
The Annals of Statistics
2019, Vol. 47, No. 5, 2440–2471
https://doi.org/10.1214/18-AOS1753
© Institute of Mathematical Statistics, 2019

ISOTONIC REGRESSION IN GENERAL DIMENSIONS1

BY QIYANG HAN∗,2, TENGYAO WANG†,3, SABYASACHI CHATTERJEE‡,§ AND

RICHARD J. SAMWORTH†,3

University of Washington∗, University of Cambridge†, University of Chicago‡

and University of Illinois at Urbana-Champaign§

We study the least squares regression function estimator over the class
of real-valued functions on [0,1]d that are increasing in each coordinate. For
uniformly bounded signals and with a fixed, cubic lattice design, we estab-
lish that the estimator achieves the minimax rate of order n−min{2/(d+2),1/d}
in the empirical L2 loss, up to polylogarithmic factors. Further, we prove a
sharp oracle inequality, which reveals in particular that when the true regres-
sion function is piecewise constant on k hyperrectangles, the least squares
estimator enjoys a faster, adaptive rate of convergence of (k/n)min(1,2/d),
again up to polylogarithmic factors. Previous results are confined to the case
d ≤ 2. Finally, we establish corresponding bounds (which are new even in
the case d = 2) in the more challenging random design setting. There are two
surprising features of these results: first, they demonstrate that it is possible
for a global empirical risk minimisation procedure to be rate optimal up to
polylogarithmic factors even when the corresponding entropy integral for the
function class diverges rapidly; second, they indicate that the adaptation rate
for shape-constrained estimators can be strictly worse than the parametric
rate.

1. Introduction. Isotonic regression is perhaps the simplest form of shape-
constrained estimation problem, and has wide applications in a number of fields.
For instance, in medicine, the expression of a leukaemia antigen has been mod-
elled as a monotone function of white blood cell count and DNA index (Schell and
Singh (1997)), while in education, isotonic regression has been used to investigate
the dependence of college grade point average on high school ranking and stan-
dardised test results (Dykstra and Robertson (1982)). A further application area for
isotonic regression approaches has recently emerged in genetic heritability stud-
ies, where it is often generally accepted that phenotypes such as height, fitness or
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disease depend in a monotone way on genetic factors (Luss, Rosset and Shahar
(2012), Mani et al. (2008), Roth, Lipshitz and Andrews (2009)). In these latter
contexts, as an initial simplifying structure, it is natural to ignore potential genetic
interactions and consider additive isotonic regression models; however, these have
been found to be inadequate in several instances (Eichler et al. (2010), Goldstein
(2009), Shao et al. (2008)). Alternative simplifying interaction structures have also
been explored, including those based on products (Elena and Lenski (1997)), log-
arithms (Sanjuán and Elena (2006)) and minima (Tong et al. (2001)), but the form
of genetic interaction between factors is not always clear and may vary between
phenotypes (Luss, Rosset and Shahar (2012), Mani et al. (2008)).

Motivated by these considerations, we note that a general class of isotonic func-
tions, which includes all of the above structures as special cases, is the class of
block increasing functions

Fd := {
f : [0,1]d →R, f (x1, . . . , xd)≤ f

(
x′1, . . . , x′d

)
when xj ≤ x′j for j = 1, . . . , d

}
.

In this paper, we suppose that we observe data (X1, Y1), . . . , (Xn,Yn), with n≥ 2,
satisfying

(1) Yi = f0(Xi)+ εi, i = 1, . . . , n,

where f0 : [0,1]d → R is Borel measurable, ε1, . . . , εn are independent N(0,1)

noise, and the covariates X1, . . . ,Xn, which take values in the set [0,1]d ,
can either be fixed or random (independent of ε1, . . . , εn). Our goal is to
study the performance of the least squares isotonic regression estimator f̂n ∈
argminf∈Fd

∑n
i=1{Yi − f (Xi)}2 in terms of its empirical risk

(2) Rn(f̂n, f0) := E

[
1

n

n∑
i=1

{
f̂n(Xi)− f0(Xi)

}2

]
.

Note that this loss function only considers the errors made at the design points
X1, . . . ,Xn, and these points naturally induce a directed acyclic graph GX =
(V (GX),E(GX)) with V (GX) = {1, . . . , n} and E(GX) = {(i, i′) : (Xi)j ≤
(Xi′)j∀j = 1, . . . , d}. It is therefore natural to restate the problem in terms of
isotonic vector estimation on directed acyclic graphs. Recall that given a di-
rected acyclic graph G = (V (G),E(G)), we may define a partially ordered set
(V (G),≤), where u≤ v if and only if there exists a directed path from u to v. We
define the class of isotonic vectors on G by

M(G) := {
θ ∈RV (G) : θu ≤ θv for all u≤ v

}
.

Hence, for a signal vector θ0 = ((θ0)i)
n
i=1 := (f0(Xi))

n
i=1 ∈ M(GX), the least

squares estimator θ̂n = ((θ̂n)i)
n
i=1 := (f̂n(Xi))

n
i=1 can be seen as the projection of

(Yi)
n
i=1 onto the polyhedral convex cone M(GX). Such a geometric interpretation

means that least squares estimators for isotonic regression, in general dimensions
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or on generic directed acyclic graphs, can be efficiently computed using convex op-
timisation algorithms [see, e.g., Dykstra (1983), Kyng, Rao and Sachdeva (2015),
Stout (2015)].

In the special case where d = 1, model (1) reduces to the univariate isotonic
regression problem that has a long history (e.g., Brunk (1955), van Eeden (1958),
Barlow et al. (1972), van de Geer (1990), van de Geer (1993), Donoho (1991),
Birgé and Massart (1993), Meyer and Woodroofe (2000), Durot (2007, 2008),
Yang and Barber (2017)). See Groeneboom and Jongbloed (2014) for a general in-
troduction. Since the risk only depends on the ordering of the design points in the
univariate case, fixed and random designs are equivalent for d = 1 under the empir-
ical risk function (2). It is customary to write Rn(θ̂n, θ0) in place of Rn(f̂n, f0) for
model (1) with fixed design points. When (θ0)1 ≤ · · · ≤ (θ0)n (i.e., X1 ≤ · · · ≤Xn),
Zhang (2002) proved that for d = 1 there exists a universal constant C > 0 such
that

Rn(θ̂n, θ0)≤ C

{(
(θ0)n − (θ0)1

n

)2/3
+ logn

n

}
,

which shows in particular that the risk of the least squares estimator is no worse
than O(n−2/3) for signals θ0 of bounded uniform norm. In recent years, there has
been considerable interest and progress in studying the automatic rate-adaptation
phenomenon of shape-constrained estimators. This line of study was pioneered
by Zhang (2002) in the context of univariate isotonic regression, followed by
Chatterjee, Guntuboyina and Sen (2015) and most recently Bellec (2018), who
proved that

(3) Rn(θ̂n, θ0)≤ inf
θ∈M(GX)

{‖θ − θ0‖2
2

n
+ k(θ)

n
log

(
en

k(θ)

)}
,

where k(θ) is the number of constant pieces in the isotonic vector θ . The inequal-
ity (3) is often called a sharp oracle inequality, with the sharpness referring to
the fact that the approximation error term n−1‖θ − θ0‖2

2 has leading constant 1.
The bound (3) shows nearly parametric adaptation of the least squares estima-
tor in univariate isotonic regression when the underlying signal has a bounded
number of constant pieces. Other examples of adaptation in univariate shape-
constrained problems include the maximum likelihood estimator of a log-concave
density (Kim, Guntuboyina and Samworth (2018)), and the least squares estimator
in unimodal regression (Chatterjee and Lafferty (2017)).

Much less is known about the rate of convergence of the least squares esti-
mator in the model (1), or indeed the adaptation phenomenon in shape-restricted
problems more generally, in multivariate settings. The only work of which we
are aware in the isotonic regression case is Chatterjee, Guntuboyina and Sen
(2018), which deals with the fixed, lattice design case when d = 2. For a gen-
eral dimension d , and for n1, . . . , nd ∈ N, we define this lattice by Ld,n1,...,nd

:=∏d
j=1{1/nj ,2/nj , . . . ,1}; when n1 = · · · = nd = n1/d for some n ∈ N, we also
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write Ld,n := Ld,n1,...,nd
as shorthand. When {X1, . . . ,Xn} = L2,n1,n2 , Chatterjee,

Guntuboyina and Sen (2018) showed that there exists a universal constant C > 0
such that

Rn(θ̂n, θ0)≤ C

{
((θ0)n1,n2 − (θ0)1,1) log4 n

n1/2 + log8 n

n

}
,

with a corresponding minimax lower bound of order n−1/2 over classes of uni-
formly bounded signals. They also provided a sharp oracle inequality of the form

(4) Rn(θ̂n, θ0)≤ inf
θ∈M(L2,n1,n2 )

(‖θ − θ0‖2
2

n
+ Ck(θ) log8 n

n

)
,

where k(θ) is the minimal number of rectangular blocks into which L2,n1,n2 may
be partitioned such that θ is constant on each rectangular block.

A separate line of work has generalised the univariate isotonic regression prob-
lem to multivariate settings by assuming an additive structure [see, e.g., Bacchetti
(1989), Morton-Jones et al. (2000), Mammen and Yu (2007), Chen and Samworth
(2016)]. In the simplest setting, these works investigate the regression problem (1),
where the signal f0 belongs to

Fadd
d :=

{
f ∈Fd : f (x1, . . . , xd)=

d∑
j=1

fj (xj ), fj ∈F1,‖fj‖∞ ≤ 1

}
.

The additive structure greatly reduces the complexity of the class; indeed, it can be
shown that the least squares estimator over Fadd

d attains the univariate risk n−2/3,
up to multiplicative constants depending on d (e.g., van de Geer (2000), Theo-
rem 9.1).

The main contribution of this paper is to provide risk bounds for the isotonic
least squares estimator when d ≥ 3, both from a worst-case perspective and an
adaptation point of view. Specifically, we show that in the fixed lattice design case,
the least squares estimator satisfies

(5) sup
θ0∈M(Ld,n),‖θ0‖∞≤1

Rn(θ̂n, θ0)≤ Cn−1/d log4 n,

for some universal constant C > 0. This rate turns out to be the minimax risk up to
polylogarithmic factors in this problem. Furthermore, we establish a sharp oracle
inequality: there exists a universal constant C > 0 such that for every θ0 ∈RLd,n ,

(6) Rn(θ̂n, θ0)≤ inf
θ∈M(Ld,n)

{‖θ − θ0‖2
2

n
+C

(
k(θ)

n

)2/d

log8
(

en

k(θ)

)}
,

where k(θ) is the number of constant hyperrectangular pieces in θ . This reveals
an adaptation rate of nearly (k/n)2/d for signals that are close to an element of
M(Ld,n) that has at most k hyperrectangular blocks. A corresponding lower bound
is also provided, showing that the least squares estimator cannot adapt faster than
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TABLE 1
Bounds∗ for δ(M(Ld,n))

d Upper bound Lower bound

1
∑n

i=1 i−1† ∑n
i=1 i−1†

2 � log8 n‡ � log2 n

≥ 3 � n1−2/d log8 n �d n1−2/d

∗Entries without a reference are proved in this paper. †Amelunxen et al. (2014). ‡Chatterjee, Gun-
tuboyina and Sen (2018).

the n−2/d rate implied by (6) even for constant signal vectors. Some intuition for
this rate is provided by the notion of statistical dimension, which can be thought
of as a measure of complexity of the underlying parameter space; see (8) below for
a formal definition. A key step in the proof of (6) is to observe that for d ≥ 2, the
statistical dimension of M(Ld,n) is of order n1−2/d up to polylogarithmic factors;
see Table 1. The adaptation rate in (6), at least in the constant signal case, can
therefore be understood as the ratio of the statistical dimension to the sample size.
This reasoning is developed and discussed in greater detail at the end of Section 2.

We further demonstrate that analogues of the worst-case bounds and oracle in-
equalities (5) and (6), with slightly different polylogarithmic exponents, remain
valid for random design points X1, . . . ,Xn sampled independently from a distri-
bution P on [0,1]d with a Lebesgue density bounded away from 0 and ∞. Such
random design settings arguably occur more frequently in practice (cf. the exam-
ples given at the beginning of this Introduction) and are particularly natural in high
dimensions, where sampling design points on a fixed lattice is rarely feasible or
even desirable. Nevertheless, we are not aware of any previous works on isotonic
regression with random design even for d = 2; this is undoubtedly due to the in-
creased technical challenges (described in detail after the statement of Theorem 5
in Section 3) that arise in handling the relevant empirical processes.

In addition to the risk Rn(f̂n, f0) in (2), for random designs we also study the
natural population squared risk

R(f̂n, f0) := E‖f̂n − f0‖2
L2(P ) = E

[{
f̂n(X)− f0(X)

}2]
,

where (X,Y )
d= (X1, Y1) and is independent of (X1, Y1), . . . , (Xn,Yn). We note

that the quantity E[{Y − f̂n(X)}2], often referred to as the generalisation error
for squared error loss in the machine learning literature, is simply equal to 1 +
R(f̂n, f0) in our context. Both our upper and lower bounds for the R(f̂n, f0) are
broadly similar to the Rn(f̂n, f0) setting, though the proofs are very different (and
quite intricate), and we incur an additional multiplicative factor of order logn for
the approximation error term in the oracle inequality.

Our results in both the fixed and random design settings are surprising in par-
ticular with regard to the following two aspects:
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1. The negative results of Birgé and Massart (1993) have spawned a heuristic
belief that one should not use global empirical risk minimisation procedures4 when
the entropy integral for the corresponding function class diverges [e.g., van de Geer
(2000), pages 121–122, Rakhlin, Sridharan and Tsybakov (2017)]. It is therefore of
particular interest to see that in our isotonic regression function setting, the global
least squares estimator is still rate optimal (up to polylogarithmic factors). See also
the discussion after Corollary 1.

2. Sharp adaptive behaviour for shape-constrained estimators has previously
only been shown when the adaptive rate is nearly parametric [see, e.g., Bellec
(2018), Chatterjee, Guntuboyina and Sen (2015), Guntuboyina and Sen (2015),
Kim, Guntuboyina and Samworth (2018)]. On the other hand, our results here
show that the least squares estimator in the d-dimensional isotonic regression prob-
lem necessarily adapts at a strictly nonparametric rate. Clearly, the minimax op-
timal rate for constant functions is parametric. Hence, the least squares estimator
in this problem adapts at a strictly suboptimal rate while at the same time being
nearly rate optimal from a worst-case perspective.

In both the fixed lattice design and the more challenging random design cases, our
analyses are based on a novel combination of techniques from empirical process
theory, convex geometry and combinatorics. We hope these methods can serve as
a useful starting point towards understanding the behaviour of estimators in other
multivariate shape-restricted models.

The rest of the paper is organised as follows. In Section 2, we state the main
results for the fixed lattice design model. Section 3 describes corresponding results
in the random design case. Proofs of all main theoretical results are contained in
Sections 4 and 5, whereas proofs of ancillary results are deferred until Appendix B
in the Supplementary Material (Han et al. (2019)).

1.1. Notation. For a real-valued measurable function f defined on a probabil-
ity space (X ,A,P ) and for p ∈ [1,∞), we let ‖f ‖Lp(P ) := (P |f |p)1/p denote the
usual Lp(P )-norm, and write ‖f ‖∞ := supx∈X |f (x)|. Moreover, for any Borel
measurable R⊆X , we write ‖f ‖Lp(P ;R) := (

∫
R |f |p dP)1/p . For r ≥ 0, we write

Bp(r,P ) := {f : X → R,‖f ‖Lp(P ) ≤ r} and B∞(r) := {f : X → R,‖f ‖∞ ≤ r}.
We will abuse notation slightly and also write Bp(r) := {v ∈ Rn : ‖v‖p ≤ r} for
p ∈ [1,∞]. The Euclidean inner product on Rd is denoted by 〈·, ·〉. For x, y ∈Rd ,
we write x � y if xj ≤ yj for all j = 1, . . . , d .

For ε > 0, the ε-covering number of a (semi-)normed space (F,‖ · ‖), denoted
N(ε,F,‖ · ‖), is the smallest number of closed ε-balls whose union covers F .
The ε-bracketing number, denoted N[·](ε,F,‖ · ‖), is the smallest number of ε-
brackets, of the form [l, u] := {f ∈ F : l ≤ f ≤ u}, such that ‖u − l‖ ≤ ε, and

4The term “global” refers here to procedures that involve minimisation over the entire function
class, as opposed to only over a sieve; cf. van de Geer (2000).
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whose union covers F . The metric/bracketing entropy is the logarithm of the cov-
ering/bracketing number.

Throughout the article, ε1, . . . , εn and {εw :w ∈ Ld,n1,...,nd
} denote independent

standard normal random variables and ξ1, . . . , ξn denote independent Rademacher
random variables, both independent of all other random variables. For two prob-
ability measures P and Q defined on the same measurable space (X ,A), we
write dTV(P,Q) := supA∈A |P(A)−Q(A)| for their total variation distance, and
d2

KL(P,Q) := ∫
X log dP

dQ
dP for their Kullback–Leibler divergence.

We use c,C to denote generic universal positive constants and use cx,Cx to
denote generic positive constants that depend only on x. Exact numeric values
of these constants may change from line to line unless otherwise specified. Also,
a �x b and a �x b mean a ≤ Cxb and a ≥ cxb, respectively, and a �x b means
a �x b and a �x b (a � b means a ≤ Cb for some universal constant C > 0).
Finally, we define log+(x) := log(x ∨ e).

2. Fixed lattice design. In this section, we focus on the model (1) in the case
where the set of design points forms a finite cubic lattice Ld,n, defined in the
Introduction. In particular, we will assume in this section that n = nd

1 for some
n1 ∈ N. We use the same notation Ld,n both for the set of points and the directed
acyclic graph on these points with edge structure arising from the natural partial
ordering induced by �. Thus, in the case d = 1, the graph L1,n is simply a directed
path, and this is the classical univariate isotonic regression setting. The case d = 2
is studied in detail in Chatterjee, Guntuboyina and Sen (2018). Our main interest
lies in the cases d ≥ 3.

2.1. Worst-case rate of the least squares estimator. Our first result provides
an upper bound on the risk of the least squares estimator θ̂n = θ̂n(Y1, . . . , Yn) of
θ0 ∈M(Ld,n).

THEOREM 1. Let d ≥ 2. There exists a universal constant C > 0 such that

sup
θ0∈M(Ld,n)∩B∞(1)

Rn(θ̂n, θ0)≤ Cn−1/d log4 n.

Theorem 1 reveals that, up to a polylogarithmic factor, the empirical risk of
the least squares estimator converges to zero at rate n−1/d . The upper bound in
Theorem 1 is matched, up to polylogarithmic factors, by the following minimax
lower bound.

PROPOSITION 1. There exists a constant cd > 0, depending only on d , such
that for d ≥ 2,

inf
θ̃n

sup
θ0∈M(Ld,n)∩B∞(1)

Rn(θ̃n, θ0)≥ cdn−1/d,

where the infimum is taken over all estimators θ̃n = θ̃n(Y1, . . . , Yn) of θ0.
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Recall that, given a directed acyclic graph G = (V ,E), a chain in G of cardi-
nality L is a directed path of the form (i1, . . . , iL), where (ij , ij+1) ∈ E for each
j = 1, . . . ,L − 1; an antichain in G of cardinality L is a subset {i1, . . . , iL} of
V such that for each distinct j, j ′ ∈ {1, . . . ,L} there is no chain containing both
ij and ij ′ . A key observation in the proof of Proposition 1 is that Ld,n contains a
large antichain of size L �d n1−1/d . As design points in the antichain are mutu-
ally incomparable, an intuitive explanation for the lower bound in Proposition 1
comes from the fact that we have L unconstrained parameters in [−1,1] to esti-
mate from n observations, which translates to a rate at least of order L/n. From
Theorem 1 and Proposition 1, together with existing results mentioned in the Intro-
duction for the case d = 1, we see that the worst-case risk n−min{2/(d+2),1/d} (up
to polylogarithmic factors) of the least squares estimator exhibits different rates
of convergence in dimension d = 1 and dimensions d ≥ 3, with d = 2 being a
transitional case. From the proof of Proposition 1, we see that it is the competi-
tion between the cardinality of the maximum chain in GX and the cardinality of
the maximum antichain in GX that explains the different rates. Similar transitional
behaviour was recently observed by Kim and Samworth (2016) in the context of
log-concave density estimation, though there it is the tension between estimating
the density in the interior of its support and estimating the support itself that drives
the transition.

The two results above can readily be translated into bounds for the rate of con-
vergence for estimation of a block monotonic function with a fixed lattice de-
sign. Recall that Fd is the class of block increasing functions. Suppose that for
some f0 ∈ Fd , and at each x ∈ Ld,n, we observe Y(x) ∼ N(f0(x),1) indepen-
dently. Define Pn := n−1∑

x∈Ld,n
δx and let A denote the set of hypercubes of

the form A = ∏d
j=1 Aj , where either Aj = [0, 1

n1
] or Aj = (

ij−1
n1

,
ij
n1
] for some

ij ∈ {2, . . . , n1}. Now let H denote the set of functions f ∈ Fd that are piecewise
constant on each A ∈ A, and set f̂n := argminf∈H

∑
x∈Ld,n

{Y(x) − f (x)}2. The
following is a fairly straightforward corollary of Theorem 1 and Proposition 1.

COROLLARY 1. There exist cd,Cd > 0, depending only on d , such that for
Q= Pn or Lebesgue measure on [0,1]d , we have

cdn−1/d ≤ inf
f̃n

sup
f0∈Fd∩B∞(1)

E‖f̃n − f0‖2
L2(Q)

≤ sup
f0∈Fd∩B∞(1)

E‖f̂n − f0‖2
L2(Q) ≤ Cdn−1/d log4 n,

where the infimum is over all measurable functions of {Y(x) : x ∈ Ld,n}.
This corollary is surprising for the following reason. Gao and Wellner (2007),

Theorem 1.1, proved that when d ≥ 3 and Q denotes Lebesgue measure on [0,1]d ,

(7) logN
(
ε,Fd ∩B∞(1),‖ · ‖L2(Q)

)�d ε−2(d−1).



2448 HAN, WANG, CHATTERJEE AND SAMWORTH

In particular, for d ≥ 3, the classes Fd ∩ B∞(1) are massive in the sense that the
entropy integral

∫ 1
δ log1/2 N(ε,Fd ∩B∞(1),‖·‖L2(Q))dε diverges at a polynomial

rate in δ−1 as δ ↘ 0. To the best of our knowledge, this is the first example of
a setting where a global empirical risk minimisation procedure has been proved
to attain (nearly) the minimax rate of convergence over such massive parameter
spaces.

2.2. Sharp oracle inequality. In this subsection, we consider the adaptation
behaviour of the least squares estimator in dimensions d ≥ 2 [again, the d = 2
case is covered in Chatterjee, Guntuboyina and Sen (2018)]. Our main result
is the sharp oracle inequality in Theorem 2 below. We call a set in Rd a hy-
perrectangle if it is of the form

∏d
j=1 Ij where Ij ⊆ R is an interval for each

j = 1, . . . , d . If A =∏d
j=1[aj , bj ] where |{j : bj = aj }| ≥ d − 2, then we say A

is a two-dimensional sheet. A two-dimensional sheet is therefore a special type
of hyperrectangle whose intrinsic dimension is at most two. For θ ∈M(Ld,n), let
K(θ) denote the smallest K such that Ld,n ⊆⊔K

�=1 A�, where A1, . . . ,AK are dis-
joint two-dimensional sheets and the restricted vector θA�∩Ld,n

is constant for each
�= 1, . . . ,K .

THEOREM 2. Let d ≥ 2. There exists a universal constant C > 0 such that for
every θ0 ∈RLd,n ,

Rn(θ̂n, θ0)≤ inf
θ∈M(Ld,n)

{‖θ − θ0‖2
2

n
+ CK(θ)

n
log8+

(
n

K(θ)

)}
.

We remark that Theorem 2 does not imply (nearly) parametric adaptation when
d ≥ 3. This is because even when θ0 is constant on Ld,n for every n, we have
K(θ0) = n(d−2)/d →∞ as n →∞. The following corollary of Theorem 2 gives
an alternative (weaker) form of oracle inequality that offers easier comparison to
lower dimensional results given in (3) and (4). Let M(k)(Ld,n) be the collection of
all θ ∈M(Ld,n) such that there exist disjoint hyperrectangles R1, . . . ,Rk with the
properties that Ld,n ⊆⊔k

�=1 R� and that for each �, the restricted vector θR�∩Ld,n

is constant.

THEOREM 3. Let d ≥ 2. There exists a universal constant C > 0 such that for
every θ0 ∈RLd,n ,

Rn(θ̂n, θ0)≤ inf
k∈N

{
inf

θ∈M(k)(Ld,n)

‖θ − θ0‖2
2

n
+C

(
k

n

)2/d

log8+
(

n

k

)}
.

It is important to note that both Theorems 2 and 3 allow for model misspec-
ification, as it is not assumed that θ0 ∈ M(Ld,n). For signal vectors θ0 that are
piecewise constant on k hyperrectangles, Theorem 3 provides an upper bound of
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the risk of order (k/n)2/d up to polylogarithmic factors. The following proposition
shows that even for a constant signal vector, the adaptation rate of n−2/d given in
Theorem 3 cannot be improved.

PROPOSITION 2. Let d ≥ 2. There exists a constant cd > 0, depending only
on d , such that for any θ0 ∈M(1)(Ld,n),

Rn(θ̂n, θ0)≥ cd

{
n−1 log2 n if d = 2,

n−2/d if d ≥ 3.

The case d = 2 of this result is new, and reveals both a difference with the uni-
variate situation, where the adaptation rate is of order n−1 logn (Bellec (2018)),
and that a polylogarithmic penalty relative to the parametric rate is unavoidable for
the least squares estimator. Moreover, we see from Proposition 2 that for d ≥ 3,
although the least squares estimator achieves a faster rate of convergence than the
worst-case bound in Theorem 1 on constant signal vectors, the rate is not para-
metric, as would have been the case for a minimax optimal estimator over the set
of constant vectors. This is in stark contrast to the nearly parametric adaptation
results established in (3) and (4) for dimensions d ≤ 2.

Another interesting aspect of these results relates to the notion of statistical
dimension, defined for an arbitrary cone C in Rn by5

(8) δ(C) :=
∫
Rn

∥∥�C(x)
∥∥2

2(2π)−n/2e−‖x‖2
2/2 dx,

where �C is the projection onto the set C (Amelunxen et al. (2014)). The proofs of
Theorem 3 and Proposition 2 reveal a type of phase transition phenomenon for the
statistical dimension δ(M(Ld,n))=Rn(θ̂n,0) of the monotone cone (cf. Table 1).

The following corollary of Theorem 2 gives another example where differ-
ent adaptation behaviour is observed in dimensions d ≥ 3, in the sense that the
n−2/d log8 n adaptive rate achieved for constant signal vectors is actually available
for a much wider class of isotonic signals that depend only on d−2 of all d coordi-
nates of Ld,n. For r = 0,1, . . . , d , we say a vector θ0 ∈M(Ld,n) is a function of r

variables, written θ0 ∈Mr (Ld,n), if there exists J ⊆ {1, . . . , d}, of cardinality r ,
such that (θ0)(x1,...,xd ) = (θ0)(x′1,...,x′d ) whenever xj = x′j for all j ∈ J .

COROLLARY 2. For d ≥ 2, there exists constant Cd > 0, depending only on
d , such that

sup
θ0∈Mr (Ld,n)∩B∞(1)

Rn(θ̂n, θ0)≤ Cd

⎧⎪⎪⎨
⎪⎪⎩

n−2/d log8 n if r ≤ d − 2,

n−4/(3d) log16/3 n if r = d − 1,

n−1/d log4 n if r = d.

5Our reason for defining the statistical dimension via an integral rather than as E‖�C(ε)‖2
2 is

because, in the random design setting, the cone C is itself random, and in that case δ(C) is a random
quantity.
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If the signal vector θ0 belongs to Mr (Ld,n), then it is intrinsically an r-
dimensional isotonic signal. Corollary 2 demonstrates that the least squares es-
timator exhibits three different levels of adaptation when the signal is a function
of d, d − 1, d − 2 variables, respectively. However, viewed together with Proposi-
tion 2, Corollary 2 shows that no further adaptation for the least squares estimator
is available when the intrinsic dimension of the signal vector decreases further.
Moreover, if we let ñ = n2/d denote the maximum cardinality of the intersection
of Ld,n with a two-dimensional sheet, then the three levels of adaptive rates in
Corollary 2 are ñ−1, ñ−2/3 and ñ−1/2 respectively, up to polylogarithmic factors,
matching the two-dimensional “automatic variable adaptation” result described in
Chatterjee, Guntuboyina and Sen (2018), Theorem 2.4. In this sense, the adapta-
tion of the isotonic least squares estimator in general dimensions is essentially a
two-dimensional phenomenon.

3. Random design. In this section, we consider the setting where the design
points X1, . . . ,Xn are independent and identically distributed from some distribu-
tion P supported on the unit cube [0,1]d . We will assume throughout that P has
Lebesgue density p0 such that 0 < m0 ≤ infx∈[0,1]d p0(x) ≤ supx∈[0,1]d p0(x) ≤
M0 <∞. Since the least squares estimator f̂n is only well defined on X1, . . . ,Xn,
for definiteness, we extend f̂n to [0,1]d by defining f̂n(x) := min({f̂n(Xi) : 1 ≤
i ≤ n,Xi � x} ∪ {maxi f̂n(Xi)}). If we let Pn := n−1∑n

i=1 δXi
, then we can

consider the empirical and population risks Rn(f̂n, f0) = E‖f̂n − f0‖2
L2(Pn) and

R(f̂n, f0)= E‖f̂n − f0‖2
L2(P ).

The main results of this section are the following two theorems, establishing
respectively the worst-case performance and the adaptation behaviour for the least
squares estimator in the random design setting. We write F (k)

d for the class of
functions in Fd that are piecewise constant on k hyperrectangular pieces. In other
words, if f ∈F (k)

d , then there exists a partition [0,1]d =⊔k
�=1 R�, such that each

R� is a hyperrectangle and f is a constant function when restricted to each R�.
Let γ2 := 9/2 and γd := (d2 + d + 1)/2 for d ≥ 3.

THEOREM 4. Let d ≥ 2. There exists Cd,m0,M0 > 0, depending only on d,m0
and M0, such that

sup
f0∈Fd∩B∞(1)

max
{
R(f̂n, f0),Rn(f̂n, f0)

}≤Cd,m0,M0n
−1/d logγd n.

THEOREM 5. Fix d ≥ 2, and a Borel measurable function f0 : [0,1]d → R.
There exists Cd,m0,M0 > 0, depending only on d,m0 and M0, such that

Rn(f̂n, f0)≤ inf
k∈N

{
inf

f∈F (k)
d

‖f − f0‖2
L2(P ) +Cd,m0,M0

(
k

n

)2/d

log2γd+
(

n

k

)}
.



ISOTONIC REGRESSION IN GENERAL DIMENSIONS 2451

On the other hand, if we also have ‖f0‖∞ ≤ 1, then there exists a universal con-
stant C > 0 such that

R(f̂n, f0)≤ inf
k∈N

{
C logn inf

f∈F (k)
d

‖f − f0‖2
L2(P ) +Cd,m0,M0

(
k

n

)2/d

log2γd n

}
.

To the best of our knowledge, the bound in L2(Pn) risk in Theorem 5 is the first
sharp oracle inequality in the shape-constrained regression literature with random
design. The different norms on the left- and right-hand sides for the Rn(f̂n, f0)

bound arise from the observation that E‖f − f0‖2
L2(Pn) = ‖f − f0‖2

L2(P ) for f ∈
F (k)

d . For the R(f̂n, f0) bound, the norms on both sides are the same, but we pay a
price of a multiplicative factor of order logn for the approximation error.

The proofs of Theorems 4 and 5 are considerably more involved than those of
the corresponding Theorems 1 and 2 in Section 2. We briefly mention two major
technical difficulties:

1. The size of Fd , as measured by its entropy, is large when d ≥ 3, even after
L∞ truncation [cf. (7)]. As rates obtained from the entropy integral (e.g., van de
Geer (2000), Theorem 9.1) do not match those from Sudakov lower bounds for
such classes, standard entropy methods result in a nontrivial gap between the min-
imax rates of convergence, which typically match the Sudakov lower bounds (e.g.,
Yang and Barron (1999), Proposition 1), and provable risk upper bounds for least
squares estimators when d ≥ 3.

2. In the fixed lattice design case, our analysis circumvents the difficulties of
standard entropy methods by using the fact that a d-dimensional cubic lattice can
be decomposed into a union of lower-dimensional pieces. This crucial property is
no longer valid when the design is random.

We do not claim any optimality of the power in the polylogarithmic factor in
Theorems 4 and 5. On the other hand, similar to the fixed, lattice design case, the
worst-case rate of order n−1/d up to polylogarithmic factors cannot be improved,
as can be seen from the proposition below.

PROPOSITION 3. Let d ≥ 2. There exists a constant cd,m0,M0 > 0, depending
only on d,m0 and M0, such that

inf
f̃n

sup
f0∈Fd∩B∞(1)

min
{
R(f̃n, f0),Rn(f̃n, f0)

}≥ cd,m0,M0n
−1/d,

where the infimum is taken over all measurable functions f̃n of the data
(X1, Y1), . . . , (Xn,Yn).

We can also provide lower bounds on the adaptation rate risks for the least
squares estimator when f0 is constant.
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PROPOSITION 4. Let d ≥ 2. There exists a constant cd,M0 > 0, depending

only on d and M0, such that for any f0 ∈F (1)
d ,

Rn(f̂n, f0)≥ cd,M0n
−2/d .

On the other hand, when d ≥ 2, there exist a universal constant c2 > 0 and
cd,m0,M0 > 0 for d ≥ 3, depending only on d,m0 and M0, such that for any

f0 ∈F (1)
d ,

R(f̂n, f0)≥
{
c2n

−1 for d = 2,

cd,m0,M0n
−2/d log−2γd n for d ≥ 3.

A key step in proving the first part of Proposition 4 is to establish that with
high probability, the cardinality of the maximum antichain in GX is at least of
order n1−1/d . When d = 2, the distribution of this maximum cardinality is the
same as the distribution of the length of the longest decreasing subsequence of
a uniform permutation of {1, . . . , n}, a famous object of study in probability and
combinatorics. See Romik (2015) and references therein.

4. Proofsofresults inSection2. Throughout thissection,ε = (εw)w∈Ld,n1,...,nd

denotes a vector of independent standard normal random variables. It is now
well understood that the risk of the least squares estimator in the Gaussian se-
quence model is completely characterised by the size of a localised Gaussian
process; cf. Chatterjee (2014). The additional cone property of M(Ld,n) makes
the reduction even simpler: we only need to evaluate the Gaussian complexity of
M(Ld,n)∩B2(1), where the Gaussian complexity of T ⊆RLd,n1,...,nd is defined as
wT := E supθ∈T 〈ε, θ〉. Thus the result in the following proposition constitutes a
key ingredient in analysing the risk of the least squares estimator.

PROPOSITION 5. There exists a universal constant C > 0 such that for d ≥ 2
and every 1 ≤ n1 ≤ · · · ≤ nd with

∏d
j=1 nj = n, we have

√
2/π

(d − 1)d−1 nd−1
1 n−1/2 ≤ E sup

θ∈M(Ld,n1,...,nd
)∩B2(1)

〈ε, θ〉 ≤ C

√
n

nd−1nd

log4 n.

We remark that in the case n1 = · · · = nd = n1/d , we have nd−1
1 n−1/2 =√

n
nd−1nd

= n1/2−1/d . Also, from the symmetry of the problem, we see that the

restriction that n1 ≤ · · · ≤ nd is not essential. In the general case, for the lower
bound, n1 should be replaced with minj nj , while in the upper bound, nd−1nd

should be replaced with the product of the two largest elements of {n1, . . . , nd}
(considered here as a multiset).
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PROOF OF PROPOSITION 5. We first prove the lower bound. Consider W :=
{w ∈ Ld,n1,...,nd

:∑d
j=1 njwj = n1}, W+ := {w ∈ Ld,n1,...,nd

:∑d
j=1 njwj > n1}

and W− := {w ∈ Ld,n1,...,nd
:∑d

j=1 njwj < n1}. For each realisation of the Gaus-
sian random vector ε = (εw)w∈Ld,n1,...,nd

, we define θ(ε) = (θw(ε))w∈Ld,n1,...,nd
∈

M(Ld,n1,...,nd
) by

θw :=

⎧⎪⎪⎨
⎪⎪⎩

1 if w ∈W+,

sgn(εw) if w ∈W,

−1 if w ∈W−.

Since ‖θ(ε)‖2
2 = n, it follows that

E sup
θ∈M(Ld,n1,...,nd

)∩B2(1)

〈ε, θ〉 ≥ E
〈
ε,

θ(ε)

‖θ(ε)‖2

〉

= 1

n1/2E
( ∑

w∈W+
εw − ∑

w∈W−
εw + ∑

w∈W

|εw|
)

=
√

2/π

n1/2 |W |.
The proof of the lower bound is now completed by noting that

(9) |W | =
(
n1 − 1

d − 1

)
≥
(

n1 − 1

d − 1

)d−1
.

We next prove the upper bound. For j = 1, . . . , d − 2 and for xj ∈ {1/nj ,2/nj ,

. . . ,1}, we define Ax1,...,xd−2 := {w = (w1, . . . ,wd) ∈ Ld,n1,...,nd
: (w1, . . . ,

wd−2) = (x1, . . . , xd−2)}. Each Ax1,...,xd−2 can be viewed as a directed acyclic
graph with graph structure inherited from Ld,n1,...,nd

. Since monotonicity is pre-
served on subgraphs, we have that M(Ld,n1,...,nd

) ⊆⊕
x1,...,xd−2

M(Ax1,...,xd−2).
Hence, by the Cauchy–Schwarz inequality and Amelunxen et al. (2014), Proposi-
tion 3.1(5, 9, 10), we obtain that(

E sup
θ∈M(Ld,n1,...,nd

)∩B2(1)

〈ε, θ〉
)2

≤ E
{(

sup
θ∈M(Ld,n1,...,nd

)∩B2(1)

〈ε, θ〉
)2}

= δ
(
M(Ld,n1,...,nd

)
)≤ ∑

x1,...,xd−2

δ
(
M(Ax1,...,xd−2)

)

= δ
(
M(L2,nd−1,nd

)
) d−2∏

j=1

nj � n

nd−1nd

log8+(nd−1nd),
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as desired. Here, the final inequality follows from Chatterjee, Guntuboyina and
Sen (2018), Theorem 2.1, by setting θ∗ = 0 (in their notation) and observing that
δ(M(L2,nd−1,nd

))= nd−1ndRn(θ̂n,0) � log8+(nd−1nd). �

PROOF OF THEOREM 1. Fix θ0 ∈M(Ld,n) ∩B∞(1). We have by Chatterjee
(2014), Theorem 1.1, that the function

t �→ E sup
θ∈M(Ld,n),‖θ−θ0‖≤t

〈ε, θ − θ0〉 − t2/2

is strictly concave on [0,∞) with a unique maximum at, say, t0 ≥ 0. We note that
t0 ≤ t∗ for any t∗ satisfying

(10) E sup
θ∈M(Ld,n),‖θ−θ0‖≤t∗

〈ε, θ − θ0〉 ≤ t2∗
2

.

For a vector θ = (θx)x∈Ld,n
, define θ̄ := n−1∑

x∈Ld,n
θx and write 1n ∈ RLd,n for

the all-one vector. Then

E sup
θ∈M(Ld,n),‖θ−θ0‖2≤t∗

〈ε, θ − θ0〉

= E sup
θ∈M(Ld,n),‖θ−θ0‖2≤t∗

〈ε, θ − θ̄01n〉

≤ E sup
θ∈M(Ld,n),‖θ−θ̄01n‖2≤t∗+n1/2

〈ε, θ − θ̄01n〉

= E sup
θ∈M(Ld,n)∩B2(t∗+n1/2)

〈ε, θ〉 = {
t∗ + n1/2}wM(Ld,n)∩B2(1),

where we recall that wM(Ld,n)∩B2(1) = E supθ∈M(Ld,n)∩B2(1)〈ε, θ〉. Therefore, to
satisfy (10), it suffices to choose

t∗ = wM(Ld,n)∩B2(1) + {
w2

M(Ld,n)∩B2(1) + 2n1/2wM(Ld,n)∩B2(1)

}1/2

(11)
� max

{
wM(Ld,n)∩B2(1), n

1/4w
1/2
M(Ld,n)∩B2(1)

}
.

Consequently, by Chatterjee (2014), Corollary 1.2 and Proposition 5, we have that

Rn(θ̂n, θ0) � n−1 max
(
1, t2

0
)
� n−1t2∗ � n−1/d log4 n,

which completes the proof. �

The following proposition is the main ingredient of the proof of the minimax
lower bound in Proposition 1. It exhibits a combinatorial obstacle, namely the
existence of a large antichain, that prevents any estimator from achieving a faster
rate of convergence. We state the result in the more general and natural setting of
least squares isotonic regression on directed acyclic graphs. Recall that the isotonic
regression problem on a directed acyclic graph G = (V (G),E(G)) is of the form
Yv = θv + εv , where θ = (θv)v∈V (G) ∈M(G) and ε = (εv)v∈V (G) is a vector of
independent N(0,1) random variables.
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PROPOSITION 6. If G = (V (G),E(G)) is a directed acyclic graph with
|V (G)| = n and W ⊆ V (G) is an antichain of G, then

inf
θ̃n

sup
θ0∈M(G)∩B∞(1)

Rn(θ̃n, θ0)≥ 4|W |
27n

,

where the infimum is taken over all measurable functions θ̃n of {Yv : v ∈ V (G)}.

PROOF. Let W0 be a maximal antichain of G containing W . If v /∈ W0, then
by the maximality of W0, there exists u0 ∈ W0 such that either u0 ≤ v or u0 ≥ v.
Suppose without loss of generality that it is the former. Then v � u for any u ∈W0,
because otherwise we would have u0 ≤ u, contradicting the fact that W0 is an
antichain. It follows that we can write V (G) = W+

0 � W0 � W−
0 , where for all

v ∈ W+
0 , u ∈ W0, we have u � v, and similarly for all v ∈ W−

0 , u ∈ W0, we have
v � u.

For τ = (τw) ∈ {0,1}W0 =: T , we define θτ = (θτ
v ) ∈M(G)∩B∞(1) by

θτ
v =

⎧⎪⎪⎨
⎪⎪⎩
−1 if v ∈W−

0 ,

ρ(2τv − 1) if v ∈W0,

1 if v ∈W+
0 ,

where ρ ∈ (0,1) is a constant to be chosen later. Let Pτ denote the distribution of
{Yv : v ∈ V (G)} when the isotonic signal is θτ . Then, for τ, τ ′ ∈ T , by Pinsker’s
inequality (e.g., Pollard (2002), page 62), we have

d2
TV(Pτ ,Pτ ′)≤ 1

2
d2

KL(Pτ ,Pτ ′)= 1

4

∥∥θτ − θτ ′∥∥2
2 = ρ2∥∥τ − τ ′

∥∥
0.

Thus, setting ρ = 2/3, by Assouad’s lemma (cf. Yu (1997), Lemma 2), we have
that

inf
θ̃n

sup
θ0∈M(G)∩B∞(1)

Rn(θ̃n, θ0)≥ inf
θ̃n

sup
τ∈T

Rn

(
θ̃n, θ

τ )

≥ ρ2|W0|
n

(1 − ρ)≥ 4|W |
27n

,

as desired. �

PROOF OF PROPOSITION 1. Recall that n1 = n1/d . We note that the set

W :=
{
v = (v1, . . . , vd)� ∈ Ld,n :

d∑
j=1

vj = 1

}

is an antichain in Ld,n of cardinality
(n1−1

d−1

)≥ (n1−1
d−1 )d−1. The desired result there-

fore follows from Proposition 6. �
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PROOF OF COROLLARY 1. For Q = Pn, the result is an immediate conse-
quence of Theorem 1 and Proposition 1, together with the facts that

inf
θ̃n

sup
θ0∈M(Ld,n)∩B∞(1)

Rn(θ̃n, θ0)= inf
f̃n

sup
f0∈Fd∩B∞(1)

E‖f̃n − f0‖2
L2(Pn)

and

sup
θ0∈M(Ld,n)∩B∞(1)

Rn(θ̂n, θ0)= sup
f0∈Fd∩B∞(1)

E‖f̂n − f0‖2
L2(Pn).

Now suppose that Q is Lebesgue measure on [0,1]d . For any f : [0,1]d →R, we
may define θ(f ) := f |Ld,n

. On the other hand, for any θ : Ld,n → R, we can also
define f (θ) : [0,1]d →R by

f (θ)(x1, . . . , xd) := θ
(
n−1

1 �n1x1�, . . . , n−1
1 �n1xd�).

We first prove the upper bound by observing from Lemma 1 and Theorem 1 that

sup
f0∈Fd∩B∞(1)

E‖f̂n − f0‖2
L2(Q)

≤ 2 sup
f0∈Fd∩B∞(1)

{
n−1E

∥∥θ(f̂n)− θ(f0)
∥∥2

2 +
∥∥f0 − f

(
θ(f0)

)∥∥2
L2(Q)

}

≤ 2 sup
θ0∈M(Ld,n)∩B∞(1)

1

n
E‖θ̂n − θ0‖2

2 + 8dn−1/d ≤ Cdn−1/d log4 n,

as desired. Then by convexity of H and Proposition 1, we have

inf
f̃n

sup
f0∈Fd∩B∞(1)

E‖f̃n − f0‖2
L2(Q) ≥ inf

f̃n

sup
θ0∈M(Ld,n)∩B∞(1)

E
∥∥f̃n − f (θ0)

∥∥2
L2(Q)

= inf
f̃n

sup
θ0∈M(Ld,n)∩B∞(1)

E
∥∥f (θ(f̃n)

)− f (θ0)
∥∥2
L2(Q)

= inf
θ̃n

sup
θ0∈M(Ld,n)∩B∞(1)

1

n
E‖θ̃n − θ0‖2

2 ≥ cdn−1/d,

which completes the proof. �

PROOF OF THEOREM 2. Recall that the tangent cone at a point x in a closed,
convex set K is defined as T (x,K) := {t (y−x) : y ∈K, t ≥ 0}. By Bellec (2018),
Proposition 2.1 (see also Chatterjee, Guntuboyina and Sen (2018), Lemma 4.1),
we have

(12) Rn(θ̂n, θ0)≤ 1

n
inf

θ∈M(Ld,n)

{‖θ − θ0‖2
2 + δ

(
T
(
θ,M(Ld,n)

))}
.

For a fixed θ ∈M(Ld,n) such that K(θ)=K , let Ld,n =⊔K
�=1 A� be the partition

of Ld,n into two-dimensional sheets A� such that θ is constant on each A�. Define
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m� := |A�|. Then any u ∈ T (θ,M(Ld,n)) must be isotonic when restricted to each
of the two-dimensional sheets; in other words,

T
(
θ,M(Ld,n)

)⊆ K⊕
�=1

T
(
0,M(A�)

)= K⊕
�=1

M(A�).

By Amelunxen et al. (2014), Proposition 3.1(9, 10), we have

(13) δ
(
T
(
θ,M(Ld,n)

))≤ δ

(
K⊕

�=1

M(A�)

)
=

K∑
�=1

δ
(
M(A�)

)
.

By a consequence of the Gaussian Poincaré inequality (cf. Boucheron, Lugosi and
Massart (2013), page 73) and Proposition 5, we have

(14) δ
(
M(A�)

)≤ (
E sup

θ∈M(A�)∩B2(1)

〈εA�
, θ〉

)2 + 1 � log8+ m�.

Thus, by (13), (14) and Lemma 2 applied to x �→ log8+ x, we have

δ
(
T
(
θ,M(Ld,n)

))
�

K∑
�=1

log8+ m� � K log8+
(

n

K

)
,

which together with (12) proves the desired result. �

PROOF OF THEOREM 3. For a fixed θ ∈ M(k)(Ld,n), let Ld,n ⊆ ⊔k
�=1 R�

be a covering of Ld,n by disjoint hyperrectangles such that θ is constant on each
hyperrectangle R�. Suppose R� ∩ Ld,n has side lengths m1, . . . ,md (so |R� ∩
Ld,n| = ∏d

j=1 mj ). Then it can be covered by the union of |R�|
mjmj ′

parallel two-

dimensional sheets, where mj and mj ′ are the largest two elements of the multiset
{m1, . . . ,md}. By Jensen’s inequality (noting that x �→ x1−2/d is concave when
d ≥ 2), we obtain

(15) K(θ)≤
k∑

�=1

|R� ∩Ld,n|1−2/d ≤ k

(
n

k

)1−2/d

.

This, combined with the oracle inequality in Theorem 2, gives the desired result.
�

PROOF OF PROPOSITION 2. Since the convex cone M(Ld,n) is invariant un-
der translation by any θ0 ∈M(1)(Ld,n), we may assume without loss of generality
that θ0 = 0. By the Cauchy–Schwarz inequality, we have

(16) Rn(θ̂n,0)= 1

n
δ
(
M(Ld,n)

)≥ 1

n

(
E sup

θ∈M(Ld,n)∩B2(1)

〈ε, θ〉
)2

,
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which, together with Proposition 5, establishes the desired lower bound when d ≥
3. For the d = 2 case, by Sudakov minorisation for Gaussian processes (e.g., Pisier
(1989), Theorem 5.6 and the remark following it) and Lemma 3, there exists a
universal constant ε0 > 0 such that

E sup
θ∈M(L2,n)∩B2(1)

〈ε, θ〉� ε0 log1/2 N
(
ε0,M(L2,n)∩B2(1),‖ · ‖2

)
� logn.

This, together with (16), establishes the desired conclusion when d = 2. �

PROOF OF COROLLARY 2. Without loss of generality, we may assume
that θ0 ∈ Mr (Ld,n) is a function of the final r variables. For x3, . . . , xd ∈
{1/n1,2/n1, . . . ,1}, we define Ax3,...,xd

:= {(x1, . . . , xd) : x1, x2 ∈ [0,1]}. When
r ≤ d − 2, we have that θ0 is constant on each Ax3,...,xd

∩ Ld,n. Hence, by Theo-
rem 2,

Rn(θ̂n, θ0) � K(θ0) log8+(n/K(θ0))

n
� n−2/d log8 n.

Now suppose that θ0 ∈Md−1(Ld,n). Let m be a positive integer to be chosen later.
Then Ax3,...,xd

∩Ld,n =⊔m
�=−m A

(�)
x3,...,xd , where

A(�)
x3,...,xd

:=Ax3,...,xd
∩
{
v ∈ Ld,n : �− 1

m
< (θ0)v ≤ �

m

}
.

Let θ(m) ∈M(Ld,n) be the vector that takes the constant value �/m on A
(�)
x3,...,xd for

each � =−m, . . . ,m. Then setting m � n2/(3d) log−8/3 n, we have by Theorem 2
that

Rn(θ̂n, θ0) � ‖θ(m) − θ0‖2
2

n
+ K(θ(m)) log8+(n/K(θ(m)))

n

≤ 1

m2 + m

n2/d
log8 n � n−4/(3d) log16/3 n

as desired.
Finally, the r = d case is covered in Theorem 1. �

5. Proof of results in Section 3. From now on, we write Gn := n1/2(Pn−P).
Recall that γ2 = 9/2 and γd = (d2 + d + 1)/2 for d ≥ 3.

In our empirical process theory arguments, we frequently need to consider
suprema over subsets of Fd . In order to avoid measurability digressions, and since
our least squares estimator f̂n is defined to be lower semicontinuous, we always as-
sume implicitly that such suprema are in fact taken over the intersection of the rel-
evant subset of Fd with L, the class of real-valued lower semicontinuous functions
on [0,1]d . Then F ′

d := {f ∈ Fd ∩ L : f |(Q∩[0,1])d ⊆Q} is a countable, uniformly
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dense6 subset of Fd ∩ L so that, for example, supf∈Fd∩LGnf = supf∈F ′
d
Gnf ,

which ensures measurability.

5.1. Preparatory results. We first state a few intermediate results that will be
used in the proofs of Theorems 4 and 5. The proofs of propositions in this subsec-
tion are contained Section A in the Supplementary Material.

The following proposition controls the tail probability of ‖f̂n − f0‖L2(P ) on
the event {‖f̂n − f0‖∞ ≤ 6 log1/2 n} by two multiplier empirical processes (18)
and (19). For f0 ∈Fd , r, a > 0, define

(17) G(f0, r, a) := {
f ∈Fd : f − f0 ∈ B2(r,P )∩B∞(a)

}
.

PROPOSITION 7. Suppose that f0 ∈Fd ∩B∞(1) and that for each n≥ 2 there
exist both a function φn : [0,∞) → [0,∞) and a sequence rn ≥ n−1/2 log1/2 n

such that φn(rn) ≤ n1/2r2
n . Moreover, assume that for all r ≥ rn the map r �→

φn(r)/r is nonincreasing and

E sup
f∈G(f0,r,6 log1/2 n)

∣∣∣∣∣ 1

n1/2

n∑
i=1

εi

{
f (Xi)− f0(Xi)

}∣∣∣∣∣≤Kφn(r),(18)

E sup
f∈G(f0,r,6 log1/2 n)

∣∣∣∣∣ 1

n1/2

n∑
i=1

ξi

{
f (Xi)− f0(Xi)

}2

∣∣∣∣∣≤Kφn(r),(19)

for some K ≥ 1 that does not depend on r and n. Then there exist universal con-
stants C,C′ > 0 such that for all r ≥ C′Krn, we have

P
({‖f̂n − f0‖L2(P ) ≥ r

}∩ {‖f̂n − f0‖∞ ≤ 6 log1/2 n
})≤ C exp

(
− nr2

C logn

)
.

Consequently,

E
{‖f̂n − f0‖2

L2(P )1{‖f̂n−f0‖∞≤6 log1/2 n}
}
� K2r2

n.

By means of Lemmas 5 and 6, the control of the empirical processes (18)
and (19) in turn reduces to the study of the symmetrised local empirical process

(20) E sup
f∈G(0,r,1)

∣∣∣∣∣ 1

n1/2

n∑
i=1

ξif (Xi)

∣∣∣∣∣,
for a suitable L2(P ) radius r . To obtain a sharp bound on the empirical process
in (20), which constitutes the main technical challenge of the proof, we slice [0,1]d
into strips of the form [0,1]d−1 × [ �−1

n1
, �

n1
], for � = 1, . . . , n1, and decompose

6Here, “uniformly dense” means that for any f ∈Fd ∩L, we can find a sequence (fm) in F ′
d such

that ‖fm − f ‖∞ → 0. This can be done by defining, for example, fm(x) :=m−1�mf (x)�.
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∑n
i=1 ξif (Xi) into sums of smaller empirical processes over these strips. Each of

these smaller empirical processes is then controlled via a bracketing entropy chain-
ing argument (Lemma 7). The advantage of this decomposition is that the block
monotonicity permits good control of the L2(P ) norm of the envelope function in
each strip (Lemma 9). This leads to the following conclusion.

PROPOSITION 8. Let d ≥ 2. There exists Cd,m0,M0 > 0, depending only
on d,m0 and M0, such that if r ≥ n−1/2(log+ logn)2 when d = 2 and r ≥
n−(1−2/d) logγd−1/2 n when d ≥ 3, then

E sup
f∈G(0,r,1)

∣∣∣∣∣ 1

n1/2

n∑
i=1

ξif (Xi)

∣∣∣∣∣≤Cd,m0,M0rn
1/2−1/d logγd−1/2 n.

On the other hand, there exists cd,m0 > 0, depending only on d and m0, such that
if r ≤ 1, then

E sup
f∈G(0,r,1)

1

n1/2

n∑
i=1

ξif (Xi)≥ cd,m0rn
1/2−1/d .

Our next proposition controls the discrepancy between the L2(P ) and L2(Pn)

risks for the truncated estimator, f̃n := f̂n1{‖f̂n‖∞≤6 log1/2 n}, when the true signal
f0 = 0.

PROPOSITION 9. Fix d ≥ 2 and suppose that f0 = 0. There exists Cd,m0,M0 >

0, depending only on d , m0 and M0, such that

E‖f̃n‖2
L2(Pn) ≤Cd,m0,M0

{
n−2/d log2γd n+E‖f̃n‖2

L2(P )

}
.

Propositions 7, 8 and 9 allow us to control the risk of the least squares estimator
when the true signal f0 = 0.

PROPOSITION 10. Let d ≥ 2. There exists a constant Cd,m0,M0 > 0, depend-
ing only on d,m0 and M0, such that

max
{
R(f̂n,0),Rn(f̂n,0)

}≤ Cd,m0,M0n
−2/d log2γd n.

5.2. Proofs of Theorems 4 and 5 and Propositions 3 and 4. The risk bounds
in L2(P ) loss and L2(Pn) loss are proved with different arguments and hence
presented separately below.

PROOF OF THEOREM 4 IN L2(P ) LOSS. Recall the definition of the func-
tion class G(f0, r, a) in (17). Let rn := n−1/(2d) logγd/2 n. For any r, a > 0, by the
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triangle inequality, Lemma 5 and Proposition 8, we have that for r ≥ rn,

E sup
f∈G(f0,r,4 log1/2 n)

∣∣∣∣∣ 1

n1/2

n∑
i=1

εi

{
f (Xi)− f0(Xi)

}∣∣∣∣∣
≤ E sup

f∈G(0,r+1,6 log1/2 n)

∣∣∣∣∣2 log1/2 n

n1/2

n∑
i=1

ξif (Xi)

∣∣∣∣∣+ 1

�d,m0,M0 (r + 1)n1/2−1/d logγd n � n1/2rrn.

Similarly, by Lemma 6 and Proposition 8, we have that for r ≥ rn,

E sup
f∈G(f0,r,4 log1/2 n)

∣∣∣∣∣ 1

n1/2

n∑
i=1

ξi

{
f (Xi)− f0(Xi)

}2

∣∣∣∣∣
� E sup

f∈G(0,r+1,6 log1/2 n)

∣∣∣∣∣ log1/2 n

n1/2

n∑
i=1

ξif (Xi)

∣∣∣∣∣+ log1/2 n �d,m0,M0 n1/2rrn.

Thus, conditions (18) and (19) in Proposition 7 are satisfied with φn(r) = n1/2rrn
and 1 ≤ K �d,m0,M0 1. Let �0 := {‖f̂n − f0‖∞ ≤ 6 log1/2 n}. It follows from
Proposition 7 and Lemma 10 that

R(f̂n, f0)= E
{‖f̂n − f0‖2

L2(P )1�0

}+E
{‖f̂n − f0‖2

L2(P )1�c
0

}
�d,m0,M0 r2

n + n−1 � n−1/d logγd n,

as desired. �

PROOF OF THEOREM 4 IN L2(Pn) LOSS. Since the argument used in
the proof of Theorem 1, up to (11), does not depend on the design, we de-
duce from Chatterjee (2014), Corollary 1.2, Amelunxen et al. (2014), Proposi-
tion 3.1(5), and the Cauchy–Schwarz inequality that

(21) Rn(f̂n, f0) � 1

n
Emax

{
1, δ

(
M(GX)

)
, n1/2δ

(
M(GX)

)1/2}
.

On the other hand, by Proposition 10, we have

(22) Eδ
(
M(GX)

)
�d,m0,M0 n1−2/d log2γd n.

We obtain the desired result by combining (21) and (22). �

PROOF OF THEOREM 5 IN L2(Pn) LOSS. For any f ∈ Fd , we can define a
random vector θf,X := (f (X1), . . . , f (Xn))

�. By Bellec (2018), Proposition 2.1,
we have

Rn(f̂n, f0) ≤ 1

n
E
[

inf
f∈Fd

{‖θf,X − θf0,X‖2
2 + δ

(
T
(
θf,X,M(GX)

))}]
(23)

≤ 1

n
inf
k∈N inf

f∈F (k)
d

{
E‖θf,X − θf0,X‖2

2 +Eδ
(
T
(
θf,X,M(GX)

))}
.
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Now, for a fixed f ∈ F (k)
d , let R1, . . . ,Rk be the corresponding hyperrectan-

gles such that f is constant when restricted to each R�. Define X� := R� ∩
{X1, . . . ,Xn} and N� := |X�|. Then for fixed X1, . . . ,Xn, we have T (θf,X,

M(GX)) ⊆ ⊕k
�=1 T (0,M(GX�

)) = ⊕k
�=1 M(GX�

). Therefore, by Amelunxen
et al. (2014), Proposition 3.1(9, 10) and (22), we have that

Eδ
(
T
(
θf,X,M(GX)

))
= E

[
E
{
δ
(
T
(
θf,X,M(GX)

))|N1, . . . ,Nk

}]
(24)

≤ E
[ ∑
�:N�≥1

E
{
δ
(
M(GX�

)
)|N�

}]
�d,m0,M0 E

{ ∑
�:N�≥1

N
1−2/d
� log2γd+ N�

}

�d n(k/n)2/d log2γd+ (n/k),

where the final bound follows from applying Lemma 2 to the function x �→
x1−2/d log2γd+ x. We complete the proof by substituting (24) into (23) and observ-
ing that

1

n
inf

f∈F (k)
d

E‖θf,X − θf0,X‖2
2 = inf

f∈F (k)
d

E‖f − f0‖2
L2(Pn) = inf

f∈F (k)
d

‖f − f0‖2
L2(P ),

as desired. �

PROOF OF THEOREM 5 IN L2(P ) LOSS. Fix k ∈ N, fk ∈ F (k)
d ∩ B∞(1) and

let R1, . . . ,Rk be the corresponding hyperrectangles such that fk is constant when
restricted to each R�. Define N� := |{X1, . . . ,Xn} ∩R�|.

We let Pf0 and Pfk
denote the probability with respect to the data generat-

ing mechanisms Yi = f0(Xi) + εi and Yi = fk(Xi) + εi , respectively, and write
Ef0 and Efk

for the respective expectations. For any t ≥ 0, write �′
t := {‖f̂n −

f0‖L2(P ) > ‖fk − f0‖L2(P ) + t} ∩ {‖f̂n − f0‖∞ ≤ 3 log1/2 n}. We have that

Pf0

(
�′

t

)
≤ Pf0

({‖f̂n − fk‖L2(P ) > t
}∩ {‖f̂n − fk‖∞ ≤ 6 log1/2 n

})
(25)

= Efk

{
e
− n

2 ‖fk−f0‖2
L2(Pn)−

∑n
i=1 εi(fk−f0)(Xi)1{f̂n−fk∈B2(t,P )c∩B∞(6 log1/2 n)}

}
≤ Pfk

{
f̂n − fk ∈ B2(t,P )c ∩B∞

(
6 log1/2 n

)}1/2{Ee
n‖fk−f0‖2

L2(Pn)
}1/2

,

where the equality follows from a change of measure (the Radon–Nikodym theo-
rem), and the final step uses the Cauchy–Schwarz inequality. We control the two
factors on the right-hand side separately. For the second factor, since ‖fk−f0‖∞ ≤
2, we have by Lemma 12 that

(26) Ee
n‖fk−f0‖2

L2(Pn) ≤ e
14n‖fk−f0‖2

L2(P ) .
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For the first factor, for all r ≥ (k/n)1/d logγd n=: rn,k , we have that

Efk
sup

f∈G(fk,r,1)

∣∣∣∣∣ 1

n1/2

n∑
i=1

ξif (Xi)

∣∣∣∣∣
≤ Efk

∑
�:N�≥1

N
1/2
�

n1/2 Efk

{
sup

f∈Fd ,‖f−fk‖∞≤1
‖f−fk‖L2(P ;R�)≤r

∣∣∣∣ 1

N
1/2
�

∑
i:Xi∈R�

ξif (Xi)

∣∣∣∣∣∣∣N�

}

�d,m0,M0

r logγd−1/2 n

n1/2 Efk

∑
�:N�≥1

N
1−1/d
�

� rn1/2
(

k

n

)1/d

logγd−1/2 n,

where the penultimate inequality follows from Proposition 8 and the final step uses
Jensen’s inequality. Using the above bound together with Lemmas 5 and 6 as in
the proof of Theorem 4, we see that (18) and (19) (with f0 replaced with fk there)
are satisfied with 1 ≤ K �d,m0,M0 1 and φn(r) = n1/2rn,kr , so by Proposition 7,
there exist universal constants C,C′ > 1 such that for t ≥ C ′Krn,k ,

(27) Pfk

{
f̂n − fk ∈ B2(t,P )c ∩B∞

(
6 log1/2 n

)}≤ Ce−nt2/(C logn).

Substituting (27) and (26) into (25) and writing t0 := (28C logn)1/2‖fk −
f0‖L2(P ), we have for all t ≥ t0 +C′Krn,k that

Pf0

(
�′

t

)
� e

7n‖fk−f0‖2
L2(P )−nt2/(2C logn) ≤ e−nt2/(4C logn).

Combining the above probability bound with Lemma 10, we obtain that

R(f̂n, f0) � Ef0

{‖f̂n − f0‖2
L2(P )1{‖f̂n−f0‖∞≤3 log1/2 n}

}+ 1

n

� ‖fk − f0‖2
L2(P ) logn+K2r2

n,k +
∫ ∞
t0/2+C′Krn,k

(t + t0)Pf0

(
�′

t

)
dt

� ‖fk − f0‖2
L2(P ) logn+K2r2

n,k

� ‖fk − f0‖2
L2(P ) logn+Cd,m0,M0

(
k

n

)2/d

log2γd n,

where Cd,m0,M0 > 0 depends only on d,m0 and M0. The desired result fol-

lows since the above inequality holds for all k ∈ N and fk ∈ F (k)
d ∩ B∞(1), and

inf
f∈F (k)

d ∩B∞(1)
‖f − f0‖L2(P ) = inf

f∈F (k)
d

‖f − f0‖L2(P ). �

PROOF OF PROPOSITION 3 IN L2(P ) LOSS. By Gao and Wellner (2007),
Theorem 1.1, we have

logN
(
ε,Fd ∩B∞(1),‖ · ‖L2(P )

)
�m0,d ε−2(d−1).
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The desired lower bound in L2(P ) risk then follows from Yang and Barron (1999),
Proposition 1. �

PROOF OF PROPOSITION 3 IN L2(Pn) LOSS. Without loss of generality, we
may assume that n = nd

1 for some n1 ∈ N. Let W := {w ∈ Ld,n :∑d
j=1 wj = 1}.

For any w = (w1, . . . ,wd)� ∈ W , we define Cw :=∏d
j=1(wj − 1/n1,wj ]. Note

that x = (x1, . . . , xd)� ∈⋃w∈W Cw if and only if �n1x1�+ · · · + �n1xd� = n1. For
any τ = (τw) ∈ {0,1}|W | =: T , we define fτ ∈Fd by

fτ (x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if �n1x1� + · · · + �n1xd� ≤ n1 − 1,

1 if �n1x1� + · · · + �n1xd� ≥ n1 + 1,

ρτ(�n1x1�,...,�n1xd�) if x ∈ ⋃
w∈W

Cw,

where ρ ∈ [0,1] is to be specified later. Moreover, let τw be the binary vector
differing from τ in only the w coordinate. We write Eτ for the expectation over
(X1, Y1), . . . , (Xn,Yn), where Yi = fτ (Xi) + εi for i = 1, . . . , n. We let EX be
the expectation over (Xi)

n
i=1 alone and EY |X,τ be the conditional expectation of

(Yi)
n
i=1 given (Xi)

n
i=1. Given any estimator f̃n, we have

max
τ∈T

Eτ‖f̃n − fτ‖2
L2(Pn)

≥ 1

2|W |
∑

w∈W

∑
τ∈T

Eτ

∫
Cw

(f̃n − fτ )
2 dPn

(28)

= 1

2|W |+1

∑
w∈W

∑
τ∈T

{
Eτ

∫
Cw

(f̃n − fτ )
2 dPn +Eτw

∫
Cw

(f̃n − fτw)2 dPn

}

≥ 1

2|W |+3

∑
w∈W

∑
τ∈T

EX

{∫
Cw

(fτ − fτw)2 dPn

[
1 − dTV(PY |X,τ ,PY |X,τw)

]}
,

where PY |X,τ (resp., PY |X,τw ) is the conditional distribution of (Yi)
n
i=1 given

(Xi)
n
i=1 when the true signal is fτ (resp., fτw ). The final inequality in the above

display follows because for � := (
∫
Cw

(fτ − fτw)2 dPn)
1/2 and A := {∫Cw

(f̃n −
fτ )

2 dPn ≥�2/4}, we have

EY |X,τ

∫
Cw

(f̃n − fτ )
2 dPn +EY |X,τw

∫
Cw

(f̃n − fτw)2 dPn

≥ �2

4

{
PY |X,τ (A)+ PY |X,τw

(
Ac)}≥ �2

4

{
1 − dTV(PY |X,τ ,PY |X,τw)

}
.

By Pinsker’s inequality (cf. Pollard (2002), page 62), we obtain that

(29) d2
TV(PY |X,τ ,PY |X,τw)≤ 1

2
d2

KL(PY |X,τ ,PY |X,τw)= n

4
‖fτ − fτw‖2

L2(Pn).
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Writing Nw :=∑n
i=1 1{Xi∈Cw}, we have Nw ∼ Bin(n,P (Cw)), so EXNw ≥m0 and

EXN
3/2
w ≤ (EXN2

wEXNw)1/2 ≤ 21/2M
3/2
0 . Thus, together with (29), we have

EX

{∫
Cw

(fτ − fτw)2 dPn

[
1 − dTV(PY |X,τ ,PY |X,τw)

]}

≥ EX

{
‖fτ − fτw‖2

L2(Pn)

(
1 − n1/2

2
‖fτ − fτw‖L2(Pn)

)}
(30)

= ρ2

n
EXNw − ρ3

2n
EXN3/2

w ≥ ρ2

n

(
m0 − ρ

21/2 M
3/2
0

)
.

Substituting (30) into (28), we obtain that for ρ = 23/2m0/(3M
3/2
0 ),

max
τ∈T

Eτ‖f̃n − fτ‖2
L2(Pn) ≥

|W |
27n

m3
0

M3
0

≥ cd,m0,M0n
−1/d,

where the final inequality follows from a counting argument as in (9). This com-
pletes the proof. �

PROOF OF PROPOSITION 4 IN L2(P ) LOSS.
Case d = 2. First note that, by translation invariance, R(f̂n, f0) is constant for

f0 ∈F (1)
d . We then observe that, given any estimator f̃n = f̃n(X1, Y1, . . . ,Xn,Yn)

of f0 ∈F (1)
d , we can construct a new estimator f̃ ′

n by setting f̃ ′
n(x) := P f̃n for all

x ∈ [0,1]d . Then

R(f̃n, f0)=R
(
f̃ ′

n, f0
)+ ∫

[0,1]d
(
f̃n − f̃ ′

n

)2 dP ≥R
(
f̃ ′

n, f0
)
,

so in seeking to minimise sup
f∈F (1)

d

R(f̃n, f ), we may restrict attention to estima-

tors that are constant on [0,1]d . It follows that, for any f0 ∈F (1)
d ,

R(f̃n, f0)= sup
f∈F (1)

d

R(f̂n, f )≥ inf
f̃n

sup
f∈F (1)

d

R(f̃n, f )= inf
μ̃n

sup
μ∈R

E
{
(μ̃n −μ)2}� 1

n
,

where the second infimum is taken over all estimators μ̃n = μ̃n(Y1, . . . , Yn) of
μ= f0(0).

Case d ≥ 3. It suffices to only consider the case when f0 = 0. For i = 1, . . . , n,
let ε̃i := εi1{|εi |≤2 log1/2 n} and for r, b ≥ 0, define

En(r, b) := sup
f∈Fd∩B2(r,P )∩B∞(b)

1

n

n∑
i=1

{
2ε̃if (Xi)− f 2(Xi)+ ‖f ‖2

L2(P )

}
.

Observe that for r ≥ n−1/2 logn, b ∈ [0,6 log1/2 n] and any f ∈ Fd ∩ B2(r,P ) ∩
B∞(b), we have

Var
{
2ε̃1f (X1)− f 2(X1)

}≤ r2(8 + 2b2)� r2 logn,
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∥∥2ε̃1f − f 2∥∥∞ ≤ 4b log1/2 n+ b2 � logn.

It follows by Talagrand’s concentration inequality (Talagrand (1996)) in the form
given by Massart (2000), Theorem 3, that for each r ≥ n−1/2 logn and b ∈
[0,6 log1/2 n], there is a universal constant C0 > 0 and an event �r,b, with proba-
bility at least 1 − n−1, such that on �r,b,

1

2
EEn(r, b)−C0r

2 ≤En(r, b)≤ 2EEn(r, b)+C0r
2.(31)

Let Fn(r) :=En(r,6 log1/2 n)− r2 and choose

f̃n ∈ argmin
f∈Fd∩B∞(6 log1/2 n)

n∑
i=1

{
ε̃i − f (Xi)

}2

such that f̃n = f̂n on the event �0 := {‖f̂n‖∞ ≤ 6 log1/2 n} ∩ ⋂n
i=1{|εi | ≤

2 log1/2 n}. Then for any r ≥ 0, we have

Fn(r)≤ sup
f∈Fd∩B2(r,P )∩B∞(6 log1/2 n)

1

n

n∑
i=1

{
2ε̃if (Xi)− f 2(Xi)

}

≤ 1

n

n∑
i=1

{
2ε̃i f̃n(Xi)− f̃ 2

n (Xi)
}= Fn

(‖f̃n‖L2(P )

)
.

In other words, ‖f̃n‖L2(P ) ∈ argmaxr≥0 Fn(r).
If we can find 0 < r1 < r2 such that

(32) En

(
r1,6 log1/2 n

)
< Fn(r2),

then for all r ∈ [0, r1], we have Fn(r) ≤ En(r1,6 log1/2 n) < Fn(r2). This means
that r1 is a lower bound for argmaxr≥0 Fn(r) and, therefore,

(33) ‖f̂n‖2
L2(P ) ≥ r2

11�0 .

It remains to choose suitable r1 and r2 that satisfy (32).
By (31), the symmetrisation inequality (van der Vaart and Wellner (1996),

Lemma 2.3.1), Lemmas 5 and 6 and Proposition 8, we have that, for r1 ≥
n−1/2 logn and on �r1,6 log1/2 n,

En

(
r1,6 log1/2 n

)
≤ 2E sup

f∈Fd∩B2(r1,P )∩B∞(6 log1/2 n)

{
2

n

n∑
i=1

ε̃if (Xi)− 1

n1/2Gnf
2

}
+C0r

2
1

≤ 104 log1/2 nE sup
f∈Fd∩B2(r1,P )∩B∞(6 log1/2 n)

∣∣∣∣∣1n
n∑

i=1

ξif (Xi)

∣∣∣∣∣+C0r
2
1

≤ Cd,m0,M0r1n
−1/d logγd n+C0r

2
1 ,
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for some Cd,m0,M0 > 0 depending only on d,m0 and M0. Similarly, for r2 ∈
[n−1/2 logn,1], b ∈ [r2,6 log1/2 n] and on �r2,b,

Fn(r2)=En

(
r2,6 log1/2 n

)− r2
2

≥ 1

2
E sup

f∈Fd∩B2(r2,P )∩B∞(b)

{
2

n

n∑
i=1

ε̃if (Xi)− 1

n1/2Gnf
2

}
− (C0 + 1)r2

2

≥ (
E|ε̃1| − 4b

)
E sup

f∈Fd∩B2(r2,P )∩B∞(b)

1

n

n∑
i=1

ξif (Xi)− (C0 + 1)r2
2

≥ (1/2 − 4b)cd,m0r2n
−1/d − (C0 + 1)r2

2 ,

for some cd,m0 > 0 depending only on d and m0. Hence, when d ≥ 3, we can
choose b = 1/10, r2 = (2C0 + 2)−1(1/2 − 4b)cd,m0n

−1/d and r1 =
c′d,m0,M0

n−1/d log−γd n, where c′d,m0,M0
> 0 is chosen such that

Cd,m0,M0r1n
−1/d logγd n+C0r

2
1 <

1

2

(
1

2
− 4b

)
cd,m0r2n

−1/d .

We then see that for all n larger than some integer depending on d,m0,M0

only, (32) is satisfied. We therefore conclude from (33), Lemma 10 and the fact
that P(|ε1|> 2 log1/2 n)≤ n−2 that

R(f̂n,0)≥ E
{‖f̂n‖2

L2(P )1�0∩�
r1,6 log1/2 n

∩�r2,b

}
�d,m0,M0 n−2/d log−2γd n,

as desired. �

PROOF OF PROPOSITION 4 IN L2(Pn) LOSS. Due to translation invariance,
we only need to establish the claim for f0 = 0. By Lemma 4, there is an event
E with probability at least 1 − e−ed−1(M0n)1/d log(M0n) on which the data points
X1, . . . ,Xn contain an antichain WX of cardinality at least n1−1/d/(2eM

1/d
0 ).

Write W+
X := {Xi : ∃w ∈ WX,Xi ! w} and W−

X := {Xi : ∃w ∈ WX,Xi ≺ w}.
For each realisation of the n-dimensional Gaussian random vector ε, we define
θX = θX(ε)= ((θX)w) by

(θX)w :=

⎧⎪⎪⎨
⎪⎪⎩

1 if w ∈W+
X ,

sgn(εw) if w ∈WX,

−1 if w ∈W−
X ,

so θX ∈M(GX). By Chatterjee (2014), Theorem 1.1, for f0 = 0, we have that

n1/2‖f̂n‖L2(Pn) = argmax
t≥0

(
sup

θ∈M(GX)∩B2(t)

〈ε, θ〉 − t2

2

)
= sup

θ∈M(GX)∩B2(1)

〈ε, θ〉.
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Hence

E‖f̂n‖L2(Pn) = 1

n1/2E sup
θ∈M(GX)∩B2(1)

〈ε, θ〉 ≥ 1

n1/2E
(〈

ε,
θX(ε)

‖θX(ε)‖2

〉
1E

)
(34)

= 1

n
E
( ∑

i:Xi∈W+
X

εi1E −
∑

i:Xi∈W−
X

εi1E +
∑

i:Xi∈WX

|εi |1E

)
.

The first two terms in the bracket are seen to be zero by computing the expectation
conditionally on X1, . . . ,Xn. For the third term, we have that

E
( ∑

i:Xi∈WX

|εi |1E

)
= E

∑
i:Xi∈WX

E
(|εi |1E |X1, . . . ,Xn

)
(35)

≥ (2/π)1/2E
(|WX|1E

)
�d,M0 n1−1/d .

By (34), (35) and the Cauchy–Schwarz inequality, we have that

E‖f̂n‖2
L2(Pn) ≥

{
E‖f̂n‖L2(Pn)

}2 �d,M0 n−2/d,

as desired. �
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