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This paper develops a framework for testing for associations in a possibly
high-dimensional linear model where the number of features/variables may
far exceed the number of observational units. In this framework, the observa-
tions are split into two groups, where the first group is used to screen for a set
of potentially relevant variables, whereas the second is used for inference over
this reduced set of variables; we also develop strategies for leveraging infor-
mation from the first part of the data at the inference step for greater power.
In our work, the inferential step is carried out by applying the recently intro-
duced knockoff filter, which creates a knockoff copy—a fake variable serving
as a control—for each screened variable. We prove that this procedure con-
trols the directional false discovery rate (FDR) in the reduced model control-
ling for all screened variables; this says that our high-dimensional knockoff
procedure “discovers” important variables as well as the directions (signs) of
their effects, in such a way that the expected proportion of wrongly chosen
signs is below the user-specified level (thereby controlling a notion of Type S
error averaged over the selected set). This result is nonasymptotic, and holds
for any distribution of the original features and any values of the unknown
regression coefficients, so that inference is not calibrated under hypothesized
values of the effect sizes. We demonstrate the performance of our general
and flexible approach through numerical studies, showing more power than
existing alternatives. Finally, we apply our method to a genome-wide associ-
ation study to find locations on the genome that are possibly associated with
a continuous phenotype.

1. Introduction. Many modern studies in the sciences take the following
form: collect a large amount of data, and then ask which of the potentially many
measured variables are possibly associated with a response of interest. A typical
example would be a genome-wide association study (GWAS), where one wishes to
“discover” which genetic variants are possibly associated with a trait. In such stud-
ies, it is common to read genetic variants using single-nucleotide polymorphism
(SNP) arrays and then look for associations between the trait and the hundreds of
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thousands of SNPs. In these types of studies and others, we typically have many
more variables or features (SNPs) than observations (individuals in the study).

Finding statistically significant associations between a response and a large set
of potentially explanatory variables require the specification of a statistical model;
in this work, we consider the classical linear regression model, which takes the
form

p
(1) Y:Zﬂjxj+e,

j=1

where Y is the response variable of interest, the X ;’s are the explanatory variables
and € is a (stochastic) error term. In the GWAS example, Y may be the level of
HDL cholesterol and X ; the number of recessive alleles at a given location on the
genome. In such applications, it is important to keep in mind that the linear rela-
tionship (1) is just an approximation of a more complicated and unknown model.

In classical statistics, when we speak of finding associations, we think of testing
each of the p hypotheses H; : 8; = 0, and one can see that there are a few compli-
cations with this viewpoint. The first is that for fixed designs, the linear model (1)
with p parameters is not identifiable whenever the number n of samples is smaller
than this number p of features. Formally, testing an unidentifiable model may seem
like a problematic proposition. A second complication is that in our GWAS exam-
ple, it may very well be the case that causal mutations affecting levels of HDL
cholesterol, for instance, have not been typed (i.e., the array of SNPs is a subsam-
ple of the genome, and does not include the causal mutation). In such studies, one
18, therefore, led to search for indirect effects. In other words, while the causal fac-
tors have not been measured, we nevertheless hope to have measured variables that
are sufficiently close or correlated to be picked up by association. In these settings,
it is understood that even if there is a true sparse “causal” model, we may end up
working with an approximate and nonsparse statistical model of the form (1) in
which few, if any, of the features have precisely zero effect (i.e., for most features
J» Bj = 01is not exactly true); this phenomenon occurs because the causal effects
have been folded onto the observed variables. There are two consequences of this:
(1) sparsity assumptions, which are traditionally assumed in the literature to re-
lieve ourselves from the identifiability problem, are not applicable® and (2) when
few or none of the regression coefficients take on the value zero, controlling a clas-
sical Type I error typically makes little sense since nearly any selected feature is
technically a true positive, and we need a different measure of performance to cap-
ture the idea that we would like to correctly identify the meaningful large effects
while screening out features with near-zero effects. To summarize our discussion,
we have at least two problems:

3The literature also typically assumes low correlations between variables, which is also not appli-
cable in the GWAS example.
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e Lack of identifiability (at least when p > n).
e Possibly correlated features and lack of model sparsity so that few, if any, of the
null hypotheses actually hold.

These complications should not occlude the relatively simple goal of a statistical
selection procedure, which in the GWAS context can be stated as follows: under-
standing that SNPs may be proxies for causal mutations, we would like to find as
many proxies or locations on the genome without too many false positives—a false
positive being a reported location (SNP) with no causal mutation sitting nearby.
Being guaranteed a sufficiently small fraction of false positives would assure the
scientist that most of her discoveries are indeed true and, in some sense, replicable.
We are thus interested in reliable methods for finding the large effects, those SNPs
with large coefficient magnitudes. This paper develops a framework and methods
for getting close to this goal. At a high level, we propose a two-stage procedure:
first, using a portion of the data set to screen for a large set of potentially relevant
features (which will likely include a high proportion of false positives), and sec-
ond, applying the recently developed knockoff filter to the second portion of the
data in order to perform inference within the submodel selected at the screening
stage.

1.1. Errors of Type S and directional FDR. In a series of papers, Gelman and
his collaborators introduce a useful measure they call error of Type S (S stands
for sign). In their work [15], they argue that “in classical statistics, the signifi-
cance of comparisons (e.g., 81 — 687) is calibrated using Type I error rate, relying
on the assumption that the true difference is zero, which makes no sense in many
applications”. They then propose “a more relevant framework in which a true com-
parison can be positive or negative, and, based on the data, you can state “6; > 6
with confidence,” “6, > 61 with confidence” or “no claim with confidence.” In this
framework, a Type S error (sometimes called a Type III error in other works) oc-
curs when we claim with confidence that the comparison goes one way when, in
fact, it goes the other way. This echoes an earlier point made by Tukey and we
quote from [35]: “All we know about the world teaches us that the effects of A and
B are always different—in some decimal place—for any A and B. Thus asking
“Are the effects different” is foolish. What we should be answering first is ‘Can
we tell the direction in which the effects of A differ from the effects of B?’.” We
refer to [35] as well as [21] and [5] for additional discussion.

This point of view is extremely relevant to our (possibly high-dimensional) re-
gression problem and our goal of finding the important effects. When we choose
to report a variable, we should be able to state with confidence its direction of ef-
fect, that is, whether B; > 0 or B; < 0. To press this point, we would surely have
little faith in a procedure that would control errors of Type I but would not be able
to tell the directions of the effects. Another useful aspect of Type S errors is that
small effects B; ~ 0 are generally those for which we cannot have much certainty
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about their direction, since the size of the effect is comparable to or below the
noise level of our estimate. Therefore, if we were concerned by signed errors, we
would probably not report these effects as discoveries (even if we believe that no
effect is exactly zero)—arguably a wise thing to do.

To measure our success at selecting only those effects that are large enough
to be meaningfully distinguished from noise, we might like to control the mixed
directional false discovery rate (FDRg;) [7, 29] defined as follows: letting Sc
{1,..., p} be the set of selected features together with estimates sTg\n je{£1} of
the direction of effect,

FDRgir = E[FDP4i],
where the mixed directional false discovery proportion (FDPg;;) is given by

|{j €S : sign; # sign(B;)}]

2 FDPyir = —
() dir |S|\/l

with the convention that sign(0) = 0. This definition subsumes Type I and Type S
errors: a false discovery or error occurs either when a zero effect is selected, or
when a nonzero effect is selected but with the incorrect sign. (In the denomina-
tor, |§| Vv 1 denotes max{|§|, 1}; this maximum is taken so that if we make zero
discoveries, then the FDP is calculated as zero.) The term “mixed” comes from
this combination of two error types; for our purposes, we consider declaring that
B;j > 0 to be a sign error whether the truth is that 8; =0 or B; < 0, and will
not distinguish between these two types of errors, and so we will drop the term
“mixed” and refer to it simply as the “directional FDR.” The directional FDP is
then the total number of errors of this (combined) type averaged over the selected
set. In regression settings in which many of the j;’s are approximately zero but
perhaps not exactly zero, controlling the directional FDR may be more appropriate
than the “classical” FDR (which counts Type I errors only):

|{j € Sand g; =0}|

IS v 1 ’
Note that controlling the directional FDR has a different flavor than classical FDR,
since paraphrasing Gelman et al., the significance is not calibrated using Type I

errors which implicitly assumes that some of the §;’s are zero. In contrast, we
are after a form of inference holding no matter the values of the B;’s. In classical

FDR = E[FDP], FDP =

settings with independent statistics, where y; ' N (i, 1), say, and we wish to test
for the means, [7] establishes that the Benjamini—-Hochberg procedure [6] achieves
directional FDR control.

In earlier work [1], we introduced the knockoff filter, a new variable selection
procedure, which rigorously controls the classical FDR, in the low-dimensional
setting where p < n. It should be clear that the equivalent notion (2) associated
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with Type S errors is in principle more difficult to control since by definition we
have

FDRgi; > FDR,

due to the fact that the classical FDR does not record an error when the jth feature
is correctly included in the model but with the incorrect sign, while the directional
FDR does. A first contribution of this paper is to show that the knockoff filter offers
more than advertised in our earlier work [1]: indeed, we will find that this filter,
with no modifications, actually controls the directional FDR as well as the FDR.
In particular, this implies that the knockoff filter is applicable in settings where we
do not expect any sparsity but nonetheless wish to test whether our conclusions re-
garding effect signs are reliable. This addresses one of the complications discussed
earlier.

1.2. High dimensionality. To address the other complication, namely, the
high-dimensionality issue (p > n), we propose the following general strategy:

o Screening step. In a first step, screen all the features {X;}, j=1,...,p, as to
identify a set Socil,..., p} of potentially relevant features with |§0| <n.In
this paper, we shall regard this step as being quite liberal in the sense that it typ-
ically produces a long list, hopefully containing most of the important features
(with large effect sizes) but also possibly many features with zero effects 8; =0
or nearly vanishing effects g; ~ 0.

e Inference/selection step. The screening step yields a reduced model

3) y =3 prX; te,
Jj€So
where we use the notation P! to indicate that both the definition and the

meaning of the regression coefficients has changed (see below). Then test for
associations in this reduced model by controlling the directional FDR.

In our GWAS example, this means that we would first screen for promising SNPs,
and then extract from this set a final and smaller list of SNPs that we are confident
are associated with the phenotype under study (recall that reporting a SNP only
means that we are confident a mutation lies nearby). This approach—a screening
step, followed by inference on the screened submodel—has been studied by many
researchers; see [37, 39] for a nonexhaustive list of important works among those
lines.

We would like to emphasize the importance of considering the directional FDR
rather than the classical (unsigned) FDR in the framework of a screening step fol-
lowed by an inference step. Imagine that our sampled observations y € R” have
mean Xf and uncorrelated errors. In the reduced model, we wish to provide infer-

ence about the partial regression coefficients, BP* € RIS! when we regress the
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response y onto the features X5 only. Even if the original coefficient vector B for
the full regression model is exactly sparse with many entries exactly equal to zero,
the vector of partial regression coefficients 8P is nonetheless likely to be dense
unless there is special structure within X (e.g., if columns of X are orthogonal to
each other).

Now, consider a feature X; not appearing in the original full model, that is,
Bj = 0. In the partial regression, we may find one of two scenarios:

e The coefficient in the partial regression may be large, that is, ﬁ?mml % 0. This
typically occurs if X is highly correlated with some strong signal X that was
missed by the screening step. (For instance, we may have missed a causal SNP
but included a close neighbor, instead, in the screened set.) Here, we would
generally prefer to include X in the selected model in any case, since it is a

good proxy for the missed relevant feature X. .
e Alternately, the coefficient might remain near zero, ,B?amal ~ (. This is likely
whenever X is not a proxy for any missed feature. Here, the sign of ,B?amal
cannot be estimated with much certainty, and so with directional FDR control,

we are likely to exclude X; from our final model.

These considerations hopefully make clear that careful screening followed by di-
rectional FDR control might yield a valuable selection procedure, which in our
GWAS example would likely be able to report SNPs (locations on the genome)
associated with a trait while controlling a very natural notion of false positive rate.
On the other hand, a setting where this framework does not apply is that of causal
inference, in which one would like to report true causal effects and would prefer
not to select variables that, due to correlation, act as proxies to the true causal
features.

1.3. Comparison with other works. There is of course a vast literature on in-
ference in the regression setting. When n > p, we have available the sampling dis-
tribution of least-squares estimates, which makes the construction of p-values and
confidence intervals possible, although selective inference procedures controlling
the FDR and similar criteria are more tricky because of the correlations between
such test statistics. For an overview of some of the work when n > p, we refer the
reader to the companion article [1].

There has also been much recent work on the high-dimensional setting p > n,
which is the focus of our work here. One type of approach to high-dimensional in-
ference is to avoid the identifiability problem by making assumptions on the data
distribution such as (1) a highly sparse coefficient vector 8, and/or (2) a “beta-
min” condition which requires nonzero entries of B to not be too close to zero,
and/or (3) assumptions on the design matrix such as low-pairwise correlations or
placing a random distribution on the features. These types of conditions ensure
that, with high probability (asymptotically), a sure screening property will hold:
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that is, at any place in the method requiring a model selection step, with high prob-
ability all the relevant features (i.e., all X; with B; # 0) will be selected. Under
these conditions, it is possible to produce an asymptotically normal estimator for
each coefficient 8; which can then yield a p-value or confidence interval which is
asymptotically valid. Methods in this category include the work of Voorman, Sho-
jaie and Witten [36], Belloni, Chernozhukov and Hansen [3] and Huang et al. [16].
A different type of result, relying on rapid decay of the error in estimating 8 in an
asymptotic setting instead of requiring a sure screening property, is the debiasing
work of Zhang and Zhang [42] and Javanmard and Montanari [20]; see also Voor-
man, Shojaie and Witten [36] for a different but related approach. Lockhart et al.
[24] propose a sequential testing procedure, which moves along the Lasso path as
variables are added into the model, under the assumption that the signals appear
before the false positives along the Lasso path (which holds with high probability
asymptotically under similar assumptions, i.e., highly sparse §, the beta-min con-
dition, and a well-behaved design matrix). To contrast these lines of work with our
method presented here, empirically we observe reliable performance in terms of
FDR control at even relatively small sample sizes, and our theoretical framework
avoids strong assumptions on signal strength or sparsity level or the design matrix.

In contrast with the asymptotic setting described above, other approaches focus
on finite-sample p-values and confidence intervals which do not rely on “high prob-
ability” selection events but instead are calculated by conditioning on the screened
or selected model. Lee et al. [22] develops exact post-selection inference for the
Lasso when applied with a fixed penalty parameter, with methodology that extends
to other model selection procedures which can be expressed as linear constraints
on y; Tian, Loftus and Taylor [32] extend this methodology to the setting of the
square-root-Lasso, where the noise level o is no longer assumed to be known. In
contrast, Tibshirani et al. [34] propose methods for sequential selection procedures,
such as the path of selected models obtained by tuning the Lasso penalty parame-
ter; in this setting, FDR control can be obtained with sequential hypothesis testing
procedures, for example [14], and the tests can be viewed as asking whether the
most recent added feature has a true effect in the partial model fitted so far. Fithian,
Sun and Taylor [12] develop general theory for this type of inference after condi-
tioning on (sequential or nonsequential) selection events, termed “data carving.”
In contrast to these methods, which perform inference on the outcome of specific
model selection methods (such as the Lasso), the knockoff framework gives the
flexibility of choosing (nearly) any test statistics for model selection.

In earlier work, Leeb and Potscher [23] studied the impossibility of character-
izing the (unconditional) distribution of post-selection estimators, and the PoSI
(“post-selection inference”) framework of Berk et al. [8] proposed handling the
range of possible selected models by taking a maximum over the set of possi-
bilities. In practice, this type of method may have high power when considering
extremely small submodels, but lose power when the selected model being consid-
ered grows larger.
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Finally, we have called attention on Type S errors as a useful error metric for
controlled variable selection.* We believe this is a correct framework for the model
selection problem in the high-dimensional setting, where strict sparsity assump-
tions may be violated whenever a reduced model is considered.

2. Knockoffs. Since this paper builds upon and extends the knockoff method-
ology introduced in [1], we first review the essentials of this method. The literature
offers many tools for estimating a sparse linear model in a high-dimensional set-
ting, that is, y ~ N (XB, o°I) where X € R"*? is a fixed design matrix and 8
is believed to be sparse.’> For instance, we may use a forward stepwise selection
method such as orthogonal matching pursuit (OMP) [26], where features are se-
quentially added to the model, choosing at each step the feature X; that offers
the greatest reduction in the size of the residual. Alternately, we might choose a
convex optimization method such as the Lasso [33], where

. (1
@) Brasso) =arg min | Iy = Xbi3 -+ Ab |

A critical question is this: can we estimate the number of false discoveries in the
resulting coefficient vector ,BOMP or ﬁLaSSO? The knockoff filter provides answers
to questions of this kind by constructing a knockoff companion for each variable,
which acts as a control for the possibility that we choose variable j when it is in
fact null, that is, 8; = 0.

2.1. Knockoff variables. For each feature X;, a knockoff copy X j is con-
structed to satisfy

5 5 X'X X'X ) ¥ —dia
. B _ gis}] a
G X X]I'X X]= |:XTX XT)NJ = |:Z — diag{s} ) ] -G

for some vector s > 0.° Thus the knockoffs exhibit the same correlation struc-
ture as the original variables, and the cross-correlations are also preserved, in the
sense that XjTXk = XjTXk for all j # k. While past methods in the statistics liter-
ature have considered adding fake variables in order to control false positives in
regression constructed through other methods, such as by generating independent
features or by permuting entries of existing features (see, e.g., Miller [25], Wu,

4Relatedly, in a setting where the aim is to test individual variables rather than control FDR, meth-
ods such as Lee et al. [22]’s post-selection inference for the Lasso can provide p-values testing a
one-sided, that is, signed, hypothesis.

SRecent work by the second author and collaborators [9] treats this problem in the alternate setting
where the design matrix X is random, with a known distribution.

SIf s is chosen so that the Gram matrix is positive semidefinite, then X can be constructed to satisfy
this matrix equality as long as n > 2p.



2512 R. F. BARBER AND E. J. CANDES

Boos and Stefanski [40]), the knockoffs construction is unique in that it yields an
exchangeability property: for any subset S of nulls, we have

~ d ~
(6) X XlapeY=I[X X1y,

where the matrix [X i]swap(s) is obtained from [X )~(] by swapping the
columns X; and X j for each j € S. For example, (6) implies that |XJTy| is equally
likely to be larger or smaller than |)27y| for any null ;.

Now imagine that we run the OMP or the Lasso on the original design aug-
mented with knockoffs, that is, on the response y and the design matrix [X X],
rather than on the smaller matrix X. Let [ /} B] € R?? denote the resulting coeffi-
cient estimates. Due to (6), we can see that /§ ; and B ; have identical distributions
whenever j is null and, therefore, a false positive on feature j (i.e., ,3 i #0)1is
equally likely to selecting the knockoff of feature j (i.e., S i # 0). Therefore, the
number of knockoff variables that are in our estimated coefficient vector provides
an estimate of the number of false positives.

2.2. The knockoff filter. After constructing knockoff copies of the features, we
then use them to create a feature selection rule that will achieve exact FDR con-
trol. (One can also control other types of error such as the family-wise error rate
(FWER) or the k-FWER as in [18]). For each variable j € {1, ..., p}, we work
with a general statistic W; obeying a sufficiency and an antisymmetry property.
The sufficiency property requires that W; depends upon the design matrix only
through its covariance, and upon the response y through marginal correlations: for
some function w;,

(7) wi=w;(X XI"[X XX X]Ty).

The antisymmetry property requires that swapping X; and X ; has the effect of
changing the sign of W;,

w; (X Xl.y) J s,

®) wi (X Xlswap(s),¥) = —w;((X XLy jeS.

In [1], a much discussed example of such a statistic concerns knots at which vari-
ables enter the Lasso path: for each feature X; and each knockoff X j» record the
first time that this feature or its knockoff enters the Lasso path, that is, the largest
penalty parameter value A such that ,BA‘,- #0or B_,- = 0; then set

W; = (largest A such that X; or X j enters Lasso path)

+1 if X; enters before X s
—1 if X; enters after X j

€)
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We can analogously record the first time that a variable X; or X‘,- is selected by
the OMP method or another forward stepwise algorithm, or any penalized least-
squares method (replacing the £ penalty of the Lasso with another penalty, such
as £4). Many other statistics are of course possible, for instance W; = | /§ il =1 B il

In all of these examples, a large positive W; indicates that X was strongly
preferred over X by the algorithm, while a large negative W; 1ndlcates X was
preferred. The sufﬁaency and antisymmetry properties of W, together w1th the
exchangeability property (6) of the variables and knockoffs, ensure that W; > 0
and W; < 0 are equally likely for each null j, and in fact,

(10) #{null j: W; < —1} i#{null jiWj =1,

We use this property to choose a threshold for the test statistics W;. Define a
threshold T > 0 by setting’

(1H T=min{t>0:w<q}

#j W =1
where g is the target FDR level. By (10), the numerator in (11) is an (over)estimate
for the number of false discoveries among all reported variables with W; > ¢, and

so the ratio appearing in (11) is an (over)estimate of the false discovery proportion
(FDP) at the threshold ¢. The output of the procedure the selected model

(12) S={j:W;>T},

which has FDP estimated to be < g. A slightly more conservative procedure, the
knockoff+ filter, instead uses the threshold

1+#{j . W; <—
(13) T+:min{t>0: AW = t}< }

#j W =1)
and accordingly sets
(14) S={j:W;>Ty}.

The key results in [1] state that knockoff+ controls the FDR, and the knockoff con-
trols a slight modification of the FDR, at the level g. These results hold without
any assumptions on the design or the value of the unknown regression coefficients.
Crucially, we emphasize that neither the knockoff procedure nor its FDR control-
ling property assume any knowledge of the noise level o.

"More formally, we minimize over ¢t € W., where Wy = {[W;|: [W;|>0,j=1,..., p}, to
avoid ever choosing 7' = 0.
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3. Controlling errors of Type S. Although they are more difficult to control,
we have argued that Type S errors are more meaningful for regression problems
since we would like to be able to tell the direction of effect with confidence (and
should avoid reporting those variables whose direction we cannot reliably deter-
mine). Consider the setting of Section 2 where n > 2p and y ~ N (X8, o°I). Then
to estimate the direction of effect—the sign of 8;—mnote that

X; —X)Ty~N(s;B;.250%)  forj=1,....p.

where s > 0 is from the knockoff construction (5). Hence, a natural estimate for
the sign of B; is

(15) sign; = sign((X; — X) Ty).

With this, the knockoff filter with no adjustment whatsoever controls the direc-
tional FDR as well as the FDR. To understand intuitively why this error measure,
which in principle is harder to control than FDR, is still bounded by the same
method, note that for a nonnegative effect (8; > 0), the probability of choosing
a negative sign, that is, sign; = —1, is in fact highest when g; = 0; this error is
less likely if B; > O since in that case we would have (X; — X j)Ty be normally
distributed with a positive mean.

THEOREM 1. Assumey ~ N (XB, o’I) and fix any desired FDR level q. With
the estimated direction effects (15), knockoff+ controls the directional FDR (2);
that is, FDRgi; < q for the selected set §deﬁned in (14). If we use knockoff instead,
then mFDRgy;; < q, where mFDRy;; is the slightly modified version defined as

{j €S :sign; # sign(ﬁ;)}q
NEXE ’
where the selected set S is defined as in (12).

(16) mFDRy;; = E[

This result (proved in Appendix A.1) is more powerful than Theorems 1 and 2
from [1], which established that knockoff+ controls the FDR at level ¢, that is,
FDR < ¢, and knockoff controls the modified FDR, that is, the expected ratio
between the number of (unsigned) false discoveries |{j € S and B; =0}] and |§| +
q_l (this denominator is as in (16)).

Our new Theorem 1 is also more delicate to prove. The reason is that when
we work with Type I errors as in the original result, the probability of claiming
that B; # 0 is calculated under the assumption that 8; = 0. When working with
Type S errors, however, there is no such calibration since there is no null, and each
feature X; might have a nonzero coefficient 8;, although it may be close to zero.
In that case, the test statistic W; will have a different probability of appearing with
a positive or negative sign, and we are no longer dealing with i.i.d. and unbiased
signs for the null W;’s.
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Thus in the proof of Theorem 1, we will see that the result is ultimately a con-
sequence of the following martingale inequality regarding a sequence of Bernoulli
variables which have varying probabilities of success.

LEMMA 1. Suppose that By, ..., B, are independent variables, with B; ~
Bernoulli(p;) for each i, where min; p; > p > 0. Let J be a stopping time in reverse
time with respect to the filtration {F;}, where

E[ 1+J ]Sp_l-
1+Bi+--+By

Then

The proof of this lemma is given in the Supplementary Material [2]. In the
simpler setting where p; = --- = pj, this result is proved (in a slightly different
form) in [1], with the proof relying heavily on the exchangeability of the B;’s
(when the B;’s are determined by the signs of the null W;’s, each has distribution
Bernoulli(0.5)). The result stated here is more subtle due to the lack of exchange-
ability.

To see the connection between Lemma 1 and (directional) FDR control for the
knockoff+ method, observe that
_#{jnull: W; > T4}

COLVH W > Ty

_ #jnull: W; > T} I+#{jnull: W; <-T,}

L+ #{jnull: W, < —Ty) LV#j:W; > T}

- #jnull: W; > T}

= Ryl W, < —T4 )

where the inequality follows from the definition of 7.y (13). Now reorder the in-
dices of the null W;’s so that |[W(y)| > |W2)| > ..., where |W(j)| is the null with
the largest magnitude, |W(2)| the second largest, and so on, and let B; = ]lw(j)<0.
Let J be the index such that |[W(1)| > --- > |W( )| > T4 > [Wy41)| > ..., in other
words, J =3,y j 1{I{W;| > T4 }. Then for each j, we can calculate

W(j)ZT+ = IW(j)|2T+andW(j)>O < jf]andszo,

FDP

and similarly,
Wip=-T <« [Wpl=zTyand W) <0 <« j<JandB;=1.

Therefore, we have

#jnull: W; >T.}  (1—-B)+---+(1—By)
1+J

" 1+Bi+---+B;
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Note that this last expression is the quantity in Lemma 1. If each W;, for a
null feature, is equally likely to be positive or negative, then the B;’s are i.i.d.
Bernoulli(0.5) variables, and we obtain FDR control at level g by applying Lemma
1 with p; = 0.5. However, when considering directional FDR control, the 8;’s
may be nonzero and so the W;’s will typically not be symmetric; therefore, we
may need to apply Lemma 1 with varying p;’s. We refer to the Supplementary
Material [2] for details.

4. Knockoffs in high dimensions. In high dimensions, where p > n, the
knockoff construction is no longer possible—in fact, the Gram matrix condition (5)
would be possible only if s = 0, that is, if X; = X; for each feature j =1,..., p,
so that the knockoff procedure would have zero power. In this setting, one straight-
forward approach would be to use part of the data to reduce the number of features,
and a disjoint part of the data to run the knockoff filter. In the next section, we de-
velop this data splitting approach, and then find that we can gain substantial power
by using a subtle way of “recycling” the data.

4.1. Feature screening and reusing data. Consider splitting the n observations
into two disjoint groups of size ng and n| = n — ng, used for the purpose of first
screening for a smaller set of potentially relevant features, then running a model
selection procedure over this reduced list of features, respectively. We denote the
two disjoint portions of the data as (X, y©) € R"0*? x R and (XD, yD) €
R™*P x R™  and then follow the next two steps:

e Screening step: using (X©@, y@), we identify a subset So C [p] of potentially
relevant features, such that |§0| <nj.

e Selection step (splitting): ignoring any features that were discarded in the
screening step, we run the knockoff procedure on the remaining data, that is,

[QJE))
on(XSO,y ).

This straightforward data splitting approach is a natural extension of the low-
dimensional knockoff filter, and it is clear that the approach will control the di-
rectional FDR in the final model selection step as long as the screening step
correctly captures all the relevant features—those with nonvanishing regression
coefficients—a property often referred to as sure screening in the literature [11].
(False positives in the screening step, i.e., including too many null features, do not
pose a problem). If the sure screening property fails, we can still obtain inference
guarantees relative to the new, screened submodel; see Section 4.3 below.

There is an inherent loss of power due to the split of the data, since the model
selection step uses n rather than n observations. However, using disjoint data sets
for the screening and selection steps is critical, since the distribution of y© cannot
be treated as a Gaussian linear model after the screening step has taken place.
The screening step is a function of the random variable y’, and so the following
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modification of the selection step would not control the FDR: ignoring any features
that were discarded in the screening step, we run the knockoff procedure on the
full data set, that is, on (Xgo, y). The loss of FDR control is not merely theoretical:
a null feature X; that is chosen by the screening step is generally more likely
to appear as a false positive when running the knockoff filter, leading to a much
higher FDR.

In light of this, we propose two mechanisms for increasing power relative to the
data splitting procedure described so far:

1. data recycling, where the first portion of the split data can be reused to some
extent without losing any of the guaranteed FDR control,

2. and signed statistics, where we can decide adaptively to focus our search on
a positive effect only or a negative effect only.

4.1.1. Increasing power with data recycling. Surprisingly, data recycling re-
tains the FDR control properties of the split-data procedure, while raising power
substantially to approach the sensitivity of the full-data procedure.

e Selection step (with recycling): we begin by constructing a knockoff matrix on
the remaining data Xg)) for X%)
The difference now is that we concatenate the original design matrix on the first

ng observations with the knockoff matrix on the next n; observations,

just as we would in the data splitting version.

(17) X5, =

(Note that on the first part of the split data, knockoffs are exact copies.) We then
run the knockoff filter on the entire data set with all n samples, using the design
matrix Xg , the knockoff matrix X3, and the original response y.

The term “recycling” refers to the way that we incorporate the data (Xg:) ), yO),
which was already used in the screening step, for the selection step. Here, we
think of the mechanism for choosing So as being completely arbitrary as opposed
to having some kind of “preregistered” screening method. For this reason, we need
to treat y(©) as a fixed vector (or rather, to condition on its value) in the construc-
tion and analysis of the knockoff filter for the selection step (see Section 4.1.3 for
additional discussion about this point).

Of course, knockoffs with data splitting are actually a special case of knockoffs
with data recycling. Any knockoff statistics W that are a function of X% ), X% ),

and yI (i.e., data splitting) can trivially be expressed as a function of X35, X3,
and y by simply ignoring the first ngp many data points.
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Increased power. Why do we expect the knockoff method to exhibit higher power
when using data recycling rather than data splitting, when we see in (17) that the
knockoff matrix differs from the original features only on the second part of the
split data? Indeed, later on in Section 5 we will see empirically that the power gain
can be quite substantial.

To understand this phenomenon, we return to the mechanism of the knockoff
filter itself. Recall that we construct a statistic W; for each feature/knockoff pair
X, X; i), where |W;| is large if either X; or X appear highly significant, and
51gn(W ) indicates which of the two appears most significant. For instance, if we
are using a forward stepwise selection method as described in Section 2, |W;| will
be large if either X; or X; was one of the first variables to enter the model; we will
have W; > 0if X enters before X ; j»and W; < 0if X; enters after X

If the early portlon of the knockoff path (where we order the features in order of
magnitudes | W) has many positive W;’s and few negative W;’s, the stopping rule
(11) will allow us to choose a threshold T that is not too large, and we will make
many rejections. If instead the high-magnitude |W;|’s have many negative signs,
though, we will be forced to stop early, choosing a high threshold T and making
few rejections. For any null feature j (i.e., B; = 0), the sign of W is equally likely
to be negative as positive, so in order to obtain high power, we need two things:

1. Good separation in the feature ordering—most of the features that appear
early in the path, that is, most j with |W;| large, are nonnulls;

2. Good power in the nonnull signs—for most nonnulls, the statistics have a
positive sign, W; > 0.

Next, we ask how data splitting and data recycling compare in light of these two
considerations. For the second, both methods suffer from power loss relative to an
unscreened method—specifically, obtaining W; > O rather than W; < 0 depends
on the model selection method being able to distinguish between feature j and
its knockoff copy. For data splitting, by the sufficiency (7) and antisymmetry (8)
properties, we see that if

(]8) XSI)Ty(l) and igl)"l'y(l)

are equal in distribution, then sign(W;) is equally likely to be +1 or —1; in other
words, it is only if these two inner products have substantially different distri-
butions, that we can hope to see sign(W;) = +1 with high probability. For data
recycling, the same statement holds, except instead we compare the inner products

(19) XTy:X(O)T (0)+X(1)T M and XTy X(O)T (0)+X(1)T 0}
J

Examining (18) versus (19), we see that these two comparisons are equivalent, as
(19) simply adds the same constant (i.e., X&O)Ty(o)) to each term of (18). In other
words, these two tasks are equally difficult.

However, for the first component of power—that is, good separation in the fea-
ture ordering—we can expect that knockoffs with data recycling will have the
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advantage, since the first ng data points carry substantial information separating
signals from nulls. Of course, if some nonnull feature j has strong correlation
with the response, then the information from the first ng data points will push both

X; and X j towards the top of the path—since )NKE.O) = XE.O) by construction—but
the second portion of the data, where fi;.l) #* X;l), will hopefully enable X; to

enter the path before X j (e, W;>0).

To summarize, the knockoff filter’s power relies on the nonnull W;’s ability to
appear early and with positive sign along the path of statistics; data recycling helps
the nonnull W;’s appear early, thus increasing power.

4.1.2. Increasing power with signed statistics. Since the knockoff filter with
data splitting or with data recycling treats the first portion of the data, (X©, y@),
as fixed once the screening step has been performed, we are free to use this data
in any way we wish, to try to gather information about the true signals. While the
screening step identifies the indices of the variables which are likely to contain

signals, we can also use this step to identify probable signs, that is, if feature XS-O)

is selected in the screening step, which is run on the data set (X©, y©), we can
at the same time specify the sign of the estimated effect of this feature, denoted

sTg\n;O). We then use this information to look specifically for an effect consistent
with this sign in the second phase of our procedure. This will in general increase
power, since we are extracting more information from the first part of the data
before running the selection procedure on the second part, (X1, y(1).

Example: Penalized least-squares. To illustrate the use of the sign information
in practice, suppose that we are using a penalized least-squares regression method
for computing the statistics W}, for instance, as described in Section 2, the W;’s
may indicate the time at which features X; and X entered the Lasso path (or
the path of some other sequential selection procedure) or may be given by W; =
|/§ il = |,4§ j| where [,8 B] is the solution to a penalized least squares optimization
problem, with some penalty function P(b) (with the Lasso as a special case if
P(b) = A||b||1). In either case, if we are not using sign information, we might
begin by computing the penalized least-squares solution [B B ] via either
L @ g2
min [y? —[Xg,  Xg Ibly+ Pb)

for data splitting, or
2 2
min — Hy [X5,X53,1b[5 4+ P(b)
beR25! 2

for data recycling. Instead, to make use of the sign information gathered at the
screening phase, we can consider a sign-restricted version of this penalized least-
squares problem: in the data splitting version we would be interested in the solution
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to

1 -
in [y —[Xg" XTb|3+ PO
beIPRlz%ol ”y [ So So] ”2+ (b)

s.t. bj- signi-o) >0
and similarly for the recycling version. In other words, we are running the same
penalized least-squares optimization, but with the added restriction that we will
only select the jth feature or jth knockoff feature if its estimated effect direction
agrees with the sign information gathered at the screening stage.

Increased power. Why should we expect the knockoff method to exhibit higher
power when leveraging the sign information, sign(/-o) for each selected feature

j € So? Intuitively, we think of the screening step as choosing from p possible
hypotheses, where hypothesis H; is described by the question, “Does X ; appear
in the true model?” However, we can instead frame this step as considering twice
as many hypotheses: hypothesis H;r is the question, “Does X; appear in the true

model with a positive effect?” and hypothesis H ;" is the question “Does X ; appear
in the true model with a negative effect?” With this in mind, if the screening step
fits a model to the first part of the data XO, y(O)), and this fitted model includes
the jth feature with a positive coefficient, then this indicates that hypothesis HJ.Jr
is more likely to contain a signal. Therefore, it makes sense that in our selection
step we should focus our attention on hypothesis H;. Of course, it is possible that
the true effect is in fact negative, but since this is less likely, we would generally
be increasing the noise if we give equal attention to hypotheses H;r and H I

4.1.3. Relation to existing work. 'We pause here to compare our data recycling
technique to the data carving methods of Fithian, Sun and Taylor [12]. In that work,
as in ours, some part of the data (X, y(©) is used to perform an initial screening
step, and is then reused for inference along with the remaining data (X1, y(1).
However, the mechanism behind reusing the first part of the data is highly different.
In Fithian, Sun and Taylor [12]’s work, the first part of the response y“ is reused
by leveraging the “remaining randomness” after the screening step: y? is regarded
as a random vector, with distribution given by conditioning on the outcome of the
screening step, that is, (y© | So). In contrast, in our “recycling” procedure, y© can
be used in an arbitrary way for the screening step, and so there is no “remaining
randomness” in y(). Instead, we reuse y?) by treating it as a fixed vector; y!) is
the only variable treated as random for the purpose of our FDR control results.

More broadly, the knockoff filter with either data splitting or data recycling,
can be considered as similar in flavor to the “screen and clean” methodology of
Wasserman and Roeder [37], where an initial screening step (performed via a high-
dimensional Lasso, with a tuning parameter chosen by validation), is followed by
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an inference step on an independent portion of the data, with inference performed
via a least-squares regression. This methodology has been applied to genome-wide
association studies (GWAS) by Wu et al. [39]. At a high level, our method follows
this same overall framework of screening for a low-dimensional submodel, then
using new data for low-dimensional inference; however, we will gain power by
“recycling” the first part of the data, and more significantly, by using the knockoff
filter rather than least-squares for the inference step, which in the low-dimensional
setting gives substantial gains in power as it leverages the sparse structure of the
true model [1].

4.2. Sure screening and directional FDR control. 1In order to demonstrate the
correctness of the selection step with recycling, we first assume that the screen-
ing step is highly likely to find all true signal, that is, So 2 support(f) with high
probability. Note that we do not assume that the screening step exactly selects
the true support—while this type of sparsistency result holds for the Lasso in the
asymptotic setting (see, e.g., [43]), in practice, even with ideal simulated data, it
is generally the case that we cannot perfectly separate true signals from false pos-
itives using the limited data available, unless the signal is extremely strong and
extremely sparse [30]. Instead, this assumption merely requires that there is some
sufficiently liberal screening procedure that is likely to capture all the true signals,
along with many false positives. From a theoretical standpoint, this property is
known to hold under conditions far weaker than those needed for exact recovery
of the true support [11, 41].

Suppose we fix some chosen method for the screening step, which is constrained
only in that it must be a function of the first portion of the data, (X, y©). Define
the sure screening event as

€ = {So 2 support(B) and [So| < n1/2},

and note that 1¢ is a function of y(©) when we treat X and B as fixed. Conditioning
on this event, directional FDR control of the selection step holds by the following
theorem (proved in Appendix A.1).

THEOREM 2. Suppose y ~ N (XB, c*X). Then the knockoff procedure (using
either data splitting or data recycling), with estimated signs sign; as in (15), con-
trols the modified directional FDR at the level

E[mFDRg;r | €] < ¢,
while if knockoff+ is used, then the directional FDR is controlled as
E[FDRgir | €1 < g.

In particular, if £ occurs with probability near 1, then the various forms of the
directional FDR are controlled even without conditioning on &, by reformulating
the results as FDRgj: < g + P{E€} in the case of knockoff+ and mFDRy;; < g +
P{&€} for knockoff.
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4.3. Directional FDR control in the reduced model. 1f the screening step
misses variables from the model, a bias is introduced which creates a fundamen-
tal difficulty. To discuss this, recall that knockoffs are constructed to guarantee
the crucial pairwise exchangeability for the nulls (6). Among other things, we
have seen that exchangeability has the consequence that null variables are equally
likely to be selected as their knockoff companions. When nonzero effects have
not been screened, this may no longer be the case. Concretely, imagine that X
has a nonzero effect but was not identified in the screening step. Then since the
knockoff construction used only the screened set So, we cannot guarantee that
XJTXk = X}—Xk for j € §0, which in turn may lead to

d -
Xjy#X]y

even when j is a null feature, that is, 8; = 0. For example, if X; were strongly
correlated with a true signal Xy, then we could easily imagine that X; would be
more likely to be selected than its knockoff X In general, and in contrast to the
lower dimensional setting, the bias implies that when we count the number of
knockoffs selected at some threshold level, we cannot be sure that this number
is a good (over)estimate of the number of selected nulls. (As explained before,
however, it may be desirable to select X; in this case since it is a proxy for Xj.)

We now reframe this issue in terms of the partial regression coefficients, that
is, we will perform inference on the coefficients in the reduced model defined by
the subset of features Sy selected in the screening step, a point of view in line
with much of the recent literature discussed earlier [8, 12, 13, 22]. Thus we are
interested in the partial regression coefficients—the coefficients of y regressed onto
only the selected features. Throughout this section, we will consider a random
design model, and will define the population-level partial regression coefficients
as

! DTxd DOTrre® | xD. x©) O
(20) prartial — (X( X( >) X§o) E[y()IX%O,X”,y( .

that is, the expected coefficients when y!) regressed on the selected features Xg).
In other words, this is the quantity for which the least-squares solution in the r(é:—
duced model is an unbiased estimate. Here, expectation is taken conditional on the
first part of the data (i.e., XO, y(o)), the data used for the screening step), and on
the selected features X(EL )8

8This definition is slightly different from the notion of partial regression coefficients found in much

of the selective inference literature discussed here, that is, [8, 12, 13, 22], which treats the design X

as fixed and studies gPartial — (X—r y~1XI Ely | X]. We could alternately consider a population-
SO So

level version of these coefficients, ﬂpama] = E[X—gr Xgo]_lE[Xg yl. The difference is between these
0 0

various definitions is typically not substantial, and indeed under many random models for the design
X, can be proved to be vanishingly small.
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FDR control with a Gaussian design. In this paper, we give results for a ran-
dom feature model X, which assumes that the rows X[;; of X are drawn i.i.d. from
a multivariate Gaussian distribution,

iid.
21 Xiip ~ N, ¥);
here, the parameters (i.e., the mean vector v € R” and the covariance matrix ¥ €
RP*P) are arbitrary and completely unknown to us. The following theorem (proved
in Appendix A.1) guarantees directed FDR control in this setting.

THEOREM 3. Assume that the rows of X follow (21), where v € R? and
W c RP*P gre arbitrary and unknown. Define the expected partial regression co-

efficients Pl 45 in (20). Then the knockoff-with-recycling procedure controls
the modified directional FDR at the level

mFDRgir < ¢,
while if knockoff+ is used, then the directional FDR is controlled as
FDRgir < ¢

here, the estimated signs S@lj are defined as in (15), and a false discovery is any
Jj€ S such that @1 I sign(ﬁ?amal).

While the Gaussian design assumption is strong, we believe that FDR control
would be maintained across a far broader range of models. We emphasize that we
do not assume knowledge of the mean and covariance parameters of the Gaussian
distribution of X, and do not need to estimate these parameters in the method; in
fact, the Gaussian assumption is used only for the technical details of the proof, to
show that we can model the response y'!) as

1 1 1 artial
y(l) - X(§0)'B§0 T X(§6 'B§6 + eV = X%())ﬂ%o + 6/(1)’
where € (1 is i.i.d. Gaussian noise (with a larger variance than the original noise
€, due to the noise added from the true signals missed by the screening step). This
is where the fact that knockoffs do not need the value of the noise level (in low
dimensions) is immensely useful: the knockoff method will provide valid inference
no matter the value of the “new noise level.”

5. Simulations. We now examine the performance of our method on simu-
lated high-dimensional data sets, and compare to several other techniques for in-
ference in low-dimensional and high-dimensional regression. One data set below
uses real SNP features.
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5.1. Data. To simulate data that exhibits challenging features that we might
expect to see in practice, we work in two different settings for the matrix X of
covariates:

o AR matrix We consider an autoregressive model, where X; is highly correlated
with X1 and X;_1, and the correlation decays for columns farther apart in the
design matrix. We work with sample size n = 2000 and create p = 2500 features
by drawing the rows of X independently from a A/(0, X) model, where X j; =
pl/ =kl for a correlation parameter p € {0,0.25,0.5,0.75}. We then normalize
the columns of X to have unit norm.

e GWAS matrix The matrix X is here taken from a genome-wide association study
(GWAS); see Section 6 for further information regarding this data set. We begin
with SNP data from the first three chromosomes, then cluster the SNPs using
pairwise correlations and choose only one SNP from each cluster, in such a way
that the resulting pairwise correlation between any two SNPs in the remaining
data set is at most 0.5, and finally regress out the top five principal components
(Section 6 discusses the rationale behind this extra step). The size of the data set
is p = 12,752 features (SNPs) and sample size n = 4682.

We then generate the coefficient vector 8 by choosing kg = 50 many coordinates
at random to be the locations of the strong signals, and k1 many coordinates to be
the location of the weak signals, where k; = 250 for the AR setting and k1 = 1250
for the GWAS setting. Strong signals are chosen from {+4.5} for the AR setting
or from {£5} for the GWAS setting (the higher amplitude is due to the larger
size of the problem). Weak signals are drawn as 8; ~ N (0, 0.5) for both settings.
The response is then generated as y = XB + €, where € has independent N (0, 1)
entries. In each setting (AR design with each value of p, and the GWAS design),
the design matrix X and the coefficient vector 8 are generated only once, while the
noise vector € is generated independently for each trial. Results are averaged over
100 trials. All procedures are run with target FDR level g = 0.2.

5.2. Methods. Our simulated experiments compare the following methods:

e The Benjamini—Hochberg (BH) [6] procedure (applied to the least-squares re-
gression coefficients, after screening for a low-dimensional submodel).

e Exact selective inference for the square-root Lasso, developed by Tian, Loftus
and Taylor [32]—this method builds on the earlier work of Lee et al. [22] devel-
oping selective inference for the Lasso.

e Knockoff filter with data splitting or data recycling (applied after screening for
a low-dimensional submodel).

We now give details for the implementation of each method.
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Benjamini—Hochberg. We use no many data points for an initial screening
step, where ng = 750 for the AR setting and ng = 1800 for the GWAS setting.
The screening step is carried out by solving the Lasso across the entire range of A
values, from A = 0o to A = 0. We then choose a screened set Sp consisting of the
first kmax many features entering the path, where kpax = 450 for the AR setting
and kmaxAz 720 for the GWAS setting, and then record the sign s; € {£1} for fea-
ture j € So (i.e., the sign of its estimated coefficient, at the time when it first enters
the Lasso path). We next use the remaining n; = n — ng data points for inference.
For both settings, we are using roughly 35-40% of the total sample size n as the
sample size ng for the screening stage, and setting the number of screened features
kmax be around 25% of the remaining sample size n;. (These ratios appear to give
a favorable balance between finding a sufficiently good screened set at the first
stage, and retaining a large enough sample size for powerful inference in the sec-
ond stage. It is of great interest to study this question in future work to see whether
we can determine theoretically the optimal split for making the most discoveries.)

We calculate the least-squares regression coefficients BLS (X(I)TX% ))_1 X

Xg))Ty(l), and compute t-scores

(BLs)

5. [(xWTxDy-1
o JXs X5

for each j € Sp. Above, 62 is the classical estimate of variance,

1 A
ly® = X§ Brsli3

6% = i
— [Sol

Under the sure screening property (where Sp contains all true si gnals, as discussed
in Section 4.2), for each null feature j, 7; would follow a 7-distribution with n; —
150! degrees of freedom. We thus convert each t-score to a one-sided p-value P;
(with the side chosen based on the sign s; from the screening step). Finally, we
run the Benjamini—Hochberg procedure [6] at the level g to select a model.

Selective inference for the square-root Lasso. The square-root Lasso [4] is
given by

B = in{[ly — Xb2+ - b
B = arg min {ly —Xbll2 +2 - b1}

”XTg”oo]

(22) where A =« - Eg~ N(O,I,,)|:
Igll2

for a constant « typically chosen in [0.5, 1]. The solution /§ is in fact exactly equal
to the solution to the Lasso (4) at some different penalty parameter value; the



2526 R. F. BARBER AND E. J. CANDES

benefit of the square-root Lasso is that the penalty parameter A can be chosen
without reference to the unknown noise level o2.

Tian, Loftus and Taylor [32] derive exact post-selection confidence intervals
and p-values for the coefficients B, after conditioning on the selection event, that
is, after observing the signed support of ﬁ the solution to the square-root Lasso,
based on the truncated ¢ distribution, without knowledge of the noise level o . (This
work builds on the polytope method developed in Lee et al. [22], Tibshirani et al.
[34] for the Lasso and other procedures.) An implementation of this method, in
Python, is available in [31], where the inference is performed approximately by
estimating the noise o and then using truncated normal distributions, as in Lee
et al. [22]’s inference for the Lasso. We use this available code for our experiments,
in order to calculate a one-sided selective p-value P; for each feature selected by
the square-root Lasso (based on the sign s; with which feature j was selected). We
then apply the Benjamini—Hochberg procedure at level g to the resulting set of p-
values in order to select a final model. The only tuning parameter in this method is
the constant k appearing in (22). We test k € {0.5,0.6, ..., 1} and find the highest
power at k = 0.6; only this value of « is displayed in our results.’

Knockoff filter. The screening step is carried out exactly as for the BH proce-
dure, with the same values of ng and kpax, resulting in a submodel Eo and signs
sj for each j € §0. We next use the remaining n; = n — ng data points for the
knockoff filter, using sign information as described in Section 4.1.2, and either
data splitting or data recycling. Our statistics W; are formed using the square-root
Lasso. Specifically, for data splitting, we solve a sign-restricted square-root Lasso,

A ~

— : M _xH M
B Bl=arg min {Iy"V —[X5, X5 1bl,
bj-sij>0forall j=1,..., p

b j=0forall j=1,..., )4

j+ISo! 5.

(23) + - b1},

where the penalty parameter A is defined as in (22) (but with [X% ) )N(g) )] in place
of X). For data recycling, we optimize the same problem but with [Xg ~ Xg ] and
y in place of [X%) Xg})] and y(I. In each case, we then define W; = |,3j| — |/§j|
for each j € So, and then apply the knockoff filter.

We run each method with « € {0.1,0.2, ..., 1} and find the highest power at

k = 0.5 for data splitting and « = 0.7 for data recycling; only these values of « are
displayed in our results.

.
9The software [31] sets A as « times the 95th percentile of ”X” gﬁ!w in lieu of what is displayed in

(22).
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5.3. Results. The knockoff filter and the BH procedure both work within the
reduced model defined by the subset of features Sp chosen at the initial screening
step; the inference guarantees of these methods are with reference to this large
submodel. On the other hand, the p-values computed by Tian, Loftus and Taylor
[32]’s method are calculated with reference to a relatively small submodel, given
by features selected by the square-root Lasso. Therefore, in comparing these three
types of methods against each other, it does not make sense to compare their FDRs
over the partial regression coefficients, since these partial regression coefficients
are defined within vastly different submodels. Instead, for each correlation setting
and for each method tested, we compute the following measures of performance
relative to the full model (averaged over 100 trials):

e False discovery rate and directional false discovery rate relative to the true full
model: the average proportion of the selected features that were selected incor-
rectly (for FDR), or selected with an incorrect sign (for FDRgj;); and

e Power relative to the true full model: the average proportion of the true support,
the ko 4+ k1 many features in support(f), which is selected by the method. Since
this true support is split into strong and weak signals, and the weak signals
are barely detectible, we also report the “restricted power,” that is, the power
restricted to only the size-kq set of strong signals.

For all methods, the full-model FDR and directional FDR, along with the power
and the restricted power, are displayed in Table 1 for both the AR design and the
GWAS design settings. For both settings, we see that the methods all successfully
control the FDR at the desired level, and indeed some are conservative, except that
for large correlation values p in the AR setting, the least squares + BH method
does show overly high FDR (however, this can be explained by the fact that, for
a highly correlated design, the FDR in the reduced model, i.e., for the partial re-
gression coefficients P48l will be substantially different from the FDR in the
full model). Across all settings and all methods, the directional FDR is slightly
higher than the FDR, since the k; weak signals are extremely close to zero and, if
selected, can easily be selected with the wrong sign. The (nonrestricted) power is
quite low for all methods, since the k| weak signals are extremely difficult to distin-
guish from zero. Turning instead to the restricted power, indicating each method’s
ability to detect strong signals, we see that the knockoff filter with data recycling
shows somewhat higher power than the other methods, and in particular, we see a
clear gain when using data recycling rather than data splitting, as expected.

6. Real data experiments. We next implement our high-dimensional knock-
off method on a genome wide association study (GWAS) data set. The data comes
from the Northern Finland Birth Cohort 1966 (NFBC1966) [19, 28], made avail-
able through the dbGaP database (accession number phs000276.v2.pl). Here,
5402 SNP arrays from subjects born in Northern Finland in 1966 are recorded,
as well as a number of phenotype variables measured when the subjects were 31
years old.
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TABLE 1
Simulation results. (Target FDR level is 20%.) Estimated standard errors are in parentheses

Least-sq. + Selective Knockoft/ Knockoft/
BH inf. [32] split recycle
AR design FDR 17.14 (0.7) 6.27 (0.5) 7.52(0.5) 12.65 (0.8)
(p=0) Dir. FDR 17.48 (0.7) 6.36 (0.5) 7.63 (0.5) 12.84 (0.8)
Power 9.47 (0.2) 9.67 (0.3) 8.85(0.2) 11.08 (0.2)
Restr. power  43.42 (1.1) 56.34 (2.0) 51.58 (1.0) 62.60 (1.0)
AR design FDR 16.93 (0.8) 6.46 (0.5) 8.72 (0.6) 12.11 (0.7)
(p=0.25) Dir. FDR 17.31 (0.8) 6.51 (0.5) 8.84 (0.6) 12.27 (0.7)
Power 9.17 (0.2) 8.97 (0.4) 8.60 (0.2) 10.60 (0.2)
Restr. power 41.66 (0.9) 51.98 (2.1) 49.96 (1.3) 60.56 (0.9)
AR design FDR 19.42 (0.9) 7.71 (0.6) 9.62 (0.8) 13.51 (1.0)
(p=0.5) Dir. FDR 19.66 (0.9) 7.73 (0.6) 9.78 (0.8) 13.74 (1.0)
Power 7.81 (0.2) 8.75(0.3) 6.65 (0.3) 8.96 (0.3)
Restr. power  34.60 (1.0) 50.54 (1.9) 38.22 (1.7) 50.36 (1.4)
AR design FDR 29.99 (1.2) 13.72 (1.6) 14.15 (1.4) 18.25 (1.4)
(p=0.75) Dir. FDR 30.43 (1.2) 14.02 (1.6) 14.28 (1.4) 18.40 (1.4)
Power 5.21(0.2) 3.63(0.3) 3.43 (0.3) 4.99 (0.3)
Restr. power  20.10 (0.8) 21.00 (1.7) 19.38 (1.7) 27.90 (1.7)
GWAS design  FDR 17.97 (1.15) 8.62 (0.81) 12.28 (0.88) 15.05 (1.15)
Dir. FDR 18.36 (1.18) 9.04 (0.80) 12.56 (0.90) 15.41 (1.13)
Power 1.25 (0.05) 0.90 (0.05) 1.11 (0.04) 1.61 (0.05)

Restr. power  22.08 (0.99)  24.24(1.19)  26.76(1.03)  37.20 (0.95)

6.1. Methods. Data preprocessing. Before applying knockoffs, the data needs
to be prepared and our early preprocessing follows Sabatti et al. [28] and Jan-
son, Barber and Candes [17]. Genotype features from the original data set were
removed if they met any of the following conditions:

e Not a SNP (some features were, e.g., copy number variations),
Greater than 5% of values were missing,

All nonmissing values belonged to the same nucleotide,

SNP location could not be aligned to the genome,

A x? test rejected Hardy—Weinberg equilibrium at the 0.01% level,
On chromosome 23 (sex chromosome).

The remaining missing values were assumed to take the population frequency of
the major allele. In the end, we have a total of p = 328,934 SNP features.

For each phenotype, we performed further processing on the response vari-
ables. Triglycerides were log-transformed. C-reactive protein (CRP) was also log-
transformed after adding 0.002 mg/1 (half the detection limit) to any values that
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were recorded as zero. Subjects were excluded from the triglycerides, HDL choles-
terol and LDL cholesterol if they were on diabetic medication or had not fasted be-
fore blood collection (or if either value was missing), or if they were pregnant, or if
their respective phenotype measurement was more than three standard deviations
from the mean, after correcting for sex, oral contraceptive use and pregnancy. For
the four phenotypes of interest to us, namely, CRP, HDL, LDL and triglycerides,
the sample sizes are respectively 5290, 4700, 4682 and 4644. Due to space limita-
tion, we report our findings on HDL and LDL only.

Finally, in order to correct for population stratification, we regressed the re-
sponse and the features (SNPs) on the top five principal components of the design
matrix in exactly the same fashion as suggested in Price et al. [27].

Data processing with knockoffs. Now that we have a response/design pair (y, X),
we discuss the implementation of our full GWAS processing pipeline.

1. Data splitting with random rotations. In Section 4.1, we discuss splitting the
data (X, y) into two parts, X0, y(o)) and (X, y(l)), with the first part used for
screening and the second for inference; in that section, our discussion centers on
splitting by partitioning the n observations into two groups. In practice, for settings
such as GWAS where the design matrix X is naturally somewhat sparse, this may
be problematic as splitting the set of observations can dramatically increase condi-
tioning problems caused by sparsity. Here, we take a different approach to splitting.
Under the Gaussian linear model, since the i.i.d. Gaussian noise term € € R” has a
distribution that is unchanged by rotation, we can rotate the data with a randomly
chosen orthonormal matrix U € R"*", to obtain (X', y’) = (UX, Uy). The original
linear model is preserved; as long as the rotation was chosen independently of the
data, our model is now

y/ — X/ ﬂ + 6/ ,
where €’ = Ue ~ N(0, 021,,). (Note that B is unchanged from the original model.)
After rotation, the new design matrix X’ is now dense, and we are able to split
the rotated data into a set of ng data points (for screening) and n; = n — ng data
points (for inference) without matrix conditioning issues. From this point on, the
partitioned data sets XO, y(o)) and (X, y(l)) are assumed to be taken from the
rotated data, without further mention. We take no = 1900.

2. Feature prescreening with correlations. The original number of features
(SNPs) is 328,934, which is a bit large to easily run the Lasso for feature screen-
ing. As suggested in [39] (where the screen-and-clean methodology is applied to
GWAS), we begin with a prescreening step that looks only at marginal correla-
tions: using the first part of the data X0, y(o)), we select the set §pre C [p] of

26,300 features with the largest magnitude correlations |X§.O) TyOy,
3. Feature screening with Lasso. We then run the Lasso on (X%O ) ,¥©) using
pre

the 26,300 prescreened features as covariates, and define the screened set of fea-
tures Sp to be the first n1/4 features, which enter the Lasso path on this reduced
data set.
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4. Knockoff filter. Next we bring back the held out part of the data, (XD, y(D),
We apply the knockoff filter with recycling as defined in Section 4.1, with statistics
determined by the sign-restricted Lasso introduced in Section 4.1.2. Specifically,,
we fit the sign-restricted Lasso path

min —Hy X3, Xs,Ib[3+ AlIbl;
beR?lSo\

:on(0)
s.t. bj-sign;” >0
~ L qion®
bji3i - sign;” =0

and set W; as in (9). (That is, we record the largest A such that X; or X j enters
the Lasso path, and set W; = +A if X; enters first, and W; = —A otherwise.)
Throughout, we use target FDR level g = 0.2.

5. Repeat. We then repeat all these steps, with a new random rotation matrix
U e R™"_ for a total of 10 repetitions. In particular, we are interested in examining
whether any selected SNPs appear consistently across these 10 repetitions of our
method.

6.2. Results. Our results for the LDL phenotype are displayed in Figure 1.
(The full details of the results, labeled according to each individual SNP discovered
in the analysis, are reported in the Supplementary Material [2].) In total, over the
10 trials (the random splits of the data), 44 different SNPs are selected. However,
as nearby SNPs are extremely correlated, we consider SNPs whose positions are
within 10° base pairs of each other, to be in the same “region”; at this level, in total
over the 10 trials, there are 29 distinct regions discovered. In Figure 1, we show, for
each region, the selection frequency of any SNP in that region, that is, the number
of trials out of 10 for which at least one SNP in this region was selected (we
also display the selection frequency for the individual SNPs). We also show any

LDL

s Boundary between chromosomes
= Appears in meta-analysis (Willer et al)

Does not appear in meta- analysls (Willer et al)
Appears in Sabatti et al, but not in meta-analysis
Multiple SNPs discovered in this region ‘ ‘

T T T T \ T T T T
4 9 10 11 12 13 14 15 16 17 18 19202122
Locanon on genome (Iabeled by chromosome number)

# times SNP in this region is selected

N
w

FI1G. 1. Results of GWAS experiment for the LDL phenotype. The heights of the lines show the
number of trials (out of 10 trials) for which at least one SNP in this region was selected; the line
type shows whether this same region was identified in [38] and/or [28]. Regions where more than one
SNP was selected (across the 10 trials) are marked with a “*”. (See Section 6.2 for details.)



A KNOCKOFF FILTER FOR HIGH-DIMENSIONAL SELECTIVE INFERENCE 2531
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FIG. 2. Results of GWAS experiment for the HDL phenotype (same interpretation as in Figure 1).

SNPs in the same region (defined again as a distance of < 10° base pairs) which
were identified as associated with LDL in the meta-analysis of Willer et al. [38];
this meta-analysis works with an extremely large sample size and, therefore, can
be viewed as providing a form of “ground truth.” Comparing against the findings
of this meta-analysis, we can try to estimate the FDR of our method as follows:
for each trial, we count each selected SNP as a discovery, and label it as a false
discovery if there is no SNP in the meta-analysis from the same region. We then
average this false discovery proportion over the 10 trials, and find an estimated
FDR of 32.61%. We also compare against the findings of Sabatti et al. [28], which
analyzes the same data set that we use; this comparison therefore should not be
viewed as independent validation, but rather as checking that our analysis agrees
with existing work on the same data set.

We note that since our analysis is run treating each SNP as an individual predic-
tor, the FDR control guarantee is at the level of the SNPs rather than the regions;
that is, our method ensures bounded FDR among the list of 44 discovered SNPs,
but not necessarily among the list of 29 discovered regions. In practice, it may be
preferable to group the SNPs into regions ahead of time and run the knockoff filter
over the list of feature groups (see, e.g., [10]).

Turning to the HDL phenotype, our results are shown in Figure 2 (and reported
in full detail in the Supplementary Material [2]). There are 13 SNPs discovered at
least once in the 10 trials; once grouped into regions, there are 10 distinct regions.
Again estimating the FDR by comparing against Willer et al. [38]’s meta-analysis,
we estimate an FDR of 4.29%. This low number of discoveries, and perhaps con-
servative FDR, can probably be attributed to fact that this data set has a relatively
small sample size, and fairly weak signal; we would not expect a large number of
discoveries in this setting.

7. Summary. We have discussed a “screen + knockoff” approach to con-
trolled variable selection, which should appear very natural to practitioners; in
addition, we develop the “recycling” technique to reuse data rather than discarding
the data used for the screening step, thus improving power. A natural question is
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thus what sort of inference properties would such a procedure offer? By focusing
on Type I 4+ Type S errors, we have shown that screen + knockoff is guaranteed
to have a form of reproducibility in that the directional FDR is rigorously under
control. This result makes no assumption on the design matrix nor on the values of
the regression coefficients, and holds in finite samples; our contribution is, there-
fore, very different in spirit from most of the results published in the literature on
high-dimensional inference (the work of Taylor and colleagues referenced earlier
being a notable exception), and employs mathematical arguments centered in mar-
tingale theory which are naturally also very different from the techniques used in
the related literature.

APPENDIX: PROOFS

A.1. A general form of directional FDR control. Our results, namely, IEG'
orems 1-3, are all special cases of the general statement below. Throughout, sign;
is defined as in (15), i.e. sTg\nj = sign((X; — Xj)Ty). Also, we shall say that a
positive semidefinite matrix M € R?>P*2P satisfies the pairwise exchangeability
condition f Mjr=M;jip=Mj px=Mjypripforall j#£ke{l,..., p}and
Mj,j :Mj+p,j+p forallje {1,..., p}.

THEOREM 4. Suppose y ~ N (u, ©®) for some mean vector p € R" and some
covariance ® € R™"_Let X, X € R"*? pe any fixed matrices such that [X X]T
0. X X] obeys the pairwise exchangeability condition. Let W = (Wy, ..., p)
be any statistic satisfying the sufficiency and antisymmetry properties (7) and (3).
Finally, let V; = Il{si/g\nj # sign((X; — Xj)T[L} be the indicator of a sign error on
feature j. Then the knockoff+ method controls a directional FDR defined as

|{J€SandV _1}|]
1\/|S| -

If the knockoff method is used instead, then a modified directional FDR is con-
trolled:

FDRgy;r = IE[

S dVi=1
mFDRdir:E[me an }|}_q

NEX=

We prove this theorem in the Supplementary Material. The rest of this section
shows how all of our results follow as special cases.

Proof of Theorem 1. This is straightforward since the result is obtained by
taking u = XB and © = oI, in the distribution of y, and noting that sign((X; —
X, )T p) = sign(g;) for all j such that X; # X (We ignore the trivial case where
sj =0 implying X; = =X; j» for in this case we would get W; = 0 and thus feature
j could never be selected.)
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The more general form of Theorem 4 also allows us to consider other settings,
such as those involving variable screening in high dimensions. For instance, our
next proof concerns the testing of regression coefficients in the full model under
the sure screening property.

Proof of Theorem 2. We prove directional FDR control by conditioning on
y©. For any y such that the event £ holds, we will show that for the knockoff
procedure,

(24) E[mFDRg; |y ?] - 1¢ <,
and for the knockoff+,
(25) E[FDRg; [y ?]- 1¢ < q.

From this point on we treat y© as fixed. The conditional distribution of the
response y is given by

© 1o o
20 o131~ (| g |- o oo, )

If y© is such that the event £ occurs, then we can simplify this to

(y 1y )~ N, ©),

0

y 0 0
27 where and © = ,
27) = [Xa)ﬂ&)] [O 021n1:|

since B; =0 for all j & So when & occurs. Define E% ) = X% )TX% ). Recall that
X%())) = X%? by (17), and that i% satisfies
(1) Q) :
~ ~ E Y57 — diag{s}
OO X = S0
(28) [XS() XSo ] [XS() XS() 1= |:2(1) diag{s} D
So
for some vector s > 0, by the knockoff construction. We then see that
XA 1T . X 2w M1 T gD
[XSO XSO] G[XS() XSO] =0 [X§0 XS:O ] [X§0 X§0 ],
is a pairwise exchangeable matrix. At this point, we have satisfied the conditions
of Theorem 4. Now what is a sign error in Theorem 4? We calculate that for any
J € S0,
3 DI 1 1
1 1 1
=Y XD — )T ()-ﬁk=Sj-ﬂj,

kGS()
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where the first equality holds on the event £ (i.e. By = 0 for k & So), and the
third equality uses the Gram matrix condition (28). Hence, since s; > 0 whenever
X; # )Nij, an error s@j # sign((X; — )NKJ)TM) is the same as si/gnj # sign(B;),
which completes the proof.

We now move on to our result concerning regression coefficients from the re-
duced model.

Proof of Theorem 3. This last proof is more subtle and for this, we treat X as
random in addition to y, but will condition on X© and on the screened features

X%} ) and knockoffs )Nig) ) as well as on y©. By the assumption that the rows of X

are i.i.d. draws from A (0, W), we can write
XY =X r+G-AY2,
S5 So
where I' and A are the fixed unknown matrices given by
— (W~ ~)"! P
I'= (\I’So,So) ) \I’S(),SS
and the Schur complement
SO PN - 1 PO
A=Vg 5 — W5 - (Y5 5) Y55
and where G € R"1 (=150 has i i.d. standard normal entries drawn independently
from (X©, y(o)) and from (Xgo)’ Xgo)’ €1). Then
1
vV =XUB+ eV =X (B5,+TBs) +G- A/ 2B5 +e€V,
and note that
ﬂ§0 + rﬂEg — ﬂpanial

by definition of the expected partial regression coefficients. This is because from
(20), we get that

ial Q) Q' D 1w, %0 (O
grartial _ X5, T(X§O Bs, + E[X§6 Bs: X5, ; X0 yO)
—xDixW g Dre-
=Xg, (X5, B3, + X5, Ths)
= B3, + TB5;:.

where X%l )T is a short hand for (X(A1 x4 ))_1X(A1)T. Therefore,
0 So So So

©)

(v 1 X©, y© xD KDy A N B L

y YRGS, Xg)ﬂparnal 10 (@-Aﬂ%—i-d )In] )
0 0

We are now in the same setting as in the proof of Theorem 2 (see (26)), except
with P2l in place of B and with a new variance level that has increased due to
the randomness in the missed signals. The remainder of the proof thus proceeds
identically.
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SUPPLEMENTARY MATERIAL

Supplement to “A knockoff filter for high-dimensional selective inference”
(DOI: 10.1214/18-A0S1755SUPP; .pdf). We provide details for the proofs of sev-
eral theoretical results in the paper, and report detailed results on the GWAS real
data experiment.
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