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A STRATONOVICH–SKOROHOD INTEGRAL FORMULA FOR
GAUSSIAN ROUGH PATHS

BY THOMAS CASS1 AND NENGLI LIM2

Imperial College London and Singapore University of Technology and Design

Given a Gaussian process X, its canonical geometric rough path lift X,
and a solution Y to the rough differential equation (RDE) dYt = V (Yt ) ◦ dXt ,
we present a closed-form correction formula for

∫
Y ◦dX−∫

Y dX, that is, the
difference between the rough and Skorohod integrals of Y with respect to X.
When X is standard Brownian motion, we recover the classical Stratonovich-
to-Itô conversion formula, which we generalize to Gaussian rough paths with
finite p-variation, p < 3, and satisfying an additional natural condition. This
encompasses many familiar examples, including fractional Brownian motion
with H > 1

3 . To prove the formula, we first show that the Riemann-sum ap-

proximants of the Skorohod integral converge in L2(�) by using a novel
characterization of the Cameron–Martin norm in terms of higher-dimensional
Young–Stieltjes integrals. Next, we append the approximants of the Skorohod
integral with a suitable compensation term without altering the limit, and the
formula is finally obtained after a rebalancing of terms.
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1. Introduction. Gaussian processes are used in modeling natural phenom-
ena, from rough stochastic volatility models in high-frequency trading [2], to
models of vortex filaments based on fractional Brownian motion [31]. To analyze
stochastic processes with regularity lower than standard Brownian motion, one can
employ the theory of rough paths [27]. In particular, given a Gaussian process X,
one can lift it canonically to a geometric rough path X [17], and this allows one to
study the properties of rough differential equations (RDEs)

(1) dYt = V (Yt ) ◦ dXt , Y0 = y0 ∈ R
e,

and of rough integrals of the form

(2)
∫ T

0
Yt ◦ dXt .

Furthermore, this geometric calculus generalizes Stratonovich’s stochastic calcu-
lus, and as such, it finds natural applications, for example, in stochastic geom-
etry where the change-of-variable formula allows one to give an intrinsic and
coordinate-invariant definition of a rough path on a general smooth manifold; cf.
[5, 9].

Itô integrals, by contrast, preserve the local martingale property, which is a use-
ful feature when computing probabilistic quantities such as exit distributions and
conditional expectations. One can often gain insight into a problem by transform-
ing Stratonovich integrals to Itô integrals and vice versa, depending on the require-
ment at hand.

Now if Y and X are two continuous semimartingales, both R
d -valued, it is

well known that the difference between the two integrals is given in terms of the
quadratic covariation through the formula (cf. [24, 33])∫ T

0
〈Yt ,◦dXt 〉 =

∫ T

0
〈Yt ,dXt 〉 + 1

2
[Y,X]T .

In the case where Yt solves RDE (1) and Xt is taken to be standard Brownian
motion Bt , this becomes

(3)
∫ T

0
〈Yt ,◦dBt 〉 =

∫ T

0
〈Yt ,dBt 〉 + 1

2

∫ T

0
tr
[
V (Yt )

]
dt,

where in the second term on the right-hand side we have the usual trace of V (Yt ) ∈
R

d ⊗R
d considered as a d-by-d matrix.



STRATONOVICH–SKOROHOD FORMULA FOR GAUSSIAN RPS 3

On the other hand, if Yt ≡ ∇f (Xt), where f is sufficiently smooth, then we get
Itô’s formula,

f (XT ) − f (X0) =
∫ T

0

〈∇f (Xt),◦dXt

〉
(4)

=
∫ T

0

〈∇f (Xt),dXt

〉+ 1

2

∫ T

0
�f (Xt)dR(t),(5)

where the first term on the right-hand side is the Skorohod integral of ∇f (X)

with respect to X, and R(t) is the variance E[(X(1)
t )2]. This has been well studied

for general Gaussian processes, particularly fractional Brownian motion, over the
past two decades; see [1, 4, 30, 32], and in particular [22], which uses rough path
techniques to prove the formula.

Our main result is the following theorem, where the driving signal X is con-
structed from the limit of the piecewise-linear approximations of a Gaussian pro-
cess with i.i.d. components.

THEOREM. For 2 ≤ p < 3, let Y ∈ Cp-var([0, T ];Rd) denote the path-level
solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0,

where V ∈ C6
b(Rd;Rd ⊗ R

d) and X ∈ C0,p-var([0, T ];G
p�(Rd)). We assume the
covariance function R of X is of finite 2D ρ-variation, 1 ≤ ρ < 3

2 and satisfies

(6)
∥∥R(t, ·) − R(s, ·)∥∥ρ-var;[0,T ] ≤ C|t − s| 1

ρ ,

for all s, t ∈ [0, T ]. Then almost surely, we have∫ T

0
〈Yt ,◦dXt 〉 =

∫ T

0
〈Yt ,dXt 〉 + 1

2

∫ T

0
tr
[
V (Yt )

]
dR(t)

+
∫
[0,T ]2

1[0,t)(s) tr
[
J X

t

(
J X

s

)−1
V (Ys) − V (Yt )

]
dR(s, t).

(7)

Here, J X
t denotes the Jacobian of the flow map y0 → Yt . The last term on the

right-hand side of (7) is a proper 2D Young–Stieltjes integral with respect to the
covariance function. When X is standard Brownian motion, it vanishes since the
integrand is zero on the diagonal and dR(s, t) = δ{s=t} ds dt . This, together with
the fact that R(t) = t , allows us to recover the usual Itô–Stratonovich conversion
formula (3).

Hence, an immediate contribution of the theorem is the generalization of for-
mula (3) to the setting where the integrands are solutions to Gaussian RDEs. Here,
we are able to give a formula for integrators other than standard Brownian mo-
tion without restriction on the regularity of the integrand; compare this to [12]
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for example, where essentially Young complementary regularity is required. Fur-
thermore, the novel 2D Young–Stieltjes integral can be understood as measuring
the failure of the commutativity of V with respect to the covariance of the Gaus-
sian process. For studying the dynamics of Gaussian processes in cases where the
correction formula is indispensable, for example, Gaussian processes evolving on
manifolds, this could lead to new insights.

We now provide the main idea behind the proof of the theorem. Denoting X =
(1,X,X2), the solution Y to RDE (1) can be integrated against this rough path and

(8)
∫ T

0
〈Yt ,◦dXt 〉 = lim‖π‖→0

∑
i

〈Yti ,Xti ,ti+1〉 + V (Yti )
(
X2

ti ,ti+1

)
almost surely. Continuing, we devote Section 4 to proving two claims. The first is
that Y lies in the domain of the Skorohod integral operator w.r.t. X, and the second
is that, as a limit in L2(�) we have∫ T

0
〈Yt ,dXt 〉

= lim‖π‖→0

∑
i

[
〈Yti ,Xti ,ti+1〉 −

∫ ti

0
tr
[
J X

ti

(
J X

s

)−1
V (Ys)

]
R(�i,ds)

]
.

(9)

Proving these facts is less obvious than in the case where Yt = ∇f (Xt), and we
need to use the tail estimates of [10] in a fundamental way. In Section 5, we use
condition (6) to prove that

(10)
∑
i

V (Yti )

((
X2

ti ,ti+1

)− 1

2
E
[(

X
(1)
ti ,ti+1

)2]Id

)

has a vanishing L2(�) limit as ‖π‖ → 0. The proof of this relies on estimates com-
ing from a delicate interplay between the theory of Malliavin calculus and Gaus-
sian rough paths; see Proposition 5.1. After augmenting (10) to (9) and extracting
an almost sure subsequence, we can take the difference between this subsequence
and (8). A careful rearrangement of the terms in this difference will then yield the
correction term.

We now outline the structure of the paper, as well as highlight other contribu-
tions that are of independent interest. We begin in Section 2 with a summary of
Gaussian rough path concepts and a primer on the Malliavin calculus as applied to
RDE solutions. In Section 3.1, we provide a general closed-form expression and a
novel bound for the higher-order Malliavin derivatives of RDE solutions relative
to the driving rough path (cf. [8, 21, 23]). This will be then used in Section 5 to
show that (10) has vanishing L2(�) limit.

In Section 4, we give a new characterization of the Cameron–Martin norm in
terms of multi-dimensional Young–Stieltjes integrals. We show that one can iden-
tify Cp-var([0, T ]) with a dense subspace of H1, the Hilbert space generated by the
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indicator functions which is isomorphic to the Cameron–Martin space. In particu-
lar, for f ∈ Cp-var([0, T ]), we have

(11) ‖f ‖H1 =
√∫

[0,T ]2
ftfs dR(s, t).

We also give a corresponding characterization with regards to the tensor prod-
uct of the Cameron–Martin space in Section 4.2, and revisit the classical Itô–
Skorohod isometry in Section 4.3 by giving it a new formulation in terms of multi-
dimensional Young–Stieltjes integrals. Finally, Section 4 is concluded with a proof
of (9).

The main theorem and its proof is given in Section 6.

2. Preliminaries. The following is a summary of basic notation that will be
used throughout the paper.

We will use {ej }, j = 1, . . . , d , to denote the canonical basis for Rd , and | · |
will denote the standard Euclidean norm.

∧ and ∨ will be used to denote the min and max operators, respectively, and
C, with or without subscript, will always denote a finite constant which may vary
from line to line.

The notation Cn
b will be used when denoting a class of functions which have

bounded derivatives up to nth order.
Given vector spaces A and B , L(A;B) will denote the space of linear maps

from A to B .
Frequently, we will canonically identify a tensors

∑k
i=1

∑l
j=1 aij ei ⊗ ej (or co-

tensors
∑k

i=1
∑l

j=1 aij dei ⊗ dej ) in R
k ⊗R

l with a k-by-l matrix.
For simplification, we will denote both tensor spaces and co-tensor spaces with

R
k ⊗R

l , and if A ∈ R
k ⊗R

k , trA :=∑k
i=1 aii will denote the usual trace operation.

Ik :=∑k
j=1 ej ⊗ ej will be used to denote the k-by-k identity matrix.

2.1. Rough paths, p-variation topology and controls. We begin by reviewing
the basic concepts and notation of rough paths theory. The standard references in
this area include [14, 25, 26] and [18].

Given x ∈ C([0, T ];Rd), that is, a continuous R
d -valued path defined on the

time interval [0, T ], where T is some arbitrary but fixed terminal time, a rough
path x includes the higher-order iterated integrals of x in addition to the first-order
increment xs,t := xt − xs . To account for these higher-order increments, the right
space for x to take values in turns out to be the step-n nilpotent group, which we
will define below.

First, let T n(Rd) denote the truncated tensor algebra up to degree n:

T n(
R

d) := R⊕R
d ⊕ · · · ⊕ (

R
d)⊗n

.
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Addition and scalar multiplication are defined in the usual fashion, and given a =
(a0, a1, . . . , an), b = (b0, b1, . . . , bn) ∈ T n(Rd), multiplication is performed by

a ⊗ b := (
c0, c1, . . . , cn), ck =

k∑
i=0

ai ⊗ bk−i ,∀0 ≤ k ≤ n,

where here we abuse the notation by reusing the same symbol for the tensor prod-
uct in R

d .
The tangent space of T n(Rd) at the unit element e = (1,0, . . . ,0) is given by

An
T

(
R

d) := 0 ⊕R
d ⊕ · · · ⊕ (

R
d)⊗n

.

We will define the exponential map exp : An
T (Rd) → T n(Rd) by

(12) exp(a) :=
n∑

i=0

a⊗i

i!
[for a ∈ R

d we will occasionally abuse the notation by denoting exp(a) :=
exp((0, a,0))], and the logarithm map log : T n(Rd) → An

T (Rd) by

(13) log(a) =
n∑

i=1

(−1)i+1 (a − e)⊗i

i
.

DEFINITION 2.1. The step-n nilpotent group (with d generators), denoted
by Gn(Rd), is the subgroup of T n(Rd) corresponding to the sub-Lie algebra of
An

T (Rd) generated by the Lie bracket [a, b] = a ⊗ b − b ⊗ a.

One can check that the inverse of any element a = e + ã ∈ Gn(Rd) is given by

(14) a−1 =
n∑

k=0

(−1)kã⊗k;

see Lemma 7.16 in [18].
Gn(Rd) will be equipped with the topology induced from the symmetric, sub-

additive homogeneous norm

(15) ‖g‖ = max
i=1,...,n

(
i!∣∣gi

∣∣) 1
i .

Consider now x ∈ C([0, T ];Gn(Rd)), a continuous Gn(Rd) valued path on
[0, T ]. We define the increment by setting xs,t := x−1

s ⊗ xt . Such a path is called a
multiplicative functional (cf. [27]) as it satisfies Chen’s equality

(16) xs,t = xs,u ⊗ xu,t ∀s, u, t ∈ [0, T ], s ≤ u ≤ t.

We now define the p-variation distance as

(17) dp-var;[0,T ](x,y) := sup
π

(∑
i

d(xti ,ti+1,yti ,ti+1)
p

) 1
p

,
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where the supremum runs over all partitions π = {ti} of [0, T ]. We also define

‖x‖p-var;[0,T ] := dp-var;[0,T ](x,0),

where 0 denotes the constant path yt = e for all t ∈ [0, T ].

DEFINITION 2.2. For p ≥ 1, the weakly geometric p-rough paths, which we
will denote by Cp-var([0, T ];G
p�(Rd)), is the set of continuous functions x from
[0, T ] onto G
p�(Rd) such that ‖x‖p-var;[0,T ] < ∞.

The simplest example of a weakly geometric p-rough path is as follows, given
a bounded-variation path x in R

d , we can compute the signature of x in G
p�(Rd):

S
p�(x)s,t = (
1,x1

s,t ,x2
s,t , . . . ,x
p�

s,t

)
,

where xk
s,t is the conventional kth iterated integral of the path x over the interval

[s, t]:

xk
s,t =

d∑
j1,...,jk=1

(∫
s<r1<···<rk<t

dx(j1)
r1

⊗ · · · ⊗ dx(jk)
rk

)
ej1 ⊗ · · · ⊗ ejk

.

Let C∞([0, T ];G
p�(Rd)) denote the subset of weakly-geometric rough paths
which are also of bounded variation. Then the signature of x is in C∞([0, T ];
G
p�(Rd)), and we also have the following definition.

DEFINITION 2.3. For p ≥ 1, the space of geometric p-rough paths, which
we will denote by C0,p-var([0, T ];G
p�(Rd)), is defined to be the closure of
C∞([0, T ];G
p�(Rd)) in Cp-var([0, T ];G
p�(Rd)) with respect to the topology
given by the p-variation distance (17).

REMARK 2.4. In finite dimensions, the difference between weakly-geometric
rough paths and geometric rough paths is fairly minor, as we have the following
relation:

C0,p-var([0, T ];G
p�(
R

d))⊂ Cp-var([0, T ];G
p�(
R

d))
⊂ C0,p+ε-var([0, T ];G
p�(

R
d)),

where ε > 0 can be chosen arbitrarily small; cf. [16].

We will now extend the notion of finite p-variation to general metric spaces.
Given a metric space (E,d), a path f : [0, T ] → E is said to have finite p-variation
if

(18) ‖f ‖p-var;[s,t] := sup
π

(∑
i

d(fti , fti+1)
p
E

) 1
p

< ∞.
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We will use V p-var([0, T ];E) to denote the space of functions which satisfy the
bound above, and Cp-var([0, T ];E) to denote the set of continuous functions which
satisfy (18).

We will also define the notation Cp-var
pw ([0, T ];E) for piecewise-continuous

functions of bounded p-variation as follows: f is in Cp-var
pw ([0, T ];E) if there ex-

ists a partition {ti} of [0, T ] such that f is in Cp-var((ti, ti+1);E) for all i.
We have the following simple proposition; cf. Proposition 5.3 in [18].

PROPOSITION 2.5. Let f ∈ C([0, T ];E). Then if 1 ≤ p ≤ p′ < ∞,

‖f ‖p′-var;[0,T ] ≤ ‖f ‖p-var;[0,T ].

In particular, Cp-var([0, T ];E) ⊂ Cp′-var([0, T ];E).

We will use the notation ‖f ‖p-var;[s,t] when the supremum is taken over parti-
tions of [s, t] ⊂ [0, T ]. Proposition 5.8 in [18] tells us that

ω(s, t) := ‖f ‖p
p-var;[s,t]

defines a control, that is, a continuous, nonnegative, real-valued function that is
super-additive and vanishes on the diagonal, that is, ω(t, t) = 0 for all t ∈ [0, T ].
We also note the following lemmas about controls.

LEMMA 2.6. Assume ω1 and ω2 are controls:

(i) If φ is a positive convex function, then φ(ω1) is a control.
(ii) Given α,β > 0 with α + β ≥ 1, ωα

1 ω
β
2 is also a control.

PROOF. Exercises 1.8 and 1.9 in [18]. �

LEMMA 2.7 (Proposition 5.10 in [18]). Let ω be a control on [0, T ] and let
p ≥ 1. Then the pointwise estimate

d(fs, ft )
p ≤ Cω(s, t) ∀s < t ∈ [0, T ]

implies the p-variation estimate

‖f ‖p-var;[s,t] ≤ C
1
p ω(s, t)

1
p ∀s < t ∈ [0, T ].

If E also has a norm ‖ · ‖E , we will also use the notation ‖f ‖Vp;[0,T ] to denote
the norm

‖f ‖Vp;[0,T ] := ‖f ‖p-var;[0,T ] + sup
t∈[0,T ]

‖ft‖E

≤ ‖f0‖E + 2‖f ‖p-var;[0,T ].
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For a function defined on [0, T ]2, f : [0, T ]2 → E is said to be of finite 2D
p-variation if

(19) ‖f ‖p-var;[0,T ]2 := sup
π

(∑
i,j

∥∥∥∥f
(

ui, ui+1
vj , vj+1

)∥∥∥∥p

E

) 1
p

< ∞,

where π = {(ui, vj )} is a partition of [0, T ]2, and the rectangular increment is
given by

(20) f

(
ui, ui+1
vj , vj+1

)
:= f (ui, vj ) + f (ui+1, vj+1) − f (ui, vj+1) − f (ui+1, vj ).

Similar to the 1D case, we will use V p-var([0, T ]2;E) (resp., Cp-var([0, T ]2;E))
to denote the set of functions (resp., continuous functions) which satisfy (19).

On occasion, we will use the notation

f (�i, v) := f (ui+1, v) − f (ui, v),

f (u,�j ) := f (u, vj+1) − f (u, vj ).
(21)

Given a rectangle R = [s, t] × [u, v] ⊂ [0, T ]2, we let �(R) denote the family of
all partitions {[ai, bi] × [ci, di], i = 1, . . . , n} of R, where in each partition, the
subrectangles have disjoint interiors and satisfy

⋃n
i=1[ai, bi] × [ci, di] = R.

DEFINITION 2.8. Let �T := {(s, t) | 0 ≤ s ≤ t ≤ T }. A map ω : �T × �T →
[0,∞) is called a 2D control if it is continuous, zero on degenerate rectangles, and
super-additive in the sense that for all rectangles R ⊂ [0, T ]2,

n∑
i=1

ω(Ri) ≤ ω(R) whenever {Ri,1 ≤ i ≤ n} ∈ �(R).

Now let f ∈ Cp-var([0, T ]2;E), ε > 0 and R ⊂ [0, T ]2. Then ωf,ρ+ε(R) defined
as

(22) ωf,ρ+ε(R) := sup
�(R)

∑
i

∣∣∣∣f
(
ai bi

ci di

)∣∣∣∣ρ+ε

,

is a 2D control [19].

REMARK 2.9. Note that �(R) includes partitions which are not grid-like, in
contrast to (19). Furthermore, we use ωf,ρ+ε([s, t]× [u, v]) instead of what seems
to be the more natural choice ‖f ‖ρ

ρ-var;[s,t]×[u,v] because the latter is actually not
super-additive, and is thus not a control; see [19].

However, there exists a finite constant depending on ε such that

ωf,ρ+ε

([s, t] × [u, v])≤ Cε‖f ‖ρ+ε
ρ-var;[s,t]×[u,v] < ∞,

for all [s, t] × [u, v] ⊂ [0, T ]2. The reason to use ρ + ε regularity instead of ρ is
that otherwise (22) might be infinite; cf. Example 1 in [19].
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DEFINITION 2.10. We say that the 2D Young–Stieltjes integral of f with
respect to g exists if there exists a scalar I (f, g) ∈ R such that

(23) lim‖π‖→0

∣∣∣∣∑
i,j

f (ui, vj )g

(
ui ui+1
vj vj+1

)
− I (f, g)

∣∣∣∣→ 0,

that is, for each ε > 0, there exists a δ > 0 such that for all partitions π = {(ui, vj )}
of [0, T ]2 with ‖π‖ < δ, the quantity on the left of (23) is less than ε. In this
case, we use

∫
[0,T ]2 f dg to denote I (f, g), or

∫
[s,t]×[u,v] f dg whenever we restrict

ourselves to any particular subset [s, t] × [u, v] of [0, T ]2.

DEFINITION 2.11. We say that f ∈ V p-var([s, t] × [u, v]) and g ∈
V q-var([s, t] × [u, v]) have complementary regularity if 1

p
+ 1

q
> 1.

The significance of this definition lies in the following theorem, which gives
the existence of the Young–Stieltjes integral and Young’s inequality in two dimen-
sions; see [14, 18, 27] for the one-dimensional version.

THEOREM 2.12. Let f ∈ V p-var([s, t]×[u, v]) and g ∈ V q-var([s, t]×[u, v])
have complementary regularity. We also assume that f (s, ·) and f (·, u) have fi-
nite p-variation, and that f and g have no common discontinuities. Then the 2D
Young–Stieltjes integral exists and the following Young’s inequality holds:

(24)
∣∣∣∣
∫
[s,t]×[u,v]

f dg

∣∣∣∣≤ Cp,q |||f |||‖g‖q-var,[s,t]×[u,v],

where

|||f ||| = ∣∣f (s, u)
∣∣+ ∥∥f (s, ·)∥∥p-var;[u,v] + ∥∥f (·, u)

∥∥
p-var;[s,t] + ‖f ‖p-var,[s,t]×[u,v].

PROOF. See [17, 36]. �

2.2. Gaussian rough paths. We will work with a stochastic process

Xt = (
X

(1)
t , . . . ,X

(d)
t

)
, t ∈ [0, T ],

which denotes a centered (i.e., zero-mean), continuous Gaussian process in R
d

with i.i.d. components and starting at the origin.
This process is defined on the canonical probability space (�,F,P), where

� = C([0, T ];Rd), the space of continuous R
d -valued paths equipped with the

supremum topology, F is the Borel σ -algebra and P is the unique Borel measure
under which X(ω) = (ωt )t∈[0,T ] has the specified Gaussian distribution. We will
use

R(s, t) := E
[
X(1)

s X
(1)
t

]
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to denote the covariance function common to the components. The variance R(t, t)

will be denoted simply by R(t), and we will also use the notation

(25) σ 2(s, t) := R

(
s t

s t

)
= E

[(
X

(1)
s,t

)2];
recall the definition of the rectangular increment in (20).

The triple (�,Hd,P) denotes the abstract Wiener space associated to X, where
Hd =⊕d

i=1 H is the Cameron–Martin space (or reproducing kernel Hilbert space).
The Cameron–Martin space, which is densely and continuously embedded in �,
is the completion of the linear span of the functions{

R(t, ·)(u) := R(t, ·)eu | t ∈ [0, T ], u = 1, . . . , d
}

under the inner-product〈
R(t, ·)(u),R(s, ·)(v)〉

Hd = δuvR(t, s), u, v = 1, . . . , d.

By definition, Hd satisfies the following reproducing property; for any f =
(f (1), . . . , f (d)) ∈ Hd ,〈

f·,R(t, ·)(u)〉
Hd = f

(u)
t , t ∈ [0, T ].

We assume that there exists ρ < 2 such that R has finite 2D ρ-variation. The
following theorem in [17] (see also [11] in the case of fractional Brownian motion)
then shows that one can canonically lift X via its piecewise linear approximants
Xπ to a geometric p-rough path for p > 2ρ.

THEOREM 2.13. Assume X is a centered continuous R
d -valued Gaussian

process with i.i.d. components. Let ρ ∈ [1,2) and assume that the covariance func-
tion has finite 2D ρ-variation:

(i) (Existence) There exists a random variable X = (1,X1,X2,X3) on (�,F,

P) which takes values almost surely in C0,p-var([0, T ];G3(Rd)) for p > 2ρ, that
is, the set of geometric p-rough paths for p ∈ (2ρ,4), and which lifts the Gaussian
process X in the sense that X1

s,t = Xt − Xs almost surely for all s, t ∈ [0, T ].
(ii) (Uniqueness and consistency) The lift X is unique in the sense that it is

the dp−var -limit in Lq(�), q ∈ [1,∞), of any sequence S
p�(Xπ) with ‖π‖ → 0.
Furthermore, if X has a.s. sample paths of finite [1,2)-variation, X coincides with
the signature of X.

Moreover, Proposition 17 in [17] shows that for all h ∈ Hd ,

(26) ‖h‖ρ-var;[0,T ] ≤ ‖h‖Hd

√
‖R‖ρ-var;[0,T ]2,

which implies that Hd ↪→ Cρ-var([0, T ];Rd) whenever R has finite 2D ρ-
variation. Thus if ρ ∈ [1, 3

2), corresponding to 2 ≤ p < 3, we have complemen-
tary regularity between X and any path in the Cameron–Martin space, that is,
1
p

+ 1
ρ

> 1.
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We will need to impose further conditions on the covariance function. For all
s, t ∈ [0, T ], we assume there exists C < ∞ such that

(27)
∥∥R(t, ·) − R(s, ·)∥∥ρ-var;[0,T ] ≤ C|t − s| 1

ρ .

This bound will be later used to control the L2(�) norm of the iterated integrals.
An immediate consequence of the bound is illustrated in the following lemma.

LEMMA 2.14. Let X be a continuous, centered Gaussian process in R and
assume its covariance function satisfies

∥∥R(t, ·) − R(s, ·)∥∥q-var;[0,T ] ≤ C|t − s| 1
ρ ∀s < t ∈ [0, T ],

for some q,ρ ≥ 1. Then:

(i) R(t) := R(t, t) is of bounded ρ-variation.
(ii) For p > 2ρ, X has a 1

p
-Hölder continuous modification.

PROOF. Let fs,t (·) denote R(t, ·) − R(s, ·). Then for any partition {ti} of
[0, T ], we have∑

i

∣∣R(ti+1) − R(ti)
∣∣ρ

≤∑
i

∣∣R(ti+1, ti+1) − R(ti, ti+1) + R(ti, ti+1) − R(ti, ti)
∣∣ρ

≤ 2ρ−1
∑
i

∣∣fti ,ti+1(ti+1) − fti ,ti+1(0)
∣∣ρ + ∣∣fti ,ti+1(ti) − fti ,ti+1(0)

∣∣ρ
≤ 2ρ

∑
i

∥∥fti ,ti+1(·)
∥∥ρ
q-var;[0,T ]

≤ C
∑
i

|ti+1 − ti | ≤ CT .

For the second part, for all n ∈ N we have

E
[
X2n

s,t

]≤ CnE
[
X2

s,t

]n ≤ Cn

∣∣fs,t (t) − fs,t (s)
∣∣n

≤ Cn

∥∥R(t, ·) − R(s, ·)∥∥n
q-var;[0,T ]

≤ Cn|t − s| n
ρ , s < t ∈ [0, T ].

By Kolmogorov’s continuity theorem, there exists a γ -Hölder continuous modifi-
cation of X for all γ < 1

2ρ
. �
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2.3. Malliavin calculus. We will primarily work with the following Hilbert
space which is isomorphic to Hd .

DEFINITION 2.15. Let Hd
1 denote the completion of the linear span of{

1(u)
[0,t)(·) := 1[0,t)(·)eu | t ∈ [0, T ], u = 1, . . . , d

}
(cf. [1, 29]) with respect to the inner-product given by〈

1(u)
[0,t)(·),1(v)

[0,s)(·)
〉
Hd

1
= δuvR(t, s).

Furthermore, let � : Hd
1 → Hd denote the Hilbert space isomorphism obtained

from extending the map 1(u)
[0,t)(·) �→ R(t, ·)(u), t ∈ [0, T ], u = 1, . . . , d .

We record some basic properties about the Malliavin calculus. For simplicity,
we assume here that d = 1. First, we recall that the map 1[0,t) �→ Xt extends to
a unique linear isometry I from H1 to L2(�). It follows that I (h) is a mean-
zero Gaussian random variable with variance ‖h‖2

H1
. The set S of smooth cylinder

functionals is the subset of random variables taking the form

F = f
(
I (h1), . . . , I (hn)

)
,

where h1, . . . , hn ∈ H1 and f : Rn → R is infinitely differentiable with bounded
derivatives of all orders. The Malliavin derivative DF is the H1-valued random
variable which is defined for smooth cylinder functionals as follows:

DF :=
n∑

i=1

∂f

∂xi

(
I (h1), . . . , I (hn)

)
hi.

It can be shown that D is a closable operator; see, for example, Proposition 1.2.1
in [29]. For p ≥ 1, we let D1,p denote the closure of S with respect to the norm

‖F‖p
1,p := ‖F‖p

Lp(�) + ‖DF‖p
Lp(�;H1)

.

If K is a separable Hilbert space, the higher-order derivatives Dn and the corre-
sponding Sobolev spaces Dn,p(K) can be defined iteratively.

Moving to the case p = 2, for any F in D
1,2, we let DhF := 〈DF,h〉H1 . The di-

vergence operator δX is defined to be the adjoint of D. The domain of this operator
consists of all h ∈ L2(�;H1) such that∣∣E[DhF ]∣∣≤ C‖F‖L2(�)

for all F ∈ S , whereupon δX(h) is characterized as the unique random variable in
L2(�) for which

E
[〈DF,h〉H1

]= E
[
FδX(h)

]
.
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We will use the notation δX(h) and
∫ T

0 hs dXs interchangeably. It is well known
that the domain of δX contains D

1,2(H1); see, for example, Proposition 1.3.1 in
[29].

Fixing a multi-index a = (a1, . . . , aM) where |a| := ∑M
i=1 ai = n, we define

In : H⊗n
1 →R as follows:

In

(
h

⊗a1
1 ⊗ · · · ⊗ h

⊗aM

M

)= a!
M∏
i=1

Hai

(
δX(hi)

)
,

where a! := ∏M
i=1 ai ! and Hm(x) denotes the mth Hermite polynomial. The fol-

lowing duality formula is then classical

(28) E
[
FIn(h)

]= E
[〈
DnF,h

〉
H⊗n

1

]
.

For f ∈ H⊗n
1 , g ∈ H⊗m

1 , both f and g symmetric, we also have the following
product formula (cf. Proposition 1.1.3 in [29]):

(29) In(f )Im(g) =
n∧m∑
r=0

r!
(
n

r

)(
m

r

)
In+m−2r (f ⊗̃r g).

Here, f ⊗̃r g denotes the symmetrization of the tensor f ⊗r g, which in turn
denotes the contraction of f and g of order r ; that is, given an orthonormal basis
{hm} of H1,

f ⊗r g :=
∞∑

k1,...,kr=1

〈f,hk1 ⊗· · ·⊗hkr 〉H⊗r
1

⊗〈g,hk1 ⊗· · ·⊗hkr 〉H⊗r
1

∈H⊗(n+m−2r)
1 ;

cf. [28].

REMARK 2.16. One can also define operators equivalent to D and δX di-
rectly on the abstract Wiener space (�,H,P). To make the presentation clear
we summarize the correspondence here. First, for every l in the topological dual
�∗ = C([0, T ],R)∗, there exists a unique hl in H such that l(h) = 〈hl, h〉. Un-
der this identification, the random variable I(hl) : ω �→ l(ω) is a centered nor-
mal random variable with variance ‖hl‖2

H. Second, it can be shown that the set
{hl : l ∈ �∗} is dense in H, whereupon I extends uniquely to an isometry between
H and L2(�), and is called the Paley–Wiener map. It is simple to see that I and
I are related by I (h) = I(�(h)) for all h ∈ H1 and, therefore, any smooth cylin-
der functional F can be represented as F = f (I(�(h1)), . . . ,I(�(hn))), and a
derivative operator D can be defined analogously to D by setting

DF :=
n∑

i=1

∂f

∂xi

(
I
(
�(h1)

)
, . . . ,I

(
�(hn)

))
�(hi) = �(DF).

This implies that

D�(h)F = 〈
DF,�(h)

〉
H = 〈DF,h〉H1 =DhF ∀h ∈ H1.
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The exposition above presents Shigekawa’s definition of the Sobolev-type space
D

n,p(K) for K-valued Wiener functionals, where K is a separable Hilbert space.
Although this is the one most often used in the literature, there are equivalent char-
acterizations of these spaces. One of these, which is attributed to Kusuoka and
Stroock (cf. [35]), is especially convenient to study stochastic differential equa-
tions for which bounds on the directional derivatives can be computed explicitly.
The definition relies on two properties. First, a measurable function F : � → K is
called ray absolutely continuous (RAC) if for every k ∈ H, there exists a measur-
able map F̃k : � → K such that

(30) F(·) = F̃k(·), P-a.s.,

and for any ω ∈ � the function s �→ F̃k(ω + sk) is locally3 absolutely continuous
in s ∈ R. Second, F has the property of being stochastically Gâteaux differentiable
(SGD) if there exists a measurable G : �→LHS(H,K), such that for any k ∈ H

1

ε

[
F(· + εk) − F(·)] P→ G(ω)(k) as t → 0,

where LHS(H,K) denotes the space of linear Hilbert–Schmidt operators from H
to K . In this case, the derivative G is unique P-a.s. and we denote it by DKSF .
Higher-order derivatives are defined inductively in the obvious way: if Dn−1

KS F is
SGD then Dn

KSF := DKS(Dn−1
KS F).

Next, we define the spaces Dn,p
KS (K) for 1 < p < ∞ inductively, first for n = 1

by setting

D
1,p
KS (K) := {

F ∈ Lp(K) : F is RAC and SGD, DKSF ∈ Lp(LHS(H,K)
)}

,

and then analogously for n = 2,3, . . . by

D
n,p
KS (K) := {

F ∈D
n−1,p
KS (K) : DKSF ∈D

n−1,p
KS

(
LHS(H,K)

)}
.

We have the following theorem.

THEOREM 2.17 (Theorem 3.1 in [35]). For 1 < p < ∞ and n ∈ N, we have
D

n,p
KS (K) = D

n,p(K), and for any element F in this space, DKSF = DF holds
P-a.s.

REMARK 2.18. By applying the same result iteratively it follows that
Dk

KSF = DkF holds P-a.s. for k = 2, . . . , n.

3Local absolute continuity is important here and is a point often missed in the literature where

RAC is sometimes stated by demanding that s �→ F̃k(ω + sk) is absolutely continuous in s ∈ R.
See however Definition 8.2.3 and Theorem 8.5.1 in [3] for a proof that local absolute continuity is
enough.
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2.4. Rough integration and controlled rough paths. In this subsection, we will
review rough integration via the theory of controlled rough paths. We will develop
the concepts in p-variation topology rather than the usual Hölder topology (cf.
[20] and [14]), and henceforth, U,V will denote finite-dimensional vector spaces.

We begin with the following definition.

DEFINITION 2.19. Let x = (1, x,x2) ∈ Cp-var([0, T ];G2(Rd)). A pair of
paths (φ,φ′), where φ ∈ Cp-var([0, T ];U) and φ′ ∈ Cp-var([0, T ];L(Rd;U)), is
said to be controlled by x if for all s, t ∈ [0, T ],
(31) φs,t = φ′

sxs,t + R
φ
s,t ,

where the remainder term satisfies

Rφ ∈ C
p
2 -var([0, T ];U).

If we define the controlled variation norm as

‖φ‖p-cvar := ‖φ‖Vp;[0,T ] + ∥∥φ′∥∥
Vp;[0,T ] + ∥∥Rφ

∥∥p
2 -var;[0,T ],

then the preceding definition says that (φ,φ′) is controlled by x if ‖φ‖p-cvar < ∞.

THEOREM 2.20. Let x = (1, x,x2) ∈ Cp-var([0, T ];G2(Rd)), where 2 ≤
p < 3.

Let φ ∈ Cp-var([0, T ];L(Rd;Re)) and φ′ ∈ Cp-var([0, T ];L(Rd;L(Rd;Re))).
If (φ,φ′) is controlled by x, we can define the rough integral

(32)
∫ t

0
φr ◦ dxr := lim‖π‖→0,π={0=r0<···<rn=t}

n−1∑
i=0

(
φri xri ,ri+1 + φ′

ri
x2
ri ,ri+1

)
,

where we have made use of the canonical identification L(Rd;L(Rd;Re)) �
L(Rd ⊗R

d;Re). Furthermore, denoting

zt :=
∫ t

0
φr ◦ dxr , z′

t := φt ,

(z, z′) is again controlled by x, and we have the bound

(33) ‖z‖p-cvar ≤ Cp‖φ‖p-cvar
(
1 + ‖x‖p-var;[0,T ] + ∥∥x2∥∥p

2 -var;[0,T ]
)
.

The following propositions will provide us with various ways to construct con-
trolled rough paths from existing ones.

PROPOSITION 2.21. For p ≥ 2, let

y ∈ Cp-var([0, T ];U),
y′ ∈ Cp-var([0, T ];L(Rd;U)),

and let φ be a C2
b map from U to V .
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Then φ(y) ∈ Cp-var([0, T ];V) and ∇φ(y)y′ ∈ Cp-var([0, T ];L(Rd;V)). Fur-
thermore, if (y, y′) is controlled by x ∈ Cp-var([0, T ];G2(Rd)), then (φ(y),

∇φ(y)y′) is also controlled by x and we have

(34)

∥∥φ(y)
∥∥
p-var;[0,T ],

∥∥∇φ(y)y′∥∥
p-var;[0,T ]

≤ ‖φ‖C2
b
‖y‖Vp;[0,T ]

(
1 + ∥∥y′∥∥

Vp;[0,T ]
)
,

and

(35)
∥∥Rφ(y)

∥∥p
2 -var;[0,T ] ≤ ‖φ‖C2

b

(‖y‖2
p-var;[0,T ] + ∥∥Ry

∥∥p
2 -var;[0,T ]

)
.

PROPOSITION 2.22 (Leibniz rule). For p ≥ 2, let

φ ∈ Cp-var([0, T ];L(U;V)
)
,

φ′ ∈ Cp-var([0, T ];L(Rd;L(U;V)
))

,

and we assume that (φ,φ′) is controlled by x ∈ Cp-var([0, T ];G2(Rd)).

(i) Let ψ ∈ Cp-var([0, T ];U), ψ ′ ∈ Cp-var([0, T ];L(Rd;U)), and suppose that
(ψ,ψ ′) is controlled by x. Then the path φψ ∈ Cp-var([0, T ];V) given by the
composition of φ and ψ is also controlled by x, with derivative process (φψ)′ =
φ′ψ + φψ ′. In addition, we have the bound

(36) ‖φψ‖p-cvar ≤ 2‖φ‖p-cvar‖ψ‖p-cvar

(ii) Suppose that ψ ∈ C
p
2 -var([0, T ];U). Then φψ ∈ Cp-var([0, T ];V) is also

controlled by x, with derivative process (φψ)′ = φ′ψ . Moreover, we have the
bound

(37) ‖φψ‖p-cvar ≤ ‖φ‖p-cvar‖ψ‖
V

p
2 ;[0,T ].

REMARK 2.23. The second part of the proposition clearly holds true if the
roles of φ and ψ are reversed. Furthermore, it asserts that one can trade increased
regularity in place of a controlled rough path structure in ψ (or φ) for the compo-
sition to remain a controlled rough path.

The proofs of the preceding theorem and propositions are routine and hence
deferred to the Appendix.

2.5. Rough differential equations. Now consider the following equation:

(38) dy(t) = V
(
t, y(t)

)
dx(t), y(0) = y0,

where V ∈ C
p�
b (R × R

e;L(Rd;Re)) is a differentiable function with bounded
derivatives up to degree 
p�. Given x ∈ C∞([0, T ];G
p�(Rd)), the unique solu-
tion y = S
p�(y) can be obtained simply by solving (38) as a regular ODE. Fur-
thermore, we have the following theorem (see [25]).
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THEOREM 2.24 (Universal limit theorem). The Itô map I : x �→ y is contin-
uous from C∞([0, T ],G
p�(Rd)) to itself with respect to the p-variation topology
and thus admits a unique extension to the space of all p-geometric rough paths
C0,p-var([0, T ],G
p�(Rd)).

The universal limit theorem allows one to transfer geometric results in the
smooth case to geometric rough paths, that is, rough paths that satisfy the change-
of-variable rule. This effectively allows a generalization of the Stratonovich inte-
gral to processes with higher p-variation.

We will mainly be considering RDEs with time-homogeneous vector fields
driven by Gaussian geometric rough paths. Furthermore, although the RDE

(39) dYt = V (Yt ) ◦ dXt , Y0 = y0,

outputs a full rough path Yt , we will be concerned only with the first level/path-
level solution, which satisfies

Yt = y0 +
∫ t

0
V (Ys) ◦ dXs,

and ignore the higher iterated integral terms. We will use the following notation;
writing V (Y ) as the co-tensor

e∑
i=1

d∑
j=1

V
(i)
j (Y )dei ⊗ dej ∈ R

e ⊗R
d,

we will denote

V 2(Y ) :=
e∑

i,m=1

d∑
j,k=1

∂V
(i)
k

∂em

(Y )V
(m)
j (Y )dei ⊗ dej ⊗ dek ∈R

e ⊗R
d ⊗R

d .

THEOREM 2.25. For all s < t ∈ [0, T ], ‖Y‖p-var;[s,t] is in Lq(�) for all
q > 0.

PROOF. From equation (10.15) in [18], we have

‖Y‖p-var;[s,t] ≤ Cp

(‖V ‖
C


p�
b

‖X‖p-var;[s,t] ∨ ‖V ‖p

C

p�
b

‖X‖p
p-var;[s,t]

)
,

and ‖X‖p-var;[s,t] has moments of all orders; see Corollary 66 in [17]. �

We will now show that

Yt ∈ D
∞(

R
e) := ⋂

p>1

∞⋂
k=1

D
k,p(

R
e) for t ≥ 0,
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where Y solves RDE (1) with smooth vector fields. To do so, we make use of the
fact (cf. [7]) that there exists a measurable subset �̃ ⊂ � with P(�̃) = 1 such that
for all ω ∈ �̃ we have the identity

X
(
ω + �(h)

)= T�(h)X(ω) ∀h ∈Hd
1 ,

where T�(h)X denotes the rough path translation of X by �(h) (see [6]), which is
well defined via Young–Stieltjes integration due to complementary regularity.

We then obtain

Yt

(
ω + s�(h)

) := Y
X(ω+s�(h))
t = Y

Ts�(h)X(ω)
t ,

which is smooth in s (see Theorem 11.6 in [18]), and hence locally absolutely con-
tinuous. It follows that Yt is RAC; indeed, in this case we can even take the version
F̃�(h) in (30) to be independent of �(h). Using Theorem 2.17, it is immediate from
the definition of DKSYt and the directional derivatives that

DKSYt (ω)
(
�(h)

)= DhYt (ω), P-a.s.,

for all h ∈ Hd
1 , and henceforth we will use the latter notation exclusively.

Moving on to the higher-order derivatives, given h1, . . . , hn ∈ Hd
1 , we can take

the directional derivatives of Yt in the directions �(h1), . . . ,�(hn) in Hd by set-
ting

(40) Dn
h1,...,hn

Yt := ∂n

∂ε1 · · · ∂εn

Y
ε1,...,εn
t

∣∣∣∣
ε1=···=εn=0

,

where Y
ε1,...,εn
t solves

dY
ε1,...,εn
t = V

(
Y

ε1,...,εn
t

) ◦ d(Tε1�(h1)+···+εn�(hn)X)t , Y
ε1,...,εn

0 = y0.

The path (40) again has finite p-variation and in Section 3.1, we will give it an
explicit expression in terms of a sum of rough integrals and/or Young–Stieltjes
integrals when n ≥ 2. It only remains to show that these derivatives are Hilbert–
Schmidt operators with norms having moments of all orders, and this has been
proved in [23].

When n = 1 the first-order derivative is given by (cf. [6, 18])

(41) DhYt =
∫ t

0
J X

t

(
J X

s

)−1
V (Ys)d�(h)(s).

Here, J X
t denotes the Jacobian of the flow map y0 → Yt and satisfies

(42) dJ X
t = ∇V (Yt )(◦dXt )J

X
t , J X

0 = Ie.

On occasion, we will use the shorthand

J X
t←s := J X

t

(
J X

s

)−1
, 0 ≤ s < t ≤ T ,
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and for future reference, we also note that its inverse (J X)−1 satisfies

(43) d
(
J X

t

)−1 = −(J X
t

)−1∇V (Yt )(◦dXt ),
(
J X

0
)−1 = Ie.

To bound the Jacobian, we will need the following definitions. Following [10]
we define, for a given interval [s, t] ⊂ [0, T ] and β > 0, the so-called greedy se-
quence {τi(β)}, a finite increasing sequence given by

τ0(β) = s,

τi+1(β) = inf
{
u ∈ (τi, t] | ‖X‖p

p-var;[τi ,u] ≥ β
}∧ t.

We then denote

(44) NX
β;[s,t] := sup

{
n ∈N∪ {0} | τn(β) < t

}
,

and note the following theorem.

THEOREM 2.26. Let X be an R
d -valued centered Gaussian process with

i.i.d. components. For 1 ≤ p < 4, assume that X has a natural lift to X ∈
C0,p-var([0, T ];G
p�(Rd)), and that Hd ↪→ Cq-var([0, T ];Rd), where 1

p
+ 1

q
> 1.

Then we have

P
[
NX

β;[0,T ] > n
]≤ C1 exp

(−C2β
2n

2
q
)
.

PROOF. See the proof of Theorem 6.3 in [10]. �

THEOREM 2.27. For all s < t ∈ [0, T ], ‖J X‖p-var;[s,t] is in Lq(�) for all
q > 0.

PROOF. Using the fact that NX
1;[s,t] has Gaussian tails from the previous theo-

rem, we see that E[exp(C2qNX
1;[s,t])] < ∞ for all q > 0, s < t ∈ [0, T ]. Now from

equation (4.10) in [10], we have the bound

(45)
∥∥J X∥∥

p-var;[s,t] ≤ C1‖X‖p-var;[s,t] exp
(
C2N

X
1;[s,t]

)
.

The statement of the theorem then follows immediately using Cauchy–Schwarz
since ‖X‖p-var;[s,t] also has moments of all orders. �

3. High-order directional derivatives for solutions to RDEs. We first begin
with the following theorem.

THEOREM 3.1. Consider the system of RDEs

dyt = V (yt ) ◦ dxt , y0 = a ∈ R
e,

dJ x
t = ∇V (yt )(◦dxt )J

x
t , J x

0 = Ie,
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where x = (1, x,x2) ∈ Cp-var([0, T ];G2(Rd)), 2 ≤ p < 3, and V is in C3
b(Re;Re ⊗

R
d).
In this case, both (y,V (y)) and (J x, (J x)′) are controlled by x. Moreover, we

have the bounds

(46) ‖y‖p-cvar ≤ Cp

(
1 + ‖V ‖C2

b

)4(1 + ‖x‖p-var;[0,T ]
)3

,

and

(47)
∥∥J x∥∥

p-cvar ≤ C1
(
1 + exp

(
C2N

x
1;[0,T ]

))4(1 + ‖x‖p-var;[0,T ]
)3

,

where C1, C2 depend on p and ‖V ‖C3
b
.

PROOF. (i) From Corollary 10.15 in [18], for γ > p and s, t ∈ [0, T ], we have∣∣ys,t − V (ys)xs,t − V 2(ys)x2
s,t

∣∣≤ Cp

(‖V ‖C2
b
‖x‖p-var;[s,t]

)γ
.

This implies that∣∣Ry
s,t

∣∣p2 ≤ Cp

(∣∣V 2(ys)x2
s,t

∣∣p2 + (‖V ‖C2
b
‖x‖p-var;[s,t]

) γp
2
)

≤ Cp

(‖V ‖p

C2
b

‖x‖p
p-var;[s,t] + ‖V ‖

γp
2

C2
b

‖x‖
γp
2

p-var;[s,t]
)
,

(48)

and thus∥∥Ry
∥∥p

2 -var;[0,T ] ≤ Cp

(‖V ‖2
C2

b

‖x‖2
p-var;[0,T ] ∨ ‖V ‖γ

C2
b

‖x‖γ

p-var;[0,T ]
)
,

from the super-additivity of the right-hand side of (48). We will choose γ to be in
the interval (p,3), and since∥∥V (y)

∥∥
p-var;[0,T ] ≤ ‖V ‖C2

b
‖y‖p-var;[0,T ]

and

‖y‖p-var;[0,T ] ≤ Cp

(‖V ‖C2
b
‖x‖p-var;[0,T ] ∨ ‖V ‖p

C2
b

‖x‖p
p-var;[0,T ]

)
,

we obtain (46).
From Proposition 5 in [15], we have∥∥J x∥∥

p-var;[0,T ] ≤ exp
(
Cp,‖V ‖C3

b

(
Nx

1;[0,T ] + 1
))

,

which gives us

(49)
∥∥J x∥∥∞ ≤ 1 + exp

(
Cp,‖V ‖C3

b

(
Nx

1;[0,T ] + 1
))=: 1 + M.

For each i = 1, . . . , d , we can construct Ui ∈ C3
b(Re ×R

e2;Re ⊗R
d) which is equal

to the vector field (y, z) �→ ∇Vi(y)z on the set W1 = {z ∈ R
e2 | |z| ≤ M + 1} and
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vanishes outside the set W2 = {z ∈ R
e2 | |z| < M + 2}. Hence, we have

‖Ui‖C3
b
≤ sup

z∈W2

∥∥∇Vi(·)z
∥∥∞ + ∥∥∇Vi(·)

∥∥∞

= ‖V ‖C3
b
(M + 3), i = 1, . . . , d.

Then the solution to

dyt = V (yt ) ◦ dxt , y0 = a ∈ R
e,

dJ x
t = U

(
yt , J

x
t

) ◦ dxt , J x
0 = Ie,

where U = (U1, . . . ,Ud), will be the same as the solution to the original system
on R

e ×W1, and it can be rewritten as

dỹt = Ṽ (ỹt ) ◦ dxt , ỹ0 = (a,Ie),

where ỹ = (y, J x) ∈ R
e ×R

e2
and ‖Ṽ ‖C3

b
≤ ‖V ‖C3

b
(M + 3).

Hence, we can apply (46) to obtain

‖ỹ‖p-cvar ≤ Cp

(
1 + ‖V ‖C3

b
(M + 3)

)4(1 + ‖x‖p-var;[0,T ]
)3

,

and since J x is a component of ỹ, we obtain (47). �

3.1. Upper bounds on the high-order directional derivatives. We now use the
preceding theorem as well as results on controlled rough paths from Section 2.4 to
obtain upper bounds on the directional derivative

(50) Dn
g1,...,gn

yt := ∂n

∂ε1 · · · ∂εn

y
ε1,...εn
t

∣∣∣∣
ε1=···=εn=0

,

where the driving rough path x is perturbed in the directions g1, . . . , gn which are
now assumed to be paths having complementary regularity with x. To condense
the notation, we will write D|A|

A yt , for any subset A of {g1, . . . , gn}, noting that the
symmetry of the derivative ensures this is well defined. For i ∈ {1, . . . , n}, we then
let An

i (·) : [0, T ] → (Re)⊗i be defined by

(51) An
i (t) := ∑

π={π1,...,πi}∈P({g1,...,gn})
D|π1|

π1
yt ⊗̃ · · · ⊗̃ D|πi |

πi
yt , t ∈ [0, T ].

Here, ⊗̃ denotes the symmetric tensor product, and the summation is over the set of
all partitions of {g1, . . . , gn} containing exactly i elements. For all i ∈ {1, . . . , n −
1} and j ∈ {1, . . . , n}, we also let Bn

i,j (·) : [0, T ] → (Re)⊗i be defined by

(52) Bn
i,j (t) := ∑

π={π1,...,πi}∈P({g1,...,gj−1,gj+1,...,gn})
D|π1|

π1
yt ⊗̃ · · · ⊗̃ D|πi |

πi
yt .

The following result gives an integral equation for the formula for Dn
g1,...,gn

yt in
terms of these paths (cf. [8, 21, 23]).
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THEOREM 3.2. Let p ≥ 1 and q ≥ 1 be such that 1/p + 1/q > 1, and let
n ∈ N such that n ≥ 2. Assume x ∈ C0,p-var([0, T ];G
p�(Rd)) and suppose y is
the path-level solution to the RDE

(53) dyt = V (yt ) ◦ dxt , y0 ∈ R
e given,

where V ∈ C
p�+n
b (Re;Re ⊗ R

d). Suppose that g1, . . . , gn ∈ Cq-var([0, T ];Rd).
Then the nth-order directional derivative (50) satisfies the RDE

dDn
g1,...,gn

yt =
n∑

i=1

∇ iV (yt )A
n
i (t) ◦ dxt

+
n−1∑
i=1

n∑
j=1

∇ iV (yt )B
n
i,j (t)dgj (t),

Dn
g1,...,gn

y0 = 0,

(54)

where An
i and Bn

i,j are respectively defined by (51) and (52).

REMARK 3.3. The symmetry of the higher-order derivatives of V ensures that
we may simplify ∇ iV (yt )A

n
i (t) in (51) by replacing the symmetric tensor product

with the usual tensor product to give

∇ iV (yt )A
n
i (t) = ∑

π={π1,...,πi}∈P({g1,...,gn})
∇ iV (yt )D|π1|

π1
yt ⊗ · · · ⊗D|πi |

πi
yt .

The terms ∇ iV (yt )B
n
i,j (t) may also be simplified similarly. For this reason it is

sufficient to prove (54) for paths An
i and Bn

i,j whose symmetrizations coincide
with the right-hand sides of (51) and (52), respectively.

PROOF. We begin with the case n = 2. Taking the directional derivative of
Dg1yt [see (41)] in the direction of g2, we see that D2

g1,g2
yt solves the RDE

dD2
g1,g2

yt = ∇V (yt )
(
D2

g1,g2
yt

) ◦ dxt + ∇2V (yt )(Dg1yt ,Dg2yt ) ◦ dxt

+ ∇V (yt )(Dg2yt )dg1(t) + ∇V (yt )(Dg1yt )dg2(t).
(55)

The proof is completed by induction. Assuming (54) is true for n = 2, . . . , k, one
can take the directional derivative of Dg1,...,gk

yt in the direction gk+1 to obtain the
identity

Dk+1
g1,...,gk+1

yt =
k∑

i=1

Dgk+1

∫ t

0
∇ iV (ys)A

k
i (s) ◦ dxs

+
k−1∑
i=1

k∑
j=1

Dgk+1

∫ t

0
∇ iV (ys)B

k
i,j (s)dgj (s)
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=
k+1∑
i=1

∫ t

0
∇ iV (ys)Ã

k+1
i (s) ◦ dxs

+
k∑

i=1

k+1∑
j=1

∫ t

0
∇ iV (ys)B̃

k+1
i,j (s)dgj (s),

where the coefficients Ãk+1
i and B̃k+1

i are the (Re)⊗i -valued paths defined for t ∈
[0, T ] by

(56) Ãk+1
i (t) =

⎧⎪⎪⎨
⎪⎪⎩
Dgk+1A

k
1(t), i = 1,

Dgk+1A
k
i (t) + Ak

i−1(t) ⊗Dgk+1yt , i = 2, . . . , k,

Ak
k(t) ⊗Dgk+1yt , i = k + 1,

and
(57)

B̃k+1
i,j (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dgk+1B
k
1,j (t), i = 1, j = 1, . . . , k,

Dgk+1B
k
i,j (t)

+ Bk
i−1,j (t) ⊗Dgk+1yt , i = 2, . . . , k − 1, j = 1, . . . , k,

Bk
i−1,j (t) ⊗Dgk+1yt , i = k, j = 1, . . . , k,

Ak
i (t), i = 1, . . . , k, j = k + 1.

To finish the inductive step, we first show that for every t ∈ [0, T ],
(58) Ãk+1

i (t) =̃ Ak+1
i (t) ∀i = 1, . . . , k + 1,

where a =̃ b means that the symmetrizations of the tensors a and b are equal. From
this, it immediately follows that ∇ iV (yt )Ã

k+1
i (t) = ∇ iV (yt )A

k+1
i (t) for all i =

1, . . . , k + 1. We check (58) for the boundary cases first. For i = 1, the induction
hypothesis gives at once that

Ãk+1
1 (t) = Dk+1

g1,...,gk+1
yt ,

whereas the case i = k + 1 follows from

Ãk+1
k+1(t) = Ak

k(t) ⊗Dgk+1yt

=̃ Ak
k(t) ⊗̃ Dgk+1yt

=Dg1yt ⊗̃ · · · ⊗̃ Dgk+1yt = Ak+1
k+1(t).

For the remaining cases i = 2, . . . , k, we note that any partition of {g1, . . . , gk+1}
of size i can be formed from a partition π of {g1, . . . , gk} in one of two ways. The
first way is that π = {π1, . . . , πi} itself has size i and gk is assigned to one of the
subsets π1, . . . , πi . The second way is that π = {π1, . . . , πi−1} has size i − 1 and
{gk+1} is adjoined as a singleton to give {π1, . . . , πi−1, {gk+1}}. The two terms in
(56) obtained by differentiation and the tensor product respectively correspond to
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these operations. By the induction hypothesis, Ak
i (resp., Ak

i−1) includes a summa-
tion over all partitions of {g1, . . . , gn} of size i (resp., i − 1), thus every partition
of {g1, . . . , gk+1} of size i is accounted for in (56). It follows immediately that

Ãk+1
i (t) =̃ Ak+1

i (t).

Finally, we show that for every t ∈ [0, T ],
B̃k+1

i,j (t) =̃ Bk+1
i,j (t) ∀i = 1, . . . , k, j = 1, . . . , k + 1.

Again we treat the boundary cases separately. For j = k + 1, from the definition
of B̃ and A, we have

B̃k+1
i,k+1(t) = Ak

i (t) = Bk+1
i,k+1(t) ∀i = 1, . . . , k.

For i = 1, we have ∀j = 1, . . . , k,

B̃k+1
1,j (t) = Dgk+1B

k
1,j (t)

= Dgk+1Dk−1
g1,...,gj−1,gj+1,...,gk

yt

= Dk
g1,...,gj−1,gj+1,...,gk+1

yt = Bk+1
1,j (t).

The remaining terms are dealt with by exactly the same argument used for the
nonboundary Ã terms, and the induction is thereby complete. �

The following corollary makes explicit the expression given in Proposition 11.5
of [18].

COROLLARY 3.4. Under the conditions of the preceding theorem,

Dn
g1,...,gn

yt =
n∑

i=2

∫ t

0
J x

t

(
J x

s

)−1∇ iV (ys)A
n
i (s) ◦ dxs

+
n−1∑
i=1

n∑
j=1

∫ t

0
J x

t

(
J x

s

)−1∇ iV (ys)B
n
i,j (s)dgj (s)

(59)

for all n ≥ 2.

PROOF. From formula (54) and the fact that

An
1(s) =Dn

g1,...,gn
ys,

(59) can be recovered using Duhamel’s principle. �

We now arrive at the main result of this section.
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PROPOSITION 3.5. Let p ∈ [2,3), q := p
2 and n ∈N. Let y be the solution to

the RDE

dyt = V (yt ) ◦ dxt , y0 ∈ R
e given,

where x ∈ C0,p-var([0, T ];G2(Rd)) and V ∈ C2+n
b (Re;Re ⊗R

d). Then there exists
a polynomial Pd(n) :R+ ×R+ →R+ of finite degree d(n) for which∥∥Dn

g1,...,gn
y·
∥∥
Vp;[0,T ]

≤ Pd(n)

(‖x‖p-var;[0,T ], exp
(
CNx

1;[0,T ]
)) n∏

i=1

‖gi‖q-var;[0,T ],
(60)

for any g1, . . . , gn ∈ Cq-var([0, T ];Rd). Here, Nx
1 is defined as in (44), and the

constant C as well as the coefficients of Pd(n) depend only on ‖V ‖C2+n
b

and p.

PROOF. The proof will proceed by induction. First, we denote

F i
t := (

J x
t

)−1∇ iV (yt ), i = 0,1, . . . .

Applying Theorem 3.1 together with Proposition 2.21 to ∇ iV (y), we see that there
exists an integer k1 such that

(61)
∥∥∇ iV (y)

∥∥
p-cvar ≤ C1

(
1 + ‖x‖p-var;[0,T ]

)k1

[note from (15) that ‖xk‖p
k
-var;[0,T ] ≤ C‖x‖k

p-var;[0,T ] for all k] and again from
Theorem 3.1, we know that there exist k2 and l such that

(62)

∥∥J x∥∥
p-cvar,

∥∥(J x)−1∥∥
p-cvar

≤ C2
(
1 + exp

(
C3N

x
1;[0,T ]

))k2
(
1 + ‖x‖p-var;[0,T ]

)l
.

Now applying Leibniz rule, that is, Proposition 2.22, we have, for some integer k,

(63)
∥∥F i

∥∥
p-cvar ≤ C1

(
1 + exp

(
C2N

x
1;[0,T ]

))k(1 + ‖x‖p-var;[0,T ]
)l
,

where C1 and C2 depend only on p and ‖V ‖C2+i
b

.

We now begin with the base case n = 1. Let φt denote J x
t and ψt denote∫ t

0 (J x
s )−1V (ys)dg(s). Then Dgyt = φtψt and applying Young’s inequality to ψt ,

we obtain ∥∥∥∥
∫ t

0

(
J x

s

)−1
V (ys)dg(s)

∥∥∥∥
q-var;[0,T ]

≤ Cp

∥∥(J x)−1
V (y)

∥∥
Vp;[0,T ]‖g‖q-var;[0,T ].

(64)

Continuing, the second part of Proposition 2.22 tells us that Dgy is controlled by
x, and from the bounds (63) and (62), we have

(65) ‖Dgy·‖p-cvar ≤ C3
(
1 + exp

(
CNx

1;[0,T ]
))k(1 + ‖x‖p-var;[0,T ]

)l‖g‖q-var;[0,T ].
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The cases n ≥ 2 are proved in the same manner. Let zn
t denote

zn
t := Dn

g1,...,gn
yt ,

where {gi}ni=1 is an arbitrary subset of Cq-var([0, T ];Rd), and the induction hy-
pothesis is as follows:

Assume that for all n = 1, . . . , k, zn is controlled by x, and that

∥∥zn
∥∥
p-cvar ≤ Pd(n)

(‖x‖p-var;[0,T ], exp
(
CNx

1;[0,T ]
)) n∏

i=1

‖gi‖q-var;[0,T ].

To show the result for n = k + 1, first recall from Theorem 3.2 that zk+1
t =

Dk+1
g1,...,gk+1

yt equals

J x
t

(
Hk+1

t + Gk+1
t

)
,

where

Hk+1
t :=

∫ t

0

k+1∑
i=2

F i
s A

k+1
i (s) ◦ dxs

and

Gk+1
t :=

∫ t

0

k∑
i=1

k+1∑
j=1

F i
s B

k+1
i,j (s)dgj (s).

From the induction hypothesis and Leibniz rule, for a partition π = {π1, . . . , πi}
in P({g1, . . . , gk+1}), we have the bound∥∥D|π1|

π1
y· ⊗̃ · · · ⊗̃D|πi |

πi
y·
∥∥
p-cvar

≤
i∏

l=1

Pd(|πl |)
(‖x‖p-var;[0,T ], exp

(
CNx

1;[0,T ]
)) k+1∏

m=1

‖gm‖q-var;[0,T ].
(66)

Similarly, for a partition π = {π1, . . . , πi} ∈ P({g1, . . . , gj−1, gj+1, . . . , gk+1}) we
have the bound∥∥D|π1|

π1
y· ⊗̃ · · · ⊗̃ D|πi |

πi
y·
∥∥
p-cvar

≤
i∏

l=1

Pd(|πl |)
(‖x‖p-var;[0,T ], exp

(
CNx

1;[0,T ]
)) k+1∏

m=1,m�=j

‖gm‖q-var;[0,T ].
(67)

Recalling the definition of Ak+1
i (s) in (51), we use (66) together with bound (63)

and apply Leibniz rule. After summing over i and invoking Theorem 2.20, we see
that Hk+1 is controlled by x, and there exists a polynomial P̃1 such that

∥∥Hk+1∥∥
p-cvar ≤ P̃1

(‖x‖p-var;[0,T ], exp
(
CNx

1;[0,T ]
)) k+1∏

i=1

‖gi‖q-var;[0,T ].
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For Gk+1, we will show that its q-variation is bounded similarly, and then add it to
the remainder term of Hk+1 to make Hk+1 + Gk+1 a controlled rough path (with
the appropriate bounds). Fixing i and j , from Young’s inequality we have∥∥∥∥

∫ ·
0

F i
s B

k+1
i,j (s)dgj (s)

∥∥∥∥
q-var;[0,T ]

≤ Cp

∥∥F i
∥∥
Vp;[0,T ]

∥∥Bk+1
i,j

∥∥
Vp;[0,T ]‖gj‖q-var.

Now if we recall the definition of Bk+1
i,j (s) in (52) and use (67) in the above ex-

pression, after summing over all i and j , we obtain some polynomial P̃2 such that

(68)
∥∥Gk+1∥∥

q-var;[0,T ] ≤ P̃2
(‖x‖p-var;[0,T ], exp

(
CNx

1;[0,T ]
)) k+1∏

i=1

‖gi‖q-var;[0,T ].

Finally, applying Leibniz rule to zk+1
t = J x

t (Hk+1
t + Gk+1

t ) shows us that zk+1 is
controlled by x with the bound

∥∥zk+1∥∥
p-cvar ≤ Pd(k+1)

(‖x‖p-var;[0,T ], exp
(
CNx

1;[0,T ]
)) k+1∏

i=1

‖gi‖q-var;[0,T ]. �

REMARK 3.6. Our main use of this result will be in the stochastic setting
where X is a Gaussian rough path zero mean continuous Gaussian process with
i.i.d. components, and a covariance function R of finite 2D ρ-variation for some
ρ ∈ [1, 3

2). Under these assumptions, Proposition 3.5 can be applied with gi :=
�(hi) for any collection {hi} ⊂ Hd

1 . Note also in this section we abuse the notation
by using Dgi

F rather than Dgi
F (see Remark 2.16); in later sections, the subscript

will be elements in Hd
1 rather than Hd .

4. An isomorphism and dense subspace of the Cameron–Martin space. In
this section, we will identify a dense subspace of the Cameron–Martin space which
will be of importance later. The motivation is as follows: let Y be a solution to RDE
(39). We would like to show that Y ∈ D

1,2(Hd
1 ), which in turn implies that Y is

Skorohod integrable. To do so, consider a partition π = {ri} of [0, T ], and observe
that

Yπ(t) :=∑
i

Yri1[ri ,ri+1)(t)

is almost surely an element of Hd
1 . Using Itô–Skorohod isometry, we have

E
[
δX(Yπ − Y

)2]≤ E
[∥∥Yπ − Y

∥∥2
Hd

1

]+E
[∥∥DYπ −DY

∥∥2
Hd

1⊗Hd
1

]
.

Thus if we can show that almost surely, ‖Yπ − Y‖Hd
1

and ‖DYπ − DY‖Hd
1⊗Hd

1
both vanish as ‖π‖ → 0, then with further integrability assumptions one can apply
dominated convergence to show that δX(Yπ) converges to δX(Y ) in L2(�).
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We will investigate the (almost sure) regularity required of Y to identify it as an
element of Hd

1 and to have ‖Yπ − Y‖Hd
1
→ 0. We first note the following lemma,

which is a direct consequence of Theorem 2.12.

LEMMA 4.1. Let f ∈ Cp-var
pw ([0, T ];Re) and R be continuous and of finite

ρ-variation where we assume that 1
p

+ 1
ρ

> 1. For any partition π = {ri} of [0, T ],
let f π denote

f π(t) :=∑
i

f (ri)1[ri ,ri+1)(t).

Then

(69) lim‖π‖→0

∣∣∣∣
∫
[0,T ]2

〈
f π

s − fs, f
π
t − ft

〉
Re dR(s, t)

∣∣∣∣= 0.

PROOF. Since f ∈ Cp-var
pw ([0, T ];Re), we can partition [0, T ]2 into finite sub-

regions [xi, xi+1] × [xj , xj+1], where 〈fs, ft 〉Re is continuous in the interior of
each such subregion. We will show (69) in each subregion, and the case for [0, T ]2

will follow from summing the Young integral over all the subregions.
By assumption f has finite p-variation over [0, T ] and it is therefore a regulated

function, that is, it has finite right and left limits everywhere in (0, T ) and a finite
right (resp., left) limit at the left (resp., right) end point. Hence, for all i, there
exists a unique continuous function Fi : [xi, xi+1] → R

e which agrees with f on
(xi, xi+1).

To avoid the discontinuities on the boundary, we will bound the integral over the
subset Aπ

i,j := [rk(i), rk(i+1)] × [rk(j), rk(j+1)] of Ai,j := [xi, xi+1] × [xj , xj+1],
where

rk(l) := inf{rk | rk > xl}, rk(l) := sup{rk | rk < xl}.
From Young’s inequality (24) and the fact that ωR,ρ+ε is a control, the integral
over the region Ai,j − Aπ

i,j will be arbitrarily small as ‖π‖ tends to zero. Let ωi,j
denote the control

ωi,j

([s, t] × [u, v]) := ‖Fi‖p
p-var;[s,t]‖Fj‖p

p-var;[u,v], (s, t) × (u, v) ∈ Ai,j .

Continuing,

(70) ω
([s, t] × [u, v]) := ω

1
θp

i,j

([s, t] × [u, v])ω 1
θ(ρ+ε)

R,ρ+ε

([s, t] × [u, v]),
is again a control, where ε is chosen such that θ := 1

p
+ 1

ρ+ε
> 1.

Now we have∣∣∣∣
∫
Aπ

i,j

〈
f π

s − fs, f
π
t − ft

〉
Re dR(s, t)

∣∣∣∣
≤∑

k,l

∣∣∣∣
∫ rk+1

rk

∫ rl+1

rl

〈fs − frk , ft − frl 〉Re dR(s, t)

∣∣∣∣,
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where the sum is taken over the partition points in Aπ
i,j . By Young’s inequality

(24) and the fact that 〈fs − frk , ft − frl 〉Re vanishes at all points (rk, rl) in Aπ
i,j ,

the expression above is bounded by

Cp,ρ

∑
k,l

‖Fi‖p-var;[rk,rk+1]‖Fj‖p-var;[rl ,rl+1]‖R‖ρ+ε-var;[rk,rk+1]×[rl ,rl+1]

≤ Cp,ρ

∑
k,l

ωθ ([rk, rk+1] × [rl, rl+1])

≤ Cp,ρ max
k,l

ωθ−1([rk, rk+1] × [rl, rl+1])ω(Ai,j ),

which tends to zero as the mesh of the partition goes to zero. �

4.1. A dense subspace of Hd
1 . We now give a novel characterization of a sub-

space of Hd
1 using Young–Stieltjes integrals. Let R be of finite 2D ρ-variation,

where ρ ∈ [1,2). We define

Wd
ρ := ⋃

p<
ρ

ρ−1

Cp-var
pw

([0, T ];Rd)

and equip it with the inner product

(71) 〈f,g〉Wd
ρ

:=
∫
[0,T ]2

〈fs, gt 〉Rd dR(s, t).

One can check that 〈·, ·〉Wd
ρ

defines a semi-inner product; it is bilinear due to
the linearity of the Young–Stieltjes integral, and positive semi-definite as well
as symmetric because the covariance function R is positive semi-definite and
symmetric. We will identify f and g to be in the same equivalence class if
〈f − g,f − g〉Wd

ρ
= 0, and quotient Wd

ρ with respect to these classes. This then
makes 〈·, ·〉Wd

ρ
a proper inner product.

PROPOSITION 4.2. Wd
ρ is a dense subspace of Hd

1 , and the inclusion map

i : (Wd
ρ , 〈·, ·〉Wd

ρ
) → (Hd

1 , 〈·, ·〉Hd
1
) is an isometry.

PROOF. Let f ∈ Wd
ρ and let π(n) = {r(n)

i } be a sequence of partitions whose
mesh vanishes as n → ∞. As usual, we denote

f π(n) :=∑
i

f
(
r
(n)
i

)
1[r(n)

i ,r
(n)
i+1)

(t).
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Now the key point to note is that for each n, f π(n) is in Wd
ρ ∩Hd

1 ; moreover,

(72)

∥∥f π(n)
∥∥2
Hd

1
=∑

i,j

〈f
r
(n)
i

, f
r
(n)
j

〉Rd 〈1[r(n)
i ,r

(n)
i+1)

,1[r(n)
j ,r

(n)
j+1)

〉H1

=∑
i,j

〈f
r
(n)
i

, f
r
(n)
j

〉Rd R

(
r
(n)
i r

(n)
i+1

r
(n)
j r

(n)
j+1

)

= ∥∥f π(n)
∥∥2
Wd

ρ
.

From Lemma 4.1, ‖f π(n) − f ‖Wd
ρ

→ 0, which means that f π(n) is Cauchy and

from (72) and the completeness of Hd
1 , limn→∞ f π(n) exists in Hd

1 . We identify f

with this limit and under this identification we have

(73) ‖f ‖2
Hd

1
=
∫
[0,T ]2

〈fs, ft 〉Rd dR(s, t).

Since Wd
ρ contains all the generating functions {1(u)

[0,t)(·)} of Hd
1 , its completion,

and hence closure, is all of Hd
1 . �

REMARK 4.3. We recall the following nondegeneracy condition on Gaussian
processes which is featured in [7]. We say that R (or equivalently, X) is nondegen-
erate on [0, T ] if the following implication holds:

(74)
∫
[0,T ]2

〈fs, ft 〉Rd dR(s, t) = 0 ⇒ f = 0 a.e.

Under this condition, each equivalence class of Wd
ρ would then consist of functions

which agree almost everywhere.

4.2. The Malliavin derivative and convergence in the tensor norm. We will
now extend the results of the last section to the tensor space Hd

1 ⊗ Hd
1 . Let

X ∈ C0,p-var([0, T ];G
p�(Rd)) and assume that for all h ∈ Hd
1 , �(h) can be em-

bedded in Cq-var([0, T ];Rd) where 1
p

+ 1
q

> 1. Then the Malliavin derivative of Y

satisfying

dYt = V (Yt ) ◦ dXt , Y0 = y0,

is given by

DhYt =
∫ t

0
J X

t

(
J X

s

)−1
V (Ys)d�(h)(s)

=
∫ T

0
1[0,t)(s)J

X
t

(
J X

s

)−1
V (Ys)d�(h)(s).
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Using g(s, t) to denote the Malliavin derivative,

g(s, t) := DsYt = 1[0,t)(s)J
X
t

(
J X

s

)−1
V (Ys),

then with respect to any partition π = {ri} of [0, T ], we also have

DsY
π
t =∑

i

DsYri1[ri ,ri+1)(t)

=∑
i

g(s, ri)1[ri ,ri+1)(t).

We will proceed to show that DYπ lies in Hd
1 ⊗ Hd

1 almost surely, and under
suitable regularity assumptions on DY , we have ‖DYπ − DY‖Hd

1⊗Hd
1

→ 0 as
‖π‖ → 0. Coupled with the results in the previous section, this will mean that
Yπ converges to Y in D

1,2(Hd
1 ), and δX(Y ) is then the L2(�) limit of δX(Yπ).

PROPOSITION 4.4. Let g : [0, T ]2 → R
e ⊗ R

d be of the form g(s, t) =
1[0,t)(s)g̃1(t)g̃2(s), where g̃1 ∈ Cp-var

pw ([0, T ];Re ⊗ R
e) and g̃2 ∈ Cp-var

pw ([0, T ];
R

e ⊗ R
d). Let R be continuous and of finite 2D ρ-variation, ρ ∈ [1, 3

2), and we
assume that 1

p
+ 1

ρ
> 1. For any partition π = {ri} of [0, T ], let gπ : [0, T ]2 →

R
e ⊗R

d denote

(75) gπ(s, t) :=∑
i

g(s, ri)1[ri ,ri+1)(t).

Then

(76)

∫
[0,T ]2

(∫
[0,T ]2

〈(
gπ − g

)
(u, s),

(
gπ − g

)
(v, t)

〉
Re⊗Rd dR(u, v)

)
dR(s, t)

→ 0.

REMARK 4.5. Here and henceforth, we canonically identify 2-tensors with
matrices, and g̃1(t)g̃2(s) denotes matrix multiplication of g̃1(t) with g̃2(s).

PROOF. Similar to the proof of Lemma 4.1, we will first partition [0, T ]2 ×
[0, T ]2 into subregions A × B = ([a1, a2] × [a3, a4]) × ([b1, b2] × [b3, b4]) on
which the integrand is continuous (shrinking each region if necessary to deal with
discontinuities at the boundaries), then sum the results to obtain the full proof.

Under the conditions imposed on g, we will show that the 4D-integral in (76)
can be written as an iterated 2D-integral and∫

A

(∫
B

〈(
g − gπ )(u, s),

(
g − gπ )(v, t)

〉
Re⊗Rd dR(u, v)

)
dR(s, t)

=∑
i,j

∫
[ri ,ri+1]×[rj ,rj+1]

I i,j (s, t)dR(s, t)
‖π‖→0−−−−→ 0,
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where

I i,j (s, t) :=
∫
B

〈
g(u, s) − g(u, ri), g(v, t) − g(v, rj )

〉
Re⊗Rd dR(u, v).

First, observe that for any r ≤ s,

g(u, s) − g(u, r) = 1[0,s)(u)g̃1(s)g̃2(u) − 1[0,r)(u)g̃1(r)g̃2(u)

= 1[0,r)(u)
(
g̃1(s) − g̃1(r)

)
g̃2(u) + 1[r,s)(u)g̃1(s)g̃2(u).

Thus for (s, t) ∈ [ri, ri+1] × [rj , rj+1] ⊂ A,

I i,j (s, t) = I
i,j
1 (s, t) + I

i,j
2 (s, t) + I

i,j
3 (s, t) + I

i,j
4 (s, t),

where

I
i,j
1 (s, t) := ∑

l,m,n,k

(
g̃1(s) − g̃1(ri)

)
lm

(
g̃1(t) − g̃1(rj )

)
ln

×
∫
[b1,ri ]×[b3,rj ]

(
g̃2(u)

)
mk

(
g̃2(v)

)
nk dR(u, v),

I
i,j
2 (s, t) := ∑

l,m,n,k

(
g̃1(s)

)
lm

(
g̃1(t) − g̃1(rj )

)
ln

×
∫
[ri ,s]×[b3,rj ]

(
g̃2(u)

)
mk

(
g̃2(v)

)
nk dR(u, v),

I
i,j
3 (s, t) := ∑

l,m,n,k

(
g̃1(s) − g̃1(ri)

)
lm

(
g̃1(t)

)
ln

×
∫
[b1,ri ]×[rj ,t]

(
g̃2(u)

)
mk

(
g̃2(v)

)
nk dR(u, v),

I
i,j
4 (s, t) := ∑

l,m,n,k

(
g̃1(s)

)
lm

(
g̃1(t)

)
ln

×
∫
[ri ,s]×[rj ,t]

(
g̃2(u)

)
mk

(
g̃2(v)

)
nk dR(u, v),

and (g)lm denotes the (l,m)th entry of the matrix g. Note also that it is possible
that ri ≤ b1 or rj ≤ b3, in which case we define the integral to be zero.

For k = 1,2,3, since the summands in I
i,j
k (s, t) are products of 1D functions,

we have the following bounds on the 2D pth-variation of I
i,j
k (s, t) in [ri, ri+1] ×
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[rj , rj+1]:∥∥I i,j
1

∥∥
p-var;[ri ,ri+1]×[rj ,rj+1]

≤ Cp,ρ,d‖g̃2‖2
Vp;[0,T ]‖R‖ρ-var;[0,T ]2‖

× g̃1‖p-var;[ri ,ri+1]‖g̃1‖p-var;[rj ,rj+1],∥∥I i,j
2

∥∥
p-var;[ri ,ri+1]×[rj ,rj+1]
≤ Cd‖g̃1‖p-var;[rj ,rj+1]

× (‖g̃1‖p-var;[ri ,ri+1]‖h1‖∞ + ‖g̃1‖∞‖h1‖p-var;[ri ,ri+1]
)
,∥∥I i,j

3

∥∥
p-var;[ri ,ri+1]×[rj ,rj+1]
≤ Cd‖g̃1‖p-var;[ri ,ri+1]

× (‖g̃1‖p-var;[rj ,rj+1]‖h2‖∞ + ‖g̃1‖∞‖h2‖p-var;[rj ,rj+1]
)
.

(77)

Here, h1 and h2 denote the functions (suppressing the dependence on m, n and k

in the notation since the bounds are independent of them)

h1(s) :=
∫
[ri ,s]×[b3,rj ]

(
g̃2(u)

)
mk

(
g̃2(v)

)
nk dR(u, v),

h2(t) :=
∫
[b1,ri ]×[rj ,t]

(
g̃2(u)

)
mk

(
g̃2(v)

)
nk dR(u, v).

Choosing ε sufficiently small such that ρ + ε < p and 1
p

+ 1
ρ+ε

> 1, we have

‖h1‖p-var;[ri ,ri+1] ≤ ‖h1‖ρ+ε-var;[ri ,ri+1]

≤ Cp,ρ‖g̃2‖2
Vp;[0,T ]ωR,ρ+ε

([ri, ri+1] × [0, T ]) 1
ρ+ε ,

‖h2‖p-var;[rj ,rj+1] ≤ ‖h2‖ρ+ε-var;[rj ,rj+1]

≤ Cp,ρ‖g̃2‖2
Vp;[0,T ]ωR,ρ+ε

([0, T ] × [rj , rj+1]) 1
ρ+ε ,

‖h1‖∞,‖h2‖∞ ≤ Cp,ρ‖g̃2‖2
Vp;[0,T ]‖R‖ρ-var;[0,T ]2 .

(78)

From (77) and (78), we see that the 2D pth-variations of I
i,j
1 , I

i,j
2 and I

i,j
3 over

[s, t] × [u, v] ⊂ [a1, a2] × [a3, a4] are controlled respectively by

ωI1

([s, t] × [u, v])
:= C1‖g̃2‖2p

Vp;[0,T ]‖g̃1‖p
p-var;[s,t]‖g̃1‖p

p-var;[u,v]‖R‖p

ρ-var;[0,T ]2,

ωI2

([s, t] × [u, v])
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:= C2‖g̃2‖2p
Vp;[0,T ]‖g̃1‖p

p-var;[u,v]

× (‖g̃1‖p
p-var;[s,t]‖R‖p

ρ-var;[0,T ]2 + ‖g̃1‖p∞ωR,ρ+ε

([s, t] × [0, T ]) p
ρ+ε

)
,

ωI3

([s, t] × [u, v])
:= C3‖g̃2‖2p

Vp;[0,T ]‖g̃1‖p
p-var;[s,t]

× (‖g̃1‖p
p-var;[u,v]‖R‖p

ρ-var;[0,T ]2 + ‖g̃1‖p∞ωR,ρ+ε

([0, T ] × [u, v]) p
ρ+ε

)
.

For I
i,j
4 (s, t), if we let

h3(s, t) :=
∫
[ri ,s]×[rj ,t]

(
g̃2(u)

)
mk

(
g̃2(v)

)
nk dR(u, v),

we have

‖h3‖p-var;[ri ,ri+1]×[rj ,rj+1] ≤ ‖h3‖ρ+ε-var;[ri ,ri+1]×[rj ,rj+1]

≤ Cp,ρ‖g̃2‖2
Vp;[0,T ]ωR,ρ+ε

([ri, ri+1] × [rj , rj+1]) 1
ρ+ε .

From Lemma 4.6, we then conclude that the 2D pth-variation of I
i,j
4 over [s, t] ×

[u, v] is controlled by

ωI4

([s, t] × [u, v]) := C‖g̃2‖2p
Vp;[0,T ]ωR,ρ+ε

([s, t] × [u, v]) p
ρ+ε

× (‖g̃1‖p∞ + ‖g̃1‖p
p-var;[s,t]

)(‖g̃1‖p∞ + ‖g̃1‖p
p-var;[u,v]

)
.

Now define ω as

ω
([s, t] × [u, v])= ω

1
θp

I

([s, t] × [u, v])ω 1
θ(ρ+ε)

R,ρ+ε

([s, t] × [u, v]),
where ωI denotes the control ωI1

+ ωI2
+ ωI3

+ ωI4
and θ = 1

p
+ 1

ρ+ε
. Then ob-

serving that I i,j (ri, ·) = I i,j (·, rj ) = 0 for all i, j , we use Young’s inequality (24)
to obtain

(79)

∑
i,j

∫
[ri ,ri+1]×[rj ,rj+1]

I i,j (s, t)dR(s, t)

≤∑
i,j

ωθ ([ri, ri+1] × [rj , rj+1])→ 0.
�

The following lemma was used in Proposition 4.4.

LEMMA 4.6. Let g1 ∈ Cp-var([s1, s2];R) and g2 ∈ Cp-var([t1, t2];R). Given
a 2D control ω, let f ∈ Cp-var([s1, s2] × [t1, t2];R) have finite 2D p-variation
controlled by ω. In addition, assume that f (s1, t) = f (s, t1) = 0 for all s, t in
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[s1, s2] × [t1, t2]. Then the 2D pth-variation of f (u, v)g1(u)g2(v) over [s1, s2] ×
[t1, t2] is controlled by

4p−1ω
([s1, s2] × [t1, t2])(‖g1‖p∞ + ‖g1‖p

p-var;[s1,s2]
)(‖g2‖p∞ + ‖g2‖p

p-var;[t1,t2]
)
.

PROOF. Let {(ui, vj )} be any partition of [s1, s2] × [t1, t2]. We have

∑
i,j

∣∣∣∣fg1

(
ui ui+1
vj vj+1

)∣∣∣∣p

=∑
i,j

∣∣(f (ui, vj ) − f (ui, vj+1)
)
g1(ui)

+ (
f (ui+1, vj+1) − f (ui+1, vj )

)
g1(ui+1)

∣∣p
≤ 2p−1

[∑
i,j

∣∣∣∣f
(
ui ui+1
vj vj+1

)
g1(ui)

∣∣∣∣p

+∑
i

|g1(ui+1) − g1(ui)|p
∑
j

∣∣∣∣f
(

s1 ui+1
vj vj+1

)∣∣∣∣p
]

≤ 2p−1
[
‖g1‖p∞‖f ‖p

p-var + ‖f ‖p
p-var

∑
i

∣∣g1(ui+1) − g1(ui)
∣∣p],

which tells us that the 2D pth-variation of fg1 is controlled by

(80) 2p−1ω
([s1, s2] × [t1, t2])(‖g1‖p∞ + ‖g1‖p

p-var;[s1,s2]
)
.

Repeating the same procedure with fg1 [controlled by (80)] in place of f and g2

in place of g1 completes the proof. �

PROPOSITION 4.7. Let g(s, t) = 1[0,t)(s)g̃1(t)g̃2(s), where g̃1, g̃2 ∈
Cp-var

pw ([0, T ];Rd ⊗ R
d), and let gπ be defined as in (75). Let R be of finite 2D

ρ-variation, ρ ∈ [1, 3
2), and we assume that 1

p
+ 1

ρ
> 1. Then g ∈ Hd

1 ⊗Hd
1 , with

norm given by

(81) ‖g‖Hd
1⊗Hd

1
=
√∫

[0,T ]2

(∫
[0,T ]2

〈
g(u, s), g(v, t)

〉
Rd⊗Rd dR(u, v)

)
dR(s, t),

and

(82)
∥∥gπ − g

∥∥
Hd

1⊗Hd
1
→ 0

as ‖π‖ → 0.
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PROOF. Given a d-by-d matrix function A(s), let a
(i)
j (s) denote the (i, j)th

entry of A(s). Using the canonical identification,

(83) A(s)1[a,b)(t) �
d∑

j=1

d∑
k=1

a
(k)
j (s)ek ⊗ 1(j)

[a,b)(t), a, b ∈ [0, T ],

we see that gπ is a member of Wd
ρ ⊗ Hd

1 , and thus lies in Hd
1 ⊗ Hd

1 by Proposi-
tion 4.2. Furthermore, we can compute the square of its norm

∥∥gπ
∥∥2
Hd

1⊗Hd
1
=∑

k,l

∫
[0,T ]2

d∑
j=1

〈
gj (u, rk), gj (v, rl)

〉
Rd dR(u, v)R

(
rk rk+1
rl rl+1

)

=
∫
[0,T ]2

(∫
[0,T ]2

〈
gπ(u, s), gπ(v, t)

〉
Rd⊗Rd dR(u, v)

)
dR(s, t).

Taking any sequence of partitions π(n) with vanishing mesh, we know that gπ(n) is
Cauchy as n → ∞ by Proposition 4.4, and we identify g with its limit in Hd

1 ⊗Hd
1 .

Invoking Proposition 4.4 again gives us (81) and (82). �

4.3. The Itô–Skorohod isometry revisited.

THEOREM 4.8. Let X be a continuous, centered Gaussian process in R
d

with i.i.d. components, and assume that its continuous covariance function satisfies
‖R‖ρ-var;[0,T ]2 < ∞ for some ρ ∈ [1, 3

2). Given p satisfying 1
p

+ 1
ρ

> 1, let Y be a
random variable which satisfies, almost surely:

(i) Y ∈ Cp-var
pw ([0, T ];Rd),

(ii) DY : [0, T ]2 → R
d ⊗ R

d is of the form 1[0,t)(s)g̃1(t)g̃2(s), where g̃1, g̃2
are both in Cp-var

pw ([0, T ];Rd ⊗R
d).

Then lim‖π‖→0 Yπ = Y in D
1,2(Hd

1) if and only if

E

[∫
[0,T ]2

〈
Yπ

s − Ys, Y
π
t − Yt

〉
Rd dR(s, t)

]
→ 0

and

E

[∫
[0,T ]2

(∫
[0,T ]2

〈
Dr

(
Yπ

t − Yt

)
,Dq

(
Yπ

s − Ys

)〉
Rd⊗Rd dR(r, q)

)
dR(s, t)

]
→ 0

as ‖π‖ → 0, in which case lim‖π‖→0 E[δX(Yπ −Y)2] = 0 and E[δX(Y )2] is equal
to

E

[∫
[0,T ]2

〈Ys, Yt 〉Rd dR(s, t)

]
+E

[∫
[0,T ]4

tr(DrYtDqYs)dR(s, r)dR(t, q)

]
.
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PROOF. For a Malliavin-smooth real-valued random variable F , we will write

DF = (
D(1)F, . . . ,D(d)F

) ∈ Hd
1 ,

which means that D(j)
s Y

(i)
t will denote the (i, j)th-entry of the matrix DsYt .

From Propositions 4.2 and 4.7,

E
[∥∥Yπ − Y

∥∥2
Hd

1

]= E

[∫
[0,T ]2

〈
Yπ

s − Ys, Y
π
t − Yt

〉
Rd dR(s, t)

]
,

and E[‖DYπ −DY‖2
Hd

1⊗Hd
1
] is equal to

E

[∫
[0,T ]2

(∫
[0,T ]2

〈
Dr

(
Yπ

t − Yt

)
,Dq

(
Yπ

s − Ys

)〉
Rd⊗Rd dR(r, q)

)
dR(s, t)

]
.

Furthermore, Itô–Skorohod isometry (see [29]) gives us

E
[
δX(Y )2]= E

[‖Y‖2
Hd

1

]+E
[
trace(DY ◦DY)

]
= lim‖π‖→0

E
[∥∥Yπ

∥∥2
Hd

1

]+ lim‖π‖→0
E
[
trace

(
DYπ ◦DYπ )],

since

E
[
δX(Yπ − Y

)2]≤ E
[∥∥Yπ − Y

∥∥2
Hd

1

]+E
[∥∥DYπ −DY

∥∥2
Hd

1⊗Hd
1

]
.

Recall that the trace term is given by

trace(DY ◦DY) =
∞∑

m=1

〈
DY(hm), (DY)∗(hm)

〉
Hd

1
,

where {hm} denotes any orthonormal basis for Hd
1 and

DY(hm)(r) =
d∑

k=1

[〈
D·Y (k)

r , hm(·)〉Hd
1

]
ek,

(DY)∗(hm)(r) =
d∑

k=1

[〈
D(k)

r Y·, hm(·)〉Hd
1

]
ek, r ∈ [0, T ],m = 1, . . . .

For the first term, we have

lim‖π‖→0
E
[∥∥Yπ

∥∥2
Hd

1

]= lim‖π‖→0
E

[∑
j,k

〈Ytj , Ytk 〉Rd R

(
tj tj+1
tk tk+1

)]

= E

[∫
[0,T ]2

〈Ys, Yt 〉Rd dR(s, t)

]
,

and for the second term, we need to compute

E
[
trace

(
DYπ ◦DYπ )]= E

[ ∞∑
m=1

〈
DYπ(hm),

(
DYπ )∗(hm)

〉
Hd

1

]
.
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We have

DYπ(hm)(r) =
d∑

k=1

[∑
i

〈
D·Y (k)

ti
, hm(·)〉Hd

1
1�i

(r)

]
ek and

(
DYπ )∗(hm)(r) =

d∑
k=1

[∑
j

〈
D(k)

r Ytj 1�j
(·), hm(·)〉Hd

1

]
ek,

r ∈ [0, T ],m = 1, . . . ,

which yields

E

[ ∞∑
m=1

〈
DYπhm,

(
DYπ )∗hm

〉
Hd

1

]

= E

[∑
i,j

d∑
k=1

∞∑
m=1

〈〈
D(k)

r Ytj 1�j
(·), hm(·)〉Hd

1
,
〈
D·Y (k)

ti
, hm(·)〉Hd

1
1�i

(r)
〉
H1

]

= E

[∑
i,j

d∑
k=1

〈 ∞∑
m=1

〈
D(k)

r Ytj 1�j
(·), hm(·)〉Hd

1

〈
D·Y (k)

ti
, hm(·)〉Hd

1
,1�i

(r)

〉
H1

]

= E

[∑
i,j

d∑
k=1

〈〈
D(k)

r Ytj 1�j
(·),D·Y (k)

ti

〉
Hd

1
,1�i

(r)
〉
H1

]
,

where r is the variable for the outer H1-inner product.
Since

〈
D(k)

r Ytj 1�j
(·),D·Y (k)

ti

〉
Hd

1
=

d∑
l=1

〈
D(k)

r Y
(l)
tj

1�j
(·),D(l)· Y

(k)
ti

〉
H1

=
d∑

l=1

D(k)
r Y

(l)
tj

〈
1�j

(·),D(l)· Y
(k)
ti

〉
H1

,

with R(�i,dr) denoting R(ti+1,dr) − R(ti,dr) [cf. (21)], we obtain

E
[
trace

(
DYπ ◦DYπ )]

= E

[∑
i,j

d∑
k,l=1

〈
D(k)· Y

(l)
tj

,1�i
(·)〉H1

〈
D(l)· Y

(k)
ti

,1�j
(·)〉H1

]

= E

[∑
i,j

d∑
k,l=1

∫ T

0
D(k)

r Y
(l)
tj

R(�i,dr)

∫ T

0
D(l)

q Y
(k)
ti

R(�j ,dq)

]

→ E

[∫
[0,T ]4

tr(DrYtDqYs)dR(s, r)dR(t, q)

]
as ‖π‖ → 0.

(84)

�
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REMARK 4.9. In the case of standard Brownian motion, if we use the fact
that dR(s, t) = δ{s=t} ds dt in Theorem 4.8, we recover the usual Itô–Skorohod
isometry

E
[
δX(Y )2]= E

[∫ T

0
|Yt |2 dt

]
+E

[∫
[0,T ]2

tr(DtYsDsYt )ds dt

]
.

4.4. Riemann sum approximation to the Skorohod integral.

PROPOSITION 4.10. Let X be a continuous, centered Gaussian process
in R

d with i.i.d. components, and assume that its continuous covariance func-
tion satisfies ‖R‖ρ-var;[0,T ]2 < ∞ for some ρ ∈ [1, 3

2). For p ∈ [1,3), let X ∈
C0,p-var([0, T ];G
p�(Rd)) denote the geometric rough path constructed from the
limit of the piecewise-linear approximations of X.

Furthermore, let Y ∈ Cp-var([0, T ];Rd) denote the path-level solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0,

where V ∈ C
p�+1
b (Rd;Rd ⊗R

d). Then Y ∈ D
1,2(Hd

1 ) and

(85)

∫ T

0
Yr dXr

= lim‖π={ri}‖→0

∑
i

[
Yri (Xri,ri+1) −

∫ ri

0
tr
[
J X

ri←sV (Ys)
]
R(�i,ds)

]
,

where the limit is taken in L2(�).

PROOF. Using integration-by-parts, we have

δX(Yπ )=∑
i

[
〈Yri ,Xri,ri+1〉Rd −

d∑
k=1

〈
D·Y (k)

ri
,1(k)

[ri ,ri+1)
(·)〉Hd

1

]

=∑
i

[
〈Yri ,Xri,ri+1〉Rd −

∫ ri

0
tr
[
J X

ri←sV (Ys)
]
R(�i,ds)

]
.

From Propositions 4.2 and 4.7, we have Y ∈ Hd
1 and DY = 1[0,t)(s)J

X
t←sV (Ys) ∈

Hd
1 ⊗Hd

1 almost surely. So in light of Theorem 4.8, we need to show that

(86) E

[∫
[0,T ]2

〈
Yπ

s − Ys, Y
π
t − Yt

〉
Rd dR(s, t)

]
→ 0,

and

(87)
E

[∫
[0,T ]2

(∫
[0,T ]2

〈
Du

(
Yπ

s − Ys

)
,Dv

(
Yπ

t − Yt

)〉
Rd⊗Rd dR(u, v)

)
dR(s, t)

]

→ 0

as ‖π‖ → 0.
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For (86), we have

E

[∫
[0,T ]2

〈
Yπ

s − Ys, Y
π
t − Yt

〉
Rd dR(s, t)

]

= E

[∑
i,j

∫ ri+1

ri

∫ rj+1

rj

〈Ys − Yri , Yt − Yrj 〉Rd dR(s, t)

]
,

(88)

and from Lemma 4.1 with ω and θ defined as in (70),∑
i,j

∣∣∣∣
∫ ri+1

ri

∫ rj+1

rj

〈Ys − Yri , Yt − Yrj 〉Rd dR(s, t)

∣∣∣∣
≤ Cp,ρ

∑
i,j

ωθ ([ri, ri+1] × [rj , rj+1]),
which tends to zero almost surely as the mesh of the partition goes to zero and
is also bounded above uniformly for all partitions by the random variable (up to
multiplication by a nonrandom constant)

‖Y‖2
p-var;[0,T ]‖R‖ρ-var;[0,T ]2 .

This is in L1(�) by Theorem 2.25, and thus the limit of (88) vanishes by dominated
convergence theorem.

We will use Proposition 4.4 to show (87). We have
(89)∫

[0,T ]2

(∫
[0,T ]2

〈
Du

(
Yπ

s − Ys

)
,Dv

(
Yπ

t − Yt

)〉
Rd⊗Rd dR(u, v)

)
dR(s, t)

=∑
i,j

∫
Ui,j

∫
[0,T ]2

〈DuYs −DuYri ,DvYt −DvYrj 〉Rd⊗Rd dR(u, v)dR(s, t),

where Ui,j := [ri, ri+1] × [rj , rj+1]. With g(s, t) := DsYt = 1[0,t)(s)g̃1(t)g̃2(s),
where

g̃1(t) := J X
t , g̃2(s) := (

J X
s

)−1
V (Ys),

we see that g satisfies the conditions of Proposition 4.4 almost surely. Hence, from
(79), the expression in (89) vanishes almost surely as the mesh of the partition goes
to zero.

Furthermore, it is bounded above uniformly for all partitions by the random
variable (up to multiplication by a nonrandom constant)

(90) ‖g̃1‖2
Vp;[0,T ]‖g̃2‖2

Vp;[0,T ]‖R‖2
ρ-var;[0,T ]2 .

As with the case of ‖Y‖p-var, ‖J X‖p-var and ‖(J X)−1‖p-var have finite moments of
all orders by Theorem 2.27. This in conjunction with the fact that V (Y ) is bounded
almost surely ensures that (90) is integrable, and thus we can apply dominated
convergence theorem again to complete the proof. �
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5. Appending the Riemann sum approximation to the Skorohod integral.
The main purpose of this section is to show that the usual Riemann-sum approxi-
mation to the Skorohod integral can be augmented with suitably corrected second-
level rough path terms which vanish in L2(�) as the mesh of the partition goes to
zero.

We will use π(n) := {tni } to denote the nth dyadic partition of [0, T ], that is,
tni = iT

2n for i = 0, . . . ,2n, and �n
i to denote the interval [tni , tni+1].

In addition, ρ′ will denote the Hölder conjugate of ρ, that is, 1
ρ

+ 1
ρ′ = 1.

PROPOSITION 5.1. Let X be a continuous, centered Gaussian process in
R

d with i.i.d. components, and for p ∈ [2,4), let X ∈ C0,p-var([0, T ];G
p�(Rd))

denote the geometric rough path constructed from the limit of the piecewise-linear
approximations of X.

Let ρ and q be such that ρ ∈ [1,2) and 1
p

+ 1
q

> 1. We assume that the covari-
ance function of X satisfies:

(a) ‖R‖ρ-var;[0,T ]2 < ∞,

(b) ‖R(t, ·) − R(s, ·)‖q-var;[0,T ] ≤ C|t − s| 1
ρ , for all s, t ∈ [0, T ].

Now let ψ : � × [0, T ] → R
d ⊗ R

d be a stochastic process satisfying ψt =∑d
a,b=1 ψ

(a,b)
t dea ⊗ deb ∈ D

4,2(Rd ⊗R
d) for all t ∈ [0, T ]. Furthermore, assume

there exists C < ∞ such that for all s, t ∈ [0, T ] and a, b = 1, . . . , d , we have

(91)
∣∣E[ψ(a,b)

s ψ
(a,b)
t

]∣∣≤ C,

and for k = 2,4, we have

(92)
∣∣E[Dk

h1,...,hk

(
ψ(a,b)

s ψ
(a,b)
t

)]∣∣≤ C

k∏
i=1

∥∥�(hi)
∥∥
q-var;[0,T ],

for all h1, . . . , hk ∈ Hd
1 .

Then

(93) lim
n→∞

∥∥∥∥∥
2n−1∑
i=0

ψtni

(
X2

tni ,tni+1
− 1

2
σ 2(tni , tni+1

)
Id

)∥∥∥∥∥
L2(�)

= 0.

PROOF. First, note that∥∥∥∥∥
2n−1∑
i=0

ψtni

(
X2

tni ,tni+1
− 1

2
σ 2(tni , tni+1

)
Id

)∥∥∥∥∥
L2(�)

≤
∥∥∥∥∥

2n−1∑
i=0

ψtni

((
X2

tni ,tni+1

)S − 1

2
σ 2(tni , tni+1

)
Id

)∥∥∥∥∥
L2(�)

+
∥∥∥∥∥

2n−1∑
i=0

ψtni

((
X2

tni ,tni+1

)A)∥∥∥∥∥
L2(�)

,

(94)
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where (X2)S denotes the symmetric part of X2 and (X2)A denotes the antisymmet-
ric part. The two parts will be tackled separately, and since∥∥∥∥∥

2n−1∑
i=0

ψtni

((
X2

tni ,tni+1

)A)∥∥∥∥∥
L2(�)

≤
d∑

a,b=1

∥∥∥∥∥
2n−1∑
i=0

ψ
(a,b)

tni

((
X2

tni ,tni+1

)A)(a,b)

∥∥∥∥∥
L2(�)

,

and similarly for the symmetric part, we can study the convergence of each fixed
(a, b)th tensor component individually. For simplicity, we will henceforth suppress
the notation for the component in the superscript of ψ .

Let h1, h2, g1, g2 ∈ Hd
1 be such that 〈hi, gj 〉Hd

1
= 0 for all i, j = 1,2. Then from

the product formula (29), we have the following identities:

I1(h1)I1(h2) = I2(h1 ⊗̃ h2) + 〈h1, h2〉Hd
1
,(95a)

I2(h1 ⊗̃ h2)I2(g1 ⊗̃ g2) = I4(h1 ⊗̃ h2 ⊗̃ g1 ⊗̃ g2) and(95b)

I2(h1 ⊗ h1)I2(h2 ⊗ h2)(95c)

= I4(h1 ⊗ h1 ⊗̃ h2 ⊗ h2) + 4I2(h1 ⊗̃ h2)〈h1, h2〉Hd
1
+ 2〈h1, h2〉2

Hd
1
.(95d)

Following [28], the idea of the proof is to rewrite (94) in such a way that the
summands take the form

E
[
ψtni

ψtnj
X(a)

u1,u2
X(b)

u3,u4
X(a)

v1,v2
X(b)

v3,v4

]
,

where [u1, u2], [u3, u4] ⊂ [tni , tni+1] and [v1, v2], [v3, v4] ⊂ [tnj , tnj+1], or

E
[
ψtni

ψtnj

((
X

(a)

tni ,tni+1

)2 − σ 2(tni , tni+1
))((

X
(a)

tnj ,tnj+1

)2 − σ 2(tnj , tnj+1
))]

as appearing in the symmetric part. After applying the identities in (95) and using
the duality formula (28), (92) will be used to bound the summands.

(a) For the symmetric part of the second level rough path, we have((
X2

tni ,tni+1

)S − 1

2
σ 2(tni , tni+1

)
Id

)(a,b)

= 1

2

(
X

(a)

tni ,tni+1
X

(b)

tni ,tni+1
− δabσ

2(tni , tni+1
))

.

In the case where a = b, we need to estimate

E

[(2n−1∑
i=0

ψtni

((
X

(a)
ti ,ti+1

)2 − σ 2(tni , tni+1
)))2]

=
2n−1∑
i,j=0

E
[
ψtni

ψtnj

((
X

(a)

tni ,tni+1

)2
− σ 2(tni , tni+1

))((
X

(a)

tnj ,tnj+1

)2 − σ 2(tnj , tnj+1
))]

=
2n−1∑
i,j=0

E
[
ψtni

ψtnj
I2
(
1(a)

�n
i
⊗ 1(a)

�n
i

)
I2
(
1(a)

�n
j
⊗ 1(a)

�n
j

)]
,

(96)
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where the last line follows from (95a). Using (95c) with h1 = 1(a)

�n
i
(·) and h2 =

1(a)

�n
j
(·) and applying the duality formula (28), the expression above is equal to

2n−1∑
i,j=0

E
[
D4

h1,h1,h2,h2
ψtni

ψtnj

]+ 4E
[
D2

h1,h2
ψtni

ψtnj

]
R

(
tni tni+1
tnj tnj+1

)

+ 2E[ψtni
ψtnj

]R
(
tni tni+1
tnj tnj+1

)2

.

For the first term, we have
2n−1∑
i,j=0

E
[
D4

h1,h1,h2,h2
ψtni

ψtnj

]

≤ C

2n−1∑
i,j=0

∥∥R(�n
i , ·
)∥∥2

q-var;[0,T ]
∥∥R(�n

j , ·
)∥∥2

q-var;[0,T ]

≤ C

22n( 2
ρ
−1)

→ 0

(97)

since ρ < 2.
For the second term, we have

(98)

2n−1∑
i,j=0

E
[
D2

h1,h2
ψtni

ψtnj

]
R

(
tni tni+1
tnj tnj+1

)

≤
(2n−1∑

i,j=0

E
[
D2

h1,h2
ψtni

ψtnj

]ρ′
) 1

ρ′
⎛
⎝2n−1∑

i,j=0

∣∣R
(
tni tni+1
tnj tnj+1

)∣∣ρ
⎞
⎠

1
ρ

≤ C2
−2n( 1

ρ
− 1

ρ′ )‖R‖ρ-var;[0,T ]2 = C2−2n( 2
ρ
−1)‖R‖ρ-var;[0,T ]2,

which also vanishes as n tends to infinity.
For the third term, we have

(99)

2n−1∑
i,j=0

E[ψtni
ψtnj

]R
(
tni tni+1
tnj tnj+1

)2

≤ C

2n−1∑
i,j=0

∣∣R
(
tni tni+1
tnj tnj+1

)∣∣2−ρ ∣∣R
(
tni tni+1
tnj tnj+1

)∣∣ρ

≤ C

2
n(2−ρ)

ρ

‖R‖ρ

ρ-var;[0,T ]2,

which vanishes as n → ∞ since ρ < 2.
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In the case where a �= b, we let

h1 := 1(a)

�n
i
(·), h2 := 1(a)

�n
j
(·), g1 := 1(b)

�n
i
(·) and g2 := 1(b)

�n
j
(·).

We obtain

E
[
ψtni

ψtnj
X

(a)

�n
i
X

(b)

�n
i
X

(a)

�n
j
X

(b)

�n
j

]
= E

[
ψtni

ψtnj

(
I2(h1 ⊗̃ h2) + 〈h1, h2〉Hd

1

)(
I2(g1 ⊗̃ g2) + 〈g1, g2〉Hd

1

)]
= E

[
ψtni

ψtnj
I4(h1 ⊗̃ h2 ⊗̃ g1 ⊗̃ g2)

]+E
[
ψtni

ψtnj
I2(h1 ⊗̃ h2)

]〈g1, g2〉Hd
1

+E
[
ψtni

ψtnj
I2(g1 ⊗̃ g2)

]〈h1, h2〉Hd
1
+E[ψtni

ψtnj
]〈h1, h2〉Hd

1
〈g1, g2〉Hd

1

= E
[
D4

h1,h2,g1,g2
ψtni

ψtnj

]+E[ψtni
ψtnj

]R
(
tni tni+1
tnj tnj+1

)2

+ (
E
[
D2

h1,h2
ψtni

ψtnj

]+E
[
D2

g1,g2
ψtni

ψtnj

])
R

(
tni tni+1
tnj tnj+1

)
.

Similar to the case where a = b, the sum over all i, j of the first, second and third
terms in the above expression can be bounded by (97), (99) and (98) respectively,
and hence vanish as n → ∞.

(b) We will now handle the antisymmetric part. We will use (X2
s,t )

A(π(k)) to
denote the Lévy area of Xπ(k), the piecewise linear approximation of X over π(k),
that is, (

X2
s,t

)A(
π(k)

)= π2
(
log

(
S2
(
Xπ(k))

s,t

))
,

where π2 denotes projection onto the second level. Next, we define(
X2

s,t

)A
(�l+1) := (

X2
s,t

)A(
π(l + 1)

)− (
X2

s,t

)A(
π(l)

)
,

and noticing that (X2
tni ,tni+1

)A(π(n)) = 0, we can use Theorem 2.13 to see that

(
X2

tni ,tni+1

)A = lim
m→∞

m∑
k=1

(
X2

tni ,tni+1

)A
(�n+k)

for every n ∈ N and i = 0,1, . . . ,2n − 1,

where the limit is taken in L2(�).
We want to show that∥∥∥∥∥

2n−1∑
i=0

ψtni

((
X2

tni ,tni+1

)A(
π(n + m)

))(a,b)

∥∥∥∥∥
L2(�)

→ 0

uniformly for all m as n → ∞. To begin, let

(100) sk,i
u := tni + u

2n+k
= tn+k

u+i2k ,
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and we will denote the intervals

�i
uL := [

s
k,i
2u , s

k,i
2u+1

]
, �i

uR := [
s
k,i
2u+1, s

k,i
2u+2

]
,

�i
u := �i

uL ∪ �i
uR ⊆ [

tni , tni+1
] ∀u = 0, . . . ,2k−1 − 1.

(101)

Note that we suppress the dependence on k and n in the notation for the variables
on the left, and we will also use X[s,t] and Xs,t (s, t ∈ [0, T ]) interchangeably.
Continuing, we have

2k−1−1⊗
u=0

exp(X�i

uL
) ⊗ exp(X�i

uR
) −

2k−1−1⊗
u=0

exp(X�i
u
)

=
2k−1−1⊗

u=0

(
1,X�i

u
,
(X�i

u
)⊗2

2

)
+
(

0,0,
1

2
[X�i

uL
,X�i

uR
]
)

−
2k−1−1⊗

u=0

(
1,X�i

u
,
(X�i

u
)⊗2

2

)

=
2k−1−1∑

u=0

(
0,0,

1

2
[X�i

uL
,X�i

uR
]
)
,

which means that

(
X2

tni ,tni+1

)A
(�n+k) =

2k−1−1∑
u=0

1

2
[X�i

uL
,X�i

uR
]

since only antisymmetric terms are left in the difference.
Thus, we obtain

E

[(2n−1∑
i=0

ψtni

((
X2

tni ,tni+1

)A(
π(n + m)

))(a,b)

)2]

= E

[(2n−1∑
i=0

ψtni

m∑
k=1

((
X2

tni ,tni+1

)A
(�n+k)

)(a,b)

)2]

=
2n−1∑
i,j=0

E

[
ψtni

ψtnj

m∑
k=1

((
X2

tni ,tni+1

)A
(�n+k)

)(a,b)

×
m∑

l=1

((
X2

tnj ,tnj+1

)A
(�n+l)

)(a,b)

]

= 1

4

2n−1∑
i,j=0

m∑
k,l=1

∑
u,v

E
[
ψtni

ψtnj
[X�i

uL
,X�i

uR
](a,b)[X

�
j

vL

,X
�

j

vR

](a,b)].

(102)
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Since the (a, b)th entry of [X�i

uL
,X�i

uR
] ∈ so(d), where a �= b, is given by

X
(a)

�i

uL

X
(b)

�i

uR

− X
(b)

�i

uL

X
(a)

�i

uR

,

each summand in the last line of (102) is of the form

E
[
ψtni

ψtnj
X

(a)

�i

uL

X
(b)

�i

uR

X
(a)

�
j

vL

X
(b)

�
j

vR

]
−E

[
ψtni

ψtnj
X

(a)

�i

uL

X
(b)

�i

uR

X
(b)

�
j

vL

X
(a)

�
j

vR

]
−E

[
ψtni

ψtnj
X

(b)

�i

uL

X
(a)

�i

uR

X
(a)

�
j

vL

X
(b)

�
j

vR

]
+E

[
ψtni

ψtnj
X

(b)

�i

uL

X
(a)

�i

uR

X
(b)

�
j

vL

X
(a)

�
j

vR

]
.

(103)

Proceeding, we will use the first term in the above expression for the proof and
omit the other terms as the result remains the same with trivial modifications to the
notation. We first denote

(104)

R
�i

u×�
j
v
:=

∣∣∣∣∣∣R
⎛
⎝s

k,i
2u s

k,i
2u+1

s
l,j
2v s

l,j
2v+1

⎞
⎠
∣∣∣∣∣∣+

∣∣∣∣∣∣R
⎛
⎝s

k,i
2u+1 s

k,i
2u+2

s
l,j
2v s

l,j
2v+1

⎞
⎠
∣∣∣∣∣∣

+
∣∣∣∣∣∣R
⎛
⎝ s

k,i
2u s

k,i
2u+1

s
l,j
2v+1 s

l,j
2v+2

⎞
⎠
∣∣∣∣∣∣+

∣∣∣∣∣∣R
⎛
⎝s

k,i
2u+1 s

k,i
2u+2

s
l,j
2v+1 s

l,j
2v+2

⎞
⎠
∣∣∣∣∣∣ ,

and note that
2n−1∑
i,j=0

∑
u,v

R
ρ

�i
u×�

j
v

≤ 4ρ‖R‖ρ

ρ-var;[0,T ]2 .

Next, we let

h1 := 1(a)

�i

uL

(·), h2 := 1(a)

�
j

vL

(·), g1 := 1(b)

�i

uR

(·) and g2 := 1(b)

�
j

vR

(·),

and applying (95b), we get

E
[
ψtni

ψtnj
X

(a)

�i

uL

X
(b)

�i

uR

X
(a)

�
j

vL

X
(b)

�
j

vR

]
= E

[
ψtni

ψtnj

(
I2(h1 ⊗̃ h2) + 〈h1, h2〉Hd

1

)(
I2(g1 ⊗̃ g2) + 〈g1, g2〉Hd

1

)]
= E

[
ψtni

ψtnj
I4(h1 ⊗̃ h2 ⊗̃ g1 ⊗̃ g2)

]+E
[
ψtni

ψtnj
I2(h1 ⊗̃ h2)

]〈g1, g2〉Hd
1

+E
[
ψtni

ψtnj
I2(g1 ⊗̃ g2)

]〈h1, h2〉Hd
1
+E[ψtni

ψtnj
]〈h1, h2〉Hd

1
〈g1, g2〉Hd

1

=: A1 + A2 + A3 + A4.
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(i) Terms of type A1:∣∣E[D4
h1,h2,g1,g2

(ψtni
ψtnj

)
]∣∣

≤ C
∥∥�(h1)

∥∥
q-var;[0,T ]

∥∥�(h2)
∥∥
q-var;[0,T ]

× ∥∥�(g1)
∥∥
q-var;[0,T ]

∥∥�(g2)
∥∥
q-var;[0,T ]

≤ C
∥∥R(sk,i

2u+1, ·
)− R

(
s
k,i
2u , ·)∥∥q-var;[0,T ]

× ∥∥R(sl,j
2v+1, ·

)− R
(
s
l,j
2v , ·)∥∥q-var;[0,T ]

× ∥∥R(sk,i
2u+2, ·

)− R
(
s
k,i
2u+1, ·

)∥∥
q-var;[0,T ]

× ∥∥R(sl,j
2v+2, ·

)− R
(
s
l,j
2v+1, ·

)∥∥
q-var;[0,T ]

≤ C2
−2(n+k)

ρ 2
−2(n+l)

ρ ,

and thus we have

2n−1∑
i,j=0

m∑
k,l=1

∑
u,v

∣∣E[D4
h1,h2,g1,g2

(ψtni
ψtnj

)
]∣∣

≤ C2−2n( 2
ρ
−1)

∞∑
k,l=1

2−k( 2
ρ
−1)2−l( 2

ρ
−1)

≤ C2−2n( 2
ρ
−1) → 0 as n → ∞.

(ii) Terms of type A2 and A3: We only detail the argument for the A2 terms;
the A3 terms can be dealt with in the same way. Using Hölder’s inequality and by
exploiting the upper bound,

∣∣E[D2
h1,h2

(ψtni
ψtnj

)
]∣∣≤ C

∣∣sk,i
2u+1 − s

k,i
2u

∣∣ 1
ρ
∣∣sl,j

2v+1 − s
l,j
2v

∣∣ 1
ρ ≤ C2− (n+k)

ρ 2− (n+l)
ρ ,

we obtain

2n−1∑
i,j=0

m∑
k,l=1

∑
u,v

E
[
D2

h1,h2
(ψtni

ψtnj
)
]
E
[
X

(b)

�i

uR

X
(b)

�
j

vR

]

≤ C

m∑
k,l=1

(2n−1∑
i,j=0

∑
u,v

∣∣E[D2
h1,h2

(ψtni
ψtnj

)
]∣∣ρ′

) 1
ρ′ (2n−1∑

i,j=0

∑
u,v

R
ρ

�i
u×�

j
v

) 1
ρ

≤ C

∞∑
k,l=1

2
−2n( 1

ρ
− 1

ρ′ )2
−k( 1

ρ
− 1

ρ′ )2
−l( 1

ρ
− 1

ρ′ )‖R‖ρ-var;[0,T ]2 .
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Since 1
ρ

− 1
ρ′ = 2

ρ
− 1 > 0, we may sum over k and l to get

2n−1∑
i,j=0

m∑
k,l=1

∑
u,v

E
[
D2

h1,h2
(ψtni

ψtnj
)
]
E
[
X

(b)

�i

uR

X
(b)

�
j

vR

]≤ C2−2n( 2
ρ
−1)‖R‖ρ-var;[0,T ]2,

which tends to zero as n → ∞.
(iii) Terms of type A4: We have

E[ψtni
ψtnj

]〈h1, h2〉Hd
1
〈g1, g2〉Hd

1

= E[ψtni
ψtnj

]R
(
s
k,i
2u s

k,i
2u+1

s
l,j
2v s

l,j
2v+1

)
R

(
s
k,i
2u+1 s

k,i
2u+2

s
l,j
2v+1 s

l,j
2v+2

)

≤ CR2
�i

u×�
j
v
.

Using the fact that

R
�i

u×�
j
v
≤ 2

∥∥R(sk,i
2u+1, ·

)− R
(
s
k,i
2u , ·)∥∥q-var;[0,T ]

+ 2
∥∥R(sk,i

2u+2, ·
)− R

(
s
k,i
2u+1, ·

)∥∥
q-var;[0,T ]

and

R
�i

u×�
j
v
≤ 2

∥∥R(sl,j
2v+1, ·

)− R
(
s
l,j
2v , ·)∥∥q-var;[0,T ]

+ 2
∥∥R(sl,j

2v+2, ·
)− R

(
s
l,j
2v+1, ·

)∥∥
q-var;[0,T ],

we have
m∑

k,l=1

2n−1∑
i,j=0

∑
u,v

R2
�i

u×�
j
v
≤ C

m∑
k,l=1

2−(n+k)
2−ρ
2ρ 2−(n+l)

2−ρ
2ρ

2n−1∑
i,j=0

∑
u,v

R
ρ

�i
u×�

j
v

≤ C2−2n( 1
ρ
− 1

2 )
∞∑

k,l=1

2−k( 1
ρ
− 1

2 )2−l( 1
ρ
− 1

2 )‖R‖ρ

ρ-var;[0,T ]2,

which converges to 0 since 1
ρ

− 1
2 > 0. �

Given the preceding proposition, the following corollary is straightforward.

COROLLARY 5.2. For 2 ≤ p < 4, let Y ∈ Cp-var([0, T ];Rd) denote the path-
level solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0,

where X ∈ C0,p-var([0, T ];G
p�(Rd)) satisfies the same conditions as in Proposi-
tion 5.1. Then if V ∈ C
p�+4

b (Rd;Rd ⊗R
d), we have

(105) lim‖π(n)‖→0

∥∥∥∥∑
i

V (Ytni
)

(
X2

tni ,tni+1
− 1

2
σ 2(tni , tni+1

)
Id

)∥∥∥∥
L2(�)

= 0.
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PROOF. Since V ∈ C1
b , |E[V (a,b)

s V
(a,b)
t ]| is bounded for all s, t , a and b. Now

we have to show that bound (92) in Proposition 5.1 is satisfied with

ψt = V (Yt ) ∈ R
d ⊗R

d,

to show (105). To do so, recall Proposition 3.5, which states that almost surely we
have

(106)

∥∥Dn
h1,...,hn

Y·
∥∥∞

≤ Pd(n)

(‖X‖p-var;[0,T ], exp
(
CNX

1;[0,T ]
)) n∏

i=1

∥∥�(hi)
∥∥
q-var;[0,T ].

As both ‖X‖p-var;[0,T ] and exp(CNX
1;[0,T ]) belong to

⋂
r>0 Lr(�), we have

(107)
∥∥Dn

h1,...,hn
Yt

∥∥
Lr(�) ≤ Cn,q

n∏
i=1

∥∥�(hi)
∥∥
q-var;[0,T ]

for any r > 0. Now we simply use the product and chain rule of Malliavin dif-
ferentiation in conjunction with the fact that V has bounded derivatives up to the
appropriate order. �

6. Conversion formula. We are now ready to prove the main result of the
paper. As before, π(n) := {tni }, tni := iT

2n , denotes the sequence of dyadic partitions
on [0, T ].

THEOREM 6.1. For 1 ≤ p < 3, let Y ∈ Cp-var([0, T ];Rd) denote the path-
level solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0,

where X ∈ C0,p-var([0, T ];G
p�(Rd)) denotes the geometric rough path con-
structed from the limit of the piecewise-linear approximations of X, a continuous,
centered Gaussian process in R

d with i.i.d. components and continuous covari-
ance function satisfying ‖R‖ρ-var;[0,T ]2 < ∞ for some ρ ∈ [1, 3

2). In addition, we
have the following assumptions:

(i) If 1 ≤ p < 2, assume V ∈ C2
b(Rd;Rd ⊗R

d), σ 2(s, t) ≤ C|t − s|θ for some
θ > 1 and ‖R(·)‖q-var;[0,T ] < ∞, where 1

p
+ 1

q
> 1.

(ii) If 2 ≤ p < 3, assume that V ∈ C6
b(Rd;Rd ⊗R

d), and the covariance func-
tion satisfies

(108)
∥∥R(t, ·) − R(s, ·)∥∥ρ-var;[0,T ] ≤ C|t − s| 1

ρ ,

for all s, t ∈ [0, T ].
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In either case, almost surely we have∫ T

0
Yt ◦ dXt =

∫ T

0
YtdXt + 1

2

∫ T

0
tr
[
V (Ys)

]
dR(s)

+
∫
[0,T ]2

1[0,t)(s) tr
[
J X

t←sV (Ys) − V (Yt )
]
dR(s, t).

PROOF. Using regular Riemann–Stieltjes integration when 1 ≤ p < 2 and
Theorem 2.20 when 2 ≤ p < 3,

∫ T
0 Yt ◦ dXt is equal almost surely to

lim
n→∞

∑
i

⎧⎨
⎩Ytni

(Xtni ,tni+1
), 1 ≤ p < 2,

Ytni
(Xtni ,tni+1

) + V (Ytni
)
(
X2

tni ,tni+1

)
, 2 ≤ p < 3.

We now apply Proposition 4.10 in conjunction with Corollary 5.2. Upon extract-
ing a subsequence (and reusing the index for notational simplicity), the Skorohod
integral is given almost surely by∫ T

0
Yt dXt = lim

n→∞
∑
i

[
Ytni

(Xtni ,tni+1
) −

∫ tni

0
tr
[
J X

tni ←sV (Ys)
]
R
(
�n

i ,ds
)+ A(i)

]
,

where

A(i) :=

⎧⎪⎪⎨
⎪⎪⎩

V (Ytni
)

(
−1

2
σ 2(tni , tni+1

)
Id

)
, 1 ≤ p < 2,

V (Ytni
)

((
X2

tni ,tni+1

)− 1

2
σ 2(tni , tni+1

)
Id

)
, 2 ≤ p < 3.

Note that when 1 ≤ p < 2, we can append
∑

i V (Ytni
)(−1

2σ 2(tni , tni+1)Id) to the
Riemann sum approximants of the Skorohod integral because

(109)
∑
i

tr
[
V (Ytni

)
]
σ 2(tni , tni+1

)≤ C
∑
i

|tni+1 − tni |θ ,

which vanishes as n → ∞.
In both cases, subtracting the two integrals gives us∫ T

0
Yt ◦ dXt −

∫ T

0
Yt dXt

= lim
n→∞

∑
i

∫ tni

0
tr
[
J X

tni ←sV (Ys)
]
R
(
�n

i ,ds
)+ 1

2
σ 2(tni , tni+1

)
tr
[
V (Ytni

)
]
.

(110)

Subtracting tr[V (Ytni
)]R(�n

i , t
n
i ) from the first term on the right of (110) and

adding it to the second term gives us∫ tni

0
tr
[
J X

tni ←sV (Ys)
]
R
(
�n

i ,ds
)+ 1

2
σ 2(tni , tni+1

)
tr
[
V (Ytni

)
]= F (i) + G(i),
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where

F (i) :=
∫ tni

0
tr
[
J X

tni ←sV (Ys)
]
R
(
�n

i ,ds
)− tr

[
V (Ytni

)
]
R
(
�n

i , t
n
i

)
,

G(i) := 1

2
σ 2(tni , tni+1

)
tr
[
V (Ytni

)
]+ tr

[
V (Ytni

)
]
R
(
�n

i , t
n
i

)
.

We have

F (i) =
∫ tni

0
tr
[
J X

tni ←sV (Ys) − V (Ytni
)
]
R
(
�n

i ,ds
)

=
∫ T

0
h
(
s, tni

)
R
(
�n

i ,ds
)
,

where we denote

h(s, t) := 1[0,t)(s) tr
[
J X

t←sV (Ys) − V (Yt )
]
.

Since h(s, t) vanishes on the diagonal, it is continuous almost surely on [0, T ]2.
Furthermore, we have complementary regularity since 1

p
+ 1

ρ
> 1, in which case

Theorem 2.12 tells us that ∫
[0,T ]2

h(s, t)dR(s, t),

exists. Thus, we have some partition π ′ = {sk} × {tni } such that∣∣∣∣
∫
[0,T ]2

h(s, t)dR(s, t) −∑
i,k

h
(
sk, t

n
i

)
R

(
sk sk+1
tni tni+1

)∣∣∣∣< ε

2
.

Refining {sk} if necessary, we also have for each i∣∣∣∣
∫ T

0
h
(
s, tni

)
R
(
�n

i ,ds
)−∑

k

h
(
sk, t

n
i

)
R

(
sk sk+1
tni tni+1

)∣∣∣∣< ε

2

(
1

2n

)
,

and note that these estimates hold for all π = π1 × π2 where ‖π‖ ≤ ‖π ′‖ and
‖π2‖ ≤ ‖π(n)‖. Thus ∑

i

F (i) →
∫
[0,T ]2

h(s, t)dR(s, t).

For the G terms, we have∑
i

G(i) =∑
i

tr
[
V (Ytni

)
](

R
(
tni+1, t

n
i

)− R
(
tni , tni

)+ 1

2
σ 2(tni , tni+1

))

= 1

2

∑
i

tr
[
V (Ytni

)
](

R
(
tni+1, t

n
i+1

)− R
(
tni , tni

))
,
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which converges to 1
2

∫ T
0 tr[V (Yt )]dR(t) as Y and R(·) have complementary reg-

ularity. �

The limit in (110) necessarily exists almost surely because it is the dif-
ference of almost sure convergent sequences. However, we add and subtract
tr[V (Ytni

)]R(�n
i , t

n
i ) because in general, if considered separately, neither term can

be expected to be a convergent sequence.
Consider the case when R(s, t) is the covariance function of fractional Brow-

nian motion where 1
3 < H < 1

2 . For the first term of (110), formally one would
expect convergence to the Young integral∫

[0,T ]2
1[0,t)(s) tr

[
J X

t←sV (Ys)
]
dR(s, t)

since we have complementary regularity. However, the discontinuity of the inte-
grand at the diagonal poses a problem, as can be illustrated by the following simple
example; if we take the sequence of square partitions {(tni , tnj )}, the Riemann–
Stieltjes sums of

∫
[0,T ]2 1[0,t)(s)dR(s, t) are given by∑

j

∑
i<j

R(�i,�j ) =∑
j

R
(
tnj , tnj+1

)− R
(
tnj , tnj

)→ −∞

and thus
∫
[0,T ]2 1[0,t)(s)dR(s, t) does not exist as a Young–Stieltjes integral. For

the second term of (110), if V is bounded from below, we have

∑
i

1

2
σ 2(tni , tni+1

)
tr
[
V (Ytni

)
]≥ C

∑
i

∣∣tni+1 − tni
∣∣2H

,

which also diverges.
Now consider the following theorem from [12].

THEOREM 6.2. Let X be fractional Brownian motion with Hurst parameter
H < 1

2 .

If u ∈ D
1,2(I

3
2 −H

0+ (L2)), then δX(K∗u) and trace(Du) are well defined, and the
sequence

∑
i

1

ti+1 − ti

∫ ti+1

ti

ut dt (Xti+1 − Xti )

converges in L2(�) to δX(K∗u) + trace(Du).

Formally, K∗ is the operator K∗ ◦ D1
T − , where D1

T − is the adjoint of the deriva-

tive operator; see [13]. It is well known that the Besov–Liouville space I
3
2 −H

0+ (L2)

can be embedded continuously in C0,1−H (see [13, 29, 34]), the space of (1 − H)
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Hölder continuous paths starting at zero. This imposes a strong condition on the
integrand as one essentially requires Young-complementary regularity of u and X.

Thus, when the integrand solves an RDE, Theorem 6.1 extends this theorem
to cases where the integrand and integrator do not have complementary regular-

ity. Furthermore, when 1 ≤ p < 2, although
∫ tni

0 tr[J X
tni ←s

V (Ys)]R(�n
i ,ds) in gen-

eral converges, by augmenting the Skorohod integral with Ai and rebalancing the
terms, we can identify the trace term in Theorem 6.2 more precisely.

6.1. Application of the correction formula to fractional Brownian motion. We
now apply the correction formula to fractional Brownian motion with H > 1

3 .

THEOREM 6.3. For 1 ≤ p < 3, let Y ∈ Cp-var([0, T ];Rd) denote the path-
level solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0.

We assume that V ∈ Ck
b(Rd;Rd ⊗R

d), with

(111) k =
{

2, 1 ≤ p < 2,

6, 2 ≤ p < 3,

and X ∈ C0,p-var([0, T ];G
p�(Rd)) is the geometric rough path constructed from
the limit of the piecewise-linear approximations of fractional Brownian motion
with Hurst parameter H > 1

3 , and covariance function

R(s, t) = 1

2

(
s2H + t2H − |t − s|2H ).

Then almost surely, we have∫ T

0
Yt ◦ dXt =

∫ T

0
Yt dXt + H

∫ T

0
tr
[
V (Ys)

]
s2H−1 ds

+
∫
[0,T ]2

1[0,t)(s) tr
[
J X

t←sV (Ys) − V (Yt )
]
dR(s, t).

PROOF. We will show that fractional Brownian motion fulfills all the require-
ments needed to apply Theorem 6.1 when H > 1

3 . Let ρ := 1
2H

and q := 1
ρ

∨ 1.
The proof that ‖R‖ρ-var;[0,T ]2 < ∞ can be found in [17]; see also [19]. Note also
that R(t) = t2H is of bounded variation, and thus has finite q-variation.

In the case 1 ≤ p < 2, or H > 1
2 , the geometric rough path is simply (1,BH

t ),
and for H ≤ 1

2 , one can invoke Theorem 2.13 to construct the geometric rough
path.

Finally, it is proved in Example 1 of [19] that∥∥R(t, ·) − R(s, ·)∥∥ρ-var;[0,T ] ≤ C|t − s| 1
ρ ∀s, t ∈ [0, T ]. �
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APPENDIX

THEOREM 2.20. Let x = (1, x,x2) ∈ Cp-var([0, T ];G2(Rd)), where 2 ≤
p < 3.

Let φ ∈ Cp-var([0, T ];L(Rd;Re)) and φ′ ∈ Cp-var([0, T ];L(Rd;L(Rd;Re))).
If (φ,φ′) is controlled by x, we can define the rough integral

(32)
∫ t

0
φr ◦ dxr := lim‖π‖→0,π={0=r0<···<rn=t}

n−1∑
i=0

(
φri xri ,ri+1 + φ′

ri
x2
ri ,ri+1

)
,

where we have made use of the canonical identification L(Rd;L(Rd;Re)) �
L(Rd ⊗R

d;Re). Furthermore, denoting

zt :=
∫ t

0
φr ◦ dxr , z′

t := φt ,

(z, z′) is again controlled by x, and we have the bound

(33) ‖z‖p-cvar ≤ Cp‖φ‖p-cvar
(
1 + ‖x‖p-var;[0,T ] + ∥∥x2∥∥p

2 -var;[0,T ]
)
.

PROOF. Let 0 ≤ u < s < v ≤ t and define

�u,v := φuxu,v + φ′
ux2

u,v,

which yields the defect of additivity,

|�u,s + �s,v − �u,v| ≤
∣∣Rφ

u,sxs,v

∣∣+ ∣∣φ′
u,sx2

s,v

∣∣.
Now let θ := 3

p
. Then the following function

ω(u, v) := ∥∥Rφ
∥∥ 1

θ
p
2 -var;[u,v]‖x‖

1
θ

p-var;[u,v] + ∥∥φ′∥∥ 1
θ

p-var;[u,v]
∥∥x2∥∥ 1

θ
p
2 -var;[u,v]

is a control by Lemma 2.6 as 3
p

≥ 1. Moreover, following the proof for Young
integration (see [14]), for any partition π = {ri} of [u, v] with k subintervals, there
necessarily exists some rj ∈ π such that

|�rj−1,rj + �rj ,rj+1 − �rj−1,rj+1 | ≤
∣∣Rφ

rj−1,rj
xrj ,rj+1

∣∣+ ∣∣φ′
rj−1,rj

x2
rj ,rj+1

∣∣
≤ 2ω(rj−1, rj+1)

θ ≤ 2
(

2

k − 1

)θ

ω(u, v)θ .

Extracting rj leaves one with k − 1 subintervals, and we can repeat this procedure
until only [u, v] remains. Since θ > 1, we obtain the submaximal inequality (cf.
[14, 25])

(112)
∣∣∣∣
∫
π

φr ◦ dxr − (
φuxu,v + φ′

ux2
u,v

)∣∣∣∣≤ Cζ(θ)ω(u, v)θ ,
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where ζ is the Riemann zeta function and∫
π

φr ◦ dxr :=∑
i

φri xri ,ri+1 + φ′
ri

x2
ri ,ri+1

.

Proving (32) is equivalent to showing that

sup
‖π‖∨‖π ′‖<ε

∣∣∣∣
∫
π

φr ◦ dxr −
∫
π ′

φr ◦ dxr

∣∣∣∣→ 0 as ε → 0,

where the supremum is taken over all partitions of [0, t]. Without loss of generality,
we can assume π ′ refines π , in which case ‖π‖ ∨ ‖π ′‖ = ‖π‖ and∣∣∣∣
∫
π

φr ◦ dxr −
∫
π ′

φr ◦ dxr

∣∣∣∣=
∣∣∣∣ ∑
[u,v]∈π

(
φuxu,v + φ′

ux2
u,v −

∫
π ′∩[u,v]

φr ◦ dxr

)∣∣∣∣
≤ Cp

∑
[u,v]∈π

ω(u, v)θ ,

which vanishes as ‖π‖ → 0.
Continuing, we define

(113) Rz
s,t :=

∫ t

s
φr ◦ dxr − φsxs,t ,

and using (112), we obtain

|zs,t |p,
∣∣z′

s,t

∣∣p ≤ Cp

(‖φ‖Vp;[0,T ] + ∥∥φ′∥∥
Vp;[0,T ] + ∥∥Rφ

∥∥p
2 -var;[0,T ]

)p
× (‖x‖p

p-var;[s,t] + ∥∥x2∥∥p
p
2 -var;[s,t]

)
,

∣∣Rz
s,t

∣∣p2 ≤ Cp

(∥∥φ′∥∥p
2
Vp;[0,T ]

∥∥x2∥∥p
2
p
2 -var;[s,t] + ‖x‖

p
2
p-var;[0,T ]

∥∥Rφ
∥∥p

2
p
2 -var;[s,t]

)
.

From the super-additivity of the quantities on the right-hand side in the above
expression, the fact that (z, z′) is controlled with norm (33) follows immediately.

�

PROPOSITION 2.21. For p ≥ 2, let

y ∈ Cp-var([0, T ];U),
y′ ∈ Cp-var([0, T ];L(Rd;U)),

and let φ be a C2
b map from U to V .
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Then φ(y) ∈ Cp-var([0, T ];V) and ∇φ(y)y′ ∈ Cp-var([0, T ];L(Rd;V)). Fur-
thermore, if (y, y′) is controlled by x ∈ Cp-var([0, T ];G2(Rd)), then (φ(y),

∇φ(y)y′) is also controlled by x and we have

(34)

∥∥φ(y)
∥∥
p-var;[0,T ],

∥∥∇φ(y)y′∥∥
p-var;[0,T ]

≤ ‖φ‖C2
b
‖y‖Vp;[0,T ]

(
1 + ∥∥y′∥∥

Vp;[0,T ]
)
,

and

(35)
∥∥Rφ(y)

∥∥p
2 -var;[0,T ] ≤ ‖φ‖C2

b

(‖y‖2
p-var;[0,T ] + ∥∥Ry

∥∥p
2 -var;[0,T ]

)
.

PROOF. See Lemma 7.3 in [14] for the proof in Hölder topology; the p-
variation estimates will be derived similarly. Using the mean-value theorem, (34)
can be obtained easily. To show (35) and that (φ(y),∇(y)y′) is controlled by x,
we first use Taylor’s theorem to obtain

(114)
(
φ(y)

)
s,t = ∇φ(ys)ys,t + R

Taylor
s,t

for all s < t in [0, T ], where |RTaylor
s,t | ≤ ‖φ‖C2

b
|ys,t |2. From this, it follows that

(115)
∥∥RTaylor∥∥p

2 -var;[0,T ] ≤ ‖φ‖C2
b
‖y‖2

p-var;[s,t].

We next use the fact that (y, y′) is controlled by x in equation (114), which yields(
φ(y)

)
s,t = ∇φ(ys)y

′
s︸ ︷︷ ︸

=:(φ(y))′s

xs,t + ∇φ(ys)R
y
s,t + R

Taylor
s,t︸ ︷︷ ︸

=:Rφ(y)
s,t

,

and also gives∥∥Rφ(y)
∥∥p

2 -var;[0,T ] ≤ ∥∥∇φ(y)
∥∥∞

∥∥Ry
∥∥p

2 -var;[0,T ] + ∥∥RTaylor∥∥p
2 -var;[0,T ]. �

PROPOSITION 2.22 (Leibniz rule). For p ≥ 2, let

φ ∈ Cp-var([0, T ];L(U;V)
)
,

φ′ ∈ Cp-var([0, T ];L(Rd;L(U;V)
))

,

and we assume that (φ,φ′) is controlled by x ∈ Cp-var([0, T ];G2(Rd)).

(i) Let ψ ∈ Cp-var([0, T ];U), ψ ′ ∈ Cp-var([0, T ];L(Rd;U)), and suppose that
(ψ,ψ ′) is controlled by x. Then the path φψ ∈ Cp-var([0, T ];V) given by the
composition of φ and ψ is also controlled by x, with derivative process (φψ)′ =
φ′ψ + φψ ′. In addition, we have the bound

(36) ‖φψ‖p-cvar ≤ 2‖φ‖p-cvar‖ψ‖p-cvar
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(ii) Suppose that ψ ∈ C
p
2 -var([0, T ];U). Then φψ ∈ Cp-var([0, T ];V) is also

controlled by x, with derivative process (φψ)′ = φ′ψ . Moreover, we have the
bound

(37) ‖φψ‖p-cvar ≤ ‖φ‖p-cvar‖ψ‖
V

p
2 ;[0,T ].

PROOF. The statement can be seen as a corollary to the previous proposition
if we consider the smooth map �(φ,ψ) = φψ . However, we will prove it directly
to get the precise bounds (36) and (37).

For the first part, it is trivial to see that ‖φψ‖ and ‖φ′ψ + φψ ′‖p-var;[0,T ] are
bounded by the right-hand side of (36). For the remainder term, we note that

(φψ)s,t − (
φ′

sψs + φsψ
′
s

)
xs,t

= φtψt − φsψs − φs,tψs − φsψs,t + R
φ
s,tψs + φsR

ψ
s,t

= φtψt − φtψs − φsψt + φsψs + R
φ
s,tψs + φsR

ψ
s,t

= φs,tψs,t + R
φ
s,tψs + φsR

ψ
s,t ,

and thus∥∥Rφψ
∥∥p

2 -var;[0,T ] ≤ ‖φ‖p-var;[0,T ]‖ψ‖p-var;[0,T ] + ‖ψ‖∞
∥∥Rφ

∥∥p
2 -var;[0,T ]

+ ‖φ‖∞
∥∥Rψ

∥∥p
2 -var;[0,T ].

For the second part, note that ‖φψ‖ and ‖φ′ψ‖p-var;[0,T ] are bounded by the right-
hand side of (37). Moreover, we have

(φψ)s,t − (
φ′

sψs

)
xs,t = φtψt − φsψs − φs,tψs + R

φ
s,tψs

= φtψs,t + R
φ
s,tψs =: Rφψ

s,t ,

which gives∥∥Rφψ
∥∥p

2 -var;[0,T ] ≤ ‖φ‖∞‖ψ‖p
2 -var;[0,T ] + ‖ψ‖∞

∥∥Rφ
∥∥p

2 -var;[0,T ]. �
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