrick model),
but not up to the critical temperature. Our main contribution is that we obtain a
sharp upper bound for the fluctuation of the free energy, which is comparable to
the one in [14] and more importantly it is valid up to the critical temperature for
all p ≥ 3 including odd p. This allows us to extract a sharp upper bound for the
total variation distance and deduce the desired result.

Besides the consideration of the detection problem, we also present some new
results and arguments for the pure p-spin models that are of independent interest
in spin glasses. First, we show that if the temperature is below the critical value βp ,
the model presents the high temperature or replica symmetric solution in the sense
that any two independently sampled spin configurations from the Gibbs measure
are essentially orthogonal to each other by providing exponential tail probabil-
ity and moment controls. While these results can also be established at very high
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temperature by some well-known techniques in spin glasses, such as the cavity
method, the second moment method, and Latala’s argument (see [46], Chapter 1),
it is relatively a more challenging task to obtain the same behavior throughout the
entire high temperature regime. We show that this is achievable in the pure p-spin
model (see Theorems 4.2 and 4.3) and indeed, our method can also be applied
to more general situations, the mixed p-spin models (see Remark 4.1). Next, in
terms of technicality, our argument for the above result is based on the Guerra–
Talagrand replica symmetry breaking bound for the coupled free energy for two
systems. This bound has been playing a critical role in the study of the mixed even
p-spin models; see Talagrand [47]. Its validity for the model involving odd p mix-
ture is however generally unknown as it is unclear whether the error term along
Guerra’s replica symmetry breaking interpolation possesses a nonnegative sign or
not. To tackle this obstacle, we adopt the synchronization property, introduced by
Panchenko [39, 40], that the overlap matrix is asymptotically symmetric and pos-
itive semidefinite under the Gibbs average, which was established heavily relying
on the fact that the Ghirlanda–Guerra identities imply ultrametricity of the over-
laps [36]. This allows us to show that the error term creates a nonnegative sign and
ultimately leads to the validity of the Guerra–Talagrand bound in the pure odd p-
spin model if one restricts the functional order parameters to be of one-step replica
symmetry breaking. Whether this bound is valid for more general functional order
parameters remains open.

For other related works on the detection problem of spiked matrices and tensors,
we invite the readers to check a variety of low rank matrix estimation problems,
including explicit characterizations of mutual information in [5, 26–28, 31] and
the performance of the approximate message passing (AMP) for MMSE method
and compressed sensing in [5, 11, 21, 22, 25]. More recently, the fluctuation of
the likelihood ratio in the spiked Wigner model was studied in [23]. In the case
of spiked tensors, phase transitions of the mutual information and the MMSE es-
timator were recently studied for any p and given prior; see [7, 29] for symmetric
case and [9] for non-symmetric case. The performance of the AMP in the spiked
tensor was also investigated in [29]; see also [4, 6, 8, 19, 20, 34, 44]. For the study
of Gaussian random p-tensor in terms of complexity, see [12].

This paper is organized as follows. In Section 2, we state our main results on
the detection problem. In Section 3, their proofs are presented and are essentially
self-contained for those who wish to learn only the roles of spin glass results in
the detection problem. The high temperature results on the pure p-spin model are
all gathered in Section 4. Their proofs are deferred to the Supplementary Material
[18] with great details.

2. Main results. We begin by setting some standard notation. Let p ∈ N. For
any N ≥ 1, denote by �N := ⊗p

j=1R
N the space of all real-valued tensors Y =

(yi1,...,ip )1≤i1,...,ip≤N . For any two tensors Y and Y ′, their outer product and inner
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product are defined respectively by(
Y ⊗ Y ′)

i1,...,ip,i′1,...,i′p
= yi1,...,ipyi′1,...,i′p

and

〈
Y,Y ′〉 := N∑

i1,...,ip=1

yi1,...,ipy′
i1,...,ip

.

For τ ∈ R
N , we define τ⊗p = τ ⊗ · · · ⊗ τ ∈ �N as the pth order power of τ .

For any permutation π ∈ Sp and any tensor Y , Yπ ∈ �N is defined as yπ
i1,...,ip

=
yiπ(1),...,iπ(p)

. We say that a tensor Y is symmetric if Y = Yπ for all π ∈ Sp . Let
�s

N be the collection of all symmetric tensors. For any measurable A ⊆ R
k for

some k ≥ 1, we use B(A) to stand for the Borel σ -field on A.
The symmetric Gaussian random tensor is defined as follows. Denote by Y ∈

�N a random tensor with i.i.d. entries yi1,...,ip ∼ N(0,2/N). Define a symmetric
random tensor W by

W = 1

p!
∑

π∈Sp

Y π .

For example, if p = 2, W is the Gaussian orthogonal ensemble, that is, wij =
wji are independent of each other with wij ∼ N(0,1/N) for i < j and wii ∼

N(0,2/N). Let SN := {±1/
√

N}N . Assume that u is sampled uniformly at ran-
dom from SN and is independent of W . Set the spiked random tensor as

T = W + βu⊗p

for β ≥ 0. Let

dTV(W,T ) := sup
A∈B(�s

N )

∣∣P(W ∈ A) − P(T ∈ A)
∣∣

be the total variation distance between W and T . We now make the distinguisha-
bility and indistinguishability between W and T precise.

DEFINITION 2.1. We say that:

(i) W and T are indistinguishable if limN→∞ dTV(W,T ) = 0.
(ii) W and T are distinguishable if limN→∞ dTV(W,T ) = 1.

Let u be a realization of the prior. For a given tensor X ∈ �s
N , consider the

detection problem that under the null hypothesis, X = W and under the alternative
hypothesis, X = T . Item (i) essentially says that any statistical test can not reliably
distinguish these two hypotheses. Item (ii) means there exists a sequences of events
that distinguishes these two tensors. Next, we define the notion of weak recovery
for u.
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DEFINITION 2.2. For β > 0, we say that weak recovery of u is possible if
there exists a sequence of random probability measures μN on �s

N × B(SN) and
a constant c > 0 such that

lim
N→∞P

(∫
SN

∣∣〈u, τ 〉∣∣μN(T , dτ) ≥ c

)
= 1(2.1)

and that weak recovery of u is not possible if for any random probability measure
μN on �s

N × B(SN) and constant c > 0,

lim
N→∞P

(∫
SN

∣∣〈u, τ 〉∣∣μN(T , dτ) ≥ c

)
= 0.(2.2)

Here, μN is a random probability measure on �s
N × B(SN) means that μN is a

mapping from �s
N × B(SN) to [0,1] such that μN(·,A) is B(�s

N)-measurable
for each A ∈ B(SN) and μN(w, ·) is a probability measure on (SN,B(SN)) for
each w ∈ �s

N .

A few comments are in order. Consider a given realization of signal u and tensor
T . Equation (2.1) ensures that there exists some τ produced though the measure
μN(T , dτ) such that u and τ have a nontrivial overlap. To understand (2.2), let
φ : �s

N → SN be any measurable function. If we consider the random probability
measure μN(w, τ) defined by

μN(w, τ) =
{

1, if τ = φ(w),

0, if τ 
= φ(w),

then from (2.2), for any c > 0,

lim
N→∞P

(∣∣〈u,φ(T )
〉∣∣ ≥ c

) = 0.

In other words, any vector generated by T is uncorrelated with the signal u, and
thus, it does not provide indicative information about u. We emphasize that Defini-
tions 2.1 and 2.2 are not directly related to each other. Nevertheless, we will show
that both of them hold up to a critical threshold in our main result below.

Now we introduce the pure p-spin model. For each N ≥ 1, set �N := {±1}N .
The Hamiltonian of the pure p-spin model is defined by

HN(σ) = 1

N(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1 · · ·σip

for σ ∈ �N . Its covariance can be computed as

EHN

(
σ 1)

HN

(
σ 2) = N(R1,2)

p,

where R1,2 is the overlap between σ 1, σ 2 ∈ �N ,

R1,2 := 1

N

N∑
i=1

σ 1
i σ 2

i .(2.3)
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In the terminology of detection problems, β is understood as the signal-to-noise
ratio. In the pure p-spin model, we regard β as a (inverse) temperature parameter.
For a given temperature β ≥ 0, define the free energy by

FN(β) = 1

N
log

∑
σ∈�N

1

2N
exp

β√
2
HN(σ).(2.4)

If p = 2, this model is known as the Sherrington–Kirkpatrick model and it has
been intensively studied over the past decades. The reader is referred to check the
books [37, 46, 47] for recent mathematical advances for the SK model as well as
more general models involving a mixture of pure p-spin interactions. In particular,
it is already known that the thermodynamic limit of FN (N → ∞) converges to
a nonrandom quantity that can be expressed as the famous Parisi formula; see,
for example, [38, 45]. Denote this limit by F . A direct application of Jensen’s
inequality to (2.4) implies that for all β ≥ 0,

F(β) ≤ β2

4
.

Define the high temperature regime for the pure p-spin model as

R =
{
β > 0 : F(β) = β2

4

}
.

Set the critical temperature by

βp := maxR.

Our main result shows that βp is the critical threshold in the detection problem.

THEOREM 2.1. Let p ≥ 3. The following statements hold:

(i) If 0 < β < βp , then W and T are indistinguishable and weak recovery of
u is impossible.

(ii) If β > βp , then W and T are distinguishable and weak recovery of u is
possible.

Our main contribution in Theorem 2.1 is the part on the indistinguishability of
W and T in the statement (i). Previous results along this line were established in
[42], where the authors showed that there exists some β ′

p < βp so that W and T are
indistinguishable for any β < β ′

p . Theorem 2.1(i) here proves that this behavior is
indeed valid up to the critical value βp . As one will see from Theorem 4.1 below,
we give a characterization of the high temperature regime R and provide one way
to compute numerically βp in terms of an auxiliary function deduced from the
optimality of the Parisi formula for the free energy at high temperature. Indeed, βp

is the largest β such that the following inequality is valid:

sup
r∈(0,1]

∫ r

0
sp−2(

ρβ(s) − s
)
ds ≤ 0,



PHASE TRANSITION IN THE SPIKED RANDOM TENSOR 2741

where for g a standard normal random variable,

ρβ(s) := E tanh2(
βg

√
psp−1/2

)
cosh

(
βg

√
psp−1/2

)
e−pβ2sp−1

4 ∀s ∈ [0,1].
Numerically, it is obtained that

p βp

3 1.535
4 1.621
5 1.647
6 1.657

This agrees with the prediction in [42], Figure 1. We comment that for Theo-
rem 2.1(i), a polynomial rate of convergence for the total variation distance can
also be obtained; see Remark 3.2 below. In comparison, we add that Theorem 2.1
is quite different from the BBP transition for p = 2; see [3, 32, 35, 43]. In this case,
β2 = 1 and it is known that for β > β2, one can distinguish W and T in the sense
of Definition 2.1 by using the top eigenvalue. For 0 < β < β2, it presents a weaker
sense of distinguishability, limN→∞ dTV(W,T ) ∈ (0,1); see [23] and Remark 3.1.

As mentioned before, the work [29] investigated the present detection problem
for any given prior. Their results state that one can distinguish W and T by the
MMSE method and weakly recover the signal through the MMSE estimator when
β > βMMSE

p ; if β < βMMSE
p , they concluded that weak recovery of the signal is

not possible. In other words, their results imply the weak recovery part of item (i)
as well as the statement of item (ii). Their constant βMMSE

p when applying to the
Rademacher prior agrees with our critical value βp here. Nevertheless, we empha-
size that their approach and the way how the critical value βp was discovered are
fundamentally different from the argument we present here. As one will see, while
Theorem 2.1(ii) follows directly from a relation (see Lemma 3.2) between the total
variation distance and the free energies, the delicate part is Theorem 2.1(i), which
is the major component of this paper.

Finally, we comment that although we only consider the Rademacher prior and
this yields significant simplifications, we anticipate that the same results through-
out this paper should be still true for general priors, such as priors with bounded
supports. In fact, as mentioned in the Introduction, our result is based on the ob-
servation that the total variation distance between two spikes can be expressed as
an integral of the distribution function of the free energy FN(β). In order to ob-
tain eligible control, the Parisi formula for the limiting free energy F(β) and the
Guerra–Talagrand inequality for the coupled free energy with overlap constraint
are in position. Their extensions to general spin configuration spaces are known to
be valid in [40], from which we believe that a similar line of the argument in the
present paper together with a more delicate analysis would carry through in more
general settings.
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3. Proof of Theorem 2.1.

3.1. Total variation distance. In this subsection, we prepare some lemmas for
Theorem 2.1. Recall that Y is a random tensor with i.i.d. yi1,...,ip ∼ N(0,2/N) and
W is the symmetric random tensor generated by Y . Throughout the remainder of
the paper, we use I (S) to standard for an indicator function on a set S. We first
establish an elementary expression of the total variation distance.

LEMMA 3.1. Let U,V be two n-dimensional random vectors with densities
fU and fV satisfying fU(r) 
= 0 and fV (r) 
= 0 a.e. on R

n. Then

dTV(U,V ) =
∫ 1

0
P

(
fU(V )

fV (V )
< x

)
dx =

∫ 1

0
P

(
fU(U)

fV (U)
>

1

x

)
dx.

PROOF. Note that

dTV(U,V ) = 1

2

∫
Rn

∣∣fV (r) − fU(r)
∣∣dr =

∫
fU (r)≤fV (r)

(
fV (r) − fU(r)

)
dr.

Using Fubini’s theorem and this equation, the first equality follows by∫ 1

0
P

(
fU(V )

fV (V )
< x

)
dx =

∫ 1

0

∫
Rn

I

(
fU(r)

fV (r)
< x

)
fV (r) dr dx

=
∫
Rn

∫ 1

0
I

(
fU(r)

fV (r)
< x

)
dxfV (r) dr

=
∫
Rn

I

(
fU(r)

fV (r)
≤ 1

)(
1 − fU(r)

fV (r)

)
fV (r) dr

=
∫
fU (r)≤fV (r)

(
fV (r) − fU(r)

)
dr.

To obtain the second equality, one simply exchanges the roles of U , V . �

Recall the free energy FN(β) and the Rademacher prior u from Section 2. De-
fine an auxiliary free energy of the pure p-spin model with a Curie–Weiss type
interaction as

(3.1) AFN(β) = 1

N
log

∑
σ∈�N

1

2N
exp

(
β√
2
HN(σ) + β2

2
N

(
1

N

N∑
i=1

hiσi

)p)
,

where hi := √
Nui . In Section E of the Supplementary Material [18], it will be

established that the limit of AFN converges a.s. to a nonrandom quantity for any
β ≥ 0. Denote this limit by AF(β). The following lemma relates the total variation
distance between W and T to the free energy FN and the auxiliary free energy
AFN .
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LEMMA 3.2. For any β ≥ 0, we have that

dTV(W,T ) =
∫ 1

0
P

(
FN(β) <

β2

4
+ logx

N

)
dx(3.2)

=
∫ 1

0
P

(
AFN(β) >

β2

4
− logx

N

)
dx.(3.3)

PROOF. Note that W has density fW(w) = exp(−N〈w,w〉/4)/C on �s
N for

some normalizing constant C > 0. For any A ∈ B(�s
N), a change of variables

gives

P(T ∈ A) = Eu

[
PW

(
W ∈ A − βu⊗p)]

= Eu

[∫
A−βu⊗p

fW (w)dw

]

= Eu

[∫
A

fW

(
w − βu⊗p)

dw

]
=

∫
A
EufW

(
w − βu⊗p)

dw,

where Eu is the expectation with respect to u only and dw is the Lebesgue on �s
N .

This implies that the density of T = W + βu⊗p is given by fT (w) := EufW(w −
βu⊗p). Now since

fT (w) = 1

C
Eu exp

−N

4

〈
w − βu⊗p,w − βu⊗p〉

= fW(w)Eu exp
N

4

(
2β

〈
w,u⊗p〉 − β2〈

u⊗p,u⊗p〉)
,

we obtain
fT (w)

fW(w)
= Eu exp

N

4

(
2β

〈
w,u⊗p〉 − β2〈

u⊗p,u⊗p〉)
.(3.4)

Here, since 〈W,τ⊗p〉 = 〈Y, τ⊗p〉 for any τ ∈ R
N and 〈u⊗p,u⊗p〉 = 1, we see that

log
fT (W)

fW(W)
= logEu exp

N

4

(
2β

〈
Y,u⊗p〉 − β2)

d= −β2N

4
+ NFN(β)

and

log
fT (T )

fW (T )
= logEu′ exp

N

4

(
2β

〈
Y + βu⊗p,u′⊗p〉 − β2)

d= −β2N

4
+ NAFN(β),

where Eu′ is the expectation of u′, an independent copy of u and indepen-
dent of W , and the second equality of both displays used the assumption that
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yi1,...,ip
d= gi1,...,ip

√
2/N and

√
NSN = �N . Our proof is then completed by ap-

plying Lemma 3.1. �

REMARK 3.1. Aizenman, Lebowitz and Ruelle [1] showed that N(FN(β) −
β2/4) converges to a Gaussian random variable. From (3.2), one immediately sees
that limN→∞ dTV(W,T ) ∈ (0,1).

3.2. Proof of Theorem 2.1(i). The central ingredient throughout our proof is
played by the high temperature behavior of the pure p-spin model stated in Sec-
tion 4 below, namely, a tight upper bound for the fluctuation of the free energy in
Proposition 4.1 and a good moment control for the concentration of the overlap
R1,2 around zero under the Gibbs measure in Theorem 4.3. The former will be
directly used to show that the total variation distance dTV(W,T ) vanishes via the
exact expression (3.2), while the latter is vital in order to establish the impossibility
of weak recovery of u.

PROOF OF THEOREM 2.1(i): INDISTINGUISHABILITY. Let p ≥ 3. Assume
that 0 < β < βp . For any 0 < ε < 1, writing

∫ 1
0 = ∫ 1−ε

0 + ∫ 1
1−ε in (3.2) gives

dTV(W,T ) ≤ ε +
∫ 1−ε

0
P

(
FN(β) <

β2

4
+ logx

N

)
dx

≤ ε + P

(
FN(β) <

β2

4
− log(1 − ε)−1

N

)

≤ ε + P

(∣∣∣∣FN(β) − β2

4

∣∣∣∣ ≥ log(1 − ε)−1

N

)
.

To complete the proof, we use a key property about the fluctuation of the free
energy stated in Proposition 4.1 below, which says that there exists a constant K

such that

P

(∣∣∣∣FN(β) − β2

4

∣∣∣∣ ≥ log(1 − ε)−1

N

)
≤ K

(log(1 − ε)−1)2N
p
2 −1

for all N ≥ 1. From this,

dTV(W,T ) ≤ ε + K

(log(1 − ε)−1)2N
p
2 −1

.(3.5)

Since p ≥ 3, sending N → ∞ and then ε ↓ 0 implies that W and T are indistin-
guishable. �

Next, we continue to show that weak recovery of u is impossible. For β > 0,
define a random probability measure on �s

N × B(SN) by

νN,β(w,A) = Eu′ [exp βN
2 〈w,u′⊗p〉;A]

Eu′ [exp βN
2 〈w,u′⊗p〉](3.6)
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for any w ∈ �s
N and A ∈ B(SN), where Eu′ is the expectation with respect to u′,

an independent copy of u. The following lemma relates the expectation of (u,T )

to W by a change of measure in terms of EνN,β .

LEMMA 3.3. Let ζN be a measurable function from SN × �s
N to [0,1]. If W

and T are indistinguishable, then

lim
N→∞

∣∣∣∣EζN(u,T ) −E

∫
SN

ζN(τ,W)νN,β(W,dτ)

∣∣∣∣ = 0.

PROOF. Recall the densities fW and fT of W and T from Lemma 3.2. Let
fu(τ ) be the probability mass function for u. Since u is independent of W , the
joint density of (u,T ) is given by

fu(τ )fW

(
w − βτ⊗p)

.

This implies that E[ζN(u,T )|T ] = ζN(T ), where

ζN(w) :=
∑

τ∈SN
ζN(τ,w)fu(τ )fW (w − βτ⊗p)

fT (w)
.

Note that 0 ≤ ζN(w) ≤ 1 since 0 ≤ ζN(τ,w) ≤ 1. For any k ≥ 1, define

φk(s) =
⎧⎨
⎩

i

k
, if s ∈ Ak,i for some 1 ≤ i ≤ k − 1,

1, if s ∈ Ak,k,

where Ak,i := [(i − 1)/k, i/k) for 1 ≤ i ≤ k − 1 and Ak,k := [(k − 1)/k,1]. Ob-
serve that |φk(s) − s| ≤ 1/k for s ∈ [0,1]. From this and the triangle inequality,∣∣EζN(T ) −EζN(W)

∣∣
≤ ∣∣EζN(T ) −Eφk

(
ζN(T )

)∣∣
+ ∣∣Eφk

(
ζN(T )

) −Eφk

(
ζN(W)

)∣∣ + ∣∣EζN(W) −Eφk

(
ζN(W)

)∣∣
≤ 2

k
+

k∑
i=1

i

k

∣∣P(
ζN(T ) ∈ Ak,i

) − P
(
ζN(W) ∈ Ak,i

)∣∣.
Since dTV(W,T ) converges to zero, each term in the above sum must vanish in the
limit and thus, letting N → ∞ and then k → ∞ yields

lim
N→∞

∣∣EζN(T ) −EζN(W)
∣∣ = 0.(3.7)

Now write

EζN(W) =
∫
�s

N

∑
τ∈SN

ζN(τ,w)
fu(τ )fW (w − βτ⊗p)fW(w)

fT (w)
dw.
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Note that fW(w) = exp(−N〈w,w〉/4)/C for some normalizing constant. Since
from (3.4) and 〈τ⊗p, τ⊗p〉 = 〈u′⊗p

,u′⊗〉 = 1,

fu(τ )fW (w − βτ⊗p)fW (w)

fT (w)

= exp N
4 (−〈w,w〉 + 2β〈w,τ⊗p〉 − β2〈τ⊗p, τ⊗p〉)

C2NEu′ [exp N
4 (2β〈w,u′⊗p〉 − β2〈u′⊗p,u′⊗p〉)]

= fW(w)νN,β(w, τ),

it follows that

EζN(W) = E

∫
SN

ζN(τ,W)νN,β(W,dτ).

From this and (3.7), the announced result follows. �

PROOF OF THEOREM 2.1(i): IMPOSSIBILITY OF WEAK RECOVERY. Let p ≥
3 and 0 < β < βp . Let μN be a random probability measure on �s

N × B(SN) (see
Definition 2.2) and c > 0. Our goal is to show that

lim
N→∞P

(∫
SN

∣∣〈u, τ 〉∣∣μN(T , dτ) ≥ c

)
= 0.(3.8)

Set

ζN(τ,w) =
∫
SN

〈
τ, τ ′〉2μN

(
w,dτ ′)

for (τ,w) ∈ SN × �s
N . Note that ζN ∈ [0,1] and ζN is measurable. From

Lemma 3.3,

lim
N→∞

∣∣∣∣E
∫
SN

〈
u, τ ′〉2μN

(
T ,dτ ′)

−E

∫
SN×SN

〈
τ, τ ′〉2μN

(
W,dτ ′)νN,β(W,dτ)

∣∣∣∣ = 0.(3.9)

We claim that the second expectation converges to zero. For notation convenience,
we simply denote μN(dτ ′) = μN(W,dτ ′) and νN(dτ) = νN,β(W,dτ). Note that

〈
τ, τ ′〉2 =

N∑
i1,i2=1

τi1τi2τ
′
i1
τ ′
i2
.

The second term in the above equation can be controlled by

E

∫
SN×SN

〈
τ, τ ′〉2μN

(
dτ ′)νN(dτ)
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= E

N∑
i1,i2=1

∫
SN×SN

τi1τi2τ
′
i1
τ ′
i2
μN

(
dτ ′)νN(dτ)

=
N∑

i1,i2=1

E

∫
SN

τi1τi2νN(dτ) ·
∫
SN

τ ′
i1
τ ′
i2
μN

(
dτ ′)

≤
N∑

i1,i2=1

(
E

(∫
SN

τi1τi2νN(dτ)

)2)1/2
·
(
E

(∫
SN

τ ′
i1
τ ′
i2
μN

(
dτ ′))2)1/2

,

where the last inequality used the Cauchy–Schwarz inequality. Using the Cauchy–
Schwarz inequality again, the last inequality is bounded above by(

N∑
i1,i2=1

E

(∫
SN

τi1τi2νN(dτ)

)2
)1/2

·
(

N∑
i1,i2=1

E

(∫
SN

τ ′
i1
τ ′
i2
μN

(
dτ ′))2

)1/2

=
(

N∑
i1,i2=1

E

∫
SN×SN

τi1τi2 τ̂i1 τ̂i2νN(dτ)νN(dτ̂ )

)1/2

·
(

N∑
i1,i2=1

E

∫
SN×SN

τ ′
i1
τ ′
i2
τ̂ ′
i1
τ̂ ′
i2
μN

(
dτ ′)μN

(
dτ̂ ′))1/2

=
(
E

∫
SN×SN

〈τ, τ̂ 〉2νN(dτ)νN(dτ̂ )

)1/2

·
(
E

∫
SN×SN

〈
τ ′, τ̂ ′〉2μN

(
dτ ′)μN

(
dτ̂ ′))1/2

.

Here, the second bracket is bounded above by 1. As for the first one, we observe
that νN is in distribution equal to the Gibbs measure GN,β defined in (4.2) and if
we write σ 1 = √

Nτ and σ 2 = √
Nτ ′, then in distribution, σ 1, σ 2 are independent

samplings from GN,β and 〈τ, τ̂ 〉 is the overlap R1,2 between σ 1 and σ 2. As a
result,

E

∫
SN×SN

〈τ, τ̂ 〉2νN(dτ)νN(dτ̂ ) = E
〈
R2

1,2
〉
β,

where 〈·〉β is the Gibbs average with respect to the product measure GN,β ×GN,β .
Now, since 0 < β < βp , we can apply Theorem 4.3 to control the right-hand side
by the bound

E
〈
R2

1,2
〉
β ≤ K

N

for some constant K independent of N . Hence, from the above inequalities,

lim
N→∞E

∫
SN×SN

〈
τ, τ ′〉2μN

(
dτ ′)νN(dτ) = 0.
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From (3.9),

lim
N→∞E

∫
SN

〈
u, τ ′〉2μN

(
T ,dτ ′) = 0,

which gives the desired limit (3.8) by using Markov’s and Jensen’s inequalities.
�

REMARK 3.2. Take ε = N−δ for δ = (p/2 − 1)/3 and use log(1 − ε)−1 ≥ ε

in (3.5). We obtain the rate of convergence,

dTV(W,T ) ≤ ε + K

ε2N
p
2 −1

= 1

Nδ
+ K

N
p
2 −1−2δ

= 1 + K

N
1
3 (

p
2 −1)

.

3.3. Proof of Theorem 2.1(ii). While we have seen that the high tempera-
ture behavior of the pure p-spin model has been of great use in obtaining The-
orem 2.1(i), the proof of Theorem 2.1(ii) below relies only on the low temperature
behavior of the free energies, that is, F(β) < β2/4 and AF(β) > β2/4 for β > βp .
The proof is relatively simpler than that for Theorem 2.1(i).

PROOF OF THEOREM 2.1(ii): DISTINGUISHABILITY. Let p ≥ 3. Assume
that β > βp . Since F(β) < β2/4 and FN(β) − logx/N converges to F(β) a.s.,

lim
N→∞P

(
FN(β) <

β2

4
+ logx

N

)
= P

(
F(β) ≤ β2

4

)
= 1.

Thus, from (3.2) and the dominated convergence theorem, W and T are distin-
guishable. �

Next, we show that weak recovery of u is possible. Recall hi from the definition
of AFN(β). Let u′ be an independent copy of u and be independent of Y . For fixed
β > 0, define an interpolating free energy between FN(β) and AFN(β) by

LN(x) = 1

N
logEu′ exp

βN

2

〈
Y + xu⊗p,u′⊗p〉

d= 1

N
log

∑
σ∈�N

1

2N
exp

(
β√
2
HN(σ) + βx

2

(
1

N

N∑
i=1

hiσi

)p)
(3.10)

for x > 0, where Eu′ is the expectation with respect to u′ only. Note that in dis-
tribution LN(0) = FN(β) and LN(β) = AFN(β). Similar to AFN(β), it can be
shown that LN also converges to a nonrandom quantity for any x > 0; see Propo-
sition E.1 in Section E in of the Supplementary Material [18]. Denote this limit
by L. From now on, we use D+f and D−f to denote the right and left derivatives
of f whenever they exist. Note that since L is convex, D−L exists everywhere.
Recall νN,β from (3.6).
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LEMMA 3.4. Let β > 0. For any ε > 0, we have

lim
N→∞P

(∫
SN

∣∣〈u, τ 〉∣∣pνN,β(T , dτ) ≥ D−L(β) − ε

)
= 1.

PROOF. Note that 〈u⊗p,u′⊗p〉 = 〈u,u′〉p . For any η > 0,

1

N
logEu′

[
exp

βN

2

〈
Y + βu⊗p,u′⊗p〉; 〈

u,u′〉p ≤ D−L(β) − ε

]

≤ 1

N
logEu′

[
exp

βN

2

(〈
Y,u′⊗p〉 + (β − η)

〈
u⊗p,u′⊗p〉)] + η

(
D−L(β) − ε

)
= LN(β − η) + η

(
D−L(β) − ε

)
.

To control the last inequality, write

LN(β − η) + η
(
D−L(β) − ε

) = η

(
D−L(β) − LN(β) − LN(β − η)

η

)

+ (
LN(β) − ηε

)
and pass to limit

lim
N→∞

(
LN(β − η) + η

(
D−L(β) − ε

)) = η

(
D−L(β) − L(β) − L(β − η)

η

)

+ (
L(β) − ηε

)
.

Here, by the left-differentiability of L, the first bracket on the right-hand side con-
verges to zero as η ↓ 0. Thus, we can choose η small enough such that the right-
hand side is controlled by L(β) − ηε/2. Consequently, from the sub-Gaussian
concentration inequality for LN (see [16], Proposition 9), we see that there ex-
ists a positive constant K independent of N such that with probability at least
1 − Ke−N/K ,

1

N
logEu′

[
exp

βN

2

〈
T ,u′⊗p〉; 〈

u,u′〉p ≤ D−L(β) − ε

]
≤ LN(β) − ηε

4

and this implies that

νN,β

(
T ,

{
τ ∈ SN |〈u, τ 〉p ≤ D−L(β) − ε

}) ≤ e− ηεN
4 .

As a result, the assertion follows by

P

(∫
SN

〈u, τ 〉pνN,β(T , dτ) ≥ (
D−L(β) − ε

)(
1 − e− ηεN

4
) − e− ηεN

4

)

≥ 1 − Ke− N
K

and noting that
∫
SN

〈u, τ 〉pνN,β(T , dτ) ≤ ∫
SN

|〈u, τ 〉|pνN,β(T , dτ). �
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PROOF OF THEOREM 2.1(ii): POSSIBILITY OF WEAK RECOVERY. Let p ≥
3. Assume that β > βp . First, we claim that

AF(β) ≥ β2

4
.(3.11)

Assume on the contrary that AF(β) < β2/4. Since AFN(β) + logx/N converges
to AF(β) a.s., we have

P

(
AFN(β) >

β2

4
− logx

N

)
→ P

(
AF(β) >

β2

4

)
= 0.

This and (3.3) together leads to a contradiction,

1 = lim
N→∞dTV(W,T ) =

∫ 1

0
lim

N→∞P

(
AFN(β) >

β2

4
− logx

N

)
dx = 0.

Thus, (3.11) must be valid.
To show that weak recovery is possible, observe that since LN(β) = AFN(β)

and LN(0) = FN(β) in distribution, it follows from (3.11) that

L(β) = AF(β) ≥ β2

4
> F(β) = L(0).

Since L is convex, there exists a point x0 ∈ (0, β) such that D−L(x0) > 0. In-
deed, if not L will be a constant function on (0, β), a contradiction. Now using
the convexity of L again gives D−L(β) ≥ D−L(x0) > 0. This and Lemma 3.4 to-
gether complete our proof by letting μN(w, τ) = νN,β(w, τ) and c = D−L(β)/2
and noting that

∫
SN

|〈u, τ 〉|pνN,β(T , dτ) ≤ ∫
SN

|〈u, τ 〉|νN,β(T , dτ). �

4. The pure p-spin model. Recall the pure p-spin Hamiltonian HN and the
high temperature regime R from Section 2. The aim of this section is to establish
a complete description of the high temperature behavior of the pure p-spin model.

4.1. High temperature behavior. As mentioned before, the limiting free en-
ergy FN(β) converges to a nonrandom quantity F(β). This quantity can also
be expressed in terms of the famous Parisi formula, which we state as follows.
Throughout the rest of the paper, we set

ξ(s) = sp

2
for s ∈ [0,1]. Let M be the collection of all cumulative distribution functions on
[0,1] equipped with the L1 distance with respect to the Lebesgue measure. This
is usually called the space of functional order parameters in physics. For β > 0,
define a functional Pβ on M by

Pβ(α) = �β,α(0,0) − β2

2

∫ 1

0
α(s)ξ ′′(s)s ds,
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where �β,α is the weak solution [24] to the following PDE:

∂t�β,α = −β2ξ ′′

2

(
∂xx�β,α + α(∂x�β,α)2)

with boundary condition �β,α(1, x) = log coshx. For any β > 0, the Parisi for-
mula states that

lim
N→∞FN(β) = inf

α∈MPβ(α).

Although we only consider the pure p-spin model here, this formula also holds in
more general setting. Indeed, Talagrand [45] established the Parisi formula in the
case of the mixed even p-spin models. Later Panchenko [38] extends its validity to
general mixtures of the model. Recently, it was understood by Auffinger and Chen
[2] that the functional Pβ is strictly convex, which guarantees the uniqueness of
the minimizer for Pβ . We shall call this minimizer the Parisi measure and denote
it by αP .

Recall that the high temperature regime R of HN is the collection of all β > 0
that satisfy F(β) = β2/4. By a direct computation, the validity of this equation is
the same as saying that the Parisi measure satisfies αP ≡ 1, concluding from the
uniqueness of the Parisi measure. This case is usually called the replica symmetric
solution of the model in physics literature [30]. Recall that the critical temperature
βp is defined as the maximum of R. Let g be a standard normal random variable.
For β > 0, define an auxiliary function by

ρβ(s) := E tanh2(
βg

√
ξ ′(s)

)
cosh

(
βg

√
ξ ′(s)

)
e− β2

2 ξ ′(s) ∀s ∈ [0,1].
Our first theorem provides one way to characterize R and βp .

THEOREM 4.1. For any p ≥ 2, R = (0, βp]. In addition, the following two
statements hold:

(i) Let β > 0. Then β ∈ R if and only if∫ r

0
ξ ′′(s)

(
ρβ(s) − s

)
ds ≤ 0 ∀r ∈ (0,1].

(ii) If 0 < β < βp , then∫ r

0
ξ ′′(s)

(
ρβ(s) − s

)
ds < 0 ∀r ∈ (0,1].(4.1)

Item (i) is essentially the first-order optimality condition in order to obtain the
replica symmetric solution. Item (ii) states that the replica symmetric solution is
stable if β stays away from the criticality. This is the most crucial property that
will allow us to establish the desired high temperature behavior of the overlap all
the way up to the critical temperature.
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Define the Gibbs measure by

GN,β(σ ) = expβHN(σ)∑
σ ′∈�N

expβHN(σ ′)
.(4.2)

For i.i.d. samplings σ 1, σ 2 from GN,β , we use 〈·〉β to denote the expectation with
respect to the product measure G⊗2

N,β . Recall the overlap R1,2 between σ 1 and σ 2

from (2.3). Our next two theorems show that the overlap is concentrated around
0 in the high temperature regime with exponential tail probability and moment
control.

THEOREM 4.2. Assume that p ≥ 2. Fix 0 < a < b < βp . For any ε > 0, there
exists a constant K such that for any β ∈ [a, b],

E
〈
I
(|R1,2| ≥ ε

)〉
β ≤ K exp

(
−N

K

)
∀N ≥ 1,(4.3)

where I is an indicator function.

THEOREM 4.3. Assume that p ≥ 3. Fix 0 < b < βp . For any k ≥ 1, there
exists a constant K > 0 such that for any β ∈ [0, b],

E
〈
R2k

1,2
〉
β ≤ K

Nk
∀N ≥ 1.

In the case of the Sherrington–Kirkpatrick model (p = 2), it was computed that
β2 = 1 (see Remark 2 in [17]) and the same results as Theorems 4.2 and 4.3 were
obtained in Talagrand’s book [47], Chapters 11 and 13. As for p ≥ 3, Bardina,
Márquez, Rovira and Tindel [10] established Theorem 4.3 for some b � βp as p

increases. Our main contribution here is that the concentration of the overlap is
valid up to the critical temperature. As an application of Theorem 4.3, we deduce
a control on the fluctuation of the free energy in high temperature regime.

PROPOSITION 4.1. Assume that p ≥ 3. Fix 0 < b < βp . There exists a con-
stant K such that for any 0 ≤ β ≤ b,

P

(∣∣∣∣FN(β) − β2

4

∣∣∣∣ ≥ r

)
≤ K

r2Np/2+1(4.4)

for any r > 0 and N ≥ 1.

This theorem basically says that the fluctuation of FN(β) is at most of the order
N−p/4−1/2. Indeed, if there exists some δN ↑ ∞ such that

P

(∣∣∣∣FN(β) − β2

4

∣∣∣∣ ≥ δNN−p
4 − 1

2

)
≥ c > 0
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for all N ≥ 1, then this contradicts (4.4). For p = 2, Aizenman, Lebowitz and
Ruelle [1] proved that N−p/4−1/2 = N−1 is the right order of the fluctuation for
FN(β) and N(FN(β) − β2/4) converges to a Gaussian random variable up to
the critical temperature βp = 1. Similarly, for even p ≥ 4, Bovier, Kurkova and
Löwe [14] also showed that Np/4+1/2(FN(β) − β2/4) has a Gaussian fluctuation
up to certain temperature strictly less than βp . From these, it is tempting to con-
jecture that Np/4+1/2(FN(β) − β2/4) follows Gaussian law in the weak limit in
the entire high temperature regime for all p ≥ 3. Based on Theorems 4.2 and 4.3,
this should be achievable by an adoption of the argument for the Sherrington–
Kirkpatrick model [47], Section 11.4. We do not pursue this direction here.

REMARK 4.1. One can also consider the mixed p-spin model, that is, the
Hamiltonian HN is again a Gaussian process on �N with zero mean and covari-
ance structure EHN(σ 1)HN(σ 2) = Nξ(R1,2) for some

ξ(s) := 1

2

∑
p≥2

cpsp

with cp ≥ 0 and
∑

p≥2 cp = 1. In a similar manner, one can define its free energy
and high temperature regime as those for FN(β) and R. In this general setting, it
can be checked that Theorem 4.1 remains valid. As for Theorems 4.2 and 4.3 and
Proposition 4.1, they also hold as long as there exists some p ≥ 3 such that cp 
= 0
and cp′ = 0 for all 2 ≤ p′ < p.
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SUPPLEMENTARY MATERIAL

Supplement to “Phase transition in the spiked random tensor with Rade-
macher prior” (DOI: 10.1214/18-AOS1763SUPP; .pdf). The proofs of Theorems
4.1, 4.2, 4.3 and Proposition 4.1 are provided in detail in the Supplementary Ma-
terial [18]. In addition, the convergence of the free energies AFN and LN defined
respectively by (3.1) and (3.10) are established.
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