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Given two probability measures μ and ν in “convex order” on R
d , we

study the profile of one-step martingale plans π on R
d × R

d that optimize
the expected value of the modulus of their increment among all martingales
having μ and ν as marginals. While there is a great deal of results for the
real line (i.e., when d = 1), much less is known in the richer and more deli-
cate higher-dimensional case that we tackle in this paper. We show that many
structural results can be obtained, provided the initial measure μ is abso-
lutely continuous with respect to the Lebesgue measure. One such a prop-
erty is that μ-almost every x in Rd is transported by the optimal martingale
plan into a probability measure πx concentrated on the extreme points of the
closed convex hull of its support. This will be established for the distance cost
c(x, y)= |x − y| in the two-dimensional case, and also for any d ≥ 3 as long
as the marginals are in “subharmonic order.” In some cases, πx is supported
on the vertices of a k(x)-dimensional polytope, such as when the target mea-
sure is discrete. Duality plays a crucial role in our approach, even though,
in contrast to standard optimal transports, the dual extremal problem may
not be attained in general. We show however that “martingale supporting”
Borel subsets of Rd × R

d can be decomposed into a collection of mutually
disjoint components by means of a “convex paving” of the source space, in
such a way that when the martingale is optimal for a general cost function,
each of the components then supports a restricted optimal martingale trans-
port whose dual problem is attained. This decomposition is used to obtain
structural results in cases where global duality is not attained. On the other
hand, it shows that certain “optimal martingale supporting” Borel sets can be
viewed as higher-dimensional versions of Nikodym-type sets. The paper fo-
cuses on the distance cost, but much of the results hold for general Lipschitz
cost functions.
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1. Introduction. We study the profile of one-step martingales π on R
d ×R

d

that optimize the expected value of the modulus of their increment, among all
martingales with two given marginals μ and ν in convex order. More precisely,
we investigate the structure of conditional probabilities (πx)x∈suppμ on R

d which
describe how a given particle at x is propagated under such transport plans. These
questions originate in mathematical finance and are variations on the original
Monge–Kantorovich problem, where one considers all couplings of the given
marginals and not only those of martingale type [7, 15, 22, 26, 28, 29]. However,
unlike solutions of the Monge–Kantorovich problem, which are often supported
on graphs (such as the well-known Brenier solution [7] for the cost given by the
squared distance), the additional martingale constraint forces the transport to split
the elements of the initial measure μ. One cannot therefore expect—but in trivial
cases—that optimal martingale plans be supported on graphs.

These questions are motivated by problems in mathematical finance, which call
for no-arbitrage lower (or upper) bounds on the price of a forward starting strad-
dle, given today’s vanilla call prices at the two relevant maturities. Just like in
the Monge–Kantorovich theory for optimal transport, these problems have dual
counterparts, whose financial interpretation amounts to constructing the most (or
least) expensive semistatic hedging strategy which subreplicates the payoff of the
forward starting straddle for any realization of the underlying forward price pro-
cess.

The minimization and maximization problems are quite different, though by
now well understood, when the marginals are probability measures on the real
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line, at least in the case of one-step martingales. We refer to Hobson–Neuberger
[19], Hobson–Klimmek [18] and Beiglböck–Juillet [5]. For the multi-step case, see
Beiglböck et al. [3]. The dynamic case have been also studied by Galichon et al.
[14] and Dolinsky–Soner [10, 11]. The two cases studied are when the cost is either
c(x, y)= |x − y|, which is the main focus of this paper, or the case when the cost
satisfies the so-called generalized Spence–Mirrlees condition. Note that the one-
dimensional case is closely related to Skorohod embedding problems [23], since
real-valued martingales can be realized as adequately stopped Brownian paths; see,
for example, Hobson [17], Beiglböck et al. [2] and Beiglböck et al. [4].

Surprisingly, much less is known in the case where the marginals are supported
on higher-dimensional Euclidean spaces Rd . In this direction, Lim [21] considered
the optimal martingale transport problem under radially symmetric marginals on
R

d , while Ghoussoub et al. consider in [16] the corresponding optimal Skorokhod
embedding. In this paper, we shall tackle the following general optimization prob-
lem associated to a cost function c :Rd ×R

d →R:

Maximize/Minimize cost[π ]
=

∫
Rd×Rd

c(x, y) dπ(x, y) over π ∈MT(μ, ν).
(1.1)

Here, MT(μ, ν) is the set of martingale transport plans, that is, the set of prob-
abilities π on R

d × R
d with marginals μ and ν, such that for μ-almost every

x ∈ R
d , the component πx of its disintegration (πx)x with respect to μ, that is,

dπ(x, y)= dπx(y) dμ(x), has its barycenter at x; in other words, for any convex
function ϕ on R

d , one has ϕ(x)≤ ∫
Rd ϕ(y) dπx(y).

One can also use the probabilistic notation, which amounts to

Maximize/Minimize EPc(X,Y )(1.2)

over all martingales (X,Y ) on a probability space (�,F,P ) into R
d × R

d (i.e.,
E[Y |X] = X) with laws X ∼ μ and Y ∼ ν [i.e., P(X ∈ A) = μ(A) and P(Y ∈
A)= ν(A) for all Borel sets A in R

d ]. Note that in this case, the disintegration of
π can be written as the conditional probability πx(A)= P(Y ∈A|X = x).

A classical theorem of Strassen [27] states that the set MT (μ,ν) of martingale
transports is nonempty if and only if the marginals μ and ν are in convex order,
that is if:

1. μ and ν are probability measures with finite first moments, and
2.

∫
Rd ϕ dμ≤ ∫

Rd ϕ dν for every convex function ϕ on R
d .

In that case, we will write μ ≤C ν, which is sometimes called the Choquet order
for convex functions [8]. Note that x is the barycenter of a measure ν if and only if
δx ≤C ν, where δx is Dirac measure at x.

We will mostly consider the Euclidean distance cost c(x, y) = |x − y| unless
stated otherwise, although a good portion of our results below hold for more gen-
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eral costs, including those that are (locally) Lipschitz. We shall use the term op-
timization in problem (1.1) whenever the result holds for either maximization or
minimization. We shall be more specific otherwise, since it will soon become very
clear that the two cases can sometimes be fundamentally different. The following
theorem summarizes the main structural result when μ and ν are one-dimensional
marginals. Hobson–Neuberger [19] were first to deal with the maximization case
while Beiglböck–Juillet [5] and D. Hobson and M. Klimmek [18] deal with the
context of minimization.

THEOREM 1.1 (Beiglböck–Juillet [5], Hobson–Neuberger [19], Hobson–
Klimmek [18]). Assume that μ and ν are probability measures in convex or-
der on R, and that μ is continuous. There exists then a unique optimal martingale
transport plan π for the cost function c(x, y)= |x − y|, such that:

1. If π is a minimizer, then its disintegration satisfies | suppπx | ≤ 3 for ev-
ery x ∈ R. More precisely, π can be decomposed into πstay + πgo, where πstay =
(Id× Id)#(μ∧ ν) (this measure is concentrated on the diagonal of R2) and πgo is
concentrated on graph(T1)∪graph(T2) where T1, T2 are two real-valued functions.

2. If π is a maximizer, then its disintegration satisfies | suppπx | ≤ 2 for every
x ∈R, and π is concentrated on graph(T1)∪ graph(T2) where T1, T2 are two real-
valued functions.

Our main goal in this paper is to consider higher-dimensional analogues of the
above result. In [21], Lim showed that the above theorem extends, in the case of
minimization, to the setting where the marginals are radially symmetric on R

d

and c(x, y) = |x − y|p for 0 < p ≤ 1. The general case, without any symmetry
assumption, is wide open.

Our main contribution in this paper is to develop methods and tools to tackle
the general case for which we propose the following conjectures.

CONJECTURE 1. Consider the cost function c(x, y)= |x−y| and assume that
μ is absolutely continuous with respect to the Lebesgue measure on R

d (μ
 Ld ),
if π is a martingale transport that optimizes (1.1). Then for μ-almost every x,
suppπx coincides with the set of extreme points of the convex hull of suppπx , that
is, suppπx = Ext(conv(suppπx)).

REMARK 1.2. If suppπx is bounded for μ-almost all x (which is the
case in particular when the target measure ν is compactly supported), then
conv(suppπx) = conv(suppπx). In this case, the set of extreme points
Ext(conv(suppπx)) is also called the Choquet boundary of the compact convex
set conv(suppπx). Our conjecture can therefore be rephrased as: For μ a.e. x,
suppπx is equal to the Choquet boundary of its closed convex hull.
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Note that for the minimization problem, we can and will assume that μ∧ ν = 0
since any minimizing martingale transport for problem (1.1) must let the support
of μ ∧ ν stay put; see [5] or [21] for a proof. One can then easily see that in the
one-dimensional case, the above conjecture reduces to Theorem 1.1 since then the
dimension of the linear span of suppπx is one and the Choquet boundary consists
of exactly two points, unless of course suppπx is a singleton.

A weaker form of the above conjecture indeed holds, namely, the Hausdorff
dimension of suppπx is at most d − 1 for μ-a.e. x (Corollary 2.13). More im-
portantly, we shall be able to prove Conjecture 1 in many important cases. First
of all, it holds in dimension d = 2 (Theorem 2.14) provided the second marginal
has compact support. It also holds true when a natural dual optimization prob-
lem is attained (Theorem 2.4), or when the linear span of suppπx has full dimen-
sion (Corollary 2.13). The conjecture also holds partially (Theorem 2.5) when the
marginals are in “subharmonic order,” that is if∫

Rd
ϕ dμ≤

∫
Rd

ϕ dν for every subharmonic function ϕ on R
d .

We actually expect to have a more rigid structure in the case of minimization.
Indeed, Lim [21] showed that in this case, assuming μ ∧ ν = 0, we also have
| suppπx | ≤ 2 for μ-almost all x, whenever the marginals are radially symmetric
on R

d and c(x, y)= |x − y|p for 0 < p ≤ 1. The general case remains open as we
propose the following.

CONJECTURE 2 (Minimization). Consider the cost function c(x, y)= |x− y|
and assume that μ is absolutely continuous with respect to the Lebesgue measure
on R

d , that μ ∧ ν = 0. If π is a martingale transport that minimizes (1.1). Then
for μ almost every x, the set suppπx consists of k+ 1 points that form the vertices
of a k-dimensional polytope, where k := k(x) is the dimension of the linear span
of suppπx and, therefore, the minimizing solution is unique.

We shall give a partial answer to the above conjecture, by showing it under the
assumption that the target measure ν is discrete. Actually, in this case the result
holds true in both the maximization and minimization cases (Theorem 2.15). We
note however that—unlike the minimization case—one cannot always expect in
higher dimensions neither the uniqueness of a maximizer (Example 2.17), nor a
polytope-type structure for suppπx (Example 2.16), even when the marginals are
radially symmetric.

Just like in the Monge–Kantorovich theory, the above optimization problem
(1.1) has a dual formulation, which will be crucial to our analysis. And similarly
to that theory, the dual problem can be studied independently of the primal problem
and without any underlying reference measures. Recall that for the quadratic cost
studied by Brenier, the dual problem amounts to considering convex functions β ,
their Fenchel–Legendre duals α := β∗ and the set 	 = {(x, y) ∈R

d ×R
d;β(y)+
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α(x)= 〈x, y〉}, which happens to be the graph of the subdifferential of β . Similar
but more complicated phenomena arise in our situation. We shall work with the
following notions.

For a subset 	 in R
d × R

d , we shall denote by 	x , the fiber 	x := {y ∈
R

d; (x, y) ∈ 	}. For a Borel set 	 ⊆ R
d × R

d , we write X	 := projX 	, Y	 :=
projY 	, that is, X	 is the projection of 	 on the first coordinate space R

d , and Y	

on the second.

DEFINITION 1.3. Let c :Rd ×R
d →R be a cost function and let X,Y ⊆R

d

be Borel sets:

1. We say that a triplet of functions (α, γ,β) is an admissible triple on X×Y ,
if α :X→R, β : Y →R and γ :X→R

d satisfy the following inequality:

(1.3) β(y)− α(x)− γ (x)(y − x)≤ c(x, y) for all (x, y) ∈X× Y.

We shall denote by Em(c,X,Y ) the set of all such admissible dual triples. A sim-
ilar definition holds when the inequality is reversed, and the set of those triplets
will be denote by EM(c,X,Y ). Note that EM(c,X,Y )=Em(−c,X,Y ).

2. For an admissible triple (α, γ,β), we will consider the set where equality
holds, that is,

	(α,γ,β)

:= {
(x, y) ∈X× Y | β(y)− α(x)− γ (x) · (y − x)= c(x, y)

}
.

(1.4)

We shall sometimes allow γ to be a set-valued function. In this case, the above
inequality/equality will mean that they actually hold for any vector b in γ (x).

3. Any nonempty subset of 	(α,γ,β) will be called a c-contact layer for
(α, γ,β) in X × Y . When the ambient space is not specified, it means that it is
simply X	 × Y	 .

We shall sometimes say that a set 	 is c-exposed by the admissible triple
(α, γ,β) if it is contained in 	(α,γ,β).

Denoting Em =Em(c,Rd,Rd), one can then show (see, e.g., [3]) that if the cost
c is lower semicontinuous, then for the minimization problem,

min
{∫

Rd×Rd
c(x, y) dπ;π ∈MT(μ, ν)

}
(1.5)

= sup
{∫

Rd
β dν −

∫
Rd

α dμ; (α, γ,β) ∈Em

(1.6)

for some γ ∈ Cb

(
R

d,Rd)}
.
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Similarly, if the cost c is upper semicontinuous, then

max
{∫

Rd×Rd
c(x, y) dπ;π ∈MT(μ, ν)

}
(1.7)

= inf
{∫

Rd
β dν −

∫
Rd

α dμ; (α, γ,β) ∈EM

(1.8)

for some γ ∈Cb

(
R

d,Rd)}
.

Note that if π is an optimal martingale measure and if the corresponding dual
problem is attained on a triplet (α, γ,β), then it is easy to see that there exists
a Borel subset 	 ⊆ R

d × R
d with full π -measure that is a c-contact layer for

(α, γ,β), namely,

(1.9) β(y)− α(x)− γ (x)(y − x)= c(x, y) if and only if (x, y) ∈ 	.

We shall show that such c-contact layers have a specific extremal structure (see
Theorem 2.4). As a result, any martingale transport π ∈MT(μ, ν) which is con-
centrated on a c-contact layer, when c(x, y)=±|x− y|, will satisfy Conjecture 1.

Recall that in the Monge–Kantorovich theory for mass transport, the dual prob-
lem is normally attained, and the “corresponding c-contact layer” is a set of the
form 	 = {(x, y);β(y)− α(x) = c(x, y)}, where β and α are related through c-
Legendre duality, which let them inherit some of the regularity properties of c. We
shall follow a similar methodology here by defining and exploiting in Section 3
a notion of martingale c-Legendre duality between the function β and the pair
(α, γ ). This will allow us to establish the regularity properties needed to analyze
the structure of c-layer sets (see Theorem 2.3).

However, unlike the Monge–Kantorovich setting, attainment of the dual prob-
lem does not often hold for optimal martingale transports—at least in the max-
imization problem—even in the one-dimensional case, as shown in [3]; see
Example 5.7 below. We therefore explore whether dual attainment can happen
locally, which is sufficient to imply Conjecture 1. We prove in Section 6 that it is
indeed the case under suitable assumptions on the marginals, such as when they
are comparable for the order induced by subharmonic functions (see Theorem 2.5
or Theorem 6.1).

More importantly, we then proceed to consider the general case by establishing
a remarkable decomposition for any Borel set 	 supporting a given optimal mar-
tingale transport π into disjoint components {	C}C∈I in such a way that each piece
is a c-contact layer for an admissible triplet (αC, γC,βC). What is remarkable is
that this decomposition into c-contact layers can be established in full generality
(i.e., for any cost function) and without any reference to a martingale transport
problem or even to any reference measure. The property which enables 	 to be de-
composed into c-contact layers is called c-finitely exposability; see Definition 2.9.
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For example, 	 can be chosen to satisfy this property as a concentration set of op-
timal martingale transport π . The decomposition is done through an equivalence
relation on the projection X	 of 	 on the first coordinate, that is induced by a well-
chosen irreducible convex paving, that is, a collection of mutually disjoint convex
subsets in R

d that covers X	 . See Theorem 2.11 for the precise statement.
We note that this result can be seen as a generalization of the decomposition of

Beiglböck–Juillet [5] in the one-dimensional case d = 1, where the disintegration
comes from restricting the measures μ, ν onto open subintervals of R obtained by
examining the potential functions for μ, ν. Like theirs, our decomposition applies
to any cost function c and not only to c(x, y)= |x−y|. It is however quite different
since it depends on the support of the martingale measure π that we start with.
More importantly, our decomposition needs not be countable (Example 9.3) which
creates additional and interesting complications for the higher-dimensional cases.

We shall use the above decomposition to establish the previously stated conjec-
tures under various conditions, including cases when duality attainment does not
hold. For example, it leads to the dimensional result on the support of πx (Corol-
lary 2.13), and Conjecture 1 in dimension d = 2 (Theorem 2.14), as well as in the
case where all components (C)C∈I are d-dimensional (see Corollary 2.13).

Remarkably, the results discussed so far do not distinguish between the min-
imization and maximization problems (except that we assume that μ ∧ ν = 0 in
the case of minimization). The previously mentioned decomposition can be used
to prove Conjecture 2 in either the minimization and maximization case, provided
the target measure ν has a countable support (Theorem 2.15). However, as men-
tioned above, we believe that these two problems are quite different, at least in
terms of finding finer structural results for each of the cases.

Back to the martingale problem, we then consider the disintegration {πC}C∈I of
any martingale measure π along the above described decomposition of its support
	 (Theorem 9.1). This suggests a canonical decomposition of the optimal mar-
tingale transport problem into a collection of noninteractive martingale problems
where duality is attained for each piece πC in MT(μC, νC). But we note that, in
Theorem 9.1 we assume measurability of the decomposition map �; this technical
measurability issue, and thereby the rigorous disintegration of martingale mea-
sures, should be an important problem in high dimensions. We refer to [9, 24] for
some relevant progress in this direction.

In the next section, we give the precise statements of our results. In Section 3,
we introduce and study the notion of martingale c-transforms, which will be used
to improve the regularity properties of admissible triples. This will be used in Sec-
tion 4 to analyze the structure of c-contact layers that are exposed by such triples.
We apply these results in Section 5 to the case where the dual problem is attained,
proving that Conjecture 1 holds in this situation. In Section 6, we give a setting
where the dual problem is attained locally, showing Conjecture 1 for a case where
the marginals are in subharmonic order. In Section 7, we establish the existence
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of the irreducible convex paving decomposition, as well as the existence of ad-
missible triplets exposing each of the components. This decomposition is used in
Section 8 to prove under various additional conditions but without assuming dual
attainment, structural results for sets where optimal martingale transports concen-
trate. Finally, Section 9 deals with the disintegration of martingales along this de-
composition and how it is related to the presence of Nikodym sets.

The authors are extremely grateful to Luigi Ambrosio for several pertinent re-
marks and discussions regarding the results of this paper. The first-named author
also thanks David Preiss for very helpful discussions and insight. We are also
thankful to an anonymous referee who gave many valuable comments that im-
proved the article very much.

2. Main results. To discuss our main results, we first introduce a few defini-
tions. We also borrow some of the notation from [5].

DEFINITION 2.1. For A⊆R
d , we shall write V (A) for the lowest-dimensional

affine space containing A. Also define

IC(A) := int
(
conv(A)

)
and CC(A) := cl

(
conv(A)

)
,

where again the interior or closure is taken in the topology of V (A), where the
topology of a set A is with respect to the Euclidean metric topology of V (A) (and
not with respect to the whole space R

d ).

If A= {x}, then IC(A)= {x} since we consider the interior of a singleton set is
itself in the topology of 0-dimensional space.

In reality, we will be dealing with the vertical fibers 	x = {y ∈R
d | (x, y) ∈ 	}

of a certain class of Borel sets 	 ⊆ R
d ×R

d , on which martingale measures π ∈
MT(μ, ν) would be concentrated. The constraint that x is the barycenter of πx ,
which is normally supported on 	x , naturally leads us to the following definition.
Recall that for a Borel set 	 ⊆ R

d ×R
d , we write X	 := projX 	, Y	 := projY 	,

that is, X	 is the projection of 	 on the first coordinate space R
d , and Y	 on the

second.

DEFINITION 2.2. We say that a Borel set 	 ⊆ R
d ×R

d is a martingale sup-
porting set, if

for every x ∈X	, x ∈ IC(	x).(2.1)

We let SMT denote the class of all martingale supporting sets.

Our first main result shows that martingale supporting sets that are c-contact
layers enjoy special structural properties. A key step established in Section 3 is
to show that an exposing admissible triple can be extended and regularized via a
notion of martingale c-Legendre transform, so that it verifies the needed differen-
tiability properties.
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THEOREM 2.3 (Regularization of admissible triples via martingale-Legendre
transform). Let c be a cost function on R

d such that x �→ c(x, y), respectively,
y �→ c(x, y), is locally Lipschitz, where the Lipschitz constants are uniformly
bounded in y and respectively, in x. Let 	 be a Borel set in SMT that is a c-contact
layer, and suppose that X	 ⊆� := IC(Y	) with � being an open set in R

d . Then:

1. There exist a locally Lipschitz function α :�→ R, a locally bounded γ :
�→R

d , and β :Rd →R, such that 	 is a c-contact layer for the triplet (α, γ,β).
2. If the admissible triple is in EM(c,X	,Y	), and if y �→ c(x, y) is assumed

to be convex, then β can be taken to be a convex function on R
d .

3. If c(x, y) = |x − y| and the admissible triple is in Em(c,X	,Y	), then
α = β on �.

This will allow us to prove the following structural result.

THEOREM 2.4 (Extremal structure of a martingale supporting c-contact layer).
Let c(x, y)=±|x−y| and assume 	 is a c-contact layer in SMT. Then for Ld -a.e.
x in X	 , the closure 	x of 	x coincides with the set of extreme points of the convex
hull of 	x , that is, 	x = Ext(conv(	x)).

In particular, if μ is a probability measure that is absolutely continuous with
respect to the Lebesgue measure, and if the dual problem is attained, then for any
π ∈MT(μ, ν) that is a solution of (1.1) for either the minimization or maximiza-
tion problem, then for μ-a.e. x, suppπx = Ext(conv(suppπx)).

We shall see that the dual problem is not always attained. However, a localized
version of the above theorem will allow us to deal with a case where the marginals
are in subharmonic order. Actually, by letting Pμ be the Newtonian potential of a
probability measure μ, we shall be able to deduce the following result (see Sec-
tion 6).

THEOREM 2.5 (Case of marginals in subharmonic order). Assume μ ≤SH ν

where μ, ν are probability measures with compact support on R
d such that μ


Ld (d ≥ 3), and that the open set {x|Pν(x) − Pμ(x) > 0} has the full measure
of μ. If π ∈MT(μ, ν) is an optimal solution for the problem (1.1), where the cost
function is c(x, y)=±|x − y|, then for μ-a.e. x, suppπx = Ext(conv(suppπx)).

Since martingale supporting sets 	 in SMT are not always c-contact layers even
when they are concentration sets for optimal martingale transports ([3] or Exam-
ple 5.7 below), we investigate the possibility of decomposing such sets into “ir-
reducible components” such that each component becomes a c-contact layer. For
that, we introduce the concept of a convex paving.

DEFINITION 2.6. Let � be a family of mutually disjoint open convex sets
in R

d . [Recall that here the openness of a set C is with respect to the space V (C).]
Given a set 	 ⊆R

d ×R
d , we shall say that � is a convex paving for 	 provided:
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1. X	 ⊆⋃
C∈� C.

2. Each C ∈ � contains at least one element x in X	 [C is then denoted
C(x)].

3. For any z, x ∈X	 , we have IC(	z)∩C(x) �=∅⇒ IC(	z)⊆ C(x).

Note that such a paving clearly defines an equivalent relation on X	 by sim-
ply defining x ∼� x′ if and only if C(x) = C(x′). The corresponding equivalent
classes are then [x] = C(x)∩X	 .

There can be many convex pavings of a set 	 ⊆ R
d × R

d ; take, for example,
� := {Rd} which however does not give much information about 	. We therefore
introduce the following concept.

DEFINITION 2.7. For a fixed set 	 ⊆ R
d × R

d , we shall say that � is an
irreducible convex paving for 	 if for any other convex paving 
 for 	, we have
the following property: If C ∈�, D ∈
 are such that C∩D �=∅, then necessarily
C ⊆D.

Note that an irreducible convex paving for a set 	 is necessarily unique. As to
their existence, we shall show in Section 7 the following result.

THEOREM 2.8 (Convex paving). For every martingale supporting set 	 in
SMT, there exists a unique irreducible convex paving for 	.

Now, a key property of optimal transport plans in Monge–Kantorovich theory
is that they are concentrated on Borel sets that are c-cyclically monotone, which is
a property that describes every finite collection of points in the concentration set
[28]. Similarly, a key property of an optimal martingale transport π ∈MT(μ, ν)—
due to Beiglböck and Juillet [5]—is a monotonicity property enjoyed by every
finite collection of points in their support. It implies in particular, that there exists
a set � of full π -measure in R

d × R
d such that each one of its finite subsets

is a c-contact layer. This is one of the consequences of the variational lemma in
[5], where duality on finite sets is obtained via linear programming (see [5] and
[18]). We therefore introduce the following combinatorial counterpart of cyclic
monotonicity for martingale transport.

DEFINITION 2.9. A subset � of Rd ×R
d is said to be c-finitely exposable for

some cost function c, if each one of its finite subsets is a c-contact layer. That is,
given any finite subset H of �, there exists α :XH →R, γ :XH →R

d, β : YH →
R such that

β(y)− α(x)− γ (x)(y − x)≤ c(x, y) for all (x, y) ∈XH × YH , and

β(y)− α(x)− γ (x)(y − x)= c(x, y) for all (x, y) ∈H

for the minimization problem. For the maximization problem, the first inequality
should be reversed.
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The following proposition describes the combinatorial nature of the support of
optimal martingale transports.

PROPOSITION 2.10. Let π ∈MT(μ, ν) be an optimal martingale transport
for Problem (1.1). Assuming the cost c continuous, there exists a c-finitely expos-
able concentration set � for π .

Indeed, it is shown in [5] (see also [30]) that there exists a Borel set � in
R

d × R
d with π(�) = 1, that satisfies a certain monotonicity property, which

is the martingale counterpart of the c-cyclic monotonicity that is inherent to the
Monge–Kantorovich theory. As mentioned above, by the duality theorem of linear
programming, this property is equivalent to saying that every finite subset of � is
a c-contact layer.

Since duality is not attained in general, an optimal martingale transport mea-
sure is not necessarily concentrated on a c-contact layer 	 ∈ SMT. On the other
hand, we can and will assume that it is concentrated on a set 	 ∈ SMT whose fi-
nite subsets are c-contact layers. This leads to the question of finding “maximal”
components of 	 that are c-contact layers. It turns out that this is indeed the case
as we show that 	C := 	 ∩ (C ×R

d) is a c-contact layer for any component C of
the irreducible convex paving � of 	. It is summarized in the following theorem.

THEOREM 2.11 (Convex paving with c-contact layer components). Let 	 be
a c-finitely exposable set in SMT, then there exists an irreducible convex paving
� for 	 such that for every convex component C in �, the set 	 ∩ (C ×R

d) is a
c-contact layer.

REMARK 2.12. Theorem 2.11 can be seen as a martingale counterpart to a
celebrated result of Rockafellar [25] in the Monge–Kantorovich theory for mass
transport, which essentially says that the property of c-cyclical monotonicity that
characterizes the support of optimal transport plans are somewhat “c-contact lay-
ers” exposed by a pair of functions, one being c-convex and the other being its
c-Legendre transform. Here, c-finite exposability replaces c-cyclic monotonicity,
while “exposing” martingale supporting sets require a new notion of duality be-
tween a function β and a pair of functions (α, γ ). However, in the martingale case,
the whole support is not necessarily a c-contact layer, but every irreducible com-
ponent is.

Theorems 2.3 and 2.11 yield several structural results in general dimensions
such as the following. Note that the attainability of the dual problem is not assumed
here.

COROLLARY 2.13 (Dimensional result). Let π be a solution of the optimiza-
tion problem (1.1) with c(x, y)= |x − y| and suppose μ is absolutely continuous
with respect to the Lebesgue measure. Then for μ-almost every x in R

d :
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(1) The Hausdorff dimension of suppπx is at most d − 1, and
(2) If dimV (suppπx)= d , then suppπx = Ext(conv(suppπx)).

PROOF. Indeed, there exists 	 ∈ SMT with π(	)= 1 that is c-finitely expos-
able, and such that 	x = suppπx for μ a.e. x (see Appendix A). Now, consider
those points x with dimV (	x) = d . In this case, the disjoint sets C(x) in Theo-
rem 2.11 are open sets in R

d and so, the restriction of μ to each of the components
is again absolutely continuous. Theorems 2.3 and 2.4 can then be applied. Note
now that the the set of extreme points has dimension at most d − 1. This shows
that for μ-a.e. x in the open set

⋃
dimV (C)=d C, we have that dim(	x)≤ d−1. The

property also obviously holds outside that set, which means that item (1) is also
verified. �

A more involved application of the decomposition is a complete solution of
Conjecture 1 in two dimensions, namely the following, which is proved in Sec-
tion 8.

THEOREM 2.14 (The two-dimensional case). Assume d = 2, c(x, y) = |x −
y|, μ is absolutely continuous with respect to the Lebesgue measure, and ν has
compact support. Let π ∈ MT(μ, ν) be a solution of (1.1), then for μ-a.e. x,
suppπx = Ext(conv(suppπx)).

The decomposition also allows us to give in Section 8 the following positive
answer to Conjecture 2, whenever the target measure is discrete. Note that in this
case, the result holds true in both the maximization and minimization problems.

THEOREM 2.15 (The case of a discrete target). Let c(x, y)= |x−y| [or more
generally for c(x, y)= |x − y|p with p �= 2], suppose μ is absolutely continuous
with respect to the Lebesgue measure, and that ν is discrete; that is, ν is supported
on a countable set. If π ∈MT(μ, ν) is an optimizer for (1.1), then for μ-a.e. x,
suppπx consists of exactly d + 1 points which are vertices of a d-dimensional
polytope in R

d and, therefore, the optimal solution is unique.

Now we give a couple of examples, which illustrate that the above stated con-
jectures could be the best structural results we can hope for.

EXAMPLE 2.16. The polytope-like structure of the support required in Con-
jecture 2 does not hold in general for the corresponding maximization problem.
Indeed, since 1

2(|x − y| − 1)2 ≥ 0, we have

1

2
|y|2 − 1

2
|x|2 + 1

2
− x · (y − x)≥ |x − y| on R

d ×R
d,(2.2)
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with equality on the set {(x, y); |x − y| = 1}. The functions α(x) = 1
2 |x|2 − 1

2 ,
β(y)= 1

2 |y|2 and γ (x)= x then form a dual triplet for the maximization problem
with cost |x−y|. This means that every martingale (X,Y ) with |X−Y | = 1 a.s. is
optimal for the maximization problem corresponding to its own marginals X ∼ μ

and Y ∼ ν. Hence, suppπx is not in general a discrete set, and indeed, suppπx can
attain the Hausdorff dimension d − 1.

We now consider the uniqueness question in Conjecture 2, and whether it could
hold for the maximization problem. In, it is shown that when d = 1 the solution of
the martingale transport problem (1.1) is unique for both max/min problem under
the assumption that μ is absolutely continuous. Also, it is reported in [21] that in
the minimization problem with radially symmetric marginals (μ, ν), the minimizer
is again unique in any dimension. We note however that, unlike the minimization
case, one cannot expect the uniqueness of a maximizing martingale measure in
higher dimensions, even in the radially symmetric case, as the following example
indicates.

EXAMPLE 2.17. Let μ be a radially symmetric probability measure on
R

2 �C such that μ({0}) = 0. Let z1 = cos π
4 + i sin π

4 , z2 = cos π
4 − i sin π

4 ,
z3 =−z1 and z4 =−z2, and define the probability measures π1 and π2 on C×C,
whose disintegrations π1

x and π2
x for each x ∈C, x �= 0, are given by

π1
x =

1

4
δx+ x

|x| z1
+ 1

4
δx+ x

|x| z2
+ 1

4
δx+ x

|x| z3
+ 1

4
δx+ x

|x| z4
,

π2
x =

1

8
δx+ x

|x| z1
+ 3

8
δx+ x

|x| z2
+ 1

8
δx+ x

|x| z3
+ 3

8
δx+ x

|x| z4
.

Then, by the discussion in Example 2.16, one can see that both π1 and π2 are opti-
mal for the maximization problem corresponding to the cost |x− y| and marginals
μ and ν := ν1 = ν2, where dνi(y) = ∫

C
πi

x(y) dμ(x), i = 1,2; hence, the maxi-
mizer is not unique.

Finally, we consider in Section 9 whether one can perform a disintegration of
π with respect to the decomposition {	C}C∈� into components (πC)C in such a
way that each πC is a probability measure supported on 	C := 	 ∩ (C ×R

d) and
πC ∈MT(μC, νC), where μC , νC are suitable probability measures in convex or-
der, with μC is supported on XC :=X	 ∩C and νC on Y	C

. The advantage of this
decomposition is that If π is optimal for problem (1.1) in MT(μ, ν), then πC is
optimal for the same problem on MT (μC, νC), with the added property that 	C

is a c-contact layer, which means that duality is attained for each πC . The decom-
position of 	 given by Theorem 9.1 was motivated by a similar one proposed by
Beiglböck–Juillet [5] in the one-dimensional case (d = 1). Our decomposition is
however quite different since it depends on the concentration set 	 for π , while in
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their case the decomposition depends only on the marginals μ and ν. Theirs is also
a countable partition, which makes the restricted problems much more amenable
to analysis. Actually, the intervals in their decomposition are simply the connected
components of the set where the potentials of μ and ν are different on the real line.
However, in the higher-dimensional cases our decomposition can be uncountable,
and that is why we talk about a disintegration as opposed to a decomposition.
Moreover, the induced probability measures μC’s can be Dirac measures (see Ex-
ample 9.3), which means that Theorem 2.4 may not be applicable to each piece πC

even if duality is attained for the restricted problem. We refer to Section 9 for the
challenges and the interesting questions arising from this fundamental decomposi-
tion.

3. The martingale c-Legendre transform. In this section, we investigate
properties of the admissible triplet of functions that appear in the dual martingale
problem and their associated contact layers. Note that in the case of standard mass
transport problems, the contact layer is determined by a potential function and its
c-Legendre transform, whose regularity properties are inherited from those of c,
and which can be studied independently of the primal transport problem. A simi-
lar methodology works in our setting, once we introduce an appropriate Legendre
duality.

DEFINITION 3.1. Let Y be a Borel set in R
d such that � := IC(Y ) is open

in R
d , and let β : Y → R be a Borel function such that for some s ∈ R, t ∈ R

d ,
x0 ∈�, we have

β(y)≤ c(x0, y)+ t · (y − x0)+ s for all y ∈ Y.(3.1)

1. The martingale c-Legendre dual of the function β on � is the pair βc :=
(αc, γc), where αc :�→R is given by

αc(x) := inf
{
a ∈R : ∃b ∈R

d

such that β(y)− c(x, y)≤ b · (y − x)+ a,∀y ∈ Y
}
,

(3.2)

and γc :�→R
d is the possibly set-valued function defined by

γc(x) := {
b ∈R

d : β(y)− c(x, y)≤ b · (y − x)+ αc(x),∀y ∈ Y
}
.(3.3)

2. The martingale c-Legendre dual of a pair of functions (α, γ ) : �→ R×
R

d is the function (α, γ )c :Rd →R defined by

(α, γ )c(y) := inf
x∈�,b∈γ (x)

{
c(x, y)+ b · (y − x)+ α(x)

}
.(3.4)

3. We shall denote by βcc the martingale c-Legendre dual of the pair βc =
(αc, γc), and say that β is martingale c-convex on Y , if β = βcc on Y .
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In order to emphasize the analogy with the standard Fenchel–Legendre duality,
we shall write

βc(x, y)= (αc, γc)(x, y) := αc(x)+ γc(x)(y − x).

THEOREM 3.2. Assume that (x, y) �→ c(x, y) is continuous and x �→ c(x, y)

[resp., y �→ c(x, y)] is locally Lipschitz with local Lipschitz constants uniformly
bounded in y (resp., in x). Let Y be a Borel set in R

d such that � := IC(Y ) is open
in R

d , and let β : Y →R be a Borel function satisfying (3.1), and βc = (αc, γc) its
martingale c-Legendre dual. Then:

1. αc is locally Lipschitz in �, while γc and βcc are locally bounded in �.
2. β ≤ βcc on Y , and

(3.5) βcc(y)− βc(x, y)≤ c(x, y) for all (x, y) ∈�×R
d .

In other words, the triple (βc, βcc)= (αc, γc, βcc) ∈Em(c,�,Rd).
3. βcc(x)− δ1 ≤ αc(x)≤ βcc(x)+ δ2 for all x ∈�, where

δ1 = sup
x∈�

c(x, x) and δ2 = sup
x,x′∈�,y∈Y

[
c(x, y)− c

(
x, x′

)− c
(
x′, y

)]
.

4. Let X ⊆� and let (α, γ ) be defined on X such that (α, γ,β) ∈Em(c,X,Y ),
then α(x) ≥ αc(x) on X. Moreover, if a c-contact layer 	 ⊆ 	(α,γ,β) belongs to
SMT, then

α(x)= αc(x) and γ (x)⊆ γc(x) on X	,

βcc = β on Y	, and 	 ⊆ 	(αc,γc,βcc).

5. The function βcc is martingale c-convex on R
d , that is, βcc = βcccc on R

d .

PROOF. (1) and (2). We first show that αc is locally bounded in �. For x ∈
�= IC(Y ), we may choose {y1, . . . , ys} ⊆ Y such that

x ∈U := IC
({y1, . . . , ys}) and U is open in R

d .(3.6)

Since x = ∑
i tiyi ,

∑
i ti = 1, ti ≥ 0, it is clear that αc(z) ≥ M(z) :=

minyi
[β(yi) − c(z, yi)] for all z ∈ U . In view of the continuity of c, this yields

that αc is locally lower bounded.
We now prove that αc is locally upper bounded. Indeed, fix R > 0 and let x ∈�,

y ∈ Y be such that |x0|, |x|< R. By the local Lipschitz property of c in x, that is,∣∣c(x, y)− c(x0, y)
∣∣≤ C|x − x0|

for some C = C(R) > 0 and for all |x|< R, we have that

s + t · (y − x0)≥ β(y)− c(x0, y)≥ β(y)− c(x, y)−C|x − x0|.(3.7)
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Thus,

s +C|x − x0| + t · (x − x0)+ t · (y − x)≥ β(y)− c(x, y).

The definition of αc gives

s +C|x − x0| + t · (x − x0)≥ αc(x).(3.8)

In particular, αc is locally upper bounded, hence locally bounded.
Note now that γc(x) is a set valued function, and it is clearly closed and convex

for each x ∈�. To see the local boundedness of γc, use (3.6) and let V be a small
neighborhood of x whose closure is in U . Since αc is bounded on V , there exists
a constant C such that

b · (yi − z)≥ C, ∀z ∈ V, i = 1,2, . . . , s,∀b ∈ γ̄ (z)(3.9)

which says that γc is bounded on V , thus locally bounded on �. To show that γc(x)

is nonempty for any x ∈�, choose an approximating sequence {an} ⊆R for αc(x)

and corresponding {bn} ⊆R
d , in such a way that β(y)−c(x, y)≤ bn · (y−x)+an

and an↘ αc(x). Now the above argument shows that {bn}must be bounded, hence
its accumulation points must be in γc(x).

We now show that αc is locally Lipschitz. Since αc is finite in �, the above
argument showing the local boundedness for αc can be repeated, giving (3.8) for
any x, x0 ∈�, s = αc(x0) and t ∈ γc(x0);

αc(x0)+C|x − x0| + γc(x0) · (x − x0)≥ αc(x).

By interchanging x and x0, we get∣∣αc(x)− αc(x0)
∣∣≤ ((∣∣γc(x)

∣∣∨ ∣∣γc(x0)
∣∣)+C

)|x − x0|.
Therefore, the local boundedness of γc implies that αc is locally Lipschitz in �. If
furthermore x �→ c(x, y) is Lipschitz (with Lipschitz constant uniformly in y) and
γc is bounded, then the above estimate shows that αc is Lipschitz in �.

As for βcc, it is clear that it is measurable and locally upper bounded. It is also
clear that

(αc, γc, βcc) ∈Em

(
c,�,Rd)

and β ≤ βcc on Y.(3.10)

We now show that βcc is locally bounded in �, by following a similar argument
as for αc. First, let x ∈�,y ∈ Y,y′ ∈�. By the local Lipschitz property of c in y,
that is, ∣∣c(x, y)− c

(
x, y′

)∣∣≤ C
∣∣y − y′

∣∣,
for some C =C(R) > 0, and for all |y|, |y′|< R, we see

β(y)≤ c(x, y)+ γc(x) · (y − x)+ αc(x)

≤ c
(
x, y′

)+ γc(x) · (y′ − x
)+ αc(x)(3.11)

+ γc(x) · (y − y′
)+C

∣∣y − y′
∣∣.
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Now, since y′ ∈�= IC(Y ), one can choose {y1, . . . , ys} ⊆ Y such that

y′ ∈W = IC
({y1, . . . , ys}) and W is open in R

d .

Thus (3.11) implies, after putting yi ’s in place of y and summing up with appro-
priate weights, that

min
yi

β(yi)≤ βcc

(
y′

)+C max
yi

∣∣yi − y′
∣∣,

hence yielding the local lower boundedness, thus the local boundedness of βcc

in �. This completes the proof of the items (1) and (2).
In order to establish (3), we first note that the inequality βcc − δ1 ≤ αc on �

follows from the fact that (αc, γc, βcc) ∈ Em(c,�,Rd). For the other inequality,
notice that for each y ∈ � and an arbitrary ε > 0, there is xε ∈ � and b ∈ γc(xε)

[which we will simply write as γc(xε) in the sequel], such that

αc(xε)+ γc(xε) · (y − xε)+ c(xε, y)− ε ≤ βcc(y).(3.12)

Let aε(y) := αc(xε) + γc(xε) · (y − xε) + c(xε, y), and consider for z ∈ Y , the
function

L(z)= aε(y)+ γc(xε)(z− y)+ c(y, z).

Then

βcc(z)−L(z)≤ αc(xε)+ γc(xε) · (z− xε)+ c(xε, z)

− (
αc(xε)+ γc(xε) · (y − xε)+ c(xε, y)

)
− γc(xε)(z− y)− c(y, z)

= c(xε, z)− c(xε, y)− c(y, z)≤ δ2.

Hence βcc(z)≤ L(z)+ δ2 and, therefore, β(z)≤ L(z)+ δ2 for z ∈ Y by item (1).
From the definition of αc, this implies αc(y) ≤ aε(y) + δ2, and from (3.12), we
have αc(y)≤ βcc(y)+ ε+ δ2. Since ε is arbitrary, the proof of (3) is complete.

To prove (4), first note that if X ⊆ � and (α, γ,β) ∈ Em(c,X,Y ), then the
definition of αc obviously implies that α ≥ αc on X. Now assume that 	 ⊆
	(α,γ,β),	 ∈ SMT and in particular, for each x ∈X	 , x ∈ IC(	x). Let x =∑

i tiyi ,∑
i ti = 1, ti ≥ 0, yi ∈ 	x , and observe that

β(yi)− c(x, yi)= γ (x) · (yi − x)+ α(x),(3.13)

β(yi)− c(x, yi)≤ γc(x) · (yi − x)+ αc(x),(3.14)

where the first identity is due to the definition of 	(α,γ,β) and the second inequality
is due to the definition of βc = (αc, γc). Summing up the above relations with the
weights ti , we get

α(x)=∑
i

ti
(
β(yi)− c(x, yi)

)≤ αc(x).
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As αc ≤ α on X, this shows α(x) = αc(x) on X	 , and hence γ (x) ⊆ γc(x)

on X	 . Then for x ∈X	 , by subtracting (3.13) from (3.14), we get (γc(x)−γ (x)) ·
(y − x)≥ 0 for all y ∈ 	x . But since x ∈ IC(	x), this implies(

γc(x)− γ (x)
) · (y − x)= 0 for all y ∈ 	x.

In other words, the projection of γ (x) and γc(x) onto the affine subspace generated
by 	x are equal. Now note that (3.14) obviously holds for βcc in place of β . Again
by subtraction, we get βcc(y) ≤ β(y) for all y ∈ 	x . As the reverse inequality is
already shown, we see that β = βcc on Y	 . Moreover, if (x, y) ∈ 	, in other words
if (x, y) satisfies (3.13), then the above discussion implies that (3.13) holds with
(αc, γc, βcc). In other words, (x, y) ∈ 	(αc,γc,βcc).

For item (5), we first note that βcc is defined on R
d and by item (2), we have

βcc ≤ βcccc. For the reverse inequality, fix z ∈Rd . Then by definition of βcc, there
exist a sequence {xn} in � and bn ∈ γc(xn), n≥ 1, such that

βcc(y)≤ c(xn, y)+ bn · (y − xn)+ αc(xn) for every y ∈R
d, and

βcc(z)= lim
n→∞ c(xn, z)+ bn · (z− xn)+ αc(xn).

This readily implies that βcc(z) = βcccc(z), completing the proof of the theorem.
�

REMARK 3.3. Note that both costs c(x, y)= |x − y| and c(x, y)=−|x − y|
satisfy the above hypothesis, and in both cases, that is, c(x, y) = ±|x − y|, we
have that δ1 = 0. Moreover, δ2 ≤ 2 diam(�) if c(x, y)=−|x − y|.

If c(x, y) = ρ(x, y) where ρ is a metric, then δ1 = δ2 = 0, which means that
αc = βcc on �. In particular, by Theorem 3.2(5), the duality theorem becomes

min
{∫

Rd×Rd
ρ(x, y) dπ;π ∈MT(μ, ν)

}

= sup
{∫

Rd
βd(ν −μ);β is martingale c-convex

}
,

which can be seen as the counterpart of the Kantorovich–Rubenstein duality for-
mulation in standard transport theory, whenever the cost is given by a metric.

REMARK 3.4 (Localization). Use the assumptions of Theorem 3.2, and let K

be a compact set in � and let αK
c and γ K

c be the restrictions of αc and γc on K .
Then (αK

c , γ K
c ,βK

cc) ∈Em(c,K,Rd), where

βK
cc(y) := inf

x∈K

{
c(x, y)+ γ K

c (x) · (y − x)+ αK
c (x)

}
.

Consequently, αK
c is Lipschitz in K , and γ K

c is bounded in K . Moreover, βK
cc is

Lipschitz (resp., locally Lipschitz) in R
d provided y �→ c(x, y) is Lipschitz (resp.,

locally Lipschitz) in R
d .
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Indeed, from the definition of βK
cc , the boundedness of γc on K and the local

Lipschitz assumption on y �→ c(x, y) (uniformly in x), we see that βK
cc is the infi-

mum of local Lipschitz functions parametrized by x ∈K with the local Lipschitz
constant uniform in x. This shows that βK

cc is locally Lipschitz in R
d . If in addition,

c is Lipschitz, then by the same reasoning βK
cc is Lipschitz in R

d .

4. Extremal structure of a c-contact layer. We first deal with the differen-
tiability properties of an admissible triple (α, γ,β). The next lemma shows that
essentially γ is differentiable in an appropriate sense, wherever α is. This property
will be crucial in the proof of Theorem 2.4.

LEMMA 4.1. Suppose x �→ c(x, y) is differentiable at x whenever x �= y, and
assume that 	 is a set in SMT that is a c-contact layer for a triple (α, γ,β) ∈
Em(c,�,Rd), where α :�→ R, β : Rd → R, and γ :�→ R

d . Fix x ∈X	 , and
let V be the vector subspace of Rd corresponding to the affine space V (	x), and
assume dim(V )≥ 1. Assume there is s ∈ V such that

α
(
x′

)≤ s · (x′ − x
)+ α(x)+ o

(∣∣x′ − x
∣∣) as x′ → x in V (	x).(4.1)

Let projV γ be the orthogonal projection of the value of γ on V . Then α and
projV γ have a directional derivative at x in every direction u ∈ V .

PROOF. Since 	 is a c-contact layer for a triple (α, γ,β) ∈Em(c,�,Rd), for
all x′ ∈� and all (x, y) ∈ 	,

c
(
x′, y

)+ γ
(
x′

) · (y − x′
)+ α

(
x′

)
≥ c(x, y)+ γ (x) · (y − x)+ α(x).

(4.2)

Choose a unit vector u ∈ V and let x′ = x + tu. Then (4.2) is rewritten as

α(x + tu)− α(x)

t

≥ γ (x + tu)− γ (x)

t
· (x + tu− y)+ γ (x) · u

− c(x + tu, y)− c(x, y)

t
if t > 0;

(4.3)

α(x + tu)− α(x)

t

≤ γ (x + tu)− γ (x)

t
· (x + tu− y)+ γ (x) · u

− c(x + tu, y)− c(x, y)

t
if t < 0.

(4.4)
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Let us use the notation Dt,uf (x)= f (x+tu)−f (x)
t

. Now the assumption (4.1) says
that

lim sup
t↓0

Dt,uα(x)≤ s · u≤ lim inf
t↑0

Dt,uα(x).(4.5)

Since x ∈ int(conv(	x)), there exists y1, . . . , yk ∈ 	x \ {x}, p1, . . . , pk ≥ 0,
q1, . . . , qk ≥ 0, �pi = 1, �qi = 1, t+ > 0, t− < 0, such that

x + t+u=�piyi,

x + t−u=�qiyi.

Note that the first term on the right-hand side of (4.3) and (4.4) is linear in y,
so by summing up the yi ’s with the weights pi’s or qi ’s, we get [and we write
γ1(x) := γ (x) · u]

Dt,uα(x)≥Dt,uγ1(x)(t − t±)+C±(t) if t > 0,(4.6)

Dt,uα(x)≤Dt,uγ1(x)(t − t±)+C±(t) if t < 0.(4.7)

Here, C+(t), C−(t) are functions of t �= 0, but have limits as t → 0 by the differ-
entiability assumption on the cost. Write C± = limt→0 C±(t), respectively.

By taking lim supt↓0 in (4.6) and lim inft↑0 in (4.7) and by recalling that t+ > 0,
t− < 0, we have

lim sup
t↓0

Dt,uα(x)≥ (−t+) lim inf
t↓0

Dt,uγ1(x)+C+,

lim sup
t↓0

Dt,uα(x)≥ (−t−) lim sup
t↓0

Dt,uγ1(x)+C−,

lim inf
t↑0

Dt,uα(x)≤ (−t+) lim sup
t↑0

Dt,uγ1(x)+C+,

lim inf
t↑0

Dt,uα(x)≤ (−t−) lim inf
t↑0

Dt,uγ1(x)+C−.

This and (4.5) combine to give

lim inf
t↑0

Dt,uγ1(x)≥ lim sup
t↓0

Dt,uγ1(x)≥ lim inf
t↓0

Dt,uγ1(x)

≥ lim sup
t↑0

Dt,uγ1(x)≥ lim inf
t↑0

Dt,uγ1(x),

that is, γ1 = γ · u is differentiable at x in the direction u. Knowing this, we then
take lim inft↓0 in (4.6) and lim supt↑0 on (4.7) to get

lim inf
t↓0

Dt,uα(x)≥ (−t+)∇uγ1(x)+C+,

lim sup
t↑0

Dt,uα(x)≤ (−t+)∇uγ1(x)+C+.
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Combining this with (4.5), we get the differentiability of α at x in the direction
of u.

Next, choose any unit vector v ∈ V orthogonal to u and let γ2(x) := γ (x) ·v. We
want to show that ∇uγ2(x) exists. We proceed just as before; for some k ∈N, there
exists y1, . . . , yk ∈ 	x \ {x}, p1, . . . , pk ≥ 0, q1, . . . , qk ≥ 0, �pi = 1, �qi = 1,
t+ > 0, t− < 0, such that

x + t+v =�piyi,

x + t−v =�qiyi.

By summing up the yi ’s and the weights pi’s or qi ’s as before, we get this time

Dt,uα(x)≥ tDt,uγ1(x)− t±Dt,uγ2(x)+C±(t) if t > 0,(4.8)

Dt,uα(x)≤ tDt,uγ1(x)− t±Dt,uγ2(x)+C±(t) if t < 0.(4.9)

Taking lim supt↓0 in (4.8) and lim inft↑0 in (4.9) and recalling t+ > 0, t− < 0, and
the existence of limt→0 Dt,uγ1(x), we see that

∇uα(x)≥ (−t+) lim inf
t↓0

Dt,uγ2(x)+C+,

∇uα(x)≥ (−t−) lim sup
t↓0

Dt,uγ2(x)+C−,

∇uα(x)≤ (−t+) lim sup
t↑0

Dt,uγ2(x)+C+,

∇uα(x)≤ (−t−) lim inf
t↑0

Dt,uγ2(x)+C−,

which implies differentiability of γ2 = γ · v at x in the direction u. Now choose an
orthonormal basis {u, v1, . . . , vm} of V and write projV γ = (γ ·u)u+�(γ · vi)vi .
We observed that each component of projV γ is directionally-differentiable. This
completes the proof. �

We now restrict our attention to the cases c(x, y) = ±|x − y| in trying to de-
scribe the profile of a set 	 that is a c-contact layer.

LEMMA 4.2. Let 	 ∈ SMT, � an open set in R
d containing X	 , α : �→ R

and γ :�→R
d be two functions. Let β :Rd →R be either

β(y)= sup
x∈�

{|x − y| + γ (x) · (y − x)+ α(x)
}

(4.10)

or

β(y)= inf
x∈�

{|x − y| + γ (x) · (y − x)+ α(x)
}
.(4.11)

Assume that 	 satisfies

β(y)= |x − y| + γ (x) · (y − x)+ α(x) for all (x, y) ∈ 	.(4.12)
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If α and γ are differentiable at x ∈X	 , then the closure 	x coincides with the set
of extreme points of the convex hull of 	x , that is, 	x = Ext(conv(	x)).

PROOF. First note that, for any closed set A in R
d , it is clear that

Ext(conv(A)) ⊆ A. To show the reverse inclusion in our setting, we define the
“tilted cone”

ζ(x, y)= ζx(y)= ζy(x) := |x − y| + γ (x) · (y − x)+ α(x).

The duality condition (4.12) with (4.10) tells us the following: if (x, y) ∈ 	, then
for all x′ ∈�,

ζx′(y)≤ ζx(y),(4.13)

or (4.12) with (4.11) we get the reverse inequality.
Note that since ζx(y) is continuous, the same inequality holds for all y ∈ 	x .

This obviously implies that, if y ∈ 	x and x �= y, then the gradient with respect to
x vanishes:

∇ζy(x)= 0(4.14)

and in fact (4.13) also implies that if y ∈ 	x , then necessarily x �= y. (If x = y,
then the function ζy(x) strictly increases as x moves along the direction ∇x[γ (x) ·
(y − x)+ α(x)].) We may call this as nonstaying property or unstability, for the
maximization problem. For the minimization problem, without loss of generality
we already assumed that x /∈ 	x , but in fact x /∈ 	x as well, by (4.15) below.

Now suppose the lemma is false. Then we can find {y, y0, . . . , ys} ⊆ 	x for
some s ≥ 1 with y =∑s

i=0 piyi ,
∑s

i=0 pi = 1. Choose a minimum s such that all
pi > 0. Now taking directional derivative in the direction u= x−y

|x−y| gives

∇uζy(x)=∇uζyi
(x)= 0 ∀i = 0,1, . . . , s.

We compute

∇uζyi
(x)= x − yi

|x − yi | · u+∇uγ (x) · (yi − x)− γ (x) · u+∇uα(x).

Then, by the linearity of y �→ ∇uγ (x) ·y, the equation∇ζy(x)= 0 simply becomes

1=
s∑

i=0

pi

x − yi

|x − yi | ·
x − y

|x − y| .

As x−y
|x−y| is a unit vector and all pi > 0, this can hold only if all yi lie on the ray

emanated from x. The minimality of s then implies that s = 1, hence {y, y0, y1} ⊆
	x would lie on a ray emanating from x, which is a contradiction, once we prove
the following claim:

	x is contained in the topological boundary of the closed

convex hull of 	x.
(4.15)
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Recall that here the topology is not the topology in R
d but the topology in

V := V (	x). If our claim is false and assuming first that dim(V ) ≥ 2, we can
find y ∈ 	x ∩ IC(	x) and finitely many points {y0, y1, . . . , ys} ⊆ 	x such that y =∑s

i=0 piyi ,
∑

pi = 1, pi > 0 and, furthermore, {y0, y1, . . . , ys} are not aligned.
But then the above argument implies that all yi ’s have to be aligned, which is a
contradiction. If dim(V ) = 1, then as x ∈ IC(	x), we can find {y, y0, y1} ⊆ 	x

such that x and y are in the interior of the line segment y0y1. But then again by
above, {y, y0, y1} must lie on the ray (i.e., half-line) emanated from x in the di-
rection of u, a contradiction. Finally, dim(V )= 0 simply means that 	x = {x}, for
which the claim obviously holds. But note that the case 	x = {x} cannot happen
when α and γ are differentiable at x, as we already showed above that then x /∈ 	x

in the case of maximization, while we already assumed without loss of generality
that x /∈ 	x in the case of minimization. �

Finally, the following result follows immediately from Theorem 3.2, Lem-
mata 4.1 and 4.2.

COROLLARY 4.3. Let c(x, y)=±|x − y| and assume 	 is a c-contact layer
in SMT. If X	 ⊆� := IC(Y	) with � being an open set in R

d , then for Ld -a.e. x

in �, the closure 	x coincides with the set of extreme points of the convex hull of
	x , that is, 	x = Ext(conv(	x)).

5. Structure of optimal martingale supporting sets when the dual is at-
tained. The goal of this section is to prove Theorem 2.4 which shows that dual
attainment in the optimization problem (1.1) implies that any optimal martingale
transport is concentrated on a c-contact layer and, therefore, has a specific ex-
tremal structure. We start by collecting the properties verified by a well-chosen
concentration set of a martingale measure. The proof is given in Appendix A.

LEMMA 5.1. Let π ∈ MT(μ, ν) and let � ⊆ R
d × R

d be a Borel set with
π(�)= 1. Then there exists a Borel set 	 ⊆� with π(	) = 1 such that the map
x �→ πx is measurable and defined everywhere on X	 in such a way that:

1. 	x = suppπx for all x ∈X	 .
2. 	 ∈ SMT, that is x ∈ IC(	x) for all x ∈X	 .
3. If we assume that μ
 Ld , then 	 can be chosen in such a way that X	 ⊆

IC(Y	).
4. If, in addition, π is a solution of the optimization problem (1.1), then 	 can

be chosen to be finitely c-exposable.

This leads us to use the following terminology.

DEFINITION 5.2. Let π be a martingale transport plan in MT(μ, ν). We shall
say that:
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1. 	 is a regular concentration set for π if 	 satisfies (1), (2), (3) in
Lemma 5.1.

2. 	 is a martingale-monotone regular concentration set for π (or simply 	

is martingale-monotone regular for π ) if 	 also satisfies (4).

As mentioned in the Introduction, there is a dual formulation for problem (1.2),
just like in the Monge–Kantorovich theory for (non-martingale) mass transport.

LEMMA 5.3 (See, e.g., [3]). Let μ and ν be two probability measures on R
d

in convex order, and let c :Rd ×R
d →R be a cost function that is lower semicon-

tinuous, then

min
{∫

Rd×Rd
c(x, y) dπ;π ∈MT(μ, ν)

}

= sup
{∫

Rd
β dν −

∫
Rd

α dμ; (α, γ,β) ∈Em(5.1)

for some γ ∈Cb

(
R

d,Rd)}
,

and the minimization problem is attained at some martingale transport π . A sim-
ilar result holds for the cost maximization problem, provided c is upper semicon-
tinuous, and Em is replaced by EM . Furthermore:

1. If the dual maximization problem in (5.1) is attained, then there is a con-
centration set 	 for π that is a c-contact layer.

2. Conversely, if G ⊆ R
d × R

d is a c-contact layer induced by a triplet
(α, γ,β) where α ∈ L1(μ), β ∈ L1(ν), γ is bounded, and π∗(G) = 1 for some
π∗ ∈MT(μ, ν), then π∗ is an optimal martingale transport.

PROOF. For (5.1), see [3]. Let us show the items (1) and (2). Note that if
the dual problem is attained at functions α, β such that the triplet (α, γ,β) is in
Em(c,Rd,Rd), then since

(5.2) β(y)− α(x)− γ (x)(y − x)≤ c(x, y) for all (x, y) ∈R
d ×R

d,

μ and ν are the marginals of some optimal π in MT(μ, ν), and
∫

γ (x) · (y −
x)dπ(x, y)= 0 (due to the martingale condition), we then have∫

Rd×Rd

{
β(y)− α(x)− γ (x)(y − x)

}
dπ(x, y)=

∫
Rd×Rd

c(x, y) dπ(x, y).

It follows that

(5.3) β(y)− α(x)− γ (x)(y − x)= c(x, y) for π a.e. (x, y) ∈R
d ×R

d,

hence the equality holds on a concentration set 	 of π .
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Conversely, if G ⊆ R
d × R

d and π∗(G) = 1 for some π∗ ∈MT(μ, ν) and if
there exists a triplet (α, γ,β) in Em(c,XG,YG) with equality (5.3) holding on
G, then π∗ is an optimal solution of the primal problem in (5.1). Indeed, let π ∈
MT(μ, ν) and let H be such that π(H) = 1. As μ(XG) = 1 and ν(YG) = 1, by
restriction we can then assume that XH ⊆XG and YH ⊆ YG, hence by integrating
(5.2) with π , we get∫

Rd×Rd
c(x, y) dπ(x, y)≥

∫
Rd

β(y) dν(y)−
∫
Rd

α(x) dμ(x).

[Again
∫

γ (x) · (y − x)dπ(x, y)= 0 since π ∈MT(μ, ν).] However, by integrat-
ing (5.2) with π∗ and since we have equality on G, we get∫

Rd×Rd
c(x, y) dπ∗ =

∫
Rd×Rd

{
β(y)− α(x)− γ (x)(y − x)

}
dπ∗

=
∫
Rd

β(y) dν −
∫
Rd

α(x) dμ.

This shows that π∗ is optimal. Hence, every martingale measure that is concen-
trated on a c-contact layer induced by a triplet in the item (2) is optimal. On the
other hand, there exist optimal martingale measures that do not concentrate on
c-contact layers [3]. �

This suggests that dual attainability is actually a property of the support of the
optimal martingale transport and not of the measure itself. Now an obvious but
important remark is that any subset of a c-contact layer is also a c-contact layer.
The same holds for dual attainment in the martingale transport problem. Indeed,
if π ∈MT(μ, ν) and B is a Borel set, we denote by πB its restriction on B ×R

d ,
and we let μB , νB be the first and second marginals of πB . Then we introduce the
following.

DEFINITION 5.4. Let π ∈MT(μ, ν) be given, and let B be a Borel set. We
say that an admissible triple (α, γ,β) ∈ Em(c,B,Rd) is c-dual to π on B , if the
following holds:∫

Rd
β(y) dνB(y)−

∫
Rd

α(x) dμB(x)=
∫
Rd×Rd

c(x, y) dπB(x, y).(5.4)

If such a triple exists, then we say that π admits a c-dual on B . Note that in this
case, πB(	(α,γ,β))= μ(B), that is, πB is concentrated on a c-contact layer.

Now, we can deduce the following.

THEOREM 5.5. Let c(x, y)=±|x − y| and μ be a probability measure that
is absolutely continuous with respect to the Lebesgue measure. If π ∈MT(μ, ν)

is a solution of (1.1) for either the minimization or maximization problem that
admits a c-dual on a Borel subset B , then for μ-almost all x ∈ B , suppπx =
Ext(conv(suppπx)).



STRUCTURE OF OPTIMAL MARTINGALE TRANSPORT PLANS 135

PROOF. Let (α, γ,β) be a c-dual to π on B and let � be its contact layer. Then
� contains the full measure [that is, μ(B)] of πB . Apply Lemma 5.1 to get 	 ⊆�

in such a way that πB(	)= μ(B), 	 ∈ SMT, X	 ⊆� := IC(Y	) and suppπx = 	x

for μ a.e. x ∈ B . Now since 	 is also a c-contact layer, Corollary 4.3 applies to get
the claimed result. �

REMARK 5.6. Note that the above theorem shows that Conjecture 1 is valid
provided duality is attained locally. In other words, if for any x in the support of
μ, there exists a ball B centered at x such that the optimal martingale measure π

admits a c-dual on B . This refinement will be used in the next section. On the other
hand, there exists an optimal martingale measure where “local dual attainment”
does not hold on any neighborhood. This can be seen with the following example
given in [3].

EXAMPLE 5.7. Let μ= ν be two identical probability measures on the inter-
val [0,1], then the only martingale (say π ) from μ to itself is the identity transport,
hence it is obviously the solution of the maximization problem with respect to the
distance cost, and its support is 	 = {(x, x) : x ∈ [0,1]}. If now {α,γ,β} is a solu-
tion to the dual problem, then

β(y)≥ |x − y| + γ (x) · (y − x)+ α(x) ∀x ∈ [0,1],∀y ∈ [0,1];
β(y)= |x − y| + γ (x) · (y − x)+ α(x) ∀(x, y) ∈ 	.

The above relations easily yield that for any 0 < a < b < 1, we have γ (a)+ 2 ≤
γ (b), which means that it is impossible to define a suitable real-valued function γ

for a.e. x in [0,1].

6. When the marginals are in subharmonic order. In this section, we con-
sider a case where the dual martingale problem is attained—at least locally—
which will allow us to apply Theorem 5.5 and verify that Conjecture 1 holds in
that particular case. We consider the following “balayage order” between proba-
bility measures, that is, stronger than the convex order in dimensions greater than
one. We say that probability measures μ and ν are in subharmonic order, μ≤SH ν,
if

(6.1)
∫
Rd

ϕ dμ≤
∫
Rd

ϕ dν for every subharmonic function ϕ on R
d .

For simplicity, we shall assume that μ and ν have compact support so as to avoid
integrability issues. Since convex functions are subharmonic, it is clear that μ≤SH
ν⇒ μ≤C ν and that the two notions are equivalent in one dimension.

Note that if (Bt )t is a d-dimensional Brownian motion with initial distribution μ

and if ν is the distribution of BT where T is a stopping time such that (BT∧t )t is a
uniformly integrable martinagle, then μ≤SH ν. Such stopping times are normally
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called standard. The converse is also true and belongs to a family of results known
as Skorokhod embeddings (e.g., see Obłój [23]). In other words, (6.1) is essentially
equivalent to
(6.2)

μ∼ B0 and ν ∼ BT for a (possibly randomized) standard stopping time T .

We now consider the Newtonian potential (or simply, potential) Pμ of a probability
measure μ in R

d with compact support, that is,

Pμ(x)=

⎧⎪⎪⎨
⎪⎪⎩

1

2π

∫
log |x − y|dμ(y) for d = 2,

1

d(2− d)wd

∫
|x − y|2−d dμ(y) for d �= 2.

Then we have �Pμ = μ (in the sense of distributions), and (6.1) implies that

(6.3) Pμ(x)≤ Pν(x) ∀x ∈R
d .

The converse is also true at least for d ≥ 3; see Falkner [13].
Finally, note that if we consider an elliptic operator Lt =∑

ij aij (t)∂i∂j corre-
sponding to a one-parameter family of positive matrices (aij (t)), t > 0, and if μ,
μt are measures with densities ρ, ρt , respectively, where{

∂tρt −Ltρt = 0 for t > 0 and in R
d,

ρ0 = ρ,
(6.4)

then one can easily verify that μ≤SH μt . Actually, one can show that

(6.5) Pμ(x) < Pμt (x), ∀x ∈R
d .

The importance of such a strict inequality will be clear thereafter. The following is
the main result of this section.

THEOREM 6.1. Assume μ ≤SH ν where μ, ν are probability measures with
compact support on R

d such that μ
 Ld . Assume the function Pν − Pμ lower
semicontinuous and consider the open set U := {x ∈ R

d |Pν(x)− Pμ(x) > 0}. If
π ∈MT(μ, ν) is an optimal solution for the minimization problem (1.1), where the
cost function is either c(x, y)= |x − y| or c(x, y)=−|x − y|, then:

1. For each x ∈ U , there exists a ball B centered at x such that π admits a
c-dual on B .

2. For μ-a.e. x ∈ U , suppπx = Ext(conv(suppπx)). In particular, Conjec-
ture 1 holds if μ(U)= 1.

REMARK 6.2. The assumption that ν is compactly supported can be replaced
with appropriate decay conditions on Pν − Pμ and ∇(Pν − Pμ). In particular,
Conjecture 1 holds for μ and ν = μt from the diffusion example in (6.4), if the
initial measure μ is absolutely continuous and compactly supported. Note that
the two-dimensional case is true in full generality, that is, when the marginals are
simply in convex order (see Section 7).
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PROOF OF THEREOM 6.1. Denoting Em = Em(c,Rd,Rd), we have from
Lemma 5.3 that

l :=min
{∫

Rd×Rd
c(x, y) dπ;π ∈MT(μ, ν)

}

= sup
{∫

Rd
β dν −

∫
Rd

α dμ; (α, γ,β) ∈Em for some γ ∈ Cb

(
R

d,Rd)}
.

Let π be an optimal solution for the minimization problem, and let 	 be a
martingale-monotone regular concentration set for π (as in Definition 5.2). Fix
a bounded open set � which is sufficiently large such that supp(μ)⊆�. We shall
show that for each x0 ∈ U ∩�, there exists a ball B = B(x0)⊆ U ∩� centred at
x, such that π has a c-dual on B .

For that, consider a maximizing sequence for the dual problem, that is admissi-
ble triples (αn, γn,βn) ∈Em(c,Rd,Rd) such that

l = lim
n→∞

∫
βn dν −

∫
αn dμ.(6.6)

In view of Theorem 3.2 and Remark 3.4, we can assume that the triplet
(αn, γn,βn) ∈ Em(c,�,Rd), that α is Lipschitz in �, γ is bounded in �, and
that

(6.7) β(x)≤ α(x)≤ β(x)+ δ for all x ∈�,

where 0≤ δ ≤ 2 diam(�). Note that δ = 0 if c(x, y)= |x − y|.
We consider the convex function

χn(y) := sup
x∈�

{−αn(x)− γn(x) · (y − x)
}
.

Since αn and γn are bounded and the set � is bounded, the functions χn are Lip-
schitz on R

d . Note also that by adding a sequence of affine functions Ln [since
Ln(y) = Ln(x)+ ∇Ln(x) · (y − x)] the new sequence (αn + Ln,βn + Ln,γn +
∇Ln) will still have the same properties. By adding appropriate affine function Ln

and their gradients to the triple (αn, γn,βn), we may therefore assume that

χn(x)= 0 and χn ≥ 0 for every n.

We now show that a subsequence of αn, γn converge locally in U ∩ �. We
first establish suitable estimates on χn. Consider the Lipschitz function q(y) :=
supx∈� c(x, y) and note that

−αn(y)≤ χn(y) ∀y ∈� and

χn(y)≤ q(y)− βn(y) ∀y ∈R
d .

(6.8)

Hence,

0≤
∫

χn(dν − dμ)≤−
∫

βn dν +
∫

αn dμ+C1,
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where C1 = ∫
q(y) dν(y) <∞, since q is Lipschtiz and ν has finite first moment.

Since (αn, γn,βn) is a maximizing sequence, then for all sufficiently large n,

0≤
∫

χn(dν − dμ)≤−l +C1 + 1=: C2.

Hence,

C2 ≥
∫

χn(dν − dμ)=
∫

χn�(Pν − Pμ)=
∫

�χn(Pν − Pμ),(6.9)

where �χn is the distributional Laplacian of the convex function χn. For the sec-
ond last equality, note that �Pμ = μ,�Pν = ν, and for the last equality note that
χn is convex Lipschitz and Pν − Pμ, ∇(Pν − Pμ) decays to zero at infinity by
assumption, enabling us to integrate by parts.

Now fix x0 ∈ U ∩� and pick a closed ball B := Br(x0)⊆ U ∩� of radius r ,
centered at x0. Since Pν − Pμ is lower semicontinuous and strictly positive on U ,
we have εB :=minB[Pν − Pμ]> 0 which, in view of (6.9), implies that∫

Br(x0)
�χn ≤ C2

εB

.

Now, modulo approximating it by smooth convex function, we can assume that χn

is smooth and apply Proposition B.1 to conclude that χn is bounded in a smaller
ball Br ′(x0), uniformly in n. In view of (6.7) and (6.8), the uniform boundedness
of χn then implies the uniform boundedness of αn, βn on Br ′(x0). Moreover, since

−αn(x)− γn(x) · (y − x)≤ χn(y)≤ C ∀x, y ∈ Br ′(x0),

we also find that γn is uniformly bounded in n on a smaller ball B = Br ′′(x0), r ′′ <
r ′ < r , in such a way that the sequences (αn, γn,βn)n are all uniformly bounded
on B .

Apply now Komlós theorem [20], which states that every L1-bounded sequence
of real functions has a subsequence such that the arithmetic means of all its sub-
sequences converge pointwise almost everywhere. Since the arithmetic means of
αn, βn, γn also yield a maximizing sequence of admissible triples for (6.6), we can
therefore assume that the original functions αn, βn and γn converge Ld a.e. in B

to, say α, β and γ on X ⊆ B where Ld(B \X) = 0. Notice that these limits are
bounded in X.

It is not clear, however, that this triple (α, γ ,β) will give the desired one, es-
pecially because β is only defined in X, not in R

d . We thus proceed as follows.
Define

βX,n = inf
x∈X

{
c(x, y)+ αn(x)+ γn(x) · (y − x)

}
.

Notice that since αn, γn are bounded in X uniformly in n and y �→ c(x, y) is
Lipschitz in R

d with uniformly bounded Lipschitz constants for x ∈ X, we im-
mediately see that the function y ∈ R

d �→ βX,n(y) is Lipschitz (uniformly in n)
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and is uniformly bounded on each compact set. Therefore, there exists a subse-
quence, which we still denote by βX,n, that converges to a Lipschitz function βX

uniformly on each compact set in R
d . Moreover, from the definition of βX,n, the

triple (αn, γn,βX,n) satisfy

βX,n(y)− αn(x)− γn(x)(y − x)≤ c(x, y) ∀(x, y) ∈X×R
d .

Thus (αn, γn,βX,n) ∈ Em(c,X,Rd). Also, taking the limit as n→∞, the above
inequality still holds in the limit, and so the triple (α, γ ,βX) ∈Em(c,X,Rd).

To show that the triple (α, γ ,βX) is a c-dual to π on B (in the sense of Defi-
nition 5.4), it remains to verify (5.4). For this, observe from the definition of βX,n

that βn(y)≤ βX,n(y) for all y ∈R
d . Thus,∫

βn dνB −
∫

αn dμB ≤
∫

βX,n dνB −
∫

αn dμB ≤
∫

c(x, y) dπB(x, y).

Noting that the maximizing sequence of admissible triple (αn, γn,βn) for (6.6) is
also a maximizing sequence of admissible triple for πB , that is,

lim
n→∞

∫
βn(y) dνB(y)−

∫
αn(x) dμB(x)=

∫
c(x, y) dπB(x, y),

we therefore have that

lim
n→∞

∫
βX,n(y) dνB(y)−

∫
αn(x) dμB(x)=

∫
c(x, y) dπB(x, y).

To bring the limit inside the integrals, recall that βX,n is uniformly Lipschitz (in n)
and αn is uniformly bounded, μ(B \X)= 0 and νB has finite first moment. Thus,
by the dominated convergence theorem,∫

βX(y) dνB(y)−
∫

α(x)dμB(x)=
∫

c(x, y) dπB(x, y).

Therefore, the triple (α, γ ,βX) is a c-dual to π on B , proving the item (1). Then
by Theorem 5.5, for μ a.e. x ∈ B we have that suppπx = Ext(conv(suppπx)). As
U can be covered by countably many such balls B , for μ a.e. x ∈ U we have that
suppπx = Ext(conv(suppπx)), proving the item (2). �

7. A canonical decomposition for the support of martingale transports.
We have shown in the last sections that Conjecture 1 holds whenever the dual
problem is (locally) attained. In this section, we shall decompose an optimal mar-
tingale transport π into components on which an induced martingale transport
problem is defined in such a way that its dual problem is attained. For that, we
shall first associate to any Borel set 	 ∈ SMT a unique irreducible convex paving
�. We then show that if every finite subset of 	 is a c-contact layer (a property sat-
isfied by a concentration set of an optimal martingale measure), then every subset
	C = 	∩ (C×R

d) where C is a component of the convex paving �, is a c-contact
layer.
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7.1. Irreducible convex pavings associated to martingale supporting sets. Let
	 be a Borel set in SMT. We start by defining an equivalence relation on X	 . For
each x ∈ X := X	 , we define inductively an increasing sequence of convex open
sets (Cn(x))n in the following way:

Start with the trivial equivalence relation x ∼0 x′ iff x = x′. Let C0(x) :=
IC(	x) and recall that if 	x = {x}, then C0(x) = {x}. Now define the following
equivalence relation on X: x ∼1 x′ if there exist finitely many x1, . . . , xk in X

such that the following chain condition holds:

C0(x)∩C0(x1) �=∅,

C0(xi)∩C0(xi+1) �=∅ ∀i = 1,2, . . . , k− 1,

C0(xk)∩C0
(
x′

) �=∅.

We then consider the open convex hull:

C1(x) := IC
[ ⋃
x′∼1x

C0
(
x′

)]
.

Note that x ∼1 x′ implies C1(x) = C1(x
′). Unfortunately, the convex sets C1(x)

do not determine the equivalence classes. In particular, they may not be mutually
disjoint for elements that are not equivalent for ∼1. So, we proceed to define ∼2
in a similar way: x ∼2 x′ if there exist finitely many x1, . . . , xk in X such that the
following chain condition holds:

C1(x)∩C1(x1) �=∅,

C1(xi)∩C1(xi+1) �=∅ ∀i = 1,2, . . . , k− 1,

C1(xk)∩C1
(
x′

) �=∅;
and we set

C2(x) := IC
[ ⋃
x′∼2x

C1
(
x′

)]
.

Again, ∼2 is an equivalence relation and one can easily see that:

• x ∼1 x′ ⇒ x ∼2 x′
• x ∼2 x′ ⇒ C2(x)= C2(x

′)
• C1(x)⊆ C2(x).

But still, the sets C2(x) may not be mutually disjoint for nonequivalent x′s. We
continue inductively in a similar fashion by defining equivalence relations ∼n for
n= 1,2, . . . and their corresponding classes

Cn(x) := IC
[ ⋃
x′∼nx

Cn−1
(
x′

)]
.
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It is easy to check that we have the following properties for each n:

x ∼n x′ ⇒ x ∼n+1 x′,
x ∼n x′ ⇒ Cn(x)= Cn

(
x′

)
,

Cn(x)⊆ Cn+1(x).

Finally, define the equivalence relation

x ∼ x′ if x ∼n x′ for some n,

and its corresponding convex sets

C(x) := lim
n→∞Cn(x)=

∞⋃
n=0

Cn(x).(7.1)

Now, we show that 
 = {C(x)}x∈X is an irreducible convex paving for 	.

THEOREM 7.1. The equivalence relation ∼ on X	 and the components
(C(x))x∈X	 satisfy the following:

1. x ∼ x′ ⇒ C(x)=C(x′), and x � x′ ⇒ C(x)∩C(x′)=∅.
2. C(x) are mutually disjoint, that is, either C(x) = C(x′) or C(x) ∩

C(x′)=∅.
3. x′ ∈X ∩C(x) if and only if x′ ∼ x.
4. �= {C(x)}x∈X is an irreducible convex paving for 	.
5. Cn(x)= IC[⋃x′∼nx 	x′ ] for n≥ 0 and C(x)= IC[⋃x′∼x 	x′ ]. In particu-

lar, 	x ⊆ C(x).

PROOF. The fact that x ∼n x′ ⇒ Cn(x)= Cn(x
′) gives the first part of (1). If

there exists a z ∈ C(x) ∩ C(x′), then there is N such that z ∈ CN(x) ∩ CN(x′),
implying x ∼N+1 x′ and verifying the second part of (1) of which (2) and (3) are
obvious consequences.

To prove (4), let 
 be any convex paving of 	 and let z, x ∈X	 , D ∈
 be such
that C(z) ∩D(x) �= ∅. We must show that C(z) ⊆D(x). We claim that, for any
n≥ 0,

(∗) Cn(z)∩D(x) �=∅ ⇒ Cn(z)⊆D(x), for every z, x ∈X	.

Indeed, it is true for n= 0 by definition. Assume that (∗) is true for some n, and
suppose Cn+1(z) ∩ D(x) �= ∅. Note that Cn(z) ⊆ D(z), and so if w ∼n+1 z, by
(∗) we have that Cn(w) ⊆ D(z). As Cn+1(z) = IC[⋃w∼n+1z

Cn(w)], this readily
implies that Cn+1(z)⊆D(z), but then D(z)∩D(x) �=∅, and hence D(z)=D(x).
This proves (∗) for every n ≥ 0. Now if C(z) ∩ D(x) �= ∅, then for all large n

Cn(z) ∩ D(x) �= ∅, hence by (∗) we get that Cn(z) ⊆ D(x). Therefore, C(z) ⊆
D(x) which proves the irreducibility of �.
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For (5), let (Ai)i∈I be any family of sets in R
d , where I is an index set. Then it

is easy to see that

IC(Ai)= IC
(
CC(Ai)

)
, and

CC
(⋃

i∈I

CC(Ai)

)
= CC

(⋃
i∈I

Ai

)
= CC

(⋃
i∈I

IC(Ai)

)
.

But note that A⊆ B does not imply IC(A)⊆ IC(B) in general. The above implies
in particular

IC
(⋃

i∈I

Ai

)
= IC

(⋃
i∈I

IC(Ai)

)
.

In addition, a simple induction shows that for every n≥ 0, we have

Cn(x)= IC
[ ⋃
x′∼nx

	x′
]
.

Indeed, it is true for n = 0 by definition. Suppose Cn(x) = IC[⋃x′∼nx 	x′ ]. Now
by definition,

Cn+1(x)= IC
[ ⋃
x′∼n+1x

Cn

(
x′

)]

= IC
[ ⋃
x′∼n+1x

IC
( ⋃

x′′∼nx′
	x′′

)]

= IC
[ ⋃
x′∼n+1x

( ⋃
x′′∼nx′

	x′′
)]

.

But
⋃

x′∼n+1x

⋃
x′′∼nx′ 	x′′ = ⋃

x′∼n+1x
	x′ , hence, Cn+1(x) = IC(

⋃
x′∼n+1x

	x′),
completing the induction.

Finally, we proceed as follows:

C(x)= IC
[
C(x)

]= IC
[⋃
n≥0

Cn(x)

]
= IC

[⋃
n≥0

IC
( ⋃

x′∼nx

	x′
)]

= IC
[⋃
n≥0

⋃
x′∼nx

	x′
]
= IC

[ ⋃
x′∼x

	x′
]
,

which completes the proof of (5) and the theorem. �

7.2. When irreducible components are c-contact layers. Let c :Rd ×R
d →R

be a cost function on which we make no assumption. Our aim is to prove Theo-
rem 2.11, which will follow from the following.
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THEOREM 7.2. Let 	 ∈ SMT be c-finitely exposable. If � is the irreducible
convex paving of 	, then for every convex component C in �, the set 	 ∩ (C ×
R

d)= 	 ∩ (C ×C) is a c-contact layer.

First, we prove the following lemma.

LEMMA 7.3. Let 	 ∈ SMT be c-finitely exposable, and denote X := X	 . Fix
x0 ∈ X and set G := 	 ∩ (C(x0) × R

d), where C(x0) is the component of the
irreducible convex paving � of 	 that contains x0. Then, for each y ∈ YG, there
exists a compact interval Ky ⊆R such that any finite subset H ⊆G is a c-contact
layer for a triplet (α, γ,β), where β(y) ∈Ky for all y ∈ YH .

The above lemma is essentially saying that there is some uniformity in the way
c-admissible triplets can expose finite subsets of G as c-contact layers. This control
on the β component of the c-admissible triplets will allow us to use Tychonoff’s
compactness theorem to deduce that the whole of G is a c-contact layer.

To prove Lemma 7.3, we first give an idea about the degrees of freedom we have
in choosing β . First, note that if β is c-admissible for G (meaning that there is α,
γ such that G⊆ 	(α,γ,β)) and L :Rd →R is an affine function, then β −L is also
a c-admissible for G. Letting m = dim(V (YG)), we can find {y0, . . . , ym} ⊆ YG

such that V ({y0, . . . , ym})= V (YG), that is, {y0, . . . , ym} constitute vertices of an
m-dimensional polytope in V (YG). Now for a given c-admissible function β for
G, let L : V (YG)→ R be an affine function determined by L(yi) = β(yi) for
i = 0,1, . . . ,m. The function β ′ := β − L then satisfies β ′(yi) = 0 for all i =
0,1, . . . ,m, which means that we have m + 1 degrees of freedom on the value
of β . In other words, if we set Kyi

= {0} for i = 0,1, . . . ,m, then we can find β ′
such that β ′(yi) ∈Kyi

for each yi . Now, we want to observe how the initial value
of β can control its values at other points y. We shall see that the control of the
value of β propagates well along a given chain inside the equivalent class C(x0).

The proof of Lemma 7.3 is involved, and requires several key steps. To clarify
the idea, we consider first the special case c= 0 where we can establish a complete
control on the dual functions.

LEMMA 7.4. Let G ∈ SMT and assume that it is a 0-contact layer for a triplet
(α, γ,β), that is,

β(y)≥ Lx(y) ∀x ∈XG,y ∈ YG,(7.2)

β(y)=Lx(y) ∀(x, y) ∈G,(7.3)

where for each x, Lx is the affine function

Lx(y) := γ (x) · (y − x)+ α(x).

Then Lx = Lx′ on V (C(x)) whenever x ∼ x′.
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Note that (7.3) says that if we have control on Lx , then we have control on β for
all y ∈Gx . In particular, Lemma 7.4 implies that if Lx = 0 (we can choose such
Lx without loss of generality) then Lx′ = 0 on V (C(x)) for all x′ ∈ C(x), thus
α(x′)= 0 for all x′ ∈ C(x) and β(y)= 0 at each y ∈Gx′ .

The above lemma is a consequence of the following proposition.

PROPOSITION 7.5. Let L1, L2 be two affine functions on R
d , and let S1, S2

be sets in R
d . Suppose that L1 ≤ L2 on S1, and L2 ≤ L1 on S2, and that IC(S1)∩

IC(S2) �= ∅. Then L1 = L2 on V (S1 ∪ S2), the latter is the minimal affine space
containing the sets S1 and S2.

PROOF. This follows from two facts:

1. For affine functions, L≤ L′ on a set S implies L≤ L′ on conv(S).
2. If two affine functions L, L′ satisfy L ≤ L′ on a set S and if moreover,

L(z)= L′(z) at some interior point of conv(S), then L= L′ on conv(S), thus on
V (S).

Indeed, apply (1) to the case L = L1, L′ = L2 and S = S1, and also to the case
L= L2, L′ = L1 and S = S2. We get L1 = L2 on conv(S1) ∩ conv(S2). Now,
from the assumption, IC(S1)∩ IC(S2) �=∅, and also obviously IC(S1)∩ IC(S2)⊆
IC(Si), i = 1,2. Using (2), we then get that L1 = L2 on both conv(Si), i = 1,2.
From this, the assertion follows. �

PROOF OF LEMMA 7.4. First, note that for each x, x′ ∈ X =XG, conditions
(7.2) and (7.3) yield that Lx′ ≤ Lx on Gx , and Lx ≤ Lx′ on Gx′ .

Now to prove the lemma, it suffices to show that for each n ∈ {0,1,2, . . . , },
if x ∼n x′ then Lx = Lx′ on V

(
Cn(x)

)
.(7.4)

Here, by x ∼0 x′ we mean x = x′. We do this inductively. Our induction hypothesis
is (7.4) together with

Lz ≤ Lx on Cn(x), for each z ∈X and x ∈X.(7.5)

For n = 0, (7.4) is trivially satisfied and (7.5) follows from (7.2) and (7.3). Now,
assume that (7.4) and (7.5) hold for all n ≤ k. For n = k + 1, if x ∼k+1 x′ then
there are x = x0, x1, . . . , xm = x′ for some m, such that Ck(xi) ∩ Ck(xi+1) �= ∅

for each 0≤ i ≤m− 1. From this, and using (7.4) and (7.5), we can apply Propo-
sition 7.5 with the choice L1 = Lxi

,L2 = Lxi+1 , S1 = Ck(xi), S2 = Ck(xi+1),
and see Lxi

= Lxi+1 on V (Ck(xi) ∪ Ck(xi+1)), for i = 0, . . . ,m − 1. Similarly,
repeated application of Proposition 7.5 eventually yields that Lx = Lxi

= Lx′
on each Ck(xi), for i = 1, . . . ,m. Therefore, Lx = Lx′ on

⋃
i Ck(xi), thus on

V (
⋃m

i=0 Ck(xi)). This holds for any x ∼k+1 x′, thus by applying the result to all
z∼k+1 x ∼k+1 x′, we also see

Lx =Lx′ on V

( ⋃
z∼k+1x

Ck(z)

)
= V

(
Ck+1(x)

)
,



STRUCTURE OF OPTIMAL MARTINGALE TRANSPORT PLANS 145

verifying (7.4) for n= k + 1. For (7.5), for each z ∈X, from the assumption (7.5)
for n≤ k and applying (7.4), we have Lz ≤ Lx′ = Lx on Ck(x

′) for all x′ ∼k+1 x.
For the affine functions, this implies Lz ≤ Lx on Ck+1(x). This completes the
induction argument, so the proof. �

We now consider the case of a nontrivial cost c. We first establish a more quan-
titative version of Proposition 7.5.

PROPOSITION 7.6. Let L1, L2 be two affine functions on R
d , and let S1, S2

be sets in R
d . Suppose that:

• L1 ≤ L2 + δ1 on S1, and L2 ≤ L1 + δ2 on S2 for some constants δ1, δ2 > 0;
• there is a point z in IC(S1)∩ IC(S2).

Then |L1−L2| ≤ C on conv(S1∪S2). Here, C =C(z,S1, S2, δ1, δ2) <∞ as long
as z stays in the interior IC(S1)∩ IC(S2), though as z gets close to the boundaries
∂(conv(Si)), i = 1 or 2, the constant C may go to +∞.

PROOF. First, convexity and linearity imply that for each δ, δ′ > 0 we have
the following:

1. For affine functions, L≤ L′ + δ on a set S implies L≤ L′ + δ on conv(S).
2. If two affine functions L, L′ satisfy L ≤ L′ + δ on a set S and if more-

over, L(z) ≥ L′(z)− δ′ at some interior point z of conv(S), then |L− L′| ≤ C =
C(z,S, δ, δ′) on conv(S). Here, the constant C <∞ depends only on δ, δ′ and
the ratio between the minimum distance from z to ∂(conv(S)) and the maximum
distance to ∂(conv(S)), though, as z gets close to ∂(conv(S)), the constant C can
go to +∞.

Now, apply (1) to the case L= L1, L′ = L2 and S = S1, and also to the case L=
L2, L′ = L1 and S = S2. Thus, we get |L1 − L2| ≤ max(δ1, δ2) at the point z of
IC(S1)∩ IC(S2). Now, apply (2), to get |L1 −L2| ≤C on both conv(Si), i = 1,2,
where C = C(S1, S2, δ1, δ2) <∞. Applying (1) again, we have |L1 −L2| ≤ C on
conv(S1 ∪ S2), completing the proof. �

From now on, we consider only the maximization case, since the minimiza-
tion case is the same by replacing c(x, y) with −c(x, y). We now introduce the
following notation.

DEFINITION 7.7. Let G ∈ SMT and let H ⊆G be a c-contact layer for a triplet
{α,γ,β}. For each x ∈XH , consider the affine function

LH
x (y)= γ (x) · (y − x)+ α(x).
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The superscript H indicates that LH
x arises from a c-admissible triplet for H . The

fact that H is a c-contact layer for α, γ , β can be written as

β(y)− c(x, y)≥LH
x (y) ∀x ∈XH,y ∈ YH ,(7.6)

β(y)− c(x, y)=LH
x (y) ∀(x, y) ∈H.(7.7)

For an affine space V , we write for x, x′ ∈XH ,

LH
x ≈ LH

x′ on V

if there is a bounded set S with V = V (S) and a constant M =M(c,H,S) de-
pending only on H , the cost function c and the set S, such that for every choice of
a c-admissible triplet {α,γ,β} making H a c-contact layer, we have∣∣LH

x −LH
x′

∣∣≤M on the set S.(7.8)

We say LH
x ≈ LH

x′ at z, if we have (7.8) for S = {z}.

An immediate observation is that for x, x′, x′′ ∈XH ,

whenever LH
x ≈ LH

x′ and LH
x′ ≈ LH

x′′ on V, then LH
x ≈ LH

x′′ on V.

Also note that if H ′ ⊆H , we necessarily have for any x, x′ ∈XH ′ ,

LH ′
x ≈ LH ′

x′ on V ⇒ LH
x ≈LH

x′ on V.(7.9)

We shall now prove the analogue of Lemma 7.4 in the case of a general cost. We
shall again use Proposition 7.6, to establish a propagation of control on the affine
functions LH

x ’s, along an ordered chain of intersecting convex open sets. But, since
c is not trivial anymore, the control on LH

x can be done only in finite steps, since
the errors (the constant C in Proposition 7.6) can accumulate.

LEMMA 7.8. Let 	 ∈ SMT be c-finitely exposable and set G := 	 ∩ (C(x0)×
R

d) as in Lemma 7.3. Suppose x, x′ ∈XG (i.e., x ∼ x′). Then there exists a finite
set H ⊆G such that x, x′ ∈XH and LH

x ≈ LH
x′ on V (C(x)).

PROOF. First, observe that it suffices to prove the following.

CLAIM 7.9. Suppose x ∼ x′ and z ∈Gx′ . Then there exists a finite set H ⊆G

such that x, x′ ∈XH and LH
x ≈ LH

x′ at z.

The lemma follows when we apply this claim to a set of finitely many (ui, vi)’s,
i = 1, . . . ,m, in G (so x ∼ x′ ∼ ui ) with V (C(x))= V ({vi}mi=1), and use (7.9).

We show this claim using induction on n = 0,1,2,3, . . . . Our induction hy-
pothesis is if x ∼n x′ and z ∈ Gx′ , then there exists a finite set H ⊆ G such
that:
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(i1) x, x′ ∈XH , z ∈ YH and YH ⊆ Cn(x);
(i2) LH

x ≈LH
x′ on V (YH );

(i3) for each finite set F ⊆G with H ⊆ F , and for w ∈XF , there is a constant
C = C(H,w) depending only on H and w such that

LF
w ≤ LF

x +C on YH .

Notice that the claim follows if we verify (i1)–(i3) for each n, since in particular,
the values of LH

x and LH
x′ at z is estimated from (i2).

We proceed by induction, starting with n= 0 and assuming x ∼0 x′ (i.e., x = x′)
and z ∈Gx′ . Choose then H = {(x, z)}. Then, (i1) and (i2) are trivially satisfied.
Moreover, (i3) holds from (7.6) and (7.7), where the constant C is estimated by
the value c(w, z)− c(x, z). This completes the case n= 0.

Suppose now the induction hypothesis holds for n. Assume x ∼n+1 x′ and
z ∈Gx′ . Then there is a finite chain of Cn(xk), k = 0,1, . . . ,m, x0 = x, xm = x′,
such that Cn(xk) ∩ Cn(xk+1) �= ∅ for each k. Recall Cn(x) = IC[⋃x′∼nx Gx′ ].
Thus for each Cn(xk), it is possible to find a finite set Jk := {(ui

k, v
i
k)

mk

i=1} ⊆ G

such that xk ∼n ui
k for all i and IC(YJk

) is a good approximation of Cn(xk),
that is, YJk

⊆ Cn(xk) ⊆ V (YJk
) and IC(YJk

) ∩ IC(YJk+1) �= ∅. Also, we can let
z ∈ YJm .

Now, apply the induction hypothesis for n to each xk , ui
k , xk ∼n ui

k and find a
finite set Hi

k ⊆G that satisfies (i1)–(i3) for x = xk , x′ = ui
k , z= vi

k , and H =Hi
k .

Let

Hk :=
⋃
i

H i
k

Then, from (i3) for Hi
k ’s, we also have (i3) for H =Hk and x = xk . Here, the point

of considering Hk is YJk
⊆ YHk

⊆ Cn(xk), so V (YJk
)= V (YHk

), hence IC(YHk
) ∩

IC(YHk+1) �=∅ as well.
In order to verify the induction hypothesis for n+ 1th step, let

H̄ :=⋃
k

Hk

We will show properties (i1)–(i3) for this set H̄ . From the construction, x, x′ ∈
XH̄ , z ∈ YH̄ , and since Cn(xk) ⊆ Cn+1(xk) = Cn+1(x), (i1) readily follows. For
(i2), apply the induction hypothesis (i3) for Hk’s to Proposition 7.6 iteratively for
the pairs YH1 and YH2 , YH1 ∪ YH2 and YH3 , . . . , YH1 ∪ · · · ∪ YHk

and YHk+1 , so on.
Then we see the estimate (7.8) holds for S = YH̄ , thus

LH̄
x ≈ LH̄

x1
≈ · · · ≈ LH̄

xm−1
≈ LH̄

x′ on V (YH̄ ),(7.10)

verifying (i2).
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For (i3), let F be a finite set containing H̄ and let w ∈ XF . Then (i3) for each
Hk gives that LF

w ≤ LF
xk
+ Ck on YHk

, k = 0,1, . . . ,m. Now applying (7.10) and
recalling (7.9), we conclude that there is a constant C = C(H̄ ,w) such that

LF
w ≤ LF

x +C on YH̄ .

This completes the induction, and the proof. �

PROOF OF LEMMA 7.3. Recall that we fix x0 ∈X and let G := 	 ∩ (C(x0)×
R

d) and V := V (YG). Let m= dim(V ). Then we can find

J := {
(ui, vi)

}m
i=0 ⊆G such that V

({vi}mi=0
)= V.

Define the initial choices Kvi
= {0}, i = 0,1, . . . ,m. We want to define the Ky’s

to be compatible with these initial choices. For y ∈ YG, choose x(y) ∈ XG such
that (x(y), y) ∈G. By Lemma 7.8 (especially see Claim 7.9), for y ∈ YG, we can
choose a finite set H(y) such that J ∪ {(x(y), y)} ⊆H(y) and

L
H(y)
x(y) ≈LH(y)

ui
at vi,∀i = 0, . . . ,m.

In particular, there exists a constant M , depending only on y and H(y)—but not on
the choice of the c-admissible functions for which H(y) is a c-contact layer—such
that ∣∣LH(y)

x(y) (vi)−LH(y)
ui

(vi)
∣∣≤M ∀i = 0, . . . ,m.(7.11)

H(y) being a c-contact layer for some triplet (α, γ,β), we can by subtracting an
appropriate affine function from β , assume β(vi)= 0. This yields that

β(y)= c
(
x(y), y

)+L
H(y)
x(y) (y).

Since L
H(y)
x is affine and V ({vi}mi=0) = V , the value L

H(y)
x(y) (y) can be computed

from the values L
H(y)
x(y) (vi). Hence by (7.11), the values L

H(y)
ui (vi) give an estimate

of β(y). Notice that the c-contact property yields that

LH(y)
ui

(vi)= β(vi)− c(ui, vi)=−c(ui, vi).

Thus, there exists a constant N = N(y) such that if β is a c-admissible for H(y)

and if β(vi)= 0 for all i, then −N ≤ β(y)≤N . We set Ky = [−N,N].
To get the claim in Lemma 7.3, we let H be any finite set and denote YH =

{y1, . . . , ys}. Let

H ∗ =H ∪H(y1)∪ · · · ∪H(ys).

Now choose β to be c-admissible for H ∗ with β(vi)= 0 for all i. Since β is also
c-admissible for H(yj ), we have β(yj ) ∈ Kyj

for all j = 1, . . . , s. Finally, note
that β is also a c-admissible for H , concluding the proof. �
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PROOF OF THEOREM 7.2. As before, let G= 	 ∩ (C(x0)×R
d) and let V :=

V (YG) be the ambient space. We first find the desired function β : YG→ R from
the compactness argument already used in [5]. Indeed, define K := �y∈YG

Ky ,
where the Ky’s were obtained in Lemma 7.3. This is a subset of the space of all
functions from YG to R. In the topology of pointwise convergence, K is compact
by Tychonoff’s theorem. Now, pick an arbitrary finite set H ⊆ G. We claim that
the set


H := {β ∈K : β is c-admissible for H }
is a nonempty closed subset of K . Indeed, that 
H is nonempty follows from
Lemma 7.3 since every finite subset of 	, and hence of G is a c-contact layer: if
necessary, one can extend the β found in Lemma 7.3—and originally defined on
YH —to YG, by simply letting β(y)= 0 for y /∈ YH .

To show that 
H is closed, let {βn} be a sequence of c-admissible functions
for H , and suppose βn → β pointwise on YG. We need to show that β is also
c-admissible for H . But for each n, we have functions (αn, γn) such that the fol-
lowing relation holds:

βn(y)− c(x, y)≥ γn(x) · (y − x)+ αn(x) ∀x ∈XH,y ∈ YH ,(7.12)

βn(y)− c(x, y)= γn(x) · (y − x)+ αn(x) ∀(x, y) ∈H.(7.13)

Here, without loss of generality, we can assume that each vector γn(x) is parallel
to V (YH ). Now (βn(y) − c(x, y))x∈XH ,y∈YH

is uniformly bounded in n; this is
because the set H is assumed to be finite, so are XH and YH . So, we can choose
(αn(x), γn(x)) in such a way that (αn(x), γn(x))n is also uniformly bounded in
n. Since XH is finite, we can find a subsequence of (αn, γn) which converges to
(α, γ ) at every x ∈ XH . Then (α, γ,β) is clearly a c-admissible triplet for H ,
establishing the claim on 
H .

It is clear that the class {
H } satisfies the finite intersection property, that is,
∅ �= 
H1∪···∪Hs ⊆

⋂
j=1,...,s 
Hj

. By the compactness of K and the closeness of

H ’s, we deduce that the set 
G :=⋂

H⊆G,|H |<∞
H is nonempty.
We now claim that any β ∈
G is c-admissible for G. Indeed, fix x ∈ XG and

β ∈
G. We must show that there exists an affine function Lx on V = V (YG) such
that the following holds:

β(y)− c(x, y)≥Lx(y) ∀y ∈ YG,(7.14)

β(y)− c(x, y)=Lx(y) ∀y ∈Gx.(7.15)

Choose a finite set Hx ⊆Gx such that V (Hx)= V (Gx). Observe that for any finite
set F containing H := {x} ×Hx ,

LF
x (y)= β(y)− c(x, y)= LH

x (y) ∀y ∈Hx, hence

LF
x (y)= LH

x (y) ∀y ∈ V (Gx).
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In particular, LF
x (x) = LH

x (x) since x ∈ IC(Gx) ⊆ V (Gx). Let us define α(x) =
LH

x (x).
Now we need to construct the last piece which is γ (x). For this, in addition to

H , we also choose a finite set {(vi,wi)}mi=1 ⊆ G such that x ∈ IC({wi}mi=1) and
V ({wi}mi=1)= V , and define

H̄ :=H ∪ {
(vi,wi)

}m
i=1.

For any finite set F ⊆G with H̄ ⊆ F , define the set

γF (x) := {
v ∈ V : β(y)− c(x, y)− α(x)≥ v · (y − x),∀y ∈ YF(7.16)

β(y)− c(x, y)− α(x)= v · (y − x),∀y ∈ Fx

}
.(7.17)

The set γF (x) is nonempty as there is LF
x . Now, since x ∈ IC({wi}mi=1) and

V ({wi}mi=1)= V , we deduce from (7.16) that γF (x) is a closed and bounded set in
V , hence compact. Again since every subset of a c-contact layer is also a c-contact
layer, the class {γF (x) : F ⊇ H̄ } has the finite intersection property. Hence, we can
choose a

γ (x) ∈ ⋂
F⊇H̄ ,|F |<∞

γF (x).

Finally, we show that (7.14) and (7.15) hold for this choice of (α(x), γ (x)). Indeed,
let (x′, y′) ∈G, and let F = H̄ ∪ {(x′, y′)}. By (7.16), we have β(y′)− c(x, y′)≥
α(x) + γ (x) · (y′ − x), so (7.14) holds. Let y ∈ Gx . Let F = H̄ ∪ {(x, y)}. By
(7.17), we have β(y) − c(x, y) = α(x) + γ (x) · (y − x), so (7.15) holds. This
completes the proof of Theorem 2.11. �

REMARK 7.10. We have shown that every component G := 	 ∩ (C ×R
d) in

Theorem 7.2 is c-exposable, that is, there exists a triplet (α, γ,β) such that

β(y)− α(x)− γ (x)(y − x)≤ c(x, y) for all (x, y) ∈XG × YG, and

β(y)− α(x)− γ (x)(y − x)= c(x, y) for all (x, y) ∈G.

To obtain a better triplet in terms of regularity, we may apply the transforms in Def-
inition 3.1. First, replace β with β̃(y) := infx∈XG

{α(x)+ γ (x)(y − x)+ c(x, y)}
and note that β̃ is upper semicontinuous provided c is continuous. Then let αc, γc

be as in Definition 3.1, and note that the definition can be rephrased as follows:
define H(x,y) := conc[β̃(·)− c(x, ·)](y), that is, for each x ∈ C, y �→H(x,y) is
the upper concave envelope of y �→ β̃(y) − c(x, y). Then αc(x) = H(x,x), and
γc(x) is the superdifferential of y �→ H(x,y) at x. As was shown, αc is locally
Lipschitz and γc locally bounded under the assumption in Theorem 3.2. Finally,
note that G is a c-contact layer induced by (αc, γc, β̃).
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8. Structural results for general optimal martingale transport plans. We
start by proving Conjecture 2 in the case of a discrete target measure.

THEOREM 8.1. Let c(x, y)= |x− y|, suppose μ
 Ld and that ν is discrete,
that is, ν is supported on a countable set. Let π ∈MT(μ, ν) be a solution of (1.1),
then for μ a.e. x, suppπx consists of d + 1 points which are vertices of a polytope
in R

d and, therefore, the optimal solution is unique.

PROOF. Since the result holds true (for more general target measures) when
d = 1, we shall assume that d ≥ 2. Let S be the countable support of ν and let
J := {E ⊆ S : |E| <∞& dimV (E) ≤ d − 1}, where |E| is the cardinality of the
set E. Consider VJ :=⋃

E∈J V (E). Since dimV (E)≤ d − 1 and J is countable,
it follows that Ld(VJ )= 0. Let 	 be a martingale-monotone regular concentration
set for π (as in Definition 5.2). Let X := X	 \ VJ so that μ(X) = 1. Notice that
if x ∈ X, then 	x must contain vertices of a polytope which has x in its interior.
Now let

K := {
E ⊆ S : |E| = d + 2 and

E contains vertices of a d-dimensional polytope
}
.

Fix F = {y0, y1, . . . , yd, y} in K , where y0, y1, . . . , yd are vertices of a d-
dimensional polytope and consider the set A := {x ∈X : F ⊆ 	x}. In other words,
A = 	y0 ∩ · · · ∩ 	yd ∩ 	y , where 	y := {x : (x, y) ∈ 	}. We shall prove that
μ(A)= 0.

Indeed, suppose otherwise, that is μ(A) > 0 and let x0 be a Lebesgue point of A.
Let B =A∩C(x0) and note that Ld(B) > 0 since C(x0) is open in R

d . Since the
set 	 ∩ (C(x0)× R

d) is a c-contact layer, there exist constants λ0, λ1, . . . , λd, λ

such that for all x ∈ B , we have

|x − yi | + γ (x) · (yi − x)+ α(x)= λi, i = 0,1, . . . , d,

|x − y| + γ (x) · (y − x)+ α(x)= λ.

Also note that {y0, y1, . . . , yd, y} ⊆ Ext(conv(	x)) for almost all x ∈ B . Let pi be
determined by y =∑d

i=0 piyi , and
∑d

i=0 pi = 1, and note that some pi may be
negative. Then, by the above, we get that the function

g(x) :=
d∑

i=0

pi |x − yi | − |x − y|

is constant on B , which has positive measure.
We explain why this leads to a contradiction. First, notice that because g is real

analytic in � := R
d \ {y0, . . . , yd, y}, it is not constant in any open subset, since

otherwise it is constant everywhere, which is not the case. Second, without loss of
generality, assume x0 = 0 and g(0) = 0, and notice that from the real analyticity
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of g, one can write g(x)= Pk(x)+Q(x) for some k ∈N, where Pk(x) is the first
nonzero kth degree homogeneous polynomial, and Q(x) is a power series of terms
with degree greater than k, in particular, Q(x)=O(|x|k+1). Now, consider the set

S := {
u ∈ Sd−1 | there exists 0 �= xn→ 0, xn/|xn| → u, with 0= g(xn)

}
.

Then, for each u ∈ S , 0 = g(xn)

|xn|k = Pk(xn/|xn|) + Q(xn)

|xn|k , showingPk(u) =
limn→∞Pk(xn/|xn|)= 0. Thus, S is a subset of the zero set {u;Pk(u)= 0}.

Now if g is zero on the set B where x0 is a Lebsegue point, then S = Sd−1,
hence Pk = 0, a contradiction. Hence, μ(A)= 0. The countability of K now im-
plies the theorem.

For the uniqueness, we use the usual argument, namely that the average of two
optimal plans is also optimal, which contradicts the polytope-type of their respec-
tive supports. �

REMARK 8.2. As we see from the above proof, Theorem 8.1 holds true for a
much more general cost c(x, y) than |x − y|. Indeed, it is enough (but not neces-
sary) c(x, y) to be analytic in {x �= y}, and the function g(x)=∑d

i=0 pic(x, yi)−
c(x, y) to be nonconstant. In particular, we can choose c(x, y) = |x − y|p , with
p �= 2.

We now establish Conjecture 1 in the two-dimensional case.

THEOREM 8.3. Assume d = 2, c(x, y) = |x − y|, μ is absolutely contin-
uous with respect to the Lebesgue measure, and ν has compact support. Let
π ∈MT(μ, ν) be a solution of (1.1), then for μ almost every x ∈ R

2, suppπx =
Ext(conv(suppπx)).

PROOF. Let 	 be a martingale-monotone regular concentration set for π [see
Lemma 5.1(4) and Definition 5.2], and let X =X	 . (Recall then suppπx = 	x for
all x ∈X.) The theorem will follow if we show that the set

Eπ := {
x ∈X | suppπx ⊆ Ext

(
conv(suppπx)

)}
has full μ-measure. First, note that Eπ is measurable by Proposition D.1. (Here,
we used the fact that each of suppπx ⊆R

d is compact, which is satisfied since the
second marginal of π is compactly supported.)

We shall show that its complement N =X \Eπ has μ-measure zero and since
μ
 L2 it suffices to show that L2(N)= 0. For that, note first that the set X0 :=
{x ∈X : dim(conv(	x))= 0} is obviously included in Eπ , which means that N =
(N ∩X2)∪ (N ∩X1), where

X2 = {
x ∈X : dimV

(
C(x)

)= 2
}

and X1 = {
x ∈X : dimV

(
C(x)

)= 1
}
,

where {C(x);x ∈X} is the irreducible convex paving of 	.
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Note that X2 =⋃
x∈X2

(X ∩ C(x))= X ∩ (
⋃

x∈X2
C(x)). Since

⋃
x∈X2

C(x) is
open, X2 is measurable. But since 	 ∩ (C(x) × R

2) is a c-contact layer, Theo-
rem 2.4 yields that 	x = Ext(conv(	x)) for a.e. x in X2 ∩ C(x). Since X2 can
be approximated by compact sets from the inside and {C(x)}x∈X2 is an open
cover of X2, we conclude that 	x = Ext(conv(	x)) for a.e. x in X2. Hence,
L2(N ∩X2)= 0.

Consider now the measurable set A1 :=N ∩X1, and assume that L2(A1) > 0.
Note that for every x ∈ A1, we have that I (x) := IC(suppπx) is an open line
segment with x in its interior. Note that I (x)⊆ C(x) and C(x) is one-dimensional
for every x ∈A1. By Proposition D.2, the function defined for each x ∈A1 by

δ(x)= sup{r; (x − r, x + r)⊆ I (x)

is measurable, where (x − r, x + r) denotes the interval of radius r at x inside the
line segment I (x). Therefore, for every δ > 0 the set Aδ := {x ∈A1 : δ(x) > δ} is
measurable, and L2(Aδ) > 0 for some δ > 0. Let now x0 be a Lebesgue point
of Aδ , and consider W to be the one-dimensional affine space containing x0
and perpendicular to I (x0). Choose ε > 0 much smaller than δ and let Aδ,ε :=
Aδ ∩ B(x0, ε) [note L2(Aδ,ε) > 0]. Then {C(x);x ∈ Aδ,ε} is a disjoint family
of open segments that cover Aδ,ε and C(x) ∩W �= ∅. Let F : ⋃x∈Aδ,ε

C(x)→⋃
x∈Aδ,ε

F (C(x)) be the flattening map with respect to W as in Lemma C.1. Since
F is bi-Lipschitz on the appropriate set containing Aδ,ε , we have that F(Aδ,ε) is
measurable and L2(F (Aδ,ε)) > 0.

Note that again by Theorem 2.4, 	z = Ext(conv(	z)), for L1 almost all z in
each Aδ,ε ∩ C(x). Since Aδ,ε ⊆ N , this implies that Aδ,ε ∩ C(x) is L1 measure
zero, and so does F(Aδ,ε) ∩ F(C(x)). Now {F(C(x));x ∈ Aδ,ε} is a parallel
cover of F(Aδ,ε), so by Fubini’s theorem with bi-Lipschitz map F , we conclude
L2(F (Aδ,ε)) = 0, which is a contradiction. [Here, for the Fubini’s theorem, we
used the fact that F(Aε,δ) is measurable.] It follows that L2(A1)= 0, which then
results L2(N)= 0. This completes the proof. �

The same proof could extend to higher dimensions, provided one can prove
measurability of the function

X	 � x �→ δ(x)= sup
{
r ≥ 0 : B(x, r)⊆C(x)

}
defined for a given convex paving (C(x))x∈X	 associated to 	. One can then obtain
the following.

THEOREM 8.4. Assume c(x, y)= |x − y| on R
d ×R

d and let π ∈MT(μ, ν)

be a solution of (1.1) with a martingale-monotone regular concentration set 	.
Assume μ is absolutely continuous with respect to the Lebesgue measure and that

(8.1) the function δ is measurable, and dim
(
V

(
C(x)

))≥ d − 1 for μ a.e. x,

where (C(x))x∈X	 is the irreducible convex paving associated to 	. Then, for μ

almost every x ∈R
d , suppπx = Ext(conv(suppπx)).
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9. The disintegration of a martingale transport plan. For a closed convex
set U ⊆ R

d , let K(U) be the space of all closed convex subsets in R
d , equipped

with the Hausdorff metric in such a way that it becomes a separable complete
metric space (Polish space). This allows for the disintegration of a measure π on
X via a measurable map T :X→K(U) (see, e.g., [6], Corollary 2.4) in such a way
that each piece of the disintegrated measure, say πC , is a probability measure on
T −1(C). In particular, πC(T −1(C))= 1 for T#π -a.e. C ∈K(U), ultimately yields
conditional probabilities.

Consider now a set 	 ∈ SMT and the corresponding unique irreducible convex
paving {C;C ∈�} as given in Theorem 2.8. Define the map

� : 	→K
(
R

d)
by (x, y) �→ C(x),

where K(Rd) is the space of convex closed subsets of R
d . We conjecture that

this map is measurable when K(Rd) is equipped with the Hausdorff metric, under
which K(Rd) becomes a separable complete metric space. In this case, we shall
show that a martingale transport plan π can be canonically disintegrated into its
components given by (	 ∩ (C(x)×R

d))x∈X	 . As usual, in the case of minimiza-
tion with c(x, y)= |x − y|, we shall assume further that μ∧ ν = 0.

THEOREM 9.1 (Disintegration of martingale plans). Let (μ, ν) be probability
measures on R

d in convex order and let π ∈MT(μ, ν) with a concentration set
	 ∈ SMT and the associated irreducible convex paving {C;C ∈ �}. Assume the
map � : 	→ K(Rd) defined by (x, y) �→ C(x), is measurable, and let π̃ = �#π

denote the push-forward of π into K(Rd), and I ⊆K(Rd) is the image of 	 by �.
Then the following holds:

(1) There exists a disintegration of π along the map � such that

π(S)=
∫
I
πC(S) dπ̃(C) for each Borel set S ⊆R

d ×R
d,(9.1)

where for π̃ -a.e. C, πC is a probability measure supported on 	C := 	∩(C×R
d).

(2) For π̃ -a.e. C ∈ I , there exist probability measures μC , νC such that the
couple (μC, νC) is in convex order, μC is supported on XC :=X	 ∩C, νC on Y	C

and πC ∈MT(μC, νC).
(3) If π is optimal for problem (1.1) in MT(μ, ν), then for π̃ -a.e. C ∈ I , πC

is optimal for the same problem on MT(μC, νC). Furthermore, 	C is a c-contact
layer. In particular, duality is attained for πC .

(4) If in addition, μC is absolutely continuous with respect to the Lebesgue
measure on V (C), and c(x, y) = |x − y|, then for μC-almost all x, 	x =
Ext(conv(	x)).

PROOF. The above discussion and the measurability hypothesis of the map
� : 	 → K(Rd) defined by (x, y) �→ C(x), yield the disintegration of π into
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πCdπ̃(C) in (9.1), with πC supported on 	C . The measures μC , νC are obtained
by taking marginals of πC . The martingale and optimality properties of πC for π̃ -
a.e. C, follow from those properties of π and the disintegration (9.1). When π is
an optimal martingale transport, the concentration set 	 can be chosen in such a
way that it is c-finitely exposable, hence the set 	C is a c-contact layer by Theo-
rem 2.11. This deals with items (1), (2) and (3) of the theorem. Finally, (4) follows
immediately from Theorem 2.4. �

In order to apply this theorem and deduce global results from its local proper-
ties, one would like to know when we can disintegrate μ into absolutely continuous
pieces μC , so as to apply Theorem 2.4 on each partition. We start by a counterex-
ample showing that this is not possible in general, at least in dimension d ≥ 3.

Nikodym sets and martingale transports. Ambrosio et al. [1] constructed a
Nikodym set in R

3 having full measure in the unit cube, and intersecting each ele-
ment of a family of pairwise disjoint open lines only in one point. More precisely,
they showed the following.

THEOREM 9.2 (Ambrosio et al. [1]). There exist a Borel set MN ⊆ [−1,1]3
with |[−1,1]3 − MN | = 0 and a Borel map f = (f1, f2) : MN → [−2,2]2 ×
[−2,2]2 such that the following holds. If we define for x ∈MN , the open segment
lx connecting (f1(x),−2) to (f2(x),2), then:

• {x} = lx ∩MN for all x ∈MN ,
• lx ∩ ly =∅ for all x �= y ∈MN .

EXAMPLE 9.3. One can use the above construction to construct an optimal
martingale transport, whose equivalence classes are singletons, hence the disinte-
gration of the first marginal along the partitions C(x) is the Dirac mass δx , which
is obviously not absolutely continuous w.r.t. L1.

Consider the obvious inequality 1
2ε

(|x − y| − ε)2 ≥ 0, and its equivalent form

1

2ε
|y|2 ≥ |x − y| + 1

ε
x · (y − x)+ 1

2ε
|x|2 − ε

2
.(9.2)

Thus by letting αε(x)= 1
2ε
|x|2 − ε

2 , βε(y)= 1
2ε
|y|2 and γε(x)= 1

ε
x, (9.2) yields

that the set 	 = {(x, y); |x − y| = ε} is a c-contact layer, where c(x, y)= |x − y|
in the maximization problem. It follows that every martingale πε := (X,Y ) with
|X− Y | = ε a.s. is optimal with its own marginals X ∼ μ and Y ∼ ν.

Now fix ε > 0 small and let X be a random variable whose distribution μ has
uniform density on [−1,1]3. We define Y conditionally on X by evenly distribut-
ing the mass along the lines lx considered in Theorem 9.2 and distance ε, that is
Y splits equally in two pieces from x ∈X along lx with distance ε. Then the mar-
tingale (X,Y ) is optimal for the maximization problem. But note that in this case,
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each equivalence class [x] is the singleton {x}, so the disintegration of μ along the
partitions C(x) is the Dirac mass δx , which is obviously not absolutely continu-
ous w.r.t. L1. Hence, the decomposition is not useful in this case. One also notices
that the convex sets associated to the irreducible paving of the martingale (X,Y )

have codimension 2. We leave it as an open problem whether one can do without
assumption (8.1) in Theorem 8.4.

REMARK 9.4. By letting ε→ 0, the above problem approaches the one con-
sidered in Example 5.7, that is, the case when the marginals μ = ν are equal,
the only maximal martingale transport is the identity, and the value of the maxi-
mal cost is zero. On the other hand, note that

∫
βε(y) dν(y)− ∫

αε(x) dμ(x)= ε,
which means that (αε, βε, γε) is a minimizing sequence for the dual problem. But
neither of the sequences αε , βε , γε converge (neither pointwise nor in L1). This is
another manifestation of the nonexistence of a dual in Example 5.7. This said, for
the minimization problem, we have no example where duality is not attained.

APPENDIX A: A SUITABLE CONCENTRATION SET FOR A
MARTINGALE TRANSPORT PLAN

Here, we prove the following lemma which was introduced in Section 5.

LEMMA A.1. Let π ∈MT(μ, ν) and let � ⊆ R
d × R

d be a Borel set with
π(�)= 1. Then there exists a Borel set 	 ⊆� with π(	) = 1 such that the map
x �→ πx is measurable and defined everywhere on X	 in such a way that:

1. 	x = suppπx for all x ∈X	 .
2. 	 ∈ SMT, that is x ∈ IC(	x) for all x ∈X	 .
3. If we assume that μ
 Ld , then 	 can be chosen in such a way that X	 ⊆

IC(Y	).
4. If, in addition, π is a solution of the optimization problem (1.1), then 	 can

be chosen to be finitely c-exposable.

PROOF. Let (πx)x be the unique disintegration of π with respect to μ. It is
well known that this yields a well-defined measurable map x �→ πx on a Borel
set E in R

d with μ(E) = 1 such that each x in E is the barycenter of πx and
πx(�x)= 1. It is clear that x ∈ CC(�x). However, it is not necessarily in IC(�x).
Note however that for any Borel set B in R

d , the map x �→ πx(B) is Borel measur-
able, hence for each r > 0, the set Br := {(x, y)|x ∈ E,πx(Br(y)) > 0} is Borel
[here, Br(y) is the open ball with center y and radius r in R

d ], and consequently
the set � := {(x, y)|x ∈ E,y ∈ supp(πx)} = ⋂∞

n=1 B1/n is also Borel. Letting
	 :=� ∩�, it is clear that π(	)= 1 and πx(	x)= 1 for all x ∈ E. Finally, note
that the probability measure πx has its barycenter at x and that 	x ⊆ supp(πx),
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and since πx(	x)= 1, we have that 	x = suppπx . Hence in particular, x ∈ IC(	x)

for x ∈E, proving (1) and (2).
Item (3) can be obtained by considering another subset of 	. Indeed, let X′

be the set of Lebesgue points of X	 . Then as μ
 Ld , we have μ(X′) = 1. Let
	′ := 	 ∩ (X′ × R

d). Then 	′ ∈ SMT, π(	′) = 1 and X′ ⊆ IC(X′) ⊆ IC(Y	′), as
claimed.

For item (4), we use [5, 30], where it is shown that for an optimizer π , there ex-
ists � with π(�)= 1, that is finitely c-exposable (also called finitely c-monotone
in [5]; see Definition 2.9). We then restrict � to get 	 which also satisfies (1), (2)
and (3) by the above procedure. �

APPENDIX B: AN ESTIMATE FOR CONVEX FUNCTIONS

We prove here a technical result—used in Section 6—that allows us to con-
trol the maximum of a convex function by the integral of its second derivatives.
Namely, we have the following.

PROPOSITION B.1. Let Br denote the closed ball of radius r centred at the
origin 0. Let ϕ be a (smooth) convex function such that ϕ(0)= 0 and ϕ ≥ 0. Then∫

B√2r

�ϕ ≥ C0r
d−2 max

Br

ϕ,(B.1)

where the constant C0 > 0 depends only on the dimension d .

PROOF. Denote Mr = maxBr ϕ. By the maximum principle a point, say p ∈
∂Br , can be chosen from the boundary so that ϕ(p)=Mr . Choose an orthonormal
basis η1, . . . , ηd such that p = rη1, and define a cylindrical set (of radius r/2)

Kr :=
{

d∑
j=1

tj ηj | − r ≤ t1 ≤ r,

√ ∑
j �=1,

t2
j ≤ r/2

}
.

We will show that ∫
Kr

D2
11ϕ ≥ C0r

d−2 max
Br

ϕ(B.2)

for a constant C0 > 0 depending only on the dimension d . This will immediately
imply the desired estimate (B.1) because Kr ⊆ B√2r

and 0≤D2
11ϕ ≤�ϕ for the

convex function ϕ.
To show (B.2), we let H denote the hyperplane {z1 = 0}. Notice that ϕ(0)= 0

and ϕ ≤Mr on Br , thus from convexity of ϕ, we see that

ϕ(z)≤ |z|
r

(
Mr − ϕ(0)

)= |z|
r

Mr for each z ∈ Br.(B.3)
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Also, notice the fact that p = rη1 is a maximum point of ϕ in Br and that the
hyperplane rη1 + H stays outside the interior of Br , that is, rη1 + H ⊆ R

d \
(intBr). So, from convexity of ϕ, we have

ϕ(z+ rη1)≥Mr for each z ∈H.

Combining this with (B.3) and using convexity of ϕ again, we can estimate the
derivative D1ϕ on the set rη1 + (H ∩Br). Namely, for each z ∈H ∩Br ,

D1ϕ(z+ rη1)≥ 1

r

(
ϕ(z+ rη1)− ϕ(z)

)

≥ 1

r

(
Mr − |z|

r
Mr

)

= 1

r2

(
r − |z|)Mr.

Similarly, use (B.3), the fact that ϕ ≥ 0, in particular on −rη1 +H , and the con-
vexity of ϕ to see that

D1ϕ(z− rη1)≤ 1

r

(
ϕ(z)− ϕ(z− rη1)

)≤ |z|
r2 Mr, for each z ∈H ∩Br.

From these estimates on D1ϕ, we have that, for each z ∈H ∩Br ,∫ r

−r
D2

11ϕ(z+ tη1) dt =D1ϕ(z+ rη1)−D1ϕ(z− rη1)

≥ 1

r2

(
r − |z|)Mr − |z|

r2 Mr

= 1

r2

(
r − 2|z|)Mr.

Now, ∫
Kr

D2
11ϕ dz=

∫
z∈H∩Br/2

∫ r

−r
D2

11ϕ(z+ tη1) dt dz

≥
∫
z∈H∩Br/2

1

r2

(
r − 2|z|)Mr dz

= C0r
d−2Mr,

where

C0 = r2−d
∫
H∩Br/2

1

r2

(
r − 2|z|)dz=

∫
H∩B1/2

(
1− 2|z|)dz

is independent of r . Notice that C0 > 0 because |z| varies from 0 to 1/2 on H ∩
B1/2. This completes the proof. �
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APPENDIX C: A BI-LIPSCHITZ FLATTENING MAP

The following lemma, which describes a bi-Lipschitz “flattening map,” was
used in Section 8.

LEMMA C.1. Let Rd = V ×W , where V =R
d−1 and W =R. Let δ > 0 and

let A be a subset of W . Suppose that for each h ∈ A, there is a set Dh which is
contained in a hyperplane Hh with Hh ∩W = {0, . . . ,0, h}. Suppose further that
{Dh}h∈A are mutually disjoint and the projection of every {Dh} on V contains the
ball BR with center 0 and radius R in V . Finally, suppose that the angle between
Hh and W is bounded; there is η < π/2 such that the normal direction of Hh and
the direction of W has angle less than η for every h ∈A.

Now define the flattening map F : ⋃h Dh → F(
⋃

h Dh) as follows: for x =
(v,w) ∈Dh, F(v,w)= (v, h). Then F is bi-Lipschitz on the set N := (

⋃
h Dh) ∩

(Br ×W), where r < R.

PROOF. First, note that by the disjointness of {Dh} the map F is bijective, so
F−1 is well defined. The lemma is intuitively clear; the map F cannot move two
nearby points too far away, because the hyperdiscs {Dh} are disjoint.

First of all, from the bounded angle assumption, F is clearly bi-Lipschitz on
each F(Dh) with the same Lipschitz constant for all h ∈ A. Hence, for x1 =
(v1,w1), x2 = (v2,w2), we will assume that x1, x2 are contained in Dh1 , Dh2 ,
respectively, and h1 �= h2.

We consider the case v1 = v2 ∈ V and |v1| = |v2| ≤ r . Let L be the one-
dimensional subspace of V containing 0 and v1. Regarding Dh1 , Dh2 as affine
functions on V , since their graphs on L ∩BR are disjoint and linear and r < R, it
is clear that |w1 −w2| ≈ |h1 − h2|, that is,

C1|h1 − h2| ≤ |w1 −w2| ≤ C2|h1 − h2| for some C1,C2 > 0.(C.1)

Next, we consider the case v1 �= v2. We want to show |x1−x2| ≈ |F(x1)−F(x2)|,
or equivalently,

|w1 −w2| ≈ |h1 − h2|.
Let L be the one-dimensional affine subspace of V containing v1 and v2. Regard-
ing Dh1 , Dh2 as affine functions on V , since their graphs on L ∩ BR are disjoint
and linear, it is clear that

|w1 −w2| =
∣∣Dh1(v1)−Dh2(v2)

∣∣
≤max

(∣∣Dh1(v1)−Dh2(v1)
∣∣, ∣∣Dh1(v2)−Dh2(v2)

∣∣).
But by (C.1), we have

max
(∣∣Dh1(v1)−Dh2(v1)

∣∣, ∣∣Dh1(v2)−Dh2(v2)
∣∣)≤C2|h1 − h2|,
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which shows that F−1 is Lipschitz on F(N). On the other hand, by (C.1), we have

|h1 − h2| ≤ (1/C1)min
(∣∣Dh1(v1)−Dh2(v1)

∣∣, ∣∣Dh1(v2)−Dh2(v2)
∣∣)

and, again regarding Dh1 , Dh2 as disjoint linear graphs on L∩BR , we have

min
(∣∣Dh1(v1)−Dh2(v1)

∣∣, ∣∣Dh1(v2)−Dh2(v2)
∣∣)≤ ∣∣Dh1(v1)−Dh2(v2)

∣∣
= |w1 −w2|

which shows that F is Lipschitz on N , and the proof is complete. �

APPENDIX D: PROOFS OF MEASURABILITY

We now establish the following proposition which was used in the proofs of
Section 8.

PROPOSITION D.1. Let π be a Borel measure on the product space R
d ×R

d

and let A ⊆ R
d be a concentration set for its first marginal. Let x �→ πx be the

corresponding disintegration map from A to P(Rd) and assume that for each x ∈
A, the set suppπx ⊆R

d is compact—which is satisfied in particular, if the second
marginal of π is compactly supported. Then the set

Eπ := {
x ∈A | suppπx ⊆ Ext

(
conv(suppπx)

)}
is a Borel measurable set in R

d .

PROOF. Let Nπ =A \Eπ , that is,

Nπ = {
x ∈A | suppπx �⊆ Ext

(
conv(suppπx)

)}
.

We will show that there is a measurable set N in R
d such that Nπ ⊆N and Eπ ∩

N =∅, which then implies that the set Eπ =A \N is measurable, as desired.
We shall use a classical result of Carathéodory, which implies that a point z ∈

suppπx is not an extremal point of the convex hull of suppπx if and only if it lies
in the relative interior of an r-simplex (1 ≤ r ≤ d) with vertices in suppπx (see,
e.g., [12]). First, choose a countable dense subset Q ⊆ R

d and associate to each
q ∈Q an (ε, δ)-admissible r-simplex S ⊆R

d , defined as follows:

1. all the vertices of S belong to Q,
2. q is ε-close to a (relative) interior point of S, and
3. all vertices of S are δ-away from q .

Let Aε,δ(q) denote the countable set of all (ε, δ)-admissible simplices for q . Now
define the set

Sε,δ(q) := {
x ∈A | πx

(
Bε(q)

)
> 0 & there exists S ∈Aε,δ(q) such that

for each vertex qj of S,πx

(
Bε(qj )

)
> 0

}
.
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This set Sε,δ(q) contains all those points x in A, such that suppπx include, up to
an ε-error, both the point q and the vertices of an (ε, δ)-admissible simplex for q .
Since the map x �→ πx ∈ P(Rd) is measurable, each set Sε,δ(q) is measurable,
since it can be written as the countable union of measurable sets. Define Nε,δ :=⋃

q∈Q Sε,δ(q), and set

N = ⋃
k≥1

⋂
j≥1

N2−j−k,2−k .

It is clear that N is measurable. We now show that it has the desired properties.

CLAIM 1. Nπ ⊆N . Indeed, for any x ∈Nπ , there exists a z ∈ suppπx lying in
the relative interior of an r-simplex, say S, with vertices in suppπx . Let δ0 > 0 be
a lower bound for the distances from z to the vertices of S as well as the distances
between any two vertices. Fix k ∈ N large enough so that δ0 ≥ δ = 2−k+1. Since
Q is dense, one can find for each ε = 2−j−k , j ≥ 1, a point q ∈ Bε(z) and an
(ε, δ)-admissible simplex Sj for q whose vertices are ε close to the vertices of S.
This implies that for each j ∈ N, x ∈ Sε,δ(q) where ε = 2−j−k and δ = 2−k+1.
This shows that x ∈⋂

j≥1 N2−j−k,2−k ⊆N as desired.

CLAIM 2. Eπ ∩ N = ∅. Indeed, suppose not then there exists x ∈ Eπ ∩⋂
j≥1 N2−j−k,2−k for some k ∈ N. Let δ = 2−k and εj = 2−j−k for each j ≥ 1.

Then we see that for each j ≥ 1, there exists qj ∈Q and a simplex, say Sj , that
is (εj , δ)-admissible for qj such that qj and the vertices of Sj are εj close to
suppπx . Since suppπx is compact by assumption, there exists a convergent subse-
quence of {qj }, as well as a convergent subsequence of the simplices {Sj } (in the
Hausdorff topology since their vertices converge). Let q∞, S∞ denote their limits
(as j →∞), respectively. Note that q∞ ∈ suppπx and that S∞ is a simplex with
vertices in suppπx . By the definition of (εj , δ)-admissibility, we also have that q∞
belongs to the closure of S∞, while being δ-away from its vertices. This implies
that the point q∞ ∈ suppπx is not an extremal point of the convex hull of suppπx .
This contradicts the fact that x ∈Eπ , thus completing the proof of Claim 2 and the
proposition. �

Next, we show the following.

PROPOSITION D.2. Let π be a Borel measure on the product space R
d ×R

d

and let x �→ πx ∈ P(Rd) be its disintegration along the first marginal. Let A⊆R
d

be a Borel measurable set that is a concentration set for the first marginal of π ,
and denote for each x ∈A, the set I (x)= IC(suppπx).

Assume that I (x) is bounded and that x ∈ I (x) for each x ∈ A. If A1 ⊆ A

is a measurable set such that for each x ∈ A1, dim I (x) = 1, then the function
w :A1→R+ defined by

w(x) :=min
[
dist(x, y0),dist(x, y1)

]
,

where y0, y1 are the end points of the segment I (x), is Borel measurable.



162 N. GHOUSSOUB, Y.-H. KIM AND T. LIM

PROOF. It is enough to show that for each δ > 0, the set Mδ = {x ∈ A1 |
w(x)≥ δ} is Borel measurable. For that, we again consider a countable dense sub-
set Q ⊆ R

d . For ε, δ > 0, we say that a closed segment S = [p0,p1] connecting
two points p0,p1 ∈R

d is (ε, δ)-admissible for q ∈Q if:

1. p0,p1 ∈Q;
2. q ∈Nε(S), the latter being the ε-tubular neighborhood of S;
3. dist(pi, q)≥ δ, for i = 0,1.

Let Aε,δ(q) denote the countable set of (ε, δ)-admissible segments for q , and de-
fine the set

Sε,δ(q) := {
x ∈A1 | dist(x, q)≤ ε and there exists [p0,p1] ∈Aε,δ(q)

with πx

(
Bε(pi)

)
> 0, i = 0,1

}
.

The set Sε,δ(q) contains those points x in A1, such that x is ε-close to q , while
suppπx includes up to ε, the end points of an (ε, δ)-admissible segment for q .
Again, each set Sε,δ(q) is measurable, since the map x �→ πx ∈ P(Rd) is measur-
able. Define the set Mε,δ :=⋃

q∈Q Sε,δ(q), and set

M̄δ =
⋂
j≥1

M2−j ,δ.

It is obvious that M̄δ is measurable. We claim that

Mδ = M̄δ.(D.1)

Indeed, we first verify that M̄δ ⊆ Mδ . To see this, consider an arbitrary point
x ∈ M̄δ , and let y0, y1 be the two end points of the segment I (x). Then for each
0 < ε < δ, there is q ∈ Q and S = [p0,p1] ∈ Aε/3,δ(q) such that x ∈ Bε/2(q)

and πx(Bε/2(pi)) > 0 for i = 0,1. From the last condition, we see that p0,p1 ∈
Nε/2(suppπx), and hence S ∈ Nε/2(I (x)). Moreover, from the item (3) for the
(ε, δ)-admissibility of S together with x ∈ Bε/2(q), we see that dist(pi, x) ≥
δ − ε/2, which then implies that dist(x, yi) ≥ δ − ε. Since ε > 0 was arbitrary,
this implies that x ∈Mδ as desired.

For the reverse inclusion Mδ ⊆ M̄δ , note that for each x ∈ Mδ , we have
dist(yi, x) ≥ δ, i = 0,1, where y0, y1 are the end points of the segment I (x).
Also, notice that yi ∈ suppπx , i = 0,1. Since Q ⊆ R

d is dense, one can find for
each 0 < ε < δ, a point q ∈ Q and a segment S = [p0,p1] ∈ Aε,δ(q) such that
q ∈ Bε(x), and pi ∈ Bε(yi)), i = 0,1. It follows that x ∈ Sε,δ(q) which implies
x ∈Mε,δ for all 0 < ε < δ, thus x ∈ M̄δ . This completes the proof. �
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