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TOWARDS A UNIVERSALITY PICTURE FOR THE RELAXATION
TO EQUILIBRIUM OF KINETICALLY CONSTRAINED MODELS1

BY FABIO MARTINELLI AND CRISTINA TONINELLI

Università Roma Tre and CNRS—Universités Paris VI-VII

Recent years have seen a great deal of progress in our understanding
of bootstrap percolation models, a particular class of monotone cellular au-
tomata. In the two-dimensional lattice Z2, there is now a quite satisfactory un-
derstanding of their evolution starting from a random initial condition, with a
strikingly beautiful universality picture for their critical behavior. Much less
is known for their nonmonotone stochastic counterpart, namely kinetically
constrained models (KCM). In KCM, each vertex is resampled (indepen-
dently) at rate one by tossing a p-coin iff it can be infected in the next step
by the bootstrap model. In particular, an infection can also heal, hence the
nonmonotonicity. Besides the connection with bootstrap percolation, KCM
have an interest in their own as they feature some of the most striking fea-
tures of the liquid/glass transition, a major and still largely open problem in
condensed matter physics. In this paper, we pave the way towards proving
universality results for the characteristic time scales of KCM. Our novel and
general approach gives the right tools to establish a close connection between
the critical scaling of characteristic time scales for KCM and the scaling of the
critical length in critical bootstrap models. When applied to the Fredrickson–
Andersen k-facilitated models in dimension d ≥ 2, among the most studied
KCM, and to the Gravner–Griffeath model, our results are close to optimal.

1. Introduction. In recent years, remarkable progress has been obtained in
understanding the behaviour of a particular class of monotone cellular automata
known as bootstrap percolation. A general bootstrap cellular automaton [7] is
specified by its update family U = {U1, . . . ,Um} of finite subsets of Zd \ 0. Once
U is given, the U -bootstrap percolation process is as follows. Given a set A ⊂ Z

d

of initially infected vertices, set A0 =A, and define recursively for each t ∈N,

(1.1) At+1 =At ∪ {
x ∈ Z

d : x +Uk ⊂At for some k ∈ (1, . . .m)
}
.

In other words a vertex x becomes infected at time t + 1 if the translate by x of
at least one element of the update family is already entirely infected at time t ,
and infected vertices remain infected forever. We write [A]U := ⋃

t≥0 At for the
closure of A under the U -bootstrap process.
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A much studied example is the classical r-neighbour model (see [3] and ref-
erences therein) in which a vertex gets infected if at least r among its nearest
neighbours are infected, namely the update family is formed by all the r-subsets
of the set of the nearest neighbours of the origin.

A central problem for bootstrap models is their long-time evolution when the
initial infected set A0 is Pq(·)-random, that is, each vertex of Zd , independently
from the other vertices, is initially declared to be infected with probability q ∈
(0,1). A key quantity is then the critical percolation threshold

qc(U) := inf
{
q : Pq

([A] = Z
d) = 1

}
.

Two closely related quantities are Tc(q;U) and Lc(q;U) defined as follows.

DEFINITION 1.1. Let τBP = min{t : 0 ∈ [A]t } be the infection time of the
origin. Then

Tc(q;U)= inf
{
t ≥ 0 : Pq(τBP ≥ t)≤ 1/2

}
.

To define Lc(q;U), let us consider the bootstrap percolation process on the d-
dimensional torus Zd

n ⊂ Z
d of linear size n, and let qc(n;U) be the smallest q such

that with probability at least 1/2 the whole torus is eventually infected. Then

(1.2) Lc(q,U) := min
{
n : qc(n,U)≤ q

}
.

In [2, 5, 7] beautiful universality results for general U -bootstrap percolation
processes in two dimensions satisfying qc(U) = 0 have been established, yielding
in particular the sharp scaling behaviour of Tc(q;U), Lc(q;U) as q → 0. For a
nice review of these results, we refer the reader to [26], Section 1. It follows in
particular [5], Theorems 1.4, 1.5, that in two dimensions

0 < lim inf
q→0

log(Tc(q;U))

log(Lc(q;U))
≤ lim sup

q→0

log(Tc(q;U))

log(Lc(q;U))
<+∞,

and in this sense one can say that Tc(q;U) and Lc(q;U) have the same scaling
behavior.

A quite natural stochastic counterpart of bootstrap percolation models are
particular interacting particle systems known as kinetically constrained models
(KCM). Given a U -bootstrap model, the associated KCM is the continuous-time
reversible Markov process on � = {0,1}Zd

constructed as follows. Denote by
ω ∈ � the current configuration of the process and call a vertex x infected if
ωx = 0. Then each vertex x, with rate one and independently across Z

d , is re-
sampled by tossing a p-coin [Prob(1) = p] iff the translate by x of at least one
element of the update family U is already entirely infected for ω. In other words,
the state ωx of the vertex x is allowed to be resampled iff it was infectable in ω by
the bootstrap process [8].
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It is easy to check that such a process is reversible w.r.t. the Bernoulli(p) product
measure μ on �. Notice that if q := 1 − p 	 1, it is very unlikely for a vertex to
become infected (even if it would have been infected by the bootstrap process).
Observe moreover that infected vertices may heal. The latter feature implies, in
particular, that the KCM is not monotone/attractive, a fact that rules out several
powerful tools from interacting particle systems theory like monotone coupling
and censoring.

Besides the connection with cellular automata, KCM are of interest in their own.
They have been in fact introduced in the physics literature in the 1980s to model
the liquid/glass transition, a major and still largely open problem in condensed
matter physics [4]. Extensive numerical simulations indicate that KCM display
a remarkable glassy behavior, including heterogeneous dynamics, the occurrence
of ergodicity breaking transitions, multiple invariant measures and anomalously
long-time scales (see, e.g., [18] and references therein).

It has been proved in [8] that the KCM undergoes an ergodicity breaking transi-
tion at qc(U) and a major problem, both from the physical and mathematical point
of view, is to determine the precise divergence of its characteristic time scales when
q ↓ qc. A natural time scale is the mean hitting time Eμ(τ0), where Eμ(·) is the
average w.r.t. to the law of the stationary KCM process with initial law μ and

τ0 = inf
{
t ≥ 0 : ω0(t)= 0

}
.

For all those KCM whose update family U satisfies qc(U) = 0, one can then ask
whether the scaling of Eμ(τ0) as q ↓ 0 is related to that of Tc(q;U), Lc(q;U). It
is possible to prove (see Lemma 4.3) that there exists δ = δ(U) ∈ (0,1) such that,
for all q small enough,

(1.3) Eμ(τ0)≥ δEq(τBP)≥ δ

2
Tc(q;U).

So far, the best general upper bound on Eμ(τ0) is a much poorer one of the form
[8]

Eμ(τ0)≤ eO(Lc(q;U)d ).

Although this bound has been greatly improved for special choices of the update
family U , yielding in some cases the correct behavior (cf. [10, 13, 14]), for general
KCM and contrary to the situation of bootstrap percolation in two dimensions,
there is yet no universality picture for the scaling of Eμ(τ0).

The present paper represents the first step of a general project concerning KCM
with update family U satisfying qc(U) = 0, with the aim of establishing univer-
sality results on the scaling of Eμ(τ0) as q → 0 analogous to those proved within
bootstrap percolation.

At the beginning of this program, in [26], Section 2, some conjectures were put
forward, jointly with us, on the scaling of Eμ(τ0). In particular, it was suggested
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that for KCM it is necessary to introduce a more refined classification of the uni-
versality classes in order to take into account the effect of the possible presence
of energy barriers in the dynamics. By energy barriers, we mean very unlikely
states with an anomalous amount of infection which are typically visited by the
stationary KCM process before infecting the origin. More specifically, it was ar-
gued that energy barriers could induce a very different scaling of Eμ(τ0) w.r.t. to
that of Tc(q;U) for all those models for which the characteristic bootstrap percola-
tion critical droplets are constrained to move inside a cone. Examples include the
two-dimensional East [13] with U consisting of the 1-subsets of

⋃d
i=1{−�ei} and

Duarte-KCM model [6, 15, 27] where U = 2-subsets of { �−e1,±�e2}. Significant
progresses in this direction have been obtained after this work has been completed
[23].

The main purpose of this paper is twofold. First, we envisage a general and
novel approach to prove Poincaré inequalities for KCM, with the ultimate goal of
finding the exact scaling of Eμ(τ0) for a very large class of update families U with
qc(U) = 0. For example, building upon the strategy and techniques developed in
Sections 2 and 3, the following result has been recently established.

THEOREM 1 ([24]). For the so-called critical α-unrooted KCM in two dimen-
sions (see [26] for the appropriate definition),

(1.4) Eμ(τ0)=O
(
Lc(q;U)β(q)), β(q)= poly

(
log logLc(q;U)

)
as q → 0.

Second, we want to greatly improve the existing upper bounds on Eμ(τ0) for
the most studied KCM on Z

d , in any dimension d ≥ 2, namely the Fredrickson–
Andersen k-facilitated model (FA-kf) [1]. Its update family consists of the k-sets
of the neighbors of the origin and, therefore, its associated bootstrap percolation
version is the well-known k-neighbour model. We also test the flexibility of our
techniques by briefly analysing the kinetically constrained version of the well-
known Gravner–Griffeath bootstrap percolation model on Z

2 [19, 20]. In this case,
U consists of the 3-subsets of the set formed by the neighbours of the origin to-
gether with the vertices (±2,0) and it is known that the bootstrap process features
a striking anisotropy. In both cases, our main result (see Theorem 4.4) establishes
a tight connection between Eμ(τ0) and Lc(q;U).

1.1. Main results and plan of the paper. In Section 2, after introducing the rel-
evant notation and motivated by the connection between Eμ(τ0) and the Poincaré
inequality, we prove our first main result (Theorem 2). It establishes a (constrained)
Poincaré inequality for very general KCM satisfying a rather flexible condition in-
volving the range of the update family U and the probability that an update is
feasible. Constrained Poincaré inequalities for KCM, implying a positive spectral
gap and exponential mixing, have already been established [8], mainly using the
so-called halving method. Here, inspired by our previous analysis of KCM on trees
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[10, 25], we develop an alternative method which, besides being more natural and
direct, applies as well to update families with a large (depending on q) or infinite
number of elements. As an example, in Section 2.5 we prove a Poincaré inequality
for the KCM for which the constraint requires that the oriented neighbours of the
to-be-updated vertex belong to an infinite cluster of infected vertices.

Section 3, and its main outcomes summarised in Corollary 3.9, is somehow the
core of the work. By applying Theorem 2 together with a renormalisation argu-
ment and canonical-paths arguments, we prove a sharp bound on the best constant
in the Poincaré inequality for general KCM. This bound involves the probability
of occurrence of a critical droplet (in the bootstrap percolation language) together
with certain congestion constants related to the cost of moving around the droplet.
In this section, we made an effort to keep the framework as general as possible,
in order to construct a very flexible tool that can be applied to any choice of con-
straints in any dimension.

In Section 4.1, we introduce the Fredrickson–Andersen k-facilitated (FA-kf)
and the Gravner–Griffeath kinetically constrained (GG-KCM) models and state
our main result Theorem 4.4 for the scaling of E(τ0(Z

d;U)) in these cases. Finally,
in Section 5 we prove Theorem 4.4 by bounding (model by model) the congestion
constants appearing in the key inequality of Corollary 3.9.

2. A constrained Poincaré inequality for product measures.

2.1. Notation. For any integer n, we will write [n] for the set {1,2, . . . , n}.
Given x = (x1, . . . , xd) ∈ Z

d we denote its �1-norm by ‖x‖1 = ∑d
i=1 |xi | and by

d1(·, ·) the associated distance function. Given two vertices x 
= y, we will say that
x precedes y and we will write x ≺ y if xi ≤ yi for all i ∈ [d]. The collection
B = {�e1, �e2, . . . , �ed} will denote the canonical basis of Zd . Given a set 	⊂ Z

d , we
define its external boundary as the set

∂	= {
y ∈ Z

d \	 : ∃x ∈	 with ‖x − y‖1 = 1
}
.

2.2. The probability space. Given a finite set S and 	 ⊆ Z
d , we will denote

by �	 the product space S	 endowed with the product topology. Given V ⊂ 	

and ω ∈�	 we will write ωV for the restriction of ω to V . Finally, we will denote
by μ	 the product measure μ	 = ⊗

x∈	 μ̂x on �	 where, ∀x ∈ Z
d , we set μ̂x =

μ̂ with μ̂ a probability measure on S which w.l.o.g. we assume to be positive.
Expectation and variance w.r.t. μ	 are denoted by E	(·), Var	(·), respectively. If
	= Z

d , the subscript 	 will be dropped from the notation.
In several applications, the probability space (S, μ̂) will be the “particle space”

S = {0,1}V where V is a finite subset (a “block” as it is sometimes called) of Zd

and μ̂= ⊗
x∈V B(p), B(p) being the p-Bernoulli measure.
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2.3. The constraints. For each x ∈ Z
d , let �x ⊂ Z

d \ {x} be a finite set, let
Ax be an event depending on the variables {ωy}y∈�x and let cx be its indicator
function. By construction, cx does not depend on ωx . In the sequel, we will refer
to cx as the constraint at x and to εx := μ(1 − cx) = μ(Ac

x) and �x as its failure
probability and support respectively. In our approach based on a martingale de-
composition of the variance Var(f ) of any local function f :� �→R, a key role is
played by constraints satisfying the following exterior condition.

DEFINITION 2.1 (Exterior condition). Given an exhausting collection of sub-
sets {Vn}n∈Z of Zd (i.e., Vn ⊂ Vn+1 for all n and

⋃
n Vn = Z

d ), let Ln := Vn \Vn−1
be the nth-shell and, for any x ∈ Ln, let the exterior of x be the set Extx :=⋃∞

j=n+1 Lj . We then say that the family of constraints {cx}x∈Zd satisfies the exte-
rior condition w.r.t. {Vn}∞n=−∞ if �x ⊂ Extx for all x. We will say that {cx}x∈Zd

satisfies the exterior condition if there exists a family of sets {Vn}n∈Z as above such
that {cx}x∈Zd satisfies the exterior condition w.r.t. {Vn}n∈Z.

EXAMPLE 1. A concrete example of a class of constraints satisfying the ex-
terior condition and entering in the applications to kinetically constrained models
is as follows. Fix a vertex z � 0 and let L0 = {x ∈ Z

d : 〈x, z〉 = 0}, where 〈·, ·〉
is the usual scalar product and x, z are treated as vectors in R

d . For j ∈ Z, let
Lj = L0 + jδ�z where δ = sup{δ′ > 0 : (L0 + δ′�z) ∩ Z

d = ∅} (cf. Figure 1) and
let Vn = ⋃n

j=−∞Lj . The above construction defines the exhausting collection of
subsets {Vn}n∈Z.

Let now G ⊂ S be an single-site event and let U = (U1, . . . ,Um) be a finite
family of finite subsets of the half-space {x ∈ Z

d : 〈x, z〉> 0} = ⋃∞
j=1 Lj . Then we

define c0(ω) as the indicator of the event that there exists U ∈ U such that ωx ∈G

FIG. 1. An example in two dimensions of a constraint satisfying the exterior condition w.r.t. a
sequence of increasing half-spaces. Only the shells {Ln}3n=0 are drawn. The constraint c0 requires
that the restriction of the configuration ω to each one of the four vertices around the origin (black
dots) belongs to a certain subset G⊂ S.
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for all x ∈U . The constraint cx at any other vertex x is obtained by translating the
above construction by x. For example, in d = 2 one could take S = {0,1}, G= {0},
z = (1,1), m = 1 and U = {(0,1), (1,0)}, a case known as the North-East model
(cf., e.g., [8]).

2.4. Poincaré inequality. For simplicity, we state our main result directly for
the infinite lattice Zd . There is also a finite-volume version in a box 	⊂ Z

d which
is proved exactly in the same way. In the sequel, given a set V ⊂ Z

d , we will write
Var(f ) and VarV (f ) for the variances of a function f ∈ L2(�,μ) w.r.t. to μ and
to μ(· | {ωy}y /∈V ), respectively.

Let {c(i)
x }x∈Zd , i = 1, . . . , k, be a family of constraints with supports �

(i)
x and

failure probabilities ε
(i)
x . For any nonempty I ⊂ [k], let λI ∈ (0,+∞) be a positive

weight, let ε
(I)
x = μ(

∏
i∈I (1 − c

(i)
x )) and let �

(I)
x = ⋃

i∈I �
(i)
x .

THEOREM 2. Assume that there exists a choice of {λI }I⊂[k] such that

(2.1)
( ∑

I⊂[k]
I 
=∅

λI

)
sup

z

∑
I⊂[k]
I 
=∅

∑
x∈Zd

x∪�
(I)
x �z

λ−1
I ε(I )

x < 1/4.

Suppose in addition that there exists an exhausting family {Vn}∞n=−∞ of sets of Zd

such that, for any i ∈ [k], the constraints {c(i)
x }x∈Zd satisfy the exterior condition

w.r.t. {Vn}∞n=−∞. Then, for any local (i.e., depending on finitely many variables)
function f :� �→R,

Var(f )≤ 4
∑
x

μ

([
k∏

i=1

c(i)
x

]
Varx(f )

)
.(2.2)

REMARK 2.2. The right-hand side of (2.2) is the Dirichlet form of a special
KCM on Z

d with constraints cx = ∏k
i=1 c

(i)
x (see Section 4.1). Thus (2.2) says that

the relaxation time of the above process (see Definition 4.2) is smaller than 4.

REMARK 2.3. It is easy to construct examples of constraints for which the ex-
terior condition is violated and the right-hand side of (2.2) is zero for a suitable lo-
cal function f . Take for instance S = {0,1}, d = 2 and cx the indicator of the event
that at least three nearest neighbours of x are in the zero state. In this case, there
does not exist an exhausting family {Vn}∞n=1 such that the constraints satisfy the
exterior condition w.r.t. {Vn}∞n=1. Furthermore, if we let f (ω) = ω0ω�e1ω�e1+�e2ω�e2

then cx(ω)Varx(f ) = 0 for all ω and all x ∈ Z
d while Var(f ) > 0. Therefore,

for this choice of cx , inequality (2.2) does not hold for all local functions and the
KCM with constraint cx has infinite relaxation time (see Remark 2.2). We stress
that, however, the fact that the constraints satisfy the exterior condition is not a
necessary condition in order for (2.2) to hold. See the following remark for further
explanations.
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REMARK 2.4. For certain applications, the following monotonicity property
turns out to be useful. Suppose that {c(i)

x }x∈Zd ,i∈[k] satisfy the condition of the the-

orem and let {ĉ(i)
x }x∈Zd ,i∈[k] be another family of constraints which are dominated

by the first ones in the sense that c
(i)
x ≤ ĉ

(i)
x for all i, x. Then clearly (2.2) holds

for all local functions with c
(i)
x replaced bt ĉ

(i)
x even if the latter does not satisfy

the exterior condition. As an example take S = {0,1}, k = 1 and ĉx the constraint
that at least two neighbours of x are in the zero state (namely the constraint of
FA-2f model, see Section 4.1) and cx the same but restricted to the neighbours of
the form x + �ei , i ∈ [d].

PROOF OF THEOREM 2. We first treat the case of a single constraint k = 1.
After that we will explain how to generalize the argument to k > 1 constraints. We
begin with a simple result.

LEMMA 2.5. For any local function f ,

(2.3) Var(f )≤ ∑
x

μ
(
Varx

(
μExtx (f )

))
.

PROOF OF THE LEMMA. Let {Vi}∞i=−∞ be the exhausting family of sets w.r.t.
which all the constraints satisfy the exterior condition, let Li = Vi \ Vi−1 be the
corresponding ith-shell and assume w.l.o.g. that the support of f is contained in⋃n

i=0 Li . Let finally 	j = ⋃n
i=n−j Li , j ≤ n. Using the formula for conditional

variance together with the fact that μ is a product measure, we get

Var(f ) = μ
(
Var	0(f )

)+ Var
(
μ	0(f )

)
= μ

(
Var	0(f )

)+μ
(
Var	1

[
μ	0(f )

])+ Var
(
μ	1

[
μ	0(f )

])
...

= μ
(
Var	0[f ]

)+ n−1∑
j=0

μ
(
Var	j+1

[
μ	j

(f )
])

.

Recall now the standard inequality valid for any product probability measure ν =
ν1 ⊗ ν2:

Varν(f )≤ ν
(
Varν1(f )

)+ ν
(
Varν2(f )

)
.

If we apply the inequality to Var	j+1[μ	j
(f )] and observe that μ	j

(f ) does not
depend on the variables in 	j , we get immediately

μ
(
Var	j+1

[
μ	j

(f )
]) ≤ ∑

x∈	j+1\	j

μ
(
Varx

(
μ	j

(f )
))

= ∑
x∈	j+1\	j

μ
(
Varx

(
μExtx (f )

))
.
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Analogously,

μ
(
Var	0[f ]

) ≤ ∑
x∈	0

μ
(
Varx(f )

) = ∑
x∈	0

μ
(
Varx

(
μExtx (f )

))
,

because μExtx (f )= f for any x ∈	0. The proof of the claim is complete. �

We can now prove the theorem for k = 1 and the starting point is (2.3). We
begin by examining a generic term μ(Varx(μExtx (f ))) for which we write

μExtx (f )= μExtx (cxf )+μExtx
([1 − cx]f )

,

so that

(2.4) Varx
(
μExtx (f )

) ≤ 2 Varx
(
μExtx (cxf )

)+ 2 Varx
(
μExtx

([1 − cx]f ))
.

Since cx(ω) does not depend on ωx , the convexity of the variance implies that the
first term in the above right-hand side satisfies

Varx
(
μExtx (cxf )

) ≤ μExtx
(
Varx(cxf )

) = μExtx
(
cx Varx(f )

)
.

We now turn to the analysis of the more complicated second term in the right-hand
side of (2.4).

Varx(μExtx
(([1 − cx]f ))

= Varx
(
μExtx

([1 − cx](f −μExtx∪{x}(f )+μExtx∪{x}(f )
)))

= Varx
(
μExtx

([1 − cx]g))
,

where g := f − μExtx∪{x}(f ) and we used the fact that Varx(μExtx ([1 − cx] ×
μExtx∪{x}(f )))= 0.

Recall now that the constraint cx depends only on {ωy}y∈�x with �x ⊂ Extx .
Thus

μExtx
([1 − cx]g) = μExtx

([1 − cx]μExtx\�x (g)
)

and a Schwarz inequality then gives

(2.5)
Varx

(
μExtx

([1 − cx]g)) ≤ μx

((
μExtx

(
(1 − cx)μExtx\�xg

))2)
≤ εxμExtx∪{x}

([
μExtx\�x (g)

]2)
.

Next, we note that

(2.6)
μExtx∪{x}

([
μExtx\�x (g)

]2) = μx∪�x

(
μExtx\�x (g)2)

= Varx∪�x

(
μExtx\�x (g)

)
,
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where we used the fact that μx∪�x (μExtx\�x (g))= μExtx∪{x}(g)= 0 by the defini-
tion of g. Then by using (2.3), (2.5) and (2.6) we get

(2.7)

Varx
(
μExtx

([1 − cx]g)) ≤ εx

∑
z∈x∪�x

μx∪�x

(
Varz

(
μExtz

[
μExtx\�x (g)

]))

≤ εx

∑
z∈x∪�x

μExtx∪{x}(Varz
(
μExtz(g)

)

= εx

∑
z∈x∪�x

μExtx∪{x}(Varz
(
μExtz(f )

)
,

where we use the convexity of the variance to obtain the second inequality.
In conclusion,

(2.8)

∑
x

μ
(
Varx

(
μExtx (f )

))

≤ 2
∑
x

μ
(
cx Varx(f )

)+ 2
∑
x

εx

∑
z∈x∪�x

μ
(
Varz

(
μExtz(f )

))

≤ 2
∑
x

μ
(
cx Varx(f )

)+ 2
[
sup

z

∑
x:x∪�x�z

εx

]∑
z

μ
(
Varz

(
μExtz(f )

))
.

If supz

∑
x:x∪�x�z εx ≤ 1/4 we get∑

x

μ
(
Varx

(
μExtx (f )

)) ≤ 4
∑
x

μ
(
cx Varx(f )

)
.

We now turn to the general case k > 1. Let cx = ∏
i c

(i)
x and recall the definition of

ε
(I)
x and of �

(I)
x for any nonempty I ⊂ [k]. Let also d

(I)
x = ∏

i∈I (1 − c
(i)
x ) so that

ε
(I)
x = μ(d

(I)
x ). Notice that (inclusion/exclusion formula)

1 − cx =
∑

I⊂[k]
I 
=∅

(−1)Parity(I )+1d(I)
x = ∑

I⊂[k]
I 
=∅

(−1)1+Parity(I )
√

λId
(I)
x /

√
λI .

Thus the delicate term Varx(μExtx (([1−cx]f )) in (2.4) can be bounded from above
using the Schwarz inequality by( ∑

I⊂[k]
I 
=∅

λI

) ∑
I⊂[k]
I 
=∅

λ−1
I Varx

(
μExtx

(
d(I)
x f

))
.

At this stage, we apply the steps leading to (2.7) to each term Varx(μExtx (d
(I)
x f ))

to get

Varx(μExtx
(([1 − cx]f ))

≤
( ∑

I⊂[k]
I 
=∅

λI

) ∑
I⊂[k]
I 
=∅

λ−1
I ε(I )

x

∑
z∈x∪�

(I)
x

μExtx∪{x}(Varz
(
μExtz(f )

)
.
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As in (2.8), we conclude that∑
x

μ
(
Varx

(
μExtx (f )

))

≤ 2
∑
x

μ
(
cx Varx(f )

)

+ 2
( ∑

I⊂[k]
I 
=∅

λI

)(
sup

z

∑
I⊂[k]
I 
=∅

∑
x

x∪�
(I)
x �z

λ−1
I ε(I )

x

)∑
z

μ
(
Varz

(
μExtz(f )

))
,

which proves the theorem if( ∑
I⊂[k]
I 
=∅

λI

)(
sup

z

∑
I⊂[k]
I 
=∅

∑
x

x∪�
(I)
x �z

λ−1
I ε(I )

x

)
≤ 1/4.

�

2.5. An application within supercritical percolation in two dimensions. In this
section, we restrict ourselves to the case in which the single site probability space
(S, μ̂) coincides with ({0,1},B(p)) and the lattice dimension is equal to two.
Given ω ∈ � := �Z2 , we will say that x ∈ C(ω) := {x ∈ Z

2 : ωx = 0} belongs
to an infinite cluster of zeros if the connected (w.r.t. to the graph structure of Z2)
component of C(ω) containing x is unbounded. It is well known that there exists
pc ∈ (0,1) such that

θ(p) := μ(the origin belongs to an infinite cluster)

is positive iff p < pc and that moreover there exists μ-a.s. a unique unbounded
component of C(ω) The conjectured threshold pc is approximately 1 − pc ≈ 0.59
[21]. Fix x ∈ Z

2, ω ∈ � and let ω̄ be the configuration obtained from ω by setting
to 1 site x, namely ω̄x = 1 and ω̄y = ωy for y 
= x. We let c∞x (ω)= 1 if at least two
nearest neighbors of x belong to an infinite cluster of zeros in the configuration ω̄,
c∞x (ω)= 0 otherwise.

THEOREM 2.6. There exists p0 ∈ (0,pc) such that for any p ≤ p0 and any
local function f

(2.9) Var(f )≤ 4
∑
x

μ
(
c∞x Varx(f )

)
.

REMARK 2.7. It follows in particular that, for all p sufficiently small, the
kinetically constrained model with constraints {c∞x }x∈Z2 (cf. Section 4.1) has its
relaxation time bounded by 4.

PROOF. We will make use of the following standard construction for super-
critical percolation [12]. Let �n = 2n and define Rn to be a rectangle of the form
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FIG. 2. A drawing of the first five rectangles {R(1)
n +x}5n=1 together with a pictorial representation

of the hard crossings of zeros (the solid lines) required by the auxiliary constraint c
(n,1)
x . The dashed

curved line represents a piece of the hard crossing for the next rectangle R
(1)
6 +x (the two horizontal

dashed lines). Notice that each rectangle has its leftmost lowermost vertex always at x + �e2 and that

the first rectangle R
(1)
1 consists of only two vertices, x + �e2 and x + 2�e2.

either [�n]×[�n−1] or [�n−1]×[�n] according to whether n is even or odd. We will
also denote by R

(1)
n (R

(2)
n ) the rectangle obtained by translating Rn by the vector

−�e1(−�e2) (see Figure 2). With the help of the families {R(1)
n ,R

(2)
n }n∈N, we finally

introduce a new family of constraints as follows.
Let a path γ in Z

d of length |γ | := k be an ordered sequence of k vertices of Z2

such that two consecutive sites are nearest neighbors of each other. For i = 1,2,
let c

(n,i)
x be the indicator function of the event that inside the rectangle R

(i)
n + x

there exists an hard crossing, that is, a path γ = (x(1), . . . , x(m)) joining the two
opposite shortest sides such that ωx(j) = 0 for all j ∈ [m]. Let also c

(0)
x be the

indicator of the event that ωx+�e1 = ωx+�e2 = 0. Notice that, by construction, the
above constraints satisfy the exterior condition 2.1 w.r.t. to the half-spaces defined
in Example 1 with z = (1,1). Moreover, it is easy to check that

(2.10) c(0)
x

∞∏
n=1

c(n,1)
x c(n,2)

x ≤ c∞x ∀x,
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so that it is enough to prove the constrained Poincaré inequality (2.9) with c∞x
replaced by c

(0)
x

∏∞
n=1 c

(n,1)
x c

(n,2)
x . More precisely, we will prove that, for any k ∈N

and any local function f ,

(2.11) Var(f )≤ 4
∑
x

μ

(
c(0)
x

k∏
n=1

c(n,1)
x c(n,2)

x Varx(f )

)
.

The theorem will then follow by taking the limit k →+∞ and using (2.10). In
order to prove (2.11), we want to apply Theorem 2 which in turn requires finding
a family of weights {λI }I⊂[k]∪{0} satisfying (2.1). A standard Peierls’ argument
implies that, for all p small enough,

μ
(
1 − c(n,i)

x

) ≤ e−m(p)�n,

with limp→0 m(p) = +∞. In particular, recalling the definition of ε
(I)
x and �

(I)
x

from Section 2.4, we have the following bounds:

ε(I)
x ≤ e−m(p)�n(I) ,

∣∣�(I)
x

∣∣ ≤ 3�2
n(I) if n(I) := max{i ∈ I }> 0,

ε(I )
x ≤ 2p,

∣∣�(I)
x

∣∣ ≤ 2 otherwise.

Let now λI = e−
m(p)

2 �n(I) if I 
= {0} and λI =√
p if I = {0}. With this choice, it is

easy to check that there exists p0 independent of k such that for p < p0,∑
I⊂[k]∪{0}

λI ≤ 1/2

and

sup
z

∑
I⊂[k]∪{0}

I 
=∅

∑
x∈Zd

x∪�
(I)
x �z

λ−1
I ε(I )

x ≤ 3
∑

I⊂[k]∪{0}
I 
=∅,I 
={0}

�2
n(I)e

−m(p)
2 �n(I) + 4

√
p

≤ 3
∞∑

n=1

2n4ne−
m(p)

2 �n + 4
√

p ≤ 1/4.

In conclusion, (2.1) holds for all small enough p independent of k and the theorem
follows. �

3. A general approach to prove a Poincaré inequality for kinetically con-
strained spin models. In this section, we start from the general constrained
Poincaré inequality proved in Theorem 2 to develop a quite robust and general
scheme proving a special kind of Poincaré constrained inequality (cf. Theorem 3.2
and Corollary 3.9) that will be crucial to determine a sharp upper bound on the
mean infection time of KCM. Concrete and successful applications to basic kinet-
ically constrained models (cf. Theorem 4.4) will be given in the next section.
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The starting point of our approach is the definition of good and super-good
single site events. Given two events G1, G2 in the probability space (S, μ̂), let
p1 := μ̂(G1) and p2 := μ̂(G2). We will assume that G1 is very likely while G2
is very unlikely. In the sequel, we will refer to G1 and G2 as the good and super-
good events, respectively. In the applications, G2 will guarantee the presence of a
certain bootstrap critical droplet, while G1 will guarantee the presence of enough
infected vertices to allow a critical droplet to grow.

DEFINITION 3.1 (Good and super-good paths). Given ω ∈ � = SZ
d
, we will

say that a vertex x is good if ωx ∈ G1 and super-good if ωx ∈ G2. We will say
that a path γ = (x(1), . . . , x(k)) is a good path for ω if each vertex in γ is good.
A path will be called super-good if it is good and it contains at least one super-good
vertex.

Before stating the main result, we need a last notion. For any mapping G1
��→

G2, let

(3.1) λ� = max
σ∈G2

∑
σ ′∈G1:�(σ ′)=σ

μ̂(σ ′)
μ̂(σ )

,

and, for any ω such that ωx ∈G1, let �(x) :� �→� be given by

(3.2) �(x)(ω)z :=
{
�(ωx) if z = x,

ωz otherwise.

THEOREM 3.2. There exist δ 	 1 and c > 0 such that, for any G1
��→G2 and

all p1, p2 with max(p2, (1 − p1) log(1/p2)
2)≤ δ, the following holds:

(3.3)

Var(f )≤ c
(
λ�p−4

2

)d[∑
x

μ

([ ∏
i∈[d]

1{ωx+�ei∈G2}
]

Varx(f )

)

+ ∑
x,y:d1(x,y)=1

μ
(
1{ωx∈G1,ωy∈G2}

[
f

(
�(x)(ω)

)− f (ω)
]2)]

.

REMARK 3.3. We could have stated Theorem 3.2 in a more general form in
which the constraint

∏
i∈[d] 1{ωx+�ei∈G2}, appearing in the first term in the right-

hand side of (3.3), is replaced by
∏

y∈A+x 1{ωy∈G2}, where A⊂ Ext0 is some finite
set whose cardinality is independent of p1, p2. For example, in two dimensions A

could be {�e1} ∪ {�e2 + �e1} ∪ {�e2} ∪ · · · ∪ {�e2 − m�e1}. For future applications [24],
the freedom given by the choice of the set A will be quite crucial. The proof in this
slightly more general case is identical to the one given below. The same applies
for the developments discussed in Section 3.1.
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The first term in the right-hand side of (3.3) is a constrained Dirichlet form
D(f ) as in the r.h.s. of (2.2), with constraints cx := ∏

i∈[d] 1{ωx+�ei∈G2}. These
constraints satisfy the exterior condition w.r.t. the half-spaces defined in Exam-
ple 1 with z = (1, . . . ,1) but, at the same time, they are very unlikely [recall that
μ̂(G2) 	 1] so that we cannot apply directly Theorem 2 to our setting. More-
over, the fact that the {cx} are unlikely implies that a Poincaré inequality of the
form Var(f ) ≤ CD(f ) for all local f and some finite constant C cannot hold.
To see that, take for instance {fn}∞n=1 to be a sequence of local functions ap-
proximating the indicator of the event that the origin belongs to an infinite ori-
ented cluster of not super-good vertices. In other words, there exists a infinite path
γ = (x(1), . . . , x(k), . . . ) starting at the origin such that x(i) ≺ x(i+1) and ωx(i) /∈G2
for all i. Thus the second term in the right-hand side of (3.3) plays an important
role.

Our approach is first to prove a different kind of constrained Poincaré inequality
(cf. Proposition 3.4) in which the term in (3.3) involving � is missing and the
constraint cx above is replaced by the weaker (and very likely) constraint that for
all i ∈ [d] there exists a super-good path γ (i) in Z

2 \ {x} starting at x + �ei and of
length not larger than 1/p2

2. Second (cf. Lemma 3.5), using repeatedly the mapping
�x for each x ∈ γ (i) starting at the super-good vertex of γ (i), we “bring” the super-
good vertex of γ (i) at x+ �ei . In doing that, we pay a cost which is embodied in the
second term in the right-hand side of (3.3).

PROOF OF THEOREM 3.2. In what follows, we assume that we have fixed

some mapping G1
��→ G2. We begin by proving the first step of the roadmap just

described.

PROPOSITION 3.4. There exists δ 	 1 such that, for all p1, p2 satisfying
max(p2, (1 − p1) log(1/p2)

2) ≤ δ, the following holds. Let 1x be the indicator
of the event that ∀i ∈ [d] there exists a super-good path γ (i) of length at most
1/p2

2 starting at x + �ei . Then, for any local f ,

(3.4) Var(f )≤ 4
∑
x

μ
(
1x Varx(f )

)
.

PROOF OF THE PROPOSITION. In what follows, all the auxiliary constraints
that we will need to introduce will satisfy the exterior condition w.r.t. the exhaust-
ing family of half-spaces defined in Example 1 with z = (1, . . . ,1).

Let � = �2 log(1/p2)�, L = �e�� and let us define two families of constraints
{c(1)

x , c
(2)
x }x∈Zd as follows:

c(1)
x =

{
1 if for all i ∈ [d] and all k ∈ [�] the vertex x + k�ei is good,

0 otherwise,
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c(2)
x =

⎧⎪⎪⎨
⎪⎪⎩

1 if for all i ∈ [d] ∃ a super-good path in Extx of length at most L

starting in the set {x + �ei, . . . , x + ��ei},
0 otherwise.

Notice that c
(1)
x c

(2)
x ≤ 1x . In order to apply Theorem 2 to the above constraints, we

need to verify the key condition (2.1). For this purpose, we begin to observe that
the corresponding supports satisfy �

(1)
x ⊂ ⋃d

i=1{x + �ei, . . . , x + ��ei} and �
(2)
x ⊂

{y ∈ Z
d : d1(x, y)≤ �+L}. In particular, there exists a numerical constant δ̂ such

that the condition for the validity of Theorem 2 holds if

(3.5) d�μ
(
1 − c(1)

x

)+ (�+L)d
(
μ

((
1 − c(2)

x

))+μ
((

1 − c(1)
x

)(
1 − c(2)

x

))) ≤ δ̂.

A simple union bound proves that μ(1− c
(1)
x )≤ d�(1−p1), while standard super-

critical percolation bounds valid for large enough values of p1 prove that

μ
((

1 − c(1)
x

)(
1 − c(2)

x

)) ≤ μ
(
1 − c(2)

x

) ≤ d
(
e−c log(1/(1−p1))� + (1 − p2)

L)
for some constant c > 0. Fix, for example, the first direction. The probability that
none of the vertices x + �e1, . . . , x + ��e1 belong to an infinite good path in Extx
is exponentially small in � while the probability that a given path of length L

is super-good conditionally on being good is at least 1 − (1 − p2)
L. It is now

immediate to verify that given δ̂ > 0 there exists δ > 0 small enough such that
max(p2, (1 − p1) log(1/p2)

2)≤ δ implies (3.5). �

Notice that so far the mapping � played no role. We will now use it in order to
bound a generic term μ(1x Varx(f )) appearing in (3.4). Without loss of generality,
we only treat the case x = 0.

LEMMA 3.5. In the same setting of Theorem 3.2, there exists c > 0 indepen-
dent of p1, p2, � such that

(3.6)

μ
(
10 Var0(f )

) ≤ c
(
λ�p−2

2

)d[
μ

([ ∏
i∈[d]

1{ω�ei∈G2}
]

Var0(f )

)

+ ∑
x,y:∈	\{0}
d1(x,y)=1

μ
(
1{ωx∈G1,ωy∈G2}

[
f

(
�(x)(ω)

)− f (ω)
]2)]

,

where 	 is the box centered at the origin of side 2�1/p2
2�.

By combining together Lemma 3.5 and Proposition 3.4, we get the statement of
the theorem. �

PROOF OF LEMMA 3.5. Recall that 10 is the indicator of the event
⋂

i∈[d] SGi ,
where SGi is the event that there exists a super-good path γ (i) in Z

2 \ {0} of length
at most L ≡ 1/p2

2 starting at �ei . Clearly, SGi is identical to the event that there
exists γ = (x(1), . . . , x(L))⊂ Z

2 \ {0}, such that:
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• each vertex x(j) appears exactly once (i.e., the path is simple) and x(1) = �ei ,
• there exist n≤ L such that x(n) is super-good,
• all the vertices x(j) with j ≤ n are good.

Fix i = 1 and let us order in some way the set P of simple paths in Z
d \ {0} of

length L starting at �e1. For any ω ∈ ⋂
i∈[d] SGi , let γ ∗ be the smallest path in P

satisfying the above set of conditions and let ν = ν(ω) be the index of the first
super-good vertex in γ ∗. Thus

μ
(
10 Var0(f )

) = ∑
γ∈P

L∑
n=1

μ

(
1{γ ∗=γ }1{ν=n}

d∏
j=2

1{SGj }F
)
,(3.7)

where

F(ω) := Var0(f )(ω)= 1

2

∑
σ,σ ′∈S

μ̂(σ )μ̂
(
σ ′)(f (ω ⊗ σ)− f

(
ω ⊗ σ ′))2

,

where the notation ω ⊗ σ denotes the configuration equal to σ at x = 0 and equal
to ω elsewhere.

Given γ = (x(1), . . . , x(L)) ∈ P and n ≤ L together with ω ∈ ∏
j∈[d] SGj such

that γ ∗(ω)= γ and ν(ω)= n, let �(i)(ω) be given by [recall (3.2)]

�(i)(ω)=
{
�(x(i))(ω) if i ≤ n− 1,

ω if i = n.

Thus the mapping �(i), i ≤ n − 1, makes the configuration ω super-good in x(i)

and leaves it unchanged elsewhere. For i = n, the mapping �(n) is the identity.
With the above notation and using the Cauchy–Schwarz inequality, we get

F(ω)≤ 2F
(
�(1)(ω)

)+ 4
∑
σ∈S

μ̂(σ )
(
f

(
�(1)(ω)⊗ σ

)− f (ω ⊗ σ)
)2

.(3.8)

The first term in the right-hand side of (3.8) gives a contribution to the right-hand
side of (3.7) not larger than

2λ�μ

(
1{ω�e1

∈G2}
d∏

j=2

1{SGj } Var0(f )

)
.(3.9)

Above, after the change of variable η := �(1)(ω), we used (3.1) together with the
obvious facts that η is super-good at �e1 and it belongs to

∏d
j=2 1SGj

.
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In order to bound from above the contribution of the second term in the right-
hand side of (3.8), we write

(3.10)

(
f

(
�(1)(ω)⊗ σ

)− f (ω ⊗ σ)
)2

=
(

n−1∑
i=1

[
f

(
�(i+1)(ω)⊗ σ

)− f
(
�(i)(ω)⊗ σ

)])2

≤ (n− 1)

n−1∑
i=1

[
f

(
�(i+1)(ω)⊗ σ

)− f
(
�(i)(ω)⊗ σ

)]2

≤L

n−1∑
i=1

[
f

(
�(i+1)(ω)⊗ σ

)− f
(
�(i)(ω)⊗ σ

)]2
.

In turn each summand is bounded from above by

2
[
f

(
�(i+1)(�(i)(ω)

)⊗ σ
)− f

(
�(i)(ω)⊗ σ

)]2

+ 2
[
f

(
�(i+1)(ω)⊗ σ

)− f
(
�(i+1)(�(i)(ω)

)⊗ σ
)]2

.

Using the fact that �(i+1)(�(i)(ω)) = �(i)(�(i+1)(ω)), we see that both terms in
the right-hand side above have a similar structure. We will therefore treat explicitly
only the first one. Recalling that 	 is the box centered at the origin with side
2�1/p2

2�, we get

2Lμ

( ∑
γ∈P

L∑
n=1

n−1∑
i=1

1{γ ∗=γ }1{ν=n}
d∏

j=2

1{SGj }

× ∑
σ∈S

μ̂(σ )
[
f

(
�(i+1)(�(i)(ω)

)⊗ σ
)− f

(
�(i)(ω)⊗ σ

)]2

)

= 2Lμ

(
1SG1

d∏
j=2

1{SGj }
ν−1∑
i=1

[
f

(
�(i+1)(�(i)(ω)

)⊗ σ
)− f

(
�(i)(ω)⊗ σ

)]2

)

≤ 2L
∑

x,y∈	\{0}
d1(x,y)=1

μ
(
1{ωx∈G1,ωy∈G1}

× [
f

(
�(x)(�(y)(ω)

)⊗ σ
)− f

(
�(y)(ω)⊗ σ

)]2)
.

After the change of variable η ≡�(y)(ω) inside the expectation, the above quantity
can be bounded from above by

2Lλ�

∑
x,y∈	\{0}
d1(x,y)=1

μ
(
1{ηx∈G1,ηy∈G2}

[
f

(
�(x)(η)

)⊗ σ
)− f (η ⊗ σ)

]2
).
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Putting all together, we get that there exist a constant c > 0 such that

μ
(
10 Var0(f )

) ≤ cλ�p−2
2

[
μ

(
1{ω�e1

∈G2}
d∏

j=2

1{SGj } Var0(f )

)

+ ∑
x,y∈	\{0}
d1(x,y)=1

μ
(
1{ηx∈G1,ηy∈G2}

[
f

(
�(x)(η)

)⊗ σ
)− f (η ⊗ σ)

]2
)

]
.

We can now analyse the first term inside the above square bracket by repeating the
above analysis for the second direction. In d − 1 steps, the proof is complete. �

3.1. A canonical-paths bound on the right-hand side of (3.3). In this section,
we proceed by analysing the right-hand side of (3.3) in the special case in which
S = {0,1}V , V = ∏d

i=1[ni] for some integers {ni}di=1 and μ̂ is the Bernoulli(p)

product measure. We will write |V | for the cardinality of V . In this setting, the
probability space (SZ

d
,μ) becomes isomorphic to (�,μ) where �= {0,1}Zd

and
μ is the Bernoulli(p) product measure. It is therefore convenient to do a relabelling
of the variables ω ∈ SZ

d
as follows.

Let Zd(�n) be the renormalised lattice
⊗d

i=1(niZ) and let, for x ∈ Z
d(�n), Vx :=

V +x. We will write x ∼ y iff x, y are nearest neighbors in the renormalised lattice
Z

d(�n). The old “block” variable ωx ∈ S associated to Vx is renamed as ωVx ={ωy}y∈Vx with now ωy ∈ {0,1} for all y’s. In particular, the local variance term
Varx(f ) appearing in the right-hand side of (3.3) becomes VarVx (f ). Accordingly,
we rewrite the mapping �(x), x ∈ Z

d(�n), as �(Vx).
In order to formulate our bounds, we need to define the canonical paths (cf.,

e.g., [28]).

DEFINITION 3.6 (canonical-paths). Let ω,ω′ ∈ � be two configurations
which differ in finitely many vertices. We say that �ω,ω′ ≡ (ω(1),ω(2), . . . ,ω(k)) is
a canonical-path between ω, ω′ if (i) ω(1) = ω, ω(k) = ω′, (ii) ω(i) 
= ω(j) for all
i 
= j (no loops) and (iii) for any i ∈ [k − 1] the configuration ω(i+1) is obtained
from ω(i) by a single spin flip. The integer k will be referred to as the length of the
path.

The bounds on the individual terms in the right-hand side of (3.3) are then as
follows.

LEMMA 3.7. We assume that, for any x ∈ Z
d(�n), any z ∈ Vx and any ω such

that ωVx+�ei
∈G2 for all i ∈ [d], a canonical-path �ω,ωz has been defined such that

a generic transition in the path consists of a spin flip in Vx ∪ (
⋃d

i=1{Vx + �ei}). Let

ρA = sup
x∈Zd (�n)

max
z∈Vx

sup
ω′

∑
ω:ωVx+�ei∈G2,∀i∈[d]

ω′∈�ω,ωz

μ(ω)

μ(ω′)



KCM: CRITICAL TIME SCALES 343

be the congestion constant of the family of canonical-paths and let NA be their
maximal length. Then

∑
x∈Zd (�n)

μ

([ ∏
i∈[d]

1{ωVx+�ei∈G2}
]

VarVx (f )

)
≤ cρANA|V |2 ∑

y∈Zd

μ
(
1A

y (ω)Vary(f )
)
,

for a numerical constant c > 0, where 1A
y (ω) is the indicator of the event that

there exists x ∈ Z
d(�n), z ∈ Vx and ω̄ such that ω̄Vx+�ei

∈G2, ∀i ∈ [d] and the pair
(ω,ωy) form a transition of the canonical-path between ω̄ and ω̄z.

LEMMA 3.8. We assume that, for any x ∼ y and any ω ∈ � such that ωVx ∈
G1 and ωVy ∈ G2, a canonical-path between ω and �(Vx)(ω) has been defined
such that a generic transition in the path consists of a spin flip in Vx ∪ Vy . Let

ρB = sup
ω′

sup
x∼y

∑
ω:ωVx∈G1,ωVy∈G2

ω′∈�
ω,�(Vx )(ω)

μ(ω)

μ(ω′)

and let NB be the maximal length of the paths. Then∑
x∼y

μ
(
1{ωVx∈G1,ωVy∈G2}

[
f

(
�(Vx)(ω)

)− f (ω)
]2)]

≤ cρBNB |V | ∑
z∈Zd

μ
(
1B

z (ω)Varz(f )
)

for a numerical constant c > 0, where 1B
z (ω) is the indicator of the event that

there exists x ∼ y and ω′ such that ω′
Vx

∈G1, ω′
Vy

∈G2 and the pair (ω,ωz) form

a transition of the canonical-path between ω′ and �(Vx)(ω′).

The proof of the above two lemmas is practically identical so we only prove the
first one.

PROOF OF LEMMA 3.7. The starting inequality is

VarVx (f )≤ ∑
z∈Vx

μVx

(
Varz(f )

)
.

For simplicity in the sequel, we assume x = 0. Given ω such that ωV+�ei
∈G2 ∀i ∈

[d] and z ∈ V , let �ω,ωz = (ω(1),ω(2), . . . ,ω(k)) be the corresponding canonical-
path. Then

Varz(f )(ω)= p(1−p)
[
f

(
ωz)− f (ω)

]2 ≤ p(1−p)k

k∑
j=1

[
f

(
ω(i+1))− f

(
ω(i))]2

,
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so that

μ
(
1{ωV+�ei∈G2 ∀i∈[d]} Varz(f )

) ≤NAp(1 − p)μ

(
k−1∑
i=1

[
f

(
ω(i+1))− f

(
ω(i))]2

)

≤ cρANA

∑
y∈V∪(

⋃d
i=1 V+�ei )

μ
(
1A

y (ω)Vary(f )
)
,

where 1A
y (ω) is as in the statement and, after the change of variables ω = ω(i), we

used the definition of ρA to bound the relative density between ω(i) and ω. The
statement of the lemma now follows at once. �

For future purposes, we summarise the conclusion of our bounds.

COROLLARY 3.9. Under the same assumptions as in Lemmas 3.7 and 3.8,

Var(f )≤ c
(
λ�p−4

2

)d[
ρANA|V |2 ∑

z

μ
(
1A

z (ω)Varz(f )
)

+ ρBNB |V |∑
z

μ
(
1B

z (ω)Varz(f )
)]

.

REMARK 3.10. In the application to KCM, the choice of the canonical-paths
entering in the above corollary will always be such that max(1A

z (ω),1B
z (ω)) ≤

cz(ω), where cz is the constraint of the KCM at z ∈ Z
d . Thus in this case the

conclusion of the Corollary implies a Poincaré inequality Var(f )≤CD(f ), where
D(f ) = ∑

z μ(cz Varz(f )) is the Dirichlet form of the KCM (cf. Remark 2.2) and
C satisfies

C ≤ c
(
λ�p−4

2

)d(
ρANA|V |2 + ρBNB |V |).

4. Application to specific KCM models. In this section, we begin by recall-
ing the definition of the Fredrickson–Andersen constrained spin models with k-
facilitation (FA-kf in the sequel) introduced by H.C. Andersen and G.H. Fredrikson
in [1] and of the GG-KCM. As it will be clear in a moment, the FA-kf models are
closely related to the so-called k-neighbour model in bootstrap percolation, while
the GG-KCM model is related to the anisotropic bootstrap percolation model in-
troduced by Gravner–Griffeath [19, 20]. As such, the dynamical properties of both
models near the ergodicity threshold are intimately related to the scaling properties
of the corresponding bootstrap percolation models in the same regime. Finally, we
state our main result relating the persistence time with the critical bootstrap per-
colation length. This will be proven in Section 5 using Corollary 3.9. The key
step will consist in finding suitable (i.e., depending on the specific choice of the
constraints) good and super-good events G1, G2, map φ and canonical-paths.
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4.1. The models. We will work with the probability space (�,μ) where
� = {0,1}Zd

and μ is the product Bernoulli(p) and we will be interested in the
asymptotic regime q ↓ 0 where q = 1−p. A generic kinetically constrained model
(KCM in the sequel) is a particular interacting particle system, that is, a Markov
process on �, described by the Markov generator

(Lf )(ω)= ∑
x∈Zd

cx(ω)
(
μx(f )− f

)
(ω),

where μx(f ) is the Bernoulli(p)-average of f (ω) w.r.t. to the variable ωx . The
constraints {cx}x∈Zd are defined as follows. Let U = {U1, . . . ,Um} be a finite col-
lection of finite subsets of Zd \ {0}. We call U the update family of the process
and each X ∈ U an update rule. Then cx is the indicator function of the event that
there exists an update rule X ∈ U such that ωy = 0∀y ∈X+ x. We emphasise that
we do not assume that the constraints satisfy the exterior property of Section 2.3.
Using these assumptions, it is easy to check (cf. [8] for a detailed analysis) that
L becomes the generator of a reversible Markov process on �, with reversible
measure μ.

In the FA-kf model, one takes as U the family of k-subsets of the set of nearest
neighbors of the origin. In the GG-KCM model in two dimensions one takes U as
the family of 3-subsets of the set of nearest neighbors of the origin together with
the vertices {±2�e1}. In the terminology of bootstrap percolation (see, e.g., [5] and
the recent survey [26]), the update family of FA-kf for k ∈ [2, d] belongs to the
class of critical balanced models and the update family of GG-KCM is critical
unbalanced. Such a difference will appear clearly in the sequel.

REMARK 4.1. Given a KCM with update family U , we will sometimes re-
fer to the corresponding bootstrap percolation process as the monotone process
defined in (1.1) using the same update rules of the KCM.

We now define the two main quantities characterising a KCM.

DEFINITION 4.2. The relaxation time Trel(q;U) of the generator L is the best
constant C in the Poincaré inequality

(4.1) Var(f )≤ CD(f ) for all local f,

where D(f )= ∑
x μ(cx Varx(f )) is the Dirichlet form associated to L.

A finite relaxation time implies (see, e.g., [22]) that the reversible measure μ is
mixing for the semigroup Pt with exponentially decaying time auto-correlations,

Var
(
etLf

) ≤ e−t/Trel Var(f ), f ∈ L2(μ).
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The second (random) quantity is the first time the spin at the origin reaches the
zero state:

τ0 = inf
{
t ≥ 0 : ω0(t)= 0

}
.

In the physics literature, the hitting time τ0 is usually referred to as the persistence
time, while, in the bootstrap percolation framework, it would be more conveniently
dubbed infection time. In [9], Theorem 4.7, it was proved that

Pμ(τ0 ≥ t)≤ exp
(−qt/Trel(q;U)

)
,

implying

Eμ(τ0)≤ Trel(q;U)/q.

A matching lower bound in terms of Trel(q;U) is missing and we have instead the
following result whose proof is deferred to the Appendix. Recall that τBP is the
infection time of the origin for the corresponding bootstrap percolation process.

LEMMA 4.3. There exists δ = δ(U) ∈ (0,1) such that, for all q small enough,

Eμ(τ0)≥ δμ(τBP)≥ δ

2
Tc(q;U).

One of the main results of [8] states that all the KCM with update family U such
that qc(U) = 0 have a finite relaxation time Trel, and thus a finite mean infection
time Eμ(τ0). In particular, the above holds for the FA-kf for k ∈ [2, d] model and
the GG-KCM and our main aim is to compute the rate at which Trel and Eμ(τ0)

diverge as q → 0 in both cases.

4.2. Main result. We begin to recall what is known on the asymptotic scaling
as q → 0 of the critical length Lc(q;U) defined in (1.2) and the relaxation time
Trel(q;U), when the update family U is that of the FA-kf and the GG-KCM models.

For the update family U of the FA-kf model on Z
d , it was proved in [3] (see

the Introduction there for a short account of previous relevant results) that for any
d ≥ k ≥ 2 there exists an explicit constant λ(d, k) such that

(4.2) Lc(q;k, d)≡Lc(q;U)= exp(k−1)

(
λ(d, k)+ o(1)

q1/(d−k+1)

)
,

where exp(r) denotes the r-times iterated exponential, exp(r+1)(x) =
exp(exp(r)(x)). For the case of the GG-KCM, it was established in [17] (see also
[16] for a detailed analysis of the o(1) term below) that instead

Lc(q;U)= exp
(

(log(1/q))2

12q

(
1 + o(1)

))
.
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As far as the asymptotic behaviour Trel(q;U) as q → 0 is concerned, only the FA-
kf model has been considered so far and the following bounds have been proved
in [8]. There exists c > 0 such that

Lc(q;U)1−o(1) ≤ Trel(q;U)≤ exp
(
c/q5)

, d = k = 2,

Lc(q;U)1−o(1) ≤ Trel(q;U)≤ exp(d−1)(c/q), d ≥ 3, k ≤ d.

Notice that the above upper bounds are very far from Lc(q;U). In conclusion,
while the control of the critical length Lc(q;U) is rather sharp, the relaxation time
Trel(q;U) and the mean hitting time Eμ(τ0) are still poorly controlled. The main
outcome of the theorem below is a much tighter connection between Trel(q;U)

and, therefore, Eμ(τ0) and Lc(q;U).

THEOREM 4.4. For the FA-2f model in Z
d and the GG-KCM model, there

exists α > 0 such that

(4.3) Trel(q;U)=O
(
Lc(q;U)log(1/q)α )

.

For FA-kf model in Z
d with 3 ≤ k ≤ d , there exists c > λ(d, k) such that

(4.4) Trel(q;U)≤ exp(k−1)

(
c/q1/(d−k+1)).

5. Proof of Theorem 4.4.

5.1. Reader’s guide and notation. The proof of the theorem uses all the ma-
chinery which was developed in the previous sections. Therefore, for all the above
models, the coarse-grained probability space (S, μ̂) (cf., e.g., the beginning of Sec-
tion 3.1) will be of the form S = {0,1}V , with V = ∏d

i=1[ni] and μ̂ the product
Bernoulli(p) measure.

The starting point of the proof is to make an appropriate choice for the value
of �n= (n1, . . . , nd) together with a working definition of the good and super-good

events G1,G2 ⊂ S and of the mapping G1
��→ G2 (cf. Section 3) for each model.

Clearly, in order to apply Theorem 3.2 and Corollary 3.9, our choice of (�n,G1,G2)

must ensure that the probabilities p1 = μ̂(G1) and p2 = μ̂(G2) satisfy the basic
condition limq→0(1 − p1)(log(1/p2))

2 = 0 of Theorem 3.2. In the FA-kf models,
no direction plays a special role (it is a balanced model in the language of [26]) and,
therefore, we choose ni = n for all i ∈ [d]. In the GG-KCM, the above symmetry
is broken and we will need to distinguish between the two directions. This part
of the proof is carried out in Part I (see below). The second part of the proof
(cf. Part II below) involves defining appropriately the canonical-paths appearing
in Lemma 3.7 and 3.8 (see also Corollary 3.9) and bounding the corresponding
length and congestion constants.

Carrying out the above program could become particularly heavy from a nota-
tional point of view. Therefore, we will sometimes adopt a more descriptive and
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informal approach. More specifically, given a configuration ω ∈ {0,1}Zd
and a

region 	 ⊂ Z
d , we will declare 	 empty (occupied) if ω � 	 = 0(1). While con-

structing the canonical-paths appearing in Lemmas 3.7 and 3.8, we will say that
we empty (fill) 	 if we flip to 0 (1), one by one according to some preassigned
schedule (i.e., an ordering of the to-do flips), all the occupied/empty sites of 	. It
is important to emphasise that the schedules involved in the operations of emptying
or filling a region will always be such that each spin flip dictated by the schedule
will occur while fulfilling the specific constraint of each model. Schedules with
this property will be dubbed legal schedules. A closely related notion is that of
legal canonical-path.

DEFINITION 5.1. Given a KCM, let {cx}x∈Zd be the corresponding fam-
ily of constraints. A legal canonical-path between two configurations ω, ω′ is
a canonical-path �ω,ω′ ≡ (ω(1),ω(2), . . . ,ω(m)) with the additional property that
cx(i)(ω(i)) = 1 ∀i ∈ [m− 1], where ωx denotes the configuration obtained from ω

by flipping the value ωx and x(i) is the vertex such that ω(i+1) = (ω(i))x
(i)

. We say
that the canonical-path is decreasing (increasing) if for any i ∈ [m − 1] and any
x ∈ Z

d ω
(i+1)
x ≤ ω

(i)
x (ω(i+1)

x ≥ ω
(i)
x ).

Next, we recall the notion of a subset of Z
d being internally spanned which

will play a crucial role in the definition of the good and super-good events for the
specific KCM treated here.

DEFINITION 5.2 (Internally spanned). Consider a KCM with updating fam-
ily U . Given 	 ⊂ Z

d , we will denote by I (U,	) ⊂ �	 the event that 	 is U -
internally spanned, that is, [{x ∈	 : ωx = 0}]U =	.

When the update family is that of the FA-kf model in d dimensions (i.e., the up-
date family of k-neighbour model), we will sometimes write I (d, k,	) instead of
I (U,	) and we will say that 	 is k-internally spanned.

We will also need the following result for k-neighbour bootstrap percolation.

LEMMA 5.3 ([11], Lemma 4.1). There exists ε > 0 s.t. for L ≥ CLc(εq;U),
L ∈N and C a large enough numerical constant,

(5.1) μ
(
ω ∈ I

(
d, k, [L]d)) ≥ 1 − exp

(−L/Lc(εq;U)
)
.

Clearly, for any update family U , the following holds. If ω is such that the
region 	 is U -internally spanned and ω′ is the configuration equal to zero in 	

and equal to ω elsewhere, then there exists a legal decreasing canonical-path �ω,ω′
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which only uses flips inside 	. In particular, the length of �ω,ω′ is at most |	|. By
reversing the path, we get a legal increasing path between ω′ and ω.

Before starting the actual proof, it will be useful to fix some additional notation.
Given the hypercube 	= [n]d and i ∈ [d], we set Ei(	)= {x ∈	 : xj = 1, j 
= i}
and we call it the ith-edge of 	. Strictly speaking, an edge of V is a set of the form
{x ∈ V : xj ∈ {1, n} ∀j 
= i}. Here, we will only need edges with one end-point at
the vertex (1, . . . ,1). Any (d − 1)-dimensional set of the form 	 ∩ {x : xi = j},
j ∈ [n], will be called an i-slice and it will be denoted by Slj (	; i). A generic i-
frame Fj (	; i), j ∈ [n], is the (d − 2)-dimensional subset of Slj (	; i) consisting
of the vertices x such that xk = 1 for some k 
= i. If 	′ = x + 	, then Ei(	

′) =
Ei(	) + x, etc. If clear from the context, we will drop the specification 	 from
the notation.

5.2. Part I. Here, we define the blocks of the coarse-grained analysis together
with the good and super-good events and the mapping �. We do that separately
for the FA-kf model and the GG-KCM.

5.2.1. The FA-kf model with k ≥ 3. Let � = Lc(εq;k − 1, d − 1) [see (4.2)]
with ε defined in Remark 5.3 and fix n=A� log�, with A > 2(d − 1)+ 1.

DEFINITION 5.4 (G1, G2, �). The good event G1 consists of all ω ∈ S such
that for all i ∈ [d] every i-slice of V is (k − 1)-internally spanned. The super-
good event G2 consists of all ω ∈ G1 such that the first slice in any direction is

empty. The mapping G1
��→G2 is defined by �(ω)x = 0 if x ∈ ⋃d

i=1 Sl1(V ; i) and
�(ω)x = ωx otherwise.

With the triple (G1,G2,�) we get immediately that

(1 − p1)≤ dn
(
1 − μ̂

(
I
(
d − 1, k − 1, [n]d−1)))

,

p2 = μ̂(G2)≥ p1q
dnd−1

,

λ� ≤
(

2

q

)dnd−1

.

Using (5.1) together with the definition of n, we get immediately that 1 − p1 ≤
A�−(A−1) log� so that limq→0(1 − p1)(log(1/p2))

2 = 0 for all A > 2d − 1.

5.2.2. The FA-kf model with k = 2. In this case, we choose V = ∏
i∈[d][ni]

with ni = (A
q

log(1/q))1/(d−1) with A > 3/(d − 1).

DEFINITION 5.5 (G1,G2,�). The good event G1 consists of all ω ∈ S such
that, for all i ∈ [d] every i-slice of V contains at least one empty vertex. The super-
good event G2 consists of all ω ∈G1 such that any i-edge of V is empty. The map-

ping G1
��→ G2 is defined by �(ω)x = 0 if x ∈ ⋃d

j=1 Ej and �(ω)x = ωx other-
wise.
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As before, we easily get

1 − p1 = μ̂
(
Gc

1
) ≤ dn(1 − q)n

d−1 ≤ dnqA,

p2 = μ̂(G2)≥ qnd, λ� ≤ 2nd

qnd
,

where 2nd is the number of possible configurations ω′ ∈ {0,1}⋃i Ei . In particular,
for all A > 3/(d − 1), limq→0(1 − p1)(log(1/p2))

2 = 0.

5.2.3. The GG-KCM model. Here, we choose n1 = �A log(1/q)

q2 � and n2 =
�A log(1/q)

q
�, A > 6.

DEFINITION 5.6. We say that ω ∈ G1 if all columns of V = [n1] × [n2] con-
tain at least one empty vertex and all rows contain at least one pair of adjacent
empty vertices (x, x′). We say that ω ∈ G2 if ω ∈ G1 and the first two adjacent
columns of V are empty. The mapping � is the one which empties the first two
columns of V .

Again we easily obtain that

1 − p1 =O
(
q(A−2)/2 log(1/q)

)
,

p2 =O

(
exp

[
−2A

q
log(1/q)2

])
, λ� =O

(
22n2/q2n2

)
so that limq→0(1 − p1)(log(1/p2))

2 = 0 for A > 6.
Notice that for all models the factor (λ�/p4

2)
d |V | appearing in Corollary 3.9 is

bounded from above by the right-hand side of (4.3) and (4.4).

5.3. Part II. Here, we complete the proof of Theorem 4.4 by defining the
canonical-paths appearing in Lemmas 3.7 and 3.8 in such a way that:

(a) they are legal canonical-paths;
(b) the congestion constants ρA, ρB and the maximum length of the paths NA,

NB are such that max(ρANa,ρBNB) is bounded from above by right-hand side of
(4.3) for the FA-2f and the GG-KCM models and by the right-hand side of (4.4)
for the FA-kf model, k ≥ 3.

A very useful strategy to carry out this program is based on the following simple
result.

LEMMA 5.7. Fix ω and let 	1,	2, . . . ,	N be N regions with the property
that, for any j and k = j ±1, if we empty 	j then we can also empty 	k by means
of a legal schedule using only flips in 	k . Assume that ω is such that 	1 is empty
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and let ω′ be obtained from ω by emptying 	N . Then there exists a legal canonical-
path �ω,ω′ = (ω(1), . . . ,ω(m)), m≤ 2

∑
i |	i |, such that for any j ∈ [m] the follow-

ing holds. If the configuration ω(j+1) is obtained from ω(j) by flipping a vertex in
	kj

, then all the discrepancies (i.e., the vertices where they differ) between ω and
ω(j) are contained in 	kj−1∪	kj

∪	kj+1 if kj < N and in 	N−1∪	N if kj =N .

PROOF. By assumption, we can first empty 	2 and then 	3 by using flips first
in 	2 and then in 	3. Let η be the new configuration and let σ be the configuration
obtained from ω by emptying 	3. We can then restore the original values of ω in
	2 by reversing the legal canonical-path �σ,η. Starting from σ , we can iteratively
repeat the above procedure and get a final legal canonical-path �ω,ω′ with the
required property. �

REMARK 5.8. The fact that the discrepancies between an intermediate step of
the path ω(j) and the starting configuration ω are contained in a triple of con-
secutive 	i’s allows us to easily upper bound the congestion constant ρ� :=
supω̃

∑
ω:�ω,ω′�ω̃

μ(ω)
μ(ω̃)

of the family {�ω,ω′ }ω∈S by (2/q)maxi (|	i−2|+|	i−1|+|	i |).
This observation will be the main tool to bound the congestion constants ρA, ρB

appearing in Corollary 3.9.

5.3.1. The FA-kf model with k ≥ 3. As before, set V = [n]d with n as in Sec-
tion 5.2.1. The proof is based on a series of simple observations which, under cer-
tain natural assumptions, ensure the existence of legal canonical-paths with some
prescribed properties.

CLAIM 5.9. Let ω be a configuration such that the i-slice Slj (V ; i) is empty
and the i-slice Slj−1(V ; i) is (k − 1)-internally spanned. Let ω′ be such that
ω′ � Slj−1(V ; i) = 0 and ω′ coincides with ω elsewhere. Then there is a legal de-
creasing canonical-path �ω,ω′ which uses only flips inside Sj−1(V ; i); similarly,
if we replace Sj−1(V ; i) with Sj+1(V ; i).

PROOF. The result can be immediately proven by noticing that each site in
Slj−1(V ; i) has an empty neighbour in Slj (V ; i). Since Slj−1(V ; i) is (k − 1)-
internally spanned, the legal [w.r.t. to the FA-(k-1)f constraint] monotone path
which empties it is also legal w.r.t. the FA-kf constraint. �

CLAIM 5.10. Fix i ∈ [d], m ∈ [n] and let (ω,ω′) be a pair of configurations
satisfying at least one of the following conditions:

(a) ω is such that the first i-slice is empty and all the others are (k − 1)-
internally spanned and ω′ is obtained from ω by emptying the mth i-slice and
the first m− 1 i-frames.
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(b) ω is such that
⋃d

i=1 Sl1(V ; i) is empty and ω′ is obtained from ω by empty-
ing Slm(V ; i).
Then there exists a legal canonical-path �ω,ω′ = (ω(1),ω(2), . . . ,ω(N)) with N ≤
2nd such that the only discrepancies between ω and ω(j), j ∈ [N ], belong to the
set

Slkj−1(V , i)∪ Slkj
(V , i)∪ Slkj+1(V ; i)∪

( kj⋃
�=1

F�(V ; i)
)
,

where kj is such that the flip connecting ω(j) to ω(j+1) occurs in the kj th i-slice.

PROOF. Case (a). In this case, we simply apply Lemma 5.7 and Claim 5.9 to
the first m i-slices with a twist. After emptying the j th i-slice, j = 1,2, . . . ,m,
instead of reconstructing the original values of ω in the previous slice we do so
only in Slj−1(V ; i) \Fj−1(V ; i). In such a way, the i-frames once emptied remain
so and we get to the final configuration ω′ by a legal canonical-path satisfying the
required property.

Case (b). We use again Lemma 5.7 and Claim 5.9. The base case k = 2, d = 2
follows by observing that the i-slices, i = 1,2, are 1-internally spanned since they
all contain an empty site. The case k = 2 and d > 2 follows by induction. In fact,
Sl2(V ; i) is of the form 	 × {xi = 2} with 	 isomorphic to [n]d−1. Moreover,⋃d−1

i=1 Sl1(	; j) × {xi = 2} ⊂ ⋃d
j=1 Sl1(V ; j) and, therefore, it is empty by as-

sumption. By the inductive hypothesis for k = 2, d − 1, we can empty Sl2(V ; i)
using only flips inside Sl2(V ; i). This concludes the proof for k = 2 and any d ≥ 2.
We thus assume the result true for (k − 1, d − 1) and prove it for (k, d), d ≥ k. In
this case, we apply Lemma 5.7 to the regions 	j := Slj (V ; i)∪ (

⋃d
i=1 Sl1(V ; i)).

For simplicity and w.l.o.g., we only verify the assumption of the lemma for the
pair 	1, 	2. In this case, we aim at constructing a legal canonical-path that emp-
ties Sl2(V ; i) using only flips there.

Thus, using the inductive hypothesis and the fact that each site on Sl2(V ; i) has
an additional empty neighbour in Sl1(V ; i), we can empty Sl2(V ; i) by a legal
canonical-path which uses flips only in Sl2(V ; i). �

We are now ready to state the main result for the case under consideration.

PROPOSITION 5.11. In the above setting, there exists a choice of the
canonical-paths occurring in Lemmas 3.7 and 3.8 such that, for a suitable positive
constant c:

• each path is a legal canonical-path and max(NA,NB)≤ cnd ;
• max(ρA,ρB)≤ (1/q)cn

d−1
.
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Using that n = A� log�, � being the critical length for the FA-(k-1)f model in
Z

d−1 given by [cf. (4.2)]

�= exp(k−2)

(
λ(d − 1, k − 1)+ o(1)

q1/(d−k+1)

)
,

the proposition implies that

max(ρANA,ρBNB)≤ r.h.s. of (4.4),

so that the conclusion of Theorem 4.4 for the case k ≥ 3 follows from Corol-
lary 3.9.

PROOF OF THE PROPOSITION. We begin by examining the choice of the
canonical-paths appearing in Lemma 3.8. Using the definition of the good and
super-good events G1,G2 given in Section 5.2.1, our choice for the canonical
paths is the one dictated by (a) of Claim 5.10. In this case, using Remark 5.8,
NB ≤ cnd and ρB ≤ (1/q)n

d−1
for some constant c > 0.

We now turn to the canonical-paths appearing in Lemma 3.7. Fix ω and z as in
the lemma and observe that, using (b) of Claim 5.10, we can empty all the slices
Szi+1(V ; i), i ∈ [d], via a legal schedule. Call ω′ the configuration obtained in this
way. In ω′, we can make a flip at z since z has at least d empty neighbors. We
can finally reverse the path from ω to ω′ to obtain our final legal canonical-path
between ω and ωz. Claim 5.10 again implies that NAρA ≤ cn2d1/qcnd−1

. �

5.3.2. The FA-kf model with k = 2. As before, set V = [n]d with n as in
Section 5.2.2. For any x ∈ V , we define the cross at x as the set Cx(V ) :=⋃d

i=1 Cx(V ; i) with

Cx(V ; i) := {
x′ ∈ V : x′j = xj ∀j 
= i

}
.

Notice that the cross of the vertex (1,1, . . . ,1) ∈ V is the union of the edges
Ei(V ).

CLAIM 5.12. Given x, y ∈ V such that y = x ± �ei for some i ∈ [d], let ω

be such that Cx(V ) is empty and let ω′ be the configuration obtained from ω

by emptying the cross at y. Then there exists a legal decreasing canonical-path
�ω,ω′ = (ω(1), . . . ,ω(m)), m≤ 2dn, using only flips in Cx(V )∪ Cy(V ).

PROOF. Since y = x + ±�ei then necessarily Cy(V ; i) = Cx(V ; i). Consider
now the vertex z = y ± �ej with j 
= i. This vertex has two empty neighbours: one
is y and another belongs to Cx(V ). Therefore, z can be emptied. We can iterate
until we empty the j th arm of the cross Cy(V ) and then repeat the procedure for
all the remaining direction but the ith one. �

As for the case k ≥ 3, we have the following.



354 F. MARTINELLI AND C. TONINELLI

PROPOSITION 5.13. In the above setting, there exists a choice of the
canonical-paths occurring in Lemmas 3.7 and 3.8 such that, for a suitable positive
constant c:

• each path is a legal canonical-path and max(NA,NB)≤ cn2;
• max(ρA,ρB)≤ (1/q)cn.

Using that n= (A
q

log(1/q))1/(d−1), the proposition implies that

max(ρANA,ρBNB)≤ r.h.s. of (4.3),

so that the conclusion of Theorem 4.4 for the case k = 2 follows from Corol-
lary 3.9.

PROOF OF PROPOSITION 5.13. We begin by examining the choice of the
canonical-paths appearing in Lemma 3.8. Fix ω and suppose that we have two
hypercubes V = [n]d and V ′ = V + (n+ 1)�e1 such that ω � V is good and ω � V ′
is super-good. Let also ω′ be obtained from ω by emptying the cross of the vertex
(1,1, . . . ,1) ∈ V so that ω′ � V is super-good. Let now z(i) be the first (according
to some a priori order) vertex in the (n − i + 1)th 1-slice Sln−i+1(V ;1), which
is empty and let z̄(i) = z(i) + �e1. Observe that the vertex z̄(i) belong to the same
1-slice of V as the vertex z(i−1) and that the vertex z(i) exists for all i ∈ [n] be-
cause ω � V is good. Finally, let γ = (x(1), . . . x(m)), m≤ n2, be the geometric path
connecting x(1) := (1, . . . ,1)+ n�e1 ∈ V ′ with x(m) := (1, . . . ,1) ∈ V constructed
according to the following schedule:

(a) join x(1) with z̄(1) by first adjusting the second coordinate, then the third
one, etc.;

(b) join z̄(1) to z(1);
(c) repeat the above steps with x(1) replaced by z(1) and z̄(1) by z̄(2), etc.

Next, for i ∈ [m], let 	i be the cross Cx(i) (V (i)) where V (i) is the hypercube
V + (x

(i)
1 − 1)�e1. Notice that x(i) ∈ Sl1(V (i);1). We claim that the above sets

satisfy the assumption of Lemma 5.7. If the hypercubes V (i), V (i+1) are the same,
then the claim follows immediately from Claim 5.12. If V (i+1) = V (i) − �e1, then
necessarily the pair (x(i), x(i+1)) must be of the form (z̄(j), z(j)) for some j and
having the cross Cx(i) (V (i)) empty implies that also the cross Cx(i)(V (i+1)) is empty
because, by assumption, ωz(j) = 0. Thus we can apply again Claim 5.12, this time
in the hypercube V (i+1) and empty 	i+1. It is now a simple check to verify that the
path defined in this way satisfy NB ≤ cn2 and ρB ≤ ecn for some constant c > 0.

We now examine the canonical-paths entering in Lemma 3.7. Let ω be such that
all the hypercubes V + �ei , i ∈ [d], are super-good, let z ∈ V and let ω′ be obtained
from ω by flipping ωz; w.l.o.g. we assume in the sequel that z = (1, . . . ,1).

Let ω̃ be the intermediate configuration obtained from ω by emptying the
cross (in V ) of the vertex x(1) := (n, . . . , n). Using Lemma 5.12, it is easy to
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check that there exists a legal canonical-path �ω,ω̃ with a congestion constant
ρ� ≤ (1/q)cn for some constant c > 0. Next, let γ = (x(1), . . . , x(m)) be a geo-
metric path connecting x(1) with the vertex z+∑d

i=1 �ei and define 	i = Cx(i) (V ).
Using Claim 5.12 and the definition of ω̃, the sets {	i}mi=1 satisfy the assumption
of Lemma 5.7. In conclusion, we have proved the existence of a legal canonical-
path �ω,ω̂ where ω̂ is obtained from ω by emptying the cross of x(m). Now we can
legally flip z and then reverse the path �ω,ω̂ to finally get to ω′ = ωz. In conclu-
sion, we have obtained a legal canonical-path �ω,ω′ and the claimed properties of
NA and ρA follow at once from its explicit construction. �

5.3.3. The GG-KCM model. Recall that in this case the basic block V is the
[n1]× [n2] rectangle, with n1, n2 as in Section 5.2.3. Moreover, given ω ∈ {0,1}V ,
the block V is good if every column contains an empty site and every row contains
a pair of adjacent empty sites. It is super-good if it is good and the first two columns
are empty.

In this setting, two basic observations will be at the basis of our definition of the
canonical-paths appearing in Lemmas 3.7 and 3.8. Fix an integer n together with
ω ∈ {0,1}[4]×[n+1] and consider four consecutive columns Ci = {x = (i, j), j ∈
[n]}, i ∈ [4]:

(1) If C1, C2 are empty and C3 contains an empty site, then C3 can be emptied
by a legal decreasing canonical-path using only flips in C3; similarly, if the role of
C1 and C3 is interchanged.

(2) If C1, C2 are empty and the two vertices x = (3, n+ 1) and y = (4, n+ 1)

above, the 3rd and 4th column are also empty, then C3 and C4 can be emptied by
a legal decreasing canonical-path using only flips in C3 ∪C4. Similarly, if the role
of the pair (C1,C2) and (C3,C4) is interchanged and the sites x, y are replaced by
x′ = (1, n+ 1), y′ = (2, n+ 1).

Using the above, we can prove our final proposition.

PROPOSITION 5.14. For the GG-KCM model, there exists a choice of the
canonical-paths occurring in Lemmas 3.7 and 3.8 such that, for a suitable positive
constant c:

• each path is a legal canonical-path and max(NA,NB)≤ cn1n2;
• max(ρA,ρB)≤ (1/q)cn2 .

PROOF. We begin with the definition of the canonical-paths appearing in
Lemma 3.8 with, for simplicity, Vx = V and Vy = V ′ where V ′ is either V +
(n1 + 1)�e1 or V + (n2 + 1)�e2. For simplicity, we will not make any attempt to
optimize our construction, that is, to improve over the constant c above.

In the first case, V ′ = V + (n1 + 1)�e1, let ω ∈ {0,1}V∪V ′
be such that V is

good and V ′ is super-good and let ω′ be obtained from ω by emptying the first two
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FIG. 3. A sketch of the canonical-path �ω,ω′ appearing in Lemma 3.8 for two horizontally adja-
cent blocks. Only the 1st and 2nd empty columns of the right super-good block are drawn (black).
The black dots in the left block denote the empty sites, while the gray columns denote the different
positions of the pair of adjacent columns inside the path. Notice the pair of adjacent empty sites on
each row.

columns of V . Then we can use observation (1) above together with Lemma 5.7
to get that there exists a legal canonical-path �ω,ω′ of maximal length cn1n2 and
congestion constant ρB ≤ (1/q)cn2 for some constant c > 0. Notice that in this
case we did not use the fact that if V is good then every row contains a pair of
adjacent empty sites (cf. Figure 3).

In the second case, V ′ = V + (n2 + 1)�e2, for i ∈ [n] define ai as the smallest
integer j ∈ [n− 1] such that x = (j, n− i + 1) and y = (j + 1, n− i + 1) are both
empty. Using that V is good, the integer ai is well-defined. Let also 	i denotes the
two semi-columns in V ∪V ′ above the vertices (ai, n− i+1) and (ai+1, n− i+1)

(cf. Figure 4).
Using observation (1) together with Lemma 5.7, we can then obtain a legal

canonical-path between ω and ω′, whose length is at most cn1n
2
2 and whose con-

gestion constant is bounded from above by (1/q)cn2 for some c > 0 independent
of i, as follows:

(a) starting from the first two empty columns in V ′, we begin to empty 	1.
Then, starting from the two empty semi-columns 	1 ∪ {a1, n} ∪ {a1 + 1, n}, we
empty the two sites x = (1, n), x′ = (2, n) while restoring the original values of ω

in all the other sites of V ∪ V ′.
(b) We now repeat the same procedure with 	1 replaced by 	2 and (x, x′)

replaced by x̂ = (1, n − 1), x̂′ = (2, n − 1), starting from the two empty semi-
columns obtained by adding to the first two columns of V ′ the empty sites (1, n),
(2, n).

(c) We iterate until reaching ω′.
It remains to consider the construction of the canonical-paths appearing in
Lemma 3.7 and for that we use both (1) and (2) above.

Fix ω such that V1 := V + (n1 +1)�e1 and V2 := V + (n2 +1)�e2 are super-good,
let z ∈ V and let ω′ = ωz. For simplicity and w.l.o.g., we assume z = (1,1). We can
then obtain a legal canonical-path between ω and ω′ with the required properties
as follows (see Figure 5):
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FIG. 4. A sketch of the canonical-path �ω,ω′ for two vertically adjacent blocks. The sequence of
the dashed arrows must be read from top to bottom. Initially, the 1st and 2nd empty columns of the
top block (drawn in thick black) travel until they sit above the first pair of adjacent empty sites on the
top row of the bottom block (grey position). At this time, their height grows by one unit. Later in the
path, this new pair of empty columns is moved above the first pair of adjacent empty sites on the next
to top row of the bottom block and so forth until the 1st and 2nd columns of the bottom block become
empty.

FIG. 5. A sketch of the canonical-path �ω,ω′ appearing in Lemma 3.7. Assuming that the path has
been able to empty the two black columns of V , then it is possible to move these two columns one
step further to the left as follows. First, move the initial pair of double empty columns in V2 to the
new position encircled by the dashed ellipse then, starting with the vertex z, empty the dashed black
column in V and finally restore the original values of ω to the right of x and then in V2.
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(a) by combining observation (1) with Lemma 5.7 we first empty the last two
columns of V2 without doing any flip inside V ∪ V1;

(b) at this stage, the last two columns of V2 are empty because of (a) and the
first two columns of V1 are also empty because V1 was super-good. Thus, using
observation (2), we empty the last two columns of V ;

(c) finally, we restore the original configuration in V2 by reverting the path in
the first step.

(d) We repeat the above three steps with a twist: we first empty the 4th and
3rd last column of V2, then the 4th and 3rd last column of V . We then restore the
original configuration ω in the last two columns of V and, subsequently, we finally
restore ω in V2. We have now reached the intermediate configuration obtained from
ω by emptying the 4th and 3rd last column of V .

(e) We iterate the above step until reaching the configuration obtained from ω

by emptying the 2nd and 3rd column of V .
(f) Finally, using again (2) above and Lemma 5.7, we empty the vertex (1,2).

At this stage, we can do a flip in the corner (1,1) since the vertices (1,2), (2,1)

and (3,1) are all empty.
(g) The final step is to retrace the steps of the path which emptied (1,2) and

then those of the path which emptied the 2nd and 3rd column of V in such a way
that we end up in the configuration ω′. �

APPENDIX: PROOF OF LEMMA 4.3

Fix ω ∈� and let τBP(ω;x) denote the bootstrap infection time of a generic site
x when the initial set of infected sites coincides with the set of empty sites of ω.
Given a sequence {xi}ni=1 of vertices of Zd , we set ω(0) = ω and for any i ∈ [n]
we denote by ω(i) the configuration obtained from ω by setting equal to 0 all the
variables at x1, . . . , xi . We then say that {xi}ni=1 is a sequence of legal infections if,
for all i ∈ [n]:

(i) ωxi
= 1;

(ii) there exists Ui ∈ U s.t. ω
(i−1)
y = 0 for all y ∈ xi +Ui .

Notice that, necessarily, τBP(ω, xj )≤ j for j ∈ [n].
The key reduction property of a sequence of legal infections is that it is possible

to extract a subsequence {xik }mk=1 of length m= τBP(ω, xn) such that im = n and

|xij − xij+1 | ≤ r ∀j ∈ [m− 1],
with r = maxX∈U maxx∈X |x|. Indeed, let ti := τBP(ω, xi). If tn = 1, there is noth-
ing to be proved. If tn > 1, then necessarily there exists j < n such that:

• xj belongs to one of the update rules of xn, and thus |xj − xn| ≤ r ,
• tj ≥ tn − 1,
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since otherwise τBP(ω, xn) < tn. Let j∗ be the largest one such integers and set
im−1 = j∗. Then, using that {xi}j∗i=1 is also a sequence of legal infections, we can
repeat the argument and proceed backward until identifying the claimed subse-
quence {xik }mk=1.

Let now t ≡ τBP(ω,0) and fix δ ∈ (0,1). In the sequel, it will be useful to think
of the KCM dynamics as built according to the standard graphical construction
of an interacting particle system with a Glauber dynamics (see, e.g., [8]). In this
setting, suppose that for any r-path γ of length t ending at the origin, that is, a
sequence of t vertices (v1, . . . , vn), with vt = 0 and |vi − vi+1| ≤ r for all i ∈
[t − 1], it is not possible to find a ordered sequence t1 < · · · < tt in (0, δt) of
rings of the Poisson clocks such that the ith-ring occurs at vi . Using the reduction
property of any sequence of legal infections, we conclude that, deterministically,
the KCM dynamics starting from ω cannot infect the origin within time δt .

Finally, we claim that the above assumption is satisfied w.h.p. if δ is small
enough. In fact, for any given r-path γ ending at the origin, the probability that
there exists an ordered sequence t1 < · · · < tt in (0, δt) as above, is just the prob-
ability that a Poisson random variable of mean δt is larger than t . Since the num-
ber of such paths is bounded by ec(r)t , the claim follows immediately for δ small
enough.

In conclusion, we have proved that there exists δ > 0 such that, for any ω such
that τBP(ω,0)≥ 1,

Pω

(
τ0 ≥ δτBP(ω,0)

) ≥ 1/2.
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