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JUSTIFYING DIFFUSION APPROXIMATIONS FOR MULTICLASS
QUEUEING NETWORKS UNDER A MOMENT CONDITION

BY HENG-QING YE! AND DAVID D. YAO?
Hong Kong Polytechnic University and Columbia University

Multiclass queueing networks (MQN) are, in general, difficult objects to
study analytically. The diffusion approximation refers to using the stationary
distribution of the diffusion limit as an approximation of the diffusion-scaled
process (say, the workload) in the original MQN. To validate such an ap-
proximation amounts to justifying the interchange of two limits, # — oo and
k — oo, with ¢ being the time index and k, the scaling parameter. Here, we
show this interchange of limits is justified under a p*th moment condition
on the primitive data, the interarrival and service times; and we provide an
explicit characterization of the required order (p*), which depends naturally
on the desired order of moment of the workload process.

1. Introduction. Multiclass queueing networks (MQN) have in recent
decades become a popular model to study a wide range of engineering and service
systems. The dynamics in such networks are typically driven by discrete events
which occur in a stochastic manner: arrivals of jobs or customers, their service
completions at one node (resource) followed by transitions to the next node in the
network, occasional or sudden resource breakdowns, and so forth. To evaluate the
steady-state performance of such networks, simulation often appears to be the only
viable approach; whereas analytical methods mostly apply to stylized models with
limited features.

To overcome this handicap, so-called diffusion approximations (or heavy-traffic
steady-state approximation) have gained prominence in research and applications
alike. The idea is to scale, in both time and space, the stochastic processes of inter-
est (e.g., those associated with queue lengths and workloads) in the original net-
work, In many cases, it can be shown, under the so-called heavy traffic condition
(meaning the traffic intensity is such that resources are heavily utilized approach-
ing capacity saturation), the scaled processes approach certain limiting regimes
characterized by diffusion processes. The latter are more accessible analytically or
computationally (e.g., [17]), and can thus serve as useful approximations for the
original processes.
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FI1G. 1. Interchange of limits.

To illustrate this idea more formally, and following the setup due originally
to Gamarnik and Zeevi [25], we refer to the rectangle depicted in Figure 1.
Let W(t), a vector process, denote the workload at time ¢ in the original net-
work. For technical and conceptual reasons, we consider an infinite sequence
of copies or variations of the original network, indexed by k. Hence, let WX (r)
denote the workload associated with the kth network in the sequence; and let
Wk(t) = Wk (k%1) /k denote 1ts diffusion-scaled version. Establishing the diffu-
sion limit, W(t) = limg_ Wk (1), under heavy traffic is the task designated to
the left vertical side, edge I, of the rectangle. Next, for each k, we want to estab-
lish the claim that W (t) has a stationary distribution as t — o0, and let Wk (00)
denote the random variable associated with this limiting distribution. This step is
represented on edge II of the rectangle. Completely analogous and represented on
edge III of the rectangle is the claim that the diffusion limit W (t) also has a sta-
tionary distribution, embodied by W(oo). The diffusion approximation is then to
use this last stationary distribution, that of the diffusion limit W (1), as an approxi-
mation for the stationary distribution of the workload in the original network. This
is tantamount to claiming that Wk(oo) converges weakly, as k — oo, to W(oo)
which is represented on edge IV of the rectangle.

In other words, the diffusion approximation is a claim that starting from the
workload process of the original network (kth in the sequence), going through
edges I and III will reach the same result as going through edges II and IV. For-
mally, this can be expressed as
(1.1) lim lim W*(r) = Jim Tim Whr).

t—00 k—00

Thus, to justify the diffusion approximation boils down to justifying the inter-
change of two limits, k — oo and t — oo.

Viewed this way, the four edges of the rectangle in Figure 1 constitute the key
ingredients in the diffusion approximation of a stochastic network. First, we need
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to establish the diffusion limit (edge I); next, we need to make sure both the original
network and the diffusion limit have stationary distributions (edges II, III); finally,
to close the loop, we need to justify the interchange of the limits (edge IV).

1.1. Contributions and organization. The primary goal of this paper is to
show that under certain moment conditions on the primitive processes (i.e., those
concerning arrival and service mechanisms) in the original network, the inter-
change of the limits is justified for broad classes of networks. Specifically, we
shall focus on a general class of MQN, for which the diffusion limit has been a
well-studied subject (e.g., [4, 6, 12-14]).

Another equally important contribution of this paper is to bring forth a system-
atic approach—indeed a “recipe”—for the justification of diffusion approxima-
tions, developed here and in a companion paper [43]. To start with, suppose the
diffusion limit exists, that is, edge I has already been established (otherwise, there
will be nothing to “justify”). A powerful tool for establishing such a limit for var-
ious stochastic processing networks, the hydrodynamics approach, is given in [4,
39]. Then edges II and III can be established simultaneously together as follows.
Consider the deterministic counterparts of the prelimit process Wk (1) and its dif-
fusion limit W(t), denoted W*(r) and (), respectively. [These are obtained by
replacing the free processes in Wk (t) and W(t) by their drifts.] Then, following
Dupuis and Williams [21], in order to show that the diffusion limit has a stationary
distribution (edge III), it suffices to show the stability of w(z). Furthermore, we
have recently established in [43] that the stability of w(¢) leads to uniform stabil-
ity; meaning, starting with a total initial workload that is bounded (by a single unit,
say), the workload w* (¢) associated with the kth network, for any sufficiently large
k, can be drained by a time that is independent of k. Then, by invoking the results
in [19], this uniform stability leads to the stability of Wk (t); and hence, edge II.

Next, to establish edge IV, the crucial step is to bound the pth moment of the
workload process (p > m + 1, when the convergence of the mth moment of the
workload process is required). To do so, in [43], we have introduced a bounded
workload condition (more on this below); whereas in this paper, we will show
this can be accomplished by requiring the p*th moment condition, a moment
condition of suitable order on the primitive processes [specifically, the order is
p* > 2(p +2)]. Once this is done, along with the uniform stability established on
edge II, we can prove the uniform pth moment stability of the workload processes
(refer to Lemma 3.9 below), which will lead to the tightness of {Wk (00)} and the
convergence (of stationary distributions or moments) on edge IV, following the
approach (by now standard) in [9, 19, 43].

Indeed, the above recipe can be readily applied to many other stochastic net-
work models as well, such as those in [11, 18, 28, 32, 35, 42]. In all those models,
the networks can be represented by strong Markov processes, for which standard
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theories (e.g., ergodicity) are available, and diffusion limits have already been es-
tablished in the form of (semimartingale) reflected Brownian motion. The justifi-
cation of diffusion approximations can then be carried out by following the recipe
outlined above.

Below, we start with a review of related literature in the remaining part of this
section. We then present in Section 2 the class of MQN that we shall focus on,
along with results regarding edges I, II and III in Figure 1 (in Section 2.1). The
results concerning the interchange of limits are presented in Section 2.2, and the
detailed proofs are collected in Section 3. To facilitate exposition, secondary re-
sults and their proofs are collected in Appendices A and B.

1.2. Related literature. A brief review of the related literature is in order. Re-
cent studies on the interchange of limits to justify the diffusion approximation have
been initiated by Gamarnik and Zeevi [25] and Budhiraja and Lee [9], where they
have established the justification for the generalized Jackson network, a single-
class queueing network. Their results and approaches are then refined for some
multiclass networks in [26, 29, 30, 34, 43]. Other related works involve the many-
server regime, including [7, 8, 16, 23, 24, 36-38]. This is a different limiting
regime and often calls for a very different approach (from those used in MQN),
such as Stein’s method in [7, 8]. Common to all studies, however, is to identify key
conditions of the systems under study so as to establish certain properties (e.g.,
the moment bound of the workloads, as mentioned above) that directly lead to the
interchange of limits. Yet, such conditions (e.g., the Lipschitz continuity of Sko-
rohod mapping, the explicit bound on the workload in terms of interarrival and
service times, etc.) are often not present in multiclass networks; and this has be-
come a major handicap in applying diffusion approximation to a wider range of
stochastic processing networks. To extend such conditions, or more precisely, to
identify new conditions that will lead to the justification of the interchange of lim-
its in MQN, has become the focus of recent works including [26, 43] as well as
our current study.

In the multiclass setting, most related to our work is the recent study by Gurvich
[26], which aims to develop a systematic approach to the interchange of limits for
a class of multiclass queueing networks operating under the queue-ratio service
discipline, as well as the more standard buffer-priority discipline (see Example 2.2
in [26], which also refers to [12, 14]). The key step developed there (to justify
the interchange) is to verify a condition that the fluid model associated with the
sequence of networks under heavy traffic converges to the fixed-point state space
(also known as the “invariant manifold”) at a linear rate. This condition is stronger
than the usual uniform attraction property of the same fluid model. In [26], finite
moments of order p, for all values of p > 0, are assumed on the primitives, with
the following remark after presenting its main result, Theorem 3.1: “However, the
mapping from the value of p ... to the number of moments, m, for which the
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convergence holds is not as clear as in the generalized Jackson case ..., where ...
such convergence holds forallm < p — 1.7

Here, we show that a moment condition on the primitives is all that’s needed
to justify the interchange, given the existence of the diffusion limit and its station-
ary distribution. Thus, in particular, the linear-rate convergence condition in [26]
for networks under the queue-ratio discipline can be removed. Furthermore, we
provide an explicit characterization of the relation between p and m mentioned
in the above quote from [26]. The required order of moments on the primitives is
p* > 2(p 4+ 2), where p relates to m viam < p — 1 as in the above quote from
[26]. In our approach, however, p also specifically refers to the pth moment of the
workload that we want to bound, a key step leading to the interchange as motivated
earlier. In other words, we use this p as a bridge to connect the desired order of
convergence m with the required order of moments p* on the primitives. For more
details, refer to the p*th moment condition below in (2.38).

Similarly, in our own recent work [43], we bound the pth moment of workload
processes with a condition that the workload can be bounded by a “free process”
plus the initial workload. This bounded workload condition does not imply the
p*th moment condition developed here, and is not implied by the latter either.
However, to verify the bounded workload condition requires effort as illustrated
via several examples in [43]. (Once the bounded workload condition is verified,
however, the interchange is justified without requiring any higher order moments
on the primitives.) In contrast, the p*th moment condition here is trivial to verify,
and indeed automatically holds in networks where the primitives have moments of
all orders (e.g., renewal arrivals with phase-type interarrival times and i.i.d. phase-
type service times).

Using the p*th moment condition to justify the interchange of limits, however,
turns out to be a serious challenge. To prove the boundedness of the pth moment
of workload processes, we need to focus on a sequence of “regular” events, under
which the network processes behave “nicely,” and the probabilities of these events
occurring approach 1 at a certain rate (cf. Lemma 3.1). We then apply Bramson’s
“hydrodynamic” approach (e.g., [4, 26, 32, 42]) to show that the bounded workload
condition holds for sample paths in the regular events (cf. Lemma 3.5). Therefore,
the workload processes, when restricted to the regular events, possess a bounded
pth moments. On the other hand, the pth moment of the workload processes re-
stricted to the small-probability, nonregular events, have the same bound. Combin-
ing these two cases leads to the desired result—to justify the interchange of limits
via bounding the pth moment of workload processes.

2. Multiclass queueing networks. Let £ = {1,..., L} denote the set of
servers, and R = {1, ..., R} the set of job classes. Jobs move from one server
(resource) to another sequentially, and every job will have a distinct class index
at different servers. This labeling of job classes can be conveniently captured by
a “constituent” (incidence) matrix C = (Cy¢y)eer.rer, Where Cy =1 if class-r
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jobs are served by server £, and Cy, = 0 otherwise. Note, each column of C has
one and only one entry that equals 1, since each job class is served by one server
and one server only; and every job’s class identity () will uniquely determine its
server (¢, such that Cy, = 1). Whenever a server is available, the service discipline
will decide which job (if any) to be processed from the classes associated with the
server. We will focus on the head-of-line (HOL) service discipline; examples in-
clude preemptive resume static buffer priority (SBP, [12, 14]), first-in-first-out [4,
13], head-of-line proportional processor sharing [4] and the queue-ratio discipline
[26], among others. After service completion, a class-r job turns into a class-s job
with probability p,, or leaves the network with probability 1 — > p,s. Assume
this class transition scheme to be independent among all job classes and indepen-
dent of all other arrival and service mechanisms. Denote P := (p,s),ser. Clearly,
P is a substochastic matrix; and we will assume it has a spectral radius < 1, and is
thus invertible. (This means the network under study is an open network.)

We consider a sequence of networks, indexed by k. For the kth network, de-
note for each class r the interarrival times between consecutive and external jobs
as u’r‘(i ), and denote the amount of work (service time) each job brings to the
network as vf (i), i =1,2,.... Assume the interarrival and service times pos-
sess finite pth moments, p > 2. In particular, since we need to deal with systems
that do not necessarily start empty, we reserve u’r‘(l) and vf (1) to denote, at time
zero, the residual time and work until the next arrival and the next service com-
pletion, respectively. Furthermore, we assume that {(u’r‘(i ), vf(i )), i >2} arei.i.d.
with mean ((af)_l, [Lr_l) and variance ((aé‘,r)z, crli,). Denote of = (af)ren and
M = diag(p, 1y, er. For ease of exposition, we have assumed all the networks
share the same mean and variance of service times and hence omitted the index k
from w,, op r and M.

The routing of jobs is defined by a routing sequence {¢fs (@),i=1,2,...}, where
@F (i) = 1 if the ith class-r job is routed to class-s upon its service completion.
Hence, we have

P{¢)()=1}=p,s and P{gS () =0}=1-p,,.

Assume {d)fs (i)} are independent random variables, and are independent of
{(u} (@), v (i)}, oo,

Let A¥ = (I — PT)~1&k, which is the solution to the traffic equation, P
ok + PTk. Let

-1
P 1= (0f) gep = CMA* (= CM(1 - PT) "),

where ,oéf is the traffic intensity for server ¢, £ € L.

The three primitive processes that drive the kth network are the delayed (i.e.,

including the residuals) renewal processes associated with the external job arrivals
and the service times of the jobs and the routing process. Specifically, let EX(r) =
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(EF(1)rer and S5(t) = (S¥(1))rer. 1 = 0, where

Ef(t) =max{i : Zuf(j) < t} and
2.1) =
Sf(t) =max{i : Z vf(j) < t}.

j=1

The routing process, denoted <D'r‘(n) = (CD]r‘s (n))ser for class-r, is defined by the
routing sequence as

n
of (n) =Y oK (),
i=1

which counts the number of jobs, among the first n jobs served by serve r, routed
to server s.

With the residuals (u’;(l), vf(l))reR removed, the (undelayed) arrival and ser-
vice processes are denoted: E°k(t) = (E;”k(t))ren and S (1) = (S;’*k(t))reyg,
t > 0, where

Ef’k(t) =max{i : Zulr‘(j) < t} and
2.2) =

l
S;”k(t) = max{i : Z vf(j) < t}.
j=2
Here and below, the superscript “o” denotes the undelayed version of a (possibly)
delayed renewal process. By default, assume Ef(t) =0 [or u’r‘(l) = oo] if class r
has no external arrivals (i.e., af =0).

The main performance measures of interest are the queue length process
Qk(t) = {Q’r‘(t)},eR, and the workload process Wk(r) = {Wé‘(t)}geg. Specifically,
Q’r‘(t) counts the number of class-r jobs in the (kth) network at time ¢, and Wé‘ (1)
translates the job count into the amount of work server £ is facing. Let Df (1) be
the total amount of service time allocated to serving class-r jobs during (0, ¢], and
call DF (t)= {DiC (t)}rer the allocation process.

The dynamics of the (kth) network can be represented as follows:

R
23)  0F) =00 + EF(r) + )" @ (SF(DE (1)) — SK(D* (1)) = 0;
r=1
DF(1) is nondecreasing, and

(2.4) . . . T
satisfies conditions specific to the service discipline;

25 W) =CcMQk@t) >0;
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(2.6)  Y*(t) = et — CD* (1) is nondecreasing, with Y*(0) = 0;
o
(2.7 / wk@)ydy* @) =o0.
0

Here, the composition S¥(D¥(¢)) is an R-dimensional process with the rth com-
ponent being S¥(DX(¢)). Note that S¥(D* (1)) = {SK(D¥(1))},er and S¥(D (1))
counts the total number service completions for class-r jobs by time ¢, Ylf‘ () keeps
track of the cumulative idle time of server £ during the time interval [0, ¢], and the
last equality is the work-conserving (or nonidling) condition.

As an example of the specification in (2.4), the static buffer priority discipline
can be characterized as follows (cf. [12, 14]). For each class r, denote H, as the
set of job classes that are served by the same server associated with r and have a
priority no less than r; and let grk(t) =1if Q’r‘(t) > (0 and Z,,eHr\{,} Q’r‘,(t) =0,
and ¢¥(t) = 0 otherwise. That is, the function ¢*(¢) indicates whether the class r
is being served by its associated server at time ¢. Then the allocation can be written
as

(2.8) Df(t):/t ck(s)ds, t=0.
0

We follow the standard approach (e.g., [9, 15, 25, 26]) to construct a Markov
process representation of the network, denoted 2X(r), by appending to the queue-
length process other state information such as the residual interarrival and service
times (or the “age” of each existing job in the FIFO case). Under a HOL discipline,
E%(1) is piecewise-deterministic and satisfies the strong Markov property [20],
which is essential for the stability of the fluid model to imply the stability (positive
Harris recurrence) of the original network [15, 33].

Take the static buffer priority discipline as an example again to elaborate the
definition of E*(¢). Denote U*(¢) = (UX(t)),er and V¥ (1) = (VX(t))rer, t >0,
where

Ef(n)+1 SH(DE@)+1

29  Uro= > ukiy -t VEo= ) kG - Dio).

i=1 i=1

That is, at any given time ¢, for class r, Urk () is the remaining time before the
next external arrival, and Vrk () is the remaining service time for the job that is
in service. (If there is no class r job at the time, Vrk (¢) is the service time for the
arriving class r job.) Note, at time t = 0, we have Urk 0) = u’r‘(l) and Vrk 0) =
vf (1), the residuals at time zero introduced above. Hence, below we shall refer to
UK(t) and V¥ (¢) as “residuals” (at t) as well. Then E*(¢) = (Q*(r), U* (1), V¥(1))
is a strong Markov process, taking values on the nonnegative orthant of the 3R-
dimensional Euclidean space, denoted X (cf. [15, 20, 29]). Clearly, the dynamics
of the Markov process EX(¢) will be completely determined when the initial state
is given. Below, we will often consider many copies of the same network, each
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starting from a different initial state. To highlight the dependence on the initial
state, we will append it to the argument of the corresponding Markov process and
workload process. Hence, instead of 2k (1) [resp. Qk(t), Wk(t), D*(r) and Y*(1)],
wherever necessary we will write =k (t; x) [resp. Ok (t; x), Wk(#; x), D¥(¢; x) and
YK(t; x)] with x = Ek(O) € X being the initial state.

2.1. Diffusion limit. We assume that as k — 0o, the parameters a*, A%, Uf,r
and pf converge to o, A, 04, and p,, respectively; and thus these parameters
satisfy p = CMA = CM (I — PT)~'a. The heavy traffic condition is in force when
o = e and

(2.10) k(pk —e) =y as k — 00,

for some L-dimensional constant vector y. That is, the total traffic load on each
server, including both external arrivals and internal transfers, is equal to its service
capacity (asymptotically).

Recall, we require the primitives of the network, the interarrival and service
times, to possess a finite pth moment. Now for a sequence of networks, we need
to strengthen this condition so that it holds uniformly for all the networks. To avoid
technicalities, we assume that the network sequence is driven by the same primi-
tives except the initial arrival and service times; that is, assume for all &,

2.11) afubiy=alul() and Vi@ =vlG@), i=2reRr.

For the given p > 2, assume all interarrival and service times have bounded pth
moments:

(2.12) EY [y 2)" + (v} (2)"] < 0.

reR

In addition, for each k and r € R, we assume that
(2.13) P{uk(2)>a} >0 for any a > 0;

and that for some integer j > 2 and some nonnegative function p(x) satisfying
Jo° p(s) > 0, the following inequality holds:

J b
(2.14) P{aqu’;(i)gb}z/ p(x)dx forany 0 <a < b.
i=2 4

The above are certain forms of a “spread-out” condition, required to guarantee the
positive (Harris) recurrence and hence the uniqueness of the stationary distribution
of the prelimit networks in edge II of Figure 1. They also appeared in prior works,
for example, [5, 15].
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Apply the standard diffusion scaling (along with centering) to the primitive and
derived processes:

A A 1
(EZk (1), §9% (1)) = %(E;”k(kzt) — AKK2t, 0K (k%) — (vF) k),

(BE), $40) = +(EX(6r) — 24k, SE (%) — (o8) 4%,
k
(2.15) {
b (0) = (@5, ([K]) = prsk?r),

(B0, ko), Wh) = £ (34#20), 0F#2r), Wh (k).

We will use the following so-called fluid scaling of the primitive processes as well:

(EZK (1), 89k(1), ®F (1), E* (1), Sk(1))
(2.16)

= %(E;”k (kt), SO*(kt), D (Lkt]), EX(kt), S¥(kt)).

We now apply diffusion scaling to the equations in (2.3)—(2.7) and the related
processes. Particularly, the equation in (2.3) becomes

217) 0% (t) = O%(0) + EX (1) + k(! — @)t + k[ar — (I — PT)M™' D* (1)),
where

R
= EX) + )" (8K (DE(n)) — (1 — PT)SM(D* (1)),

r=1
. 1 . 1
Sk = ﬁsk k%), D)= pDk (K1),

$K(D* ) = {SH(DF D)}, e

Associated with a given service discipline, there exists a so-called lifting matrix,
denoted Ay, whichis a (R x L)-matrix that maps the workload to the queue length
in the diffusion limit. This matrix is specified through the uniform attraction prop-
erty, which will be discussed shortly. For example, consider the static buffer pri-
ority discipline: (Ay)¢r = iy, if class r has the lowest priority among all classes
served by server £; and (Ay)¢ = 0, otherwise. Denote gk ) = Qk(t) AV Wk(t).
Then, following [39] (Section 4), we can reduce the dynamics of the workloads
under diffusion scaling to the following:

2.18)  Wr@y =wem(1 —PT) (0 0) — & () + XX (1) + WPk (),
(2.19) )?k(t) is nondecreasing, with )?k(O) =0,

(2.20) /0 = ik (t)dY*(t) =0,
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where the reflection matrix is given as ¥ = [CM (I — PT)_IAq]_l and the free
process as

2.21) Xy =weM (1 — PTY'ER () + kW (pk — o)1

To understand the equation in (2.18), we first write Qk () =4y Wk (1) + &5(t) in
(2.17), and then multiply both sides with WC M (I — PT)~! to get the following:

Wk@y=wem(1 — PT) (0% ) — &5 0)) + wem (1 — PT)'Er @)
+kwCM(I — PT) (X —a)t +kW[CM(I — PT) 'at — CD*(1)].

Taking into account that CM (I — PTYy=lok = pk and CM (I — PT)"'a = e, and
that YX (t) =k[et—C Dk ()] [cf. (2.6)], we know the above equation can be written
as the one in (2.18) immediately.

Here, the existence of the reflection matrix W is implicitly assumed. Also as-
sumed is W being a complete-S matrix (cf. [39]), which is necessary for the exis-
tence of the diffusion limit in the theorem below.

In addition, the following fluid model associated with the original network can
be derived using the hydrodynamic approach (refer to Section 3 for a more general
version):

(222)  G(t)=q0) +at— (I — PTYMd(),
(223)  w({)=CMg(r) >0,
(224) (@) =et — CMd(1), d(t) and y(r) are nondecreasing,

(2.25) /0 T B i) =0,

(2.26) additional conditions specifying the service discipline.

To illustrate the specification in (2.26), continue with the static buffer priority dis-
cipline in (2.8), with the allocation process d(¢) = {d,(¢)},er expressed as

B t
(2.27) iw=[ &was 1=o0
0
where {¢,(¢)},er are nonnegative functions satisfying the following for r > 0:
Y. &M=l and Y &GO=1 ifg@)>0.
reR reH,

Refer to [4, 12, 14] for more details regarding the static buffer priority discipline
(and other HOL disciplines as well) in the fluid model.

We say that the uniform attraction property holds with the lifting matrix A, if
there exists a positive real function £(¢), satisfying lim;_, o, 2 (¢) = 0, such that for
any solution to the above equations with |g(0)| < 1, the following holds:

(2.28) () — Agw(t)| < h(r) for all t > 0.
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An alternative (and equivalent) statement for the above condition is for some w* >
07

(2.29) |g(t) — Agw*| < h(t) forall r > 0.

The uniform attraction property has been established for multiclass queueing net-
works under various service disciplines; refer to [2—4, 6, 12—14]; details of the
associated lifting matrices can be found in these papers, too.

In the following theorem, we will study the weak convergence (denoted as “=")
of the diffusion-scaled processes in the Skorohod space, the space of RCLL func-
tions. Strictly speaking, we need to deal with the Skorohod metric [1, 39]. How-
ever, since all the limiting processes involved are continuous processes (Brownian
motions), and the u.o.c. convergence to a continuous function implies the conver-
gence under the Skorohod metric [1], it is convenient (and indeed equivalent in the
current context) to treat the Skorohod space as endowed with the more familiar
uniform metric.

THEOREM 2.1 (Diffusion limit [4, 39]). Suppose the heavy traffic condition in
(2.10) is in force; the initial workload and the initial residuals satisfy the following:

(Wk0), 0% (0) = (W(0),000)  with Q(0) = A,W(0),
N ~ 1
UF O]+ [VEO) = £ (ju* D] + [* D)) > 0,

for some W(O); and the uniform attraction property in (2.28), (2.29) holds. Then
we have the following weak convergence when k — 00:

(W), 04 @), X* (). Yr @) = (W®, 00, X(0), Y (1)),
with the limit characterized by the following equations:
(2.30) W) =W(O0) +X()+¥Y () >0;
(2.31) IA/g(t) is nondecreasing in t > 0, I?g (0) =0, Lel;

(2.32) fooo We(t)dY,(t) =0, I=ye

(233) Q) =AW (D).

Here, X (t) is a Brownian motion with drift 0 := Vy (and properly defined covari-
ance matrix), and W (t) is an semimartingale reflected Brownian motion (refer to

[39D).

Recall we have assumed in the above that the reflection matrix W is well defined
(i.e., the matrix CM (I — PT)~! A is invertible) and is a complete-S matrix, which
guarantees the existence and uniqueness of the limit W (t); refer to [39]. We remark
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that to guarantee the convergence in the above theorem, instead of the condition
in (2.12), it suffices to assume a weaker condition, Bramson’s uniform second
moment condition, on the primitive processes; refer to [4].

The following dynamic complementarity problem (DCP) is a deterministic ver-
sion of the above limit [particular the first three equations in (2.30)—(2.32)], which
is obtained by replacing X (¢) in (2.30) with its drift term,

(2.34) w(t) =w(0) +60r + ¥y(r) > 0;
(2.35) ye(t) is nondecreasing in ¢ > 0, $¢(0) =0, Lel;

(2.36) /0 T B dit) =0,  Lel

We shall refer to the deterministic DCP in (2.34)—(2.36) as stable, if there exists a
time 7 such that for any solution (w (), y(¢)) with |w(0)| < 1, we have w(t) =0
forallt >T.

Then the convergence results along edges Il and Il in Figure 1 are readily estab-
lished following similar studies in the literature; and we summarize these results
in the following theorem.

THEOREM 2.2. Suppose the heavy traffic condition in (2.10) holds, and the
DCP in (2.34)—(2.36) is stable. Then we have the following results:

(a) The diffusion limit W(t) in Theorem 2.1 is positive recurrent and has a
unique stationary distribution.

(b) For any sufficiently large k, @k(t) = (Qk(t), lA]k(t), Vk(t)) is positive re-
current and has a unique stationary distribution. Furthermore, if the pth moment
condition in (2.12) holds, then for any m € [0, p — 1) and for sufficiently large k,
the stationary workload has a finite mth moment and

(2.37) tlim E|Wk(t; x0)|" = E\Vi/k(oo)]m <oo  forany initial state x,
—00

where W* (00) stands for a random variable (vector) following the stationary dis-
tribution of Wk(r).

Indeed, the conclusion in (a) is due to Dupuis and Williams [21]. The key to
establishing the edge II result is the concept of uniform stability, which refers to
the property that if the deterministic DCP corresponding to the diffusion limit is
stable, the fluid models corresponding to the prelimit networks are also stable.
(Also refer to Lemma 3.7 below.) Consequently, the conclusion in (b), follows
from Dai and Meyn [19].

2.2. Interchange of limits. Here in this section, we establish edge IV (conver-
gence of stationary distributions) in Figure 1. Furthermore, given p > 2, we also
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establish the convergence of the mth moment of the stationary workloads, with
0 <m < p — 1. To this end, we need the following condition, which strengthens
the pth moment condition of Theorem 2.2.

p*th moment condition: All interarrival and service times have bounded p*th
moments, that is, for some p* > 2(p + 2),

(2.38) EY [l )" + (v} (2)"] < 0.

rer

This condition will guarantee the boundedness of the pth moment of workload,
which holds the key to proving the convergence of stationary mth moments of
workload form < p — 1.

Note that the above p*th moment condition implies the following slightly

weaker form: for some constant ¥ > 0 and for all t > 0,

239)  E sup Y (|EZK(s) = aks|P 4 80K (s) — iks|7) < ic(1427712),

O=s<t,eR

and furthermore,

240)  Esup Y (ECK®| + ]84 <w(1+17"72),

0<s<t,er

The above variation is technically convenient and has been used in previous studies
[9, 43]. To prove the claimed implication, refer to Appendix A.1, Lemma A.3.

THEOREM 2.3. Suppose the heavy traffic condition in (2.10) and the uniform
attraction property in (2.28), (2.29) hold. Assume furthermore the stability of the
deterministic DCP in (2.34)—(2.36) and the p*th moment condition. Then the fol-
lowing weak convergence holds:

(2.41) (WK(0), 0¥ (0)) = (W(00), Q(00))  ask — oo.
Furthermore, for any m € [0, p — 1), we have
(2.42) (E|Wk(o0)

" E[Q¥(c0)|") — (E|W(c0)|". E|Q(c0)|") as k — oo.

Note, the above theorem is in parallel to Theorem 14 of [43], which also justifies
the interchange of limits but under a different condition, the so-called bounded
workload condition: for some constant « > 0,

(2.43) sup [W(s)] < (|W*©@)] + sup [X¥(5)]).

0<s<t 0<s<t
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In particular, it is shown in [43] the above condition implies the boundedness of
the pth moment of the workload process,

(2.44) E sup [WX(s)|? <k (|EX(0)|P 4+ 141P),

O<s=<t
under the bounded pth moment condition of primitives in (2.12). This bound on
the workload holds the key to establishing other properties for justifying the inter-
change of limits.

Clearly, the bounded workload condition in (2.43) and the p*th moment condi-
tion in (2.38) do not imply each other: the latter is trivial to verify, being imposed
directly on the primitives; whereas the former requires (slightly) lower moments
on the primitives but could be difficult to verify.

3. Proof of Theorem 2.3. We break the proof into three subsections. In Sec-
tion 3.1, we identify certain regular events associated with “nice” sample paths,
such as the fluid-scaled arrival processes lying within a certain range of their mean
values; and develop bounds on the probabilities of these regular events. Then, in
Section 3.2, we demonstrate that the workload process, too, behaves “nicely” un-
der the regular events. To do so, we apply Bramson’s “hydrodynamic” approach [4]
to show that the bounds in (2.43) work for sample paths under the regular events.
Such a bound in the regular event, combined with a crude bound for the pth mo-
ment of the workload under the “nonregular” (or, rare) events, leads to the pth mo-
ment bound of the workload in (2.44) under the diffusion scaling (Lemma 3.6). The
rest of the proof in Section 3.3 is to establish standard properties of the workload
process such as uniform integrability, uniform pth moment stability and tightness,
which then complete the proof of Theorem 2.3.

A road map summarizing the above is illustrated in Figure 2. The part marked
out by the dotted rectangle is the focus of this paper.

3.1. Probability bound of regular events, complementarity, oscillation inequal-
ity, uniform continuity and uniform attraction.

Probability bound of regular events. Define the variables:

i—1

(3.1) ukmax(p) .= max{u’;(i) DY uk(i) <ti=2,3,.. }
i'=2
i—1

(3.2) plmax gy .= max{vf(z‘) DY k(i) <ti=2,3,.. }
i'=2

The first variable is the maximal interarrival time of class r realized before time ¢
for the kth network; the second variable is analogous, for the service times. Note
that the initial residuals u’,‘ (1) and Uf (1) are excluded. Let ¢* and u™ be any positive
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probability bound of regular events (L3.1) I

3667

I uniform continuity, uniform attraction (L3.4,T3.3)

Ibounding workloads in regular events (L3.5) I complementarity [cf. (2.7)] I

oscillation inequality (L3.2) I

<—| crude pth moment bound (L3.6) I

h% uniform pth moment stability I
interchange of limits (T2.3)

FI1G. 2.  Road map (for multiclass queueing network; T, L: theorem, lemma).

[ pth moment bound of workloads (L3.6) | —L| uniform integrability }Tl uniform stability [43]]

times, and {my }xcx be a sequence of real numbers with my > 1. Define the regular

events as
33) QR (r*, w*, my) = QK (¢, my) N QK (¢%, my) N QK (1, my)
' N Qk (¢, u*, my) 0 QK (%, my) N QK (%, u*, my),
where
1 1
k k, 2
04 b m) = ()| = e |
r
1 1
k _ k, 2
r
Qlfg(t*, u®, mg)
1 0.k -0,k k
(3.6) = . su[/)( . sup m_k(E Fmp(t +u)) — E”"(mt)) — o*u
<t<kt* O<u<u*

il
=—1
~ logk

QK (e*, u*, my)

L(S’O’k(mk(t +u)) — S'O’k(mkt)) — pu
mp

3.7 ={ sup  sup

0<t<kt* O<u<u*

: }
< b
~ logk

Q]&,(t*, u*, my)
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L(d_Dk(mk(z‘ +u)) — d_Dk(mkt)) — Pu

(3.8) = { sup sup
mg

0<t<kic; t* 0<u =<k u*

1
< @} where k; :=2|u|,

Q@(t*,mk)

1 4 A N
= { sup — (|E“* (mpt)| + |S7K (mit)| + | @K (myc) )

(3.9
)
O<t<t* Mk logk

Here, we have introduced a sequence of regular events associated with “nice”
sample paths; for example, the fluid-scaled arrival processes lie within a certain
range of their means according to the definition of Q’]‘E (t*, u*, my). Note that the
ranges that bound the sample paths are carefully specified such that the probabili-
ties of these events must approach one at a certain rate as indicated in the following
lemma, with the proof deferred to Appendix A.

LEMMA 3.1. Let t* and u™ be any positive times. Then the following estimate
holds for sufficiently large k (depending on t* and u*):

(logk)?™+1

k
P(Q (I*, Lt*,mk)) >1-— W

forall my > 1.

Complementarity and oscillation inequality. The required oscillation inequal-
ity, given in the lemma below, is a standard result (e.g., [39]). To state the inequal-
ity, denote for any RCLL (vector) function f(u) (# > 0) and any time interval
[s, 71,

Osc(f (), [s, 1) = sup{| f (1) — fu2)| :5s <ur <up <t}.
LEMMA 3.2. Suppose there exists a constant k. > 0 such that for any RCLL
Junctions, w(t) = (we(t))eer, X () = (x¢(t))eec and y(t) = (y¢(t))eec, satisfying
w(t) =w0) +x()+W¥y@r)>0  fort>0;
ve(t) is nondecreasing in t > 0, v¢(0) =0, Lel;
ve(t) cannot increase at time t ifw() > 0.
Then the following oscillation inequalities hold for any 0 <s <t¢,
(3.10) Osc(w(-), [s,t]) and Osc(y(-), [s,t]) < «c(Osc(x(-), s, 1])).

(Recall that the reflection matrix V is assumed to be completely-S.)

The complementarity property is a part of the dynamics of multiclass queueing
networks, that is, the condition in (2.7) or (2.20).
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Uniform attraction. The required form of uniform attraction property is
slightly more general than the one stated earlier in (2.22)—(2.26). It involves the
following more general fluid model that includes the initial residuals:

g(1) = q(0) + diag(a)[er —a ()] = (I = PTYM~[d(t) — 5(1)]"
(3.11) = G(0) — diag(e)[er Aii(1)] + (I — PTYM ™ [d () A 5(1)]
+at — (I —PTYM™d(),
(3.12) w(r)=CM§(t) >0,
(3.13) y()=et — CMd(1), d(t) and y(t) are nondecreasing,

(3.14) /Ooo we(t)dye(t) =0, tel,

(3.15) additional conditions specifying the HL discipline.

[Recall, in the static buffer priority discipline, the additional condition in (3.15) is
the same as the one in (2.27).]
We require (among other things) the following uniform attraction property.

THEOREM 3.3. Assume the heavy traffic condition in (2.10) and the uniform
attraction property in (2.28) hold.

(a) There exist a time T > 0 and a constant k,, > 0 that only depend on the
network parameters such that for any solution to the fluid model in (3.11)—(3.15)
satisfying |q(0)| + |u(1)| + |v(1)| < 1, the workload w(t) is nondecreasing in time
t > 1 and

(3.16) lw(®)| < Kw, t>0.

(b) (Uniform attraction) The uniform attraction property defined through the
requirement in (2.28) or (2.29) holds for the fluid model in (3.11)—(3.15), too. Con-
sequently, for any given ¢ > 0 and some sufficiently large time T (depending on ¢),
the following holds for any solution to the fluid model in (3.11)—(3.15) satisfying
lg(O)| + [u(D] + [v(D] = I:

(3.17) lg@t) — Aguw(t)| <e  fort>T.

(©) Ifq(0) = Aqw* for some w* > 0 and (i (1), v(1)) = 0 (i.e., the initial state
is a fixed-point state), then q(t) = q(0) and d(t) = M At forall t > 0.

According to a well-known result (in the proof of Theorem 5.2 of Chen [10]),
we know that the fluid model in (3.11)—(3.15) coincides with the standard one in
(2.22)—(2.26) after a finite time that depends only on the network parameters. That
is, the complications incurred by the initials #(1) and v(1) in Theorem 3.3 can be
mitigated and, therefore, the conclusions in the theorem are immediate.
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Uniform contmmty First, assume that the Markovian state descriptor is
glven as uk(t) = (Q (1), U"(t) Vk(1)), or the diffusion-scaled version Ek(t) =
(Qk(t) U k@), vk (1)), for ease of exposition. As we have seen in Section 2, this
descriptor applies under the static buffer priority, head-of-line proportional pro-
cessor sharing and queue-ratio disciplines, etc.; refer to [4, 26] for more details
on the latter two. For the first-in-first-out discipline, we must append additional
information that captures the order of arrivals to E%(¢) to form a complete descrip-
tor; refer to [4], too. Nevertheless, the additional information plays a role in our
study only through (various versions of) the corresponding fluid model and the
related uniform attraction property, and hence it is sufficient to assume the above
descriptor for our purpose.

Denote

Y= y* (@, A, mp)]

),

= max(—|Wk(O)] + sup m—(

0<t<A

(3.18)

1 .
—|ak(0>l,1),
mpg

for any time interval [0, A], with A > 0, and any sequence of numbers {m; >
I;k e K}. Let T > 0 be a fixed time of a certain magnitude (to be specified
later). Divide the time interval [0, A] into a total of [kA/ ykT'| segments with
equal length y*m;T/k, where [-] denotes the integer ceiling. The jth segment,
j= , [kA /y*T7—1, covers the time interval [ jy*m T/ k, (j +1)y*m; T/ k].
Note that the last interval (with j = [kA/y*T7 — 1) covers a negligible piece of
time beyond the right end of [0, A]if kA /y*T is not an integer. For simplicity, be-
low we shall treat kA /y*T as an integer so as to omit the ceiling notation. Then,
forany ¢ € [0, A], we can write f = y my (jT +u)/k forsome j =0, ..., kA /y*T
and u € [0, T']. Therefore, foru € [0, T] and j < kA/ykT, we write

(jy"ka + ykmku)
k

“ 1
(mgt) =
% 3
3.19) VM ykmy

=-— (Gky*mi T + ky*myu) := WhJ (u).

ky~*my
The definition for the “hydrodynamic™ scaling above, WX/ (), is slightly different
from the same notation in our previous papers [40-42] in that new parameters my
and y" are introduced into the scaling. The other processes, g2kJ (u), Qk’j (u),
UK-J (u) and V57 (1), are defined in the same manner.

The uniform continuity property involves approximating the hydrodynamics
systems by the fluid model in (3.11)—(3.15).

LEMMA 3.4 (Uniform continuity). Let M, A (and A=A+ 1), and T be any
given positive numbers.
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(a) Forany € > 0, there exists k* such that for any k > k*, the following holds
for any my > IE/‘(O)I vl1we Qk(A, T,mp),and0<j < kA/ykT: if

(3.20) |08 (0)] + [T ()| + |V* (0)] < M,

then, we can find a fluid model (q(t),u(1),v(1)) satisfying (3.11)—(3.15) and
1g(O)| + [a(1)| + [v(1)| < M such that
0supT|Qk’f<u) —G@)|+ [T (0 — )|+ V5 ©0) - 5(1)| <.
<u<
(b) Moreover, the time T can be chosen sufficiently long (depending on network

parameters only) such that the following holds for any my > IEK0)| V1, w €
QK(A, T, my) and 1 < Jj< kA/ykT (excluding j = 0):

_k’/ _k’./
O9(0) and  VEI(0) < e

Consequently, for any & > 0, there exists k* such that the following holds for any
me = |2HO0)| V1, w e QYA T, mp), and k = k*, 1 < j <kA /YT, if

(3.21) |0%7(0)| < M,
then we can find a fluid model (g(t),u(1) =0, v(1) = 0) satisfying (3.11)—(3.15)
and |g(0)| < M such that

sup |08 (u) — G(u)| <e.
0<u<T

Recall, involving u (1) and v(1) in this set of equations is necessary for handling
the more general initial states in the prelimit networks [refer to the property (a) in
the above lemma]. Such a uniform continuity property essentially follows the ap-
proach of Bramson [4], even though the initial residuals and the additional scaling
parameters (my and y" ) are not considered in his version. The proof is detailed in
Appendix B.

3.2. Bounding workloads over regular events, and pth moment bound of work-
loads. Given the above preparations, we follow the hydrodynamic approach to
establish the bound for the workload process under the regular events.

LEMMA 3.5. Consider any time interval [0, A], with A > 0. Let ¢ > 0 be
any given (small) number. Then there exists a sufficiently large T such that
for sufficiently large k, the following results hold for any initial state EX(0),
myg > |ék(0)| V1, we QKA T, my) (here A= A + 1), and positive integers
j=1,... kA/Y*T:

(a) (Uniform attraction)

(3.22) |0% T () — A,WRI ()| <& foralluel0,T];
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(b) (Boundedness)
(3.23) }Wk’j(u)| <k forallu €[0,T],

where K is a positive constant that depends only on network parameters (indepen-
dent of k and w). In addition, the bound in (3.23) also applies to j = 0.

The above lemma is stronger than similar results in the literature for establish-
ing a conventional heavy-traffic theorem (e.g., Lemma 7 of [42]): here the results
in (a), (b) hold uniformly on the regular events and allow for additional scaling
parameters. [Specifically, (b) is what is needed to bound the pth moment of the
workload below, while (a) is an auxiliary result.]

PROOF OF LEMMA 3.5. Let T be any real value satisfying:
(3.24) T > Tk ¢8,

where the term on the right-hand side is defined in Theorem 3.3(b). Note that T is
large enough so that in the fluid network in Theorem 3.3 (under the heavy traffic
condition), the state g () will be close enough (by an error bound of ¢/8) to the
fixed-point state, starting from an initial state (g(0), #(1), v(1)) that is bounded
by k. Here, ¢ is given in the current lemma under proof, and « is a constant that
depends on network parameters only:

(3.25) K=ty +3k:+1, K=Kuk+1,

where «,, and k. are given in Theorem 3.3 and Lemma 3.2. The rationale for the
choice of ¥ will become evident shortly.

Step 1. Prove (a), (b) of Lemma 3.5 for j = 1.

Let ¢’ > 0 be any given number. Note that |Ek’0(0)| = |@k(0) / ykl <1 accord-
ing to the definitions in (3.18), (3.19). By Lemma 3.4, we have for sufficiently
large k, and for any initial state ék(O), my > |@k(0)| v 1and w e QK(A, T, myp),
there exists a fluid model (g(u), u(1), v(1)) satisfying (3.11)—(3.15), which may
depend on &, @k(O), my and w, such that

|g(0)| + |a(1)| + ()] <1 and

s[ggT](IQk’O(u) — )|+ |0*°0) —a ()] +|VF00) — 5(1)]) < .

(3.26)
Since T > T /8, applying the uniform attraction property in Theorem 3.3 to the
above fluid model (g (u), w(u)) yields:

G ) — Ag(u)| < g forallu>T and

|w@w)| < kw(|g0)| + |a(D)| + [9(1)]) < Kw for all u > 0.
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Note that (QXO(T + u), WEO(T + w)) = (05! (w), Wr'()) [and 0*0(0) =
0%(0)/y*1; and that

|05 ) — Ay WE@)| < |05 @) = G(T +w)| +1G(T +u) — Ag (T +u)
+ 1Ay - |[0(T +u) — WEL@)|.

Hence, choosing a sufficiently small ¢’ at the beginning of the proof, the estimate
in (3.26), along with (3.27), implies that the conclusion (a) holds with j =1 for
sufficiently large k and for all w € QK(A, T, my). By (3.26), (3.27) again, we have
forall u € [0, 2771,

(WO | < [w)| + &' <iw+ & <Ky +e,
and for all u € [0, T'],
(3.28) (WE L) | = [WRT + )| <k +e (< 4).

That is, the bounding property in (b), for both j =0 and j = 1, is satisfied.

Step 2. We now extend the above to j =2, ..., k8/y*T. Suppose again, to the
contrary, there exists a subsequence KC; of k such that, for any k € K, at least one
of the results in (a), (b) does not hold for some integer j € [2, k5/ ykT] and for
some 2X(0), my > |EX(0)| v 1 and sample-path w € Q¥(A, T, my). Let ji be the
smallest positive integer in the interval [2, k§/y*T] such that at least one of the
properties in (a), (b) does not hold with the associated gk (0), my and w. To reach
a contradiction, in the rest of the proof, we will show that the desired properties in
(a), (b) hold for j = ji for sufficiently large k € K1, and indeed for any initial state
E50), mx > |EX(0)| v 1 and w € QK(A, T, my).

Let ¢’ > 0 be any given number. Following the earlier argument, under the (con-
tradictory) assumption above, the results in (a), (b) hold for j =1, ..., jr — 1, any
ék(O), my > |ék(0)| v 1and w € QX(A, T, my), for each k € K. Specifically, for
j=jr—1(=1), we have

|whki=10)| <« for all k € K.
This yields the following:
| QLI =1(0)| + |TR =10y + |VEI1(0)
<k |WEiETL )|+ 1<ike forallk e K.

By Lemma 3.4(b), we have for any sufficiently large k € Ky, and for any EX(0),
my > |2K(0)| v 1 and w € QK(A, T, my), there exists a fluid model (g (u), w(u))
satisfying (3.11)—(3.15) [which may depend on &, 2K (0), my and w] such that

(3.29) sup | Q8T w) — g(u)| < &’
uel0,27]
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with | (0)| < k. [Here, we know that |U%#=1(0)| 4+ |VF#*=1(0)| — 0 as k — 0,
and can set u(1) = v(1) = 0 by Lemma 3.4(b).] Since T > T¢ /g, applying the
uniform attraction property in Theorem 3.3 to the above limit yields:

(3.30) G () — Ag(u)| < g for all u > T.

Note that (Q%~ (T + u), WEik=1(T 4 u)) = (QFk (u), W*Jk(u)). Hence, the
convergence in (3.29), along with (3.30), implies that (a) holds with j = j; and
w € Qk(A, T, my), for sufficiently large k € IC;.

Consider any sufficiently large k € K, such that the results in (a) hold for
j=1,..., jr (but it needs not holds for j = 0) and for all w € QK(A, T, my). Fix
any EX(0), my > |EK(0)| v 1, and € Q¥(A, T, my). This implies that the pro-
cesses, (w(t), x(1), y(1), 2(1)) := (WH(met), XX (mt), V¥ (mit), Z¥(m) /y*my.,
satisfy the specifications in Lemma 3.2 in the time interval t € [Y*T /k, (i y*T +
y*¥T)/k], which merges all intervals corresponding to j = 1,..., jx. Hence, we
have for any ¢ € [y*T/k, Gxy*T + yKT)/k] (C [0, A]),

OSC( kl Wk(mks),se[ykT/k,t])
mp
(3.31)

< KCOSC( [)A(k(mks) + ék(mks)], s e [ykT/k, t]) = 3k,.

yEmy
[Here, recall that &% (mys) = Qk (mps) — Ay Wk(mks), which is a small value in
the above estimate according to the conclusion (a).] Consequently, we have the
following estimations:

~ 1 ~
- Wk(mkt)] < ‘k—Wk(mkykT/k)‘
yrmg yrmg

—i—Osc( Wk (mgs), s € [ykT/k, t])

ykmy
< ky + &+ 3k,

where in the second inequality we have also applied the conclusion in (3.28),
that is, IWk(mkykT/k)/ykmkl = [WK1(0)| < ky + . Keeping in mind that
Wkk(uy = W*((ieykmi T + y*myu)/ k)] y*my., the above implies that (b) holds
with j = ji for sufficiently large k € ;. O

Next, we establish the pth moment bound for workloads and queue lengths.

LEMMA 3.6 (Bounded pth moment of workload). There is a constant k > 0
such that for any time t > 0 and sufficiently large k, the following holds for any
initial state E%(0) and any my > |Ek(0)| v

1 ~ k p
— WX (mgs)| <x(1417).
mg

E sup

0<s<t
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PROOF. Following Lemma 3.5, we first bound the workload processes in
QK(A, T, my). By Lemma 3.5(b), there is a constant «; such that the following
holds for sufficiently large k, any initial state ék(O), any my > |ék(0)| v 1, and
any w € QK(A, T, my):

1 -
sup —Wk(mkt)
O<t<AlMg
Wk Xk g0
S/qykflc](' ( )|+ sup | (mkm—l—l ( )|—i—1>,
m 0<s<A mg m

where in the second inequality we have used Lemma 3.5(a) to remove the term
&% (mys). Hence, we have

1 . p
E( sup — Wk(mkt)> -
Osng mk’ ’ QK(A,T,my)

< K1E(Y) g a7y S KIEGY)? ka1 4 AP),

where the last inequality is proved following the same procedure as in Lemma 9(a)
of [43]. Next, we bound the workload in € \ QK(A, T, my). Pick any positive
number « and B satisfying 1/a 4+ 1/8 =1 and in addition 1 < 8 < (p* —4)/2p.
Then, for sufficiently large k, we have

1 - P
E( su —Wk(mkt)D o\ a
OStEA me QA\QY(A, T, my)
1 ap 1 1
< [E( sup |— WX (mt) ) ]1 [E(g ot &, 7m ))ﬁ]B
O<t<AlMg o

< [Elcz(l + ‘LEO’k(k%nkA) ap)}; [P(R\ Q%A T, mk))]%

kmy,

1 [(ogk)P*+175
< [i3(1 + (k2)*7)] 7 - [%T
§K4(1+AP).

Here, we have applied Holder’s inequality and Lemma 3.1 in the first and forth in-
equalities, respectively, and have taken into account p* > 2(p + 2) and our choice
of B in the last inequality. To see the second inequality, we note the following
estimate (for some constants « and x5 ):

1 oy K'é Ak Ké Ak Ké k(1,2
—|w Nl < =2 | < —= 0 E —=—E (k“myt
mk| r(mk )|—mk|Qr(mk )|—mk|Qr( )|+ . kmk ”( mk)

K/
<+ X L[+ B (P
r
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/ 2R+Z K2 EOk mkt)

1
<K} <1 e |E®: k(kkar)|).

Finally, the above two estimates lead to the lemma, since the time A is arbitrarily
given in Lemma 3.5. [J

Bounding the pth moment of the workload in the above lemma is a crucial step
in establishing (in the next subsection) the uniform integrability of the workload
processes, and subsequently its uniform pth moment stability and tightness. To do
so, we cannot simply follow similar cases in the literature, for example, Dai ([15],
Lemma 4.5) and Dai and Meyn ([19], Lemma 5.2), where the fluid-scaled arrival
processes serve as the bound for the workload, and thus leading to the required uni-
form integrability property directly. For example, in Dai and Meyn [19], to justify
the existence of the pth stationary moment for a single multiclass queue network
(say, the kth network), a moment bound for the queue-length process can be de-
rived by discarding the service and routing processes in (2.3): for any sufficiently
large initial state x = EX(0) (= (Q*(0), U*(0), V¥(0))),

1 b4
— 0% (1x]s)

|x|

p
m<Q"<0>+E"<|xls>> <k(1+17).
However, under diffusion scaling (which is needed in our setting), the arrival pro-
cesses become unbounded as k — oo and cannot serve the same purpose to obtain
the bound in Lemma 3.6. To overcome this difficulty turns out to be a major effort,
and our approach is to identify the regular events and characterize the hydrody-
namics of the networks under these events as summarized in Lemmas 3.1 and 3.5,
which has provided proper preparations for the proof of Lemma 3.6.

E sup

0<s<t

<E sup
0<s<t

3.3. Uniform stability, uniform integrability, uniform pth moment stability,
tightness and interchange of limits. As demonstrated in [43], the uniform stability
property is a general property that applies to a wide class of stochastic processing
networks, including the multiclass queueing networks under study.

We state the property for reference here. For each k, denote (c]k (1), WK (1)) as the
fluid model corresponding to the kth (original, discrete) network (0K @), Wk@)).
It satisfies the relationship in (3.11)—(3.15) with the index k properly appended,
and roughly speaking is derived as the limit of (Q*(nr), Wk(nr)) /n as n — oo.
Denote the diffusion-scaled version as (§% (1), WX (1)) := (g* (k*t), w* (k*1)) / k.

LEMMA 3.7 (Uniform stability). Assume that the DCP w(t) defined through
(2.34)—(2.36) is stable. Then there exists a time ty > 0 such that for any suffi-
ciently large k, the (diffusion-scaled version of) fluid models (G*(t), W¥(¢)), with
k()| < 1 [or equivalently |q (0)| < 11, satisfies the following:

(3.32) k(1) =0, r>1.
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Now, the rest of the building blocks in Figure 2, including the uniform integra-
bility, uniform pth moment stability, tightness and finally the interchange of limits,
follow from the approach in [43]. This is because the technical developments for
these blocks are independent of the specific network structure (either the resource-
sharing network in [43] or the multiclass queueing network here), given the pth
moment bound of workloads and the uniform stability. We outline the main steps
as follows.

LEMMA 3.8 (Uniform integrability). (a) Let {m;;i =1,2,...} be a sequence
of number such that m; — oo as i — 00; and let {xi eX;i=1,2,...} be a se-
quence of initial states such that |x'| < m; for all i. Then, for any given t > 0, and
a fixed, sufficiently large k, {| Wk(m;t; xV)/m;|P} is uniformly integrable (w.rt. ).

(b) Let {my} be a sequence of numbers such my — oo as k — oo, and assume
that the sequence of initial states satisfies |EX(0)| < mg. Then, for any time t > 0,
{|Wk (mit)/my|P}k is uniformly integrable (w.r.t. k).

PROOF. The proofs of (a) and (b) are similar, and we prove (b) only. Pick
any constant p’ satisfying p < p’ < p*/2 — 2. Clearly, Lemma 3.6 holds with p
replaced by p’, and hence we have, for some constant «” and sufficiently large &,

| ro :
—WX(mgs)| <«'(1+17),
m

E sup

0<s<t

which implies that {|Wk(mkt) /mg|? }k is uniformly integrable. [J
THEOREM 3.9. Assume the stability of the deterministic DCP in (2.34)—(2.36)
and the p*th moment condition [refer to (2.38), adapted to MCQ].

(a) (Uniform pth moment stability) There exists ty such that the following holds
forall t > to:

1.
(3.33) lim sup E— |W*(|x|t; x)|” =0,
oo g |x|P

1
(3.34) lim supE—|Q%(Jx|t; x)|” = 0.
xl=oo g [x|P

(b) (Tightness) The sequence of stationary distributions, (7R, is tight on X.
Furthermore, if p > 2, then supy, E«| =2k0)P~! < o0o.

Part (a) of the above theorem follows the same proof as that of Proposition 11
in [43], given the uniform integrability properties in Lemma 3.8 and the uniform
stability property in Lemma 3.7; part (b) can be proved making use of the results
in part (a) and Lemma 3.6, and following the approaches developed in Budhiraja
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and Lee [9] and Dai and Meyn [19], as well as in [43]. The detailed proof is thus
omitted.

Finally, given the tightness property in Theorem 3.9, the proof of our main re-
sult here, Theorem 2.3, is identical to the proof of Theorem 4 in [43], which is a
modification of the standard argument leading to the interchange of limits from the
tightness in [9, 25, 26, 29, 30].

4. Concluding remarks. As mentioned above and recognized by other au-
thors as well, the key step in justifying the interchange of limits is to bound the
pth moment of the workload process. In [26], this step is accomplished through
another condition, that the fluid model converges at a linear rate. In our own recent
work, [43], this step is carried out through a bounded workload condition. Verify-
ing either condition requires effort, as evident from the specific examples studied
in both [26] and [43]. Here, we have demonstrated that, for multiclass queueing
networks, the interchange of limits is justified and the only required condition is
the moment conditions on primitives, which either holds automatically or is easy
to verify.

This type of interchange of limits, under moment conditions on primitives only,
can be extended to other stochastic processing networks, in particular the resource-
sharing networks as demonstrated in our previous study [43] (albeit requiring a
moment condition on workload). Specifically, the results concerning edges II and
IIT in Figure 1 can be established, quite routinely, under the stability of a (single)
deterministic DCP (that corresponds to the diffusion limit). The key (that requires
effort but can be done) is to establish the complementarity property, that is, the
condition in (2.7) or (2.20), which automatically holds in multiclass queueing net-
works (in fact, is part of the dynamics).

APPENDIX A: PROOF OF LEMMA 3.1

The key to proving the lemma is to combine the probability bounds on the var-
ious events, which we first construct below. To do so, we need certain estimates
on the moments of renewal processes, which are collected in Section A.1 after the
proof.

For ease of reading, we prove the lemma for the case my = 1 for all k. For the
general case, simply replace the scaling parameters (not the indices) k and k2, at
relevant places, with kmy and k - kmy, respectively, and use the condition my > 1
to remove the parameter my in the conclusion. We also omit the arguments #*, u™
and my associated with the events to lighten up notation.

Probability bounds for QX and QF. We estimate the probability bound for Q¥
following the approach in the proof of Lemma 5.1 in Bramson [4]. The bound for
QK is similar, and hence is omitted.



JUSTIFYING DIFFUSION APPROXIMATIONS 3679

Denote for each r and k,
i
UrG)=Y uk(i’), =2

i'=2

Observe from the definition of Q’; that it is sufficient to estimate the probability
bound for the event {u’,‘*ma" (k2t*)/k < 1/kP"=2/2P"} a5 the number of job classes
is finite. Consider any fixed r, and pick a sufficiently large constant x; > 0. We
have

1 k,max (7,2 % 1
P{§ur (k°t*) > 716(17*_2)/217*}
< PLUK (k2 ]) < k)

1 . 1
({2 > e | VR (k) 7))

=F+ F.

The first term Fj is estimated by applying Lemma A.2 and the Markov inequality
as follows:

k 2 %
pep(Uad) 1 1 1)
o K1k2t* )»I,f T K )»];
- PHU"(L/qkzt*J) ELEER <i _ l),qkzt*} Ll
B " Ak — M = kP

In the event in the term F», u’;’max(kzt*) will be selected among {ulj(i) Q=
2,..., |_/qk2t*J}. Hence, we have

Lic1 k2% |

1 1
R < P( U Hg”f(i) > m} MU (ke ]) > sz*}D

i=2
Licy k2t |

oLk 1
I

i=2
1 1
— 2 k

. /kP*=2)/2p*\ p* Klt*E[u’,‘Q)]p*
< [k1k*t* | E[u) (2)]” ( X ) =T

The above estimates yield that there is a constant «3, independent of k, such that
for sufficiently large k,

IA

1 k,max (7,2 % 1 K3
P{;“r (k%) > kP*=2)/2p } =T
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Summing up the above over all r, we have for sufficiently large k,

K4
P(Q\ Q) < T

Probability bound for Q’)‘( Observe that the additional process ®* (n) is also
a renewal process whose interarrival times follow a geometric distribution and,
therefore, have all moments. Hence, this process satisfies the p*-moment condi-
tion trivially (and indeed we have implicitly ignored it when we introduce the p*-

moment condition for the multiclass queueing network). Indeed, for any p’ > 2,
the following holds for some constant ¥ > 0 and for all # > 0,

(A.1) E sup Z |C’I\>/;7r,(s)|p’§K(1+tp’/2).

0<s<t, ,1eR

Note that there exists a constant x; such that

( sup (|EZK(s)| + |59 ()] + |Ci>k(s)})>p

0<s<t

<k sup Z(|Ef’k(s){p* + 89K ()P + | DK (s)|7).

0<s5=<t,ecR

Applying the above inequality, the p*th moment condition in (2.40) [plus (A.1)],
Markov inequality and Lemma A.3, we have the following estimation:

. . A  loe k)P
(2 @) <E( sup (E40)|+ ]34 )|+ ) E
O<t<r*
% log k)P*
<1+ (t%)F /2)(0](%‘

Probability bounds for QX., Q% and QY. We estimate the probability bound for
Q’E only, since the bounds for ng and Q’fb are similar.

First, we show that for any positive constant « and for some positive constant
k1, the following holds for any r € R, t € [0, kt*] and u € [0, u}] (where u} :=
u* + t*), and for sufficiently large k£ (depending only on network parameters, u™*
and 1*):

_ _ 1
J:=P({|E;”k(t+u)—E;”k(t)—A];u| > }msz")
20t logk
(A.2) .
(xlogk)?

=K1 kp*/z_l

Note that in the above probability, there is no supremum operator on the event
set and the time variable ¥ may take any value over a longer interval [0, u7], in
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contract to the event Q% defined in (3.6). Write the term involving the arrival
process in (A.2) as

|ESK(t 4 u) — EZ* (1) — AXul
<|ES*(t + U*t) + u) — EO*(t + U (1)) — 1Fu
+|ECK(t + UF () +u) — EC*(t +u)| + |ES* (1 + UF (1)) — EZF (1))

Observe in the first term at the right-hand side of the above that J; := (E;”k(t +
UK(t) +u) — ES* (¢t + UK (t)) — A*u) and (E* (u) — A¥u) are equal in distribution.
This is because that the time ¢ + l_]rk(t) is the arrival time of a class-r job and the
process E 2 ** is therefore renewed at that time. By the definition of Urk (), the third
term is equal to 1/k. For the middle term, we restrict our attention to w € Q’;,
which implies (_]rk (1) < 1/kP*=2/2P" Then we have the following estimate on
this term:

0 < EXF(t +u+ UF@0)) — ES* (1 + )
= [EZ*(t +u+ Uk +u) + (TF @) — Tt + w)))
— EX*(t 4 u+ U5 +w)]
+[ESM(t +u+ TF( 4 w)) — ESF (1 + )]

_ _ _ _ 1
< [Ero’k(t—l—u—i—Urk(t+u)+ —Ero’k(t+u+Urk(t+u))}+E

1
k(p*=2)/2p* )
=D+ :
=J2 k.

Similar to the term J; above, the term inside the square bracket (denoted J;) is
equal to Er”’k (1/kP*=2/2r%) in distribution. Putting the above together yields the
estimate,

_ _ 2
|EOK(t 4-u) — EZF(t) — Aku| < 1 + o + o tel0 k] ueo,u],

and consequently,

2 1
J<P({h|+ |0+ = mszk)
=p({ini+ 1004 > | el

_ 1 1
5P{|E;”k(u)—kfu|> ——}
dalogk k

_ N 1 1

bl gok 1k -212 _ _}

+{’(/ )= datogk &

- E|EOK(u) — Aku|P™  EEOk(1/kP"=2/20")p"
= (1/4alogk — 1/k)P* ~ (1/4alogk — 1/k)P*
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_ K Q/RP A+ Rup)PR) kAR R kD
(1/4alogk — 1/k)P* (1/4alogk — 1/k)P*
(o log k)”*
kp*/2—-1
where the second last inequality is due to Lemmas A.3 and A.1.
Denote for any r, k and ¢ > 0,

k)= ECf () =2k, F@) =influ >0 @ +u) — g5 ()| > 1/alogk).

<Ki

Clearly, we can write the event:

sup |E%*(t +u) — EOF @) — 2ku| > }
{Ofugu*f| e ) 0 ol alogk

={ sup [&5(t +u) —EF ()] > }={r,k<t)su1‘}.

O<u<uj Ollng

Following the argument in Bramson ([4], Proposition 4.2), we evaluate the follow-
ing probability:

plet <ui. gk +up) g0+ F )] = w2k}

2o logk’

=P{cf (1) <ul, 0 e Q')

x P({\Sr"(t +uf) =& (1 + 1t )] < } [{rf0) <uj,we Q’;})

2clogk
(alogk)?” )

>Pl{cf () <ut,we Q’;}(1 — K1

where the inequality is due to (A.2) along with routine conditioning arguments.
On the other hand, using (A.2) again,

pleto) <ut. efo +ut) — g+ b)) = 5w e 0k

2 logk’

(xlog L
kp*/2—1

< P{|.§rk(t+u’f) — )| > 2alogk’we Q’;} <k

The above two imply

1 kp* 1 kp* -1 1 kp*
P{Trk(l)SMT,wEQI;}gKIM( _ (alogk) ) < 2(ot ogk)

KT AT kP10

for sufficiently large k. Using the above result, we bound the following probability:

_ - 2
P{ sup  sup |EZK(t +u) — E*(t) — 2ku| > ;
alo

0<t<kt* 0<u<u* gk

,a)eQﬁ}
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k—1
=" U{ sup - sup [EPE(r ) — BN — gl
j=0 Lt =t=(j+1r* O<u=u*

k—1
< P{ sup sup (|EOK(t +u) — EOF(jr*) — ak(e 4 u — jr¥)|
j=0 jrr<t<(j+Dt* 0<u<u*
- —o0 k- . 2
- k k k k
<>'P{2 E%K(jt* — E®*(jt*) — , esz}
=2 { o§;£u7| PrU +u) = EPR(jr) ru|>a10gk w€Q,

~ o~
|
—_

(aloghk)?” (aloghk)P”

P{tF(jt*) < ut, 0 € QF} < ki k-1 =2

~
Il
(=)

With a carefully chosen constant «, the above inequality implies the following
immediately:

(logk)?"

Combined with the probability bound for the event Qllj, the above further implies

logk)?”"
P(Q\ Q) < K4(kp§T)_2.

A.1. Some results on moments of renewal processes. This section collects
some independent results on the moments of renewal processes, which are used in
the above estimates.

Let X;, i =1,2,..., be identically and independently distributed nonnega-
tive random variables, with EX; = u > 0. Let S, = >.7_; X; (So = 0), and
Y =max{n:S§, <t}.

LEMMA A.l1. For any r > 0, there exists a constant a, > 0 (depending on r
and the distribution of X1 only) such that
(A.3) EY, <a,(1+1"), t>0.

The lemma is a direct result of the strong law of counting (renewal) process

(e.g., Theorem 5.1 in Chapter 2 of Gut [27]), and hence its proof is omitted. Note
that the lemma requires the existence of the first moment of X; only.
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LEMMA A.2.  Assume EX] < oo for some r > 2. Then there exists a constant
b, (depending on r only) such that

E[S, —nul” <bE|X| —pul'n2,

.
E( max |S; — m|)r < (Ll) boE|X| — p|"n?.

1<i<n

The first inequality can be found from Gut ([27], page 169), and the second
follows from L? maximum inequality (e.g., Theorem 5.4.3 of Durrett [22]).

LEMMA A.3. Letr > p > 2, and assume EX; < oo. Then there exists a con-
stant ¢ such that for all t > 0,

(3]

E( sup |Yy — ;,L_ls|>p <c(l+¢

0<s<t

)-

This lemma, to the best of our knowledge, first appeared as Theorem 4 of
Krichagina and Taksar [31], with a long proof. Here we show, it follows rather
quickly from Lemmas A.1 and A.2.

PROOF OF LEMMA A.3. Note that

Y, —p = —p 7 Sy — p (V4 1D) = T4 7 Sy, = 0),

and

Sy, 41—t < Sy,+1 — Sy, = (Sy,+1 — n(Y; + 1)) = (Sy, — u¥y) +
<2 sup [Sy,41 — pn(¥s + D]+ p.

0<s<t

Hence, we have

(A.4) sup |Yy — " 's| <3u7" sup [Sy,41 — (¥ + D).

O<s=<t O<s<t

Applying Lemma A.2, we have

E( sup [Sy,+1 — u(¥Ys + D" 1{Y,<2M—lz+2})
0<s<t
(A.5) ,
fE( sup |S,-—m'|p>§c/1(1+t7).
0<i<2u~ 143

From (A.4) and (A.5), we have

(S8
N—

(A.6) E( sup [Yy —p's|” I{Y,<2;f1t+2}) <ci(l+1

0<s<t
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On the other hand, denote @« = r/(r — p) and B = r/p, which ensures 1/o +
1/8 = 1. Then we have

E( sup Yy —p”'s|”- 1{Y[z2;r1z+2})

0<s<t
<E((Y 4+ (™'0)")  iy,20u-1142))
< (B + (1'1)")")7 (B - 1r22))7
A7) = (SO+)E Py =27 42
<514+ 17)(PISpop1r42) <1))7
< (1) (P{IS i tr4a) — 2071 +2)| = 1))

bE|X| — | 12u" e +2]772
<1+ (A2
"

Here, we have applied Lemmas A.1 and A.2 in the third and the sixth inequalities,
respectively. Finally, the desired result is implied by the inequalities in (A.6) and
(A7). O

1
)ﬂ <ol +172).

We remark that rigorously speaking, the inequalities in (2.39), (2.40) hold for
any p’ < p* (instead of p*) according to the above lemma. Nevertheless, this
will not affect any result in the paper, if we choose p’ > 2(p + 2); and to avoid
introducing the annoying extra parameter (p’), we write p* in these inequalities
directly.

APPENDIX B: PROOF OF LEMMA 3.4

To prove the lemma, we first need some preliminary results. o
As an abstraction of the fluid-scaled prelimit networks (Q"’J (), Wk (u)), we
consider the following set of equations on (g (¢), w(¢), x(¢), u(1), v(1)):

q(t) = q(0) — diag(a)[et Au(1)] + (I — PTYM ™ [d () Av(1)]
+x(@)+ar— (I — PHYM 4 @),
B.2) w@)=CMq)=0,
B.3) y@)=et—CMd(2), d(t) and y(t) are nondecreasing,

B.1)

(B.4) /() we(t)dye(t) =0, tel,

(B.5) additional conditions specifying the HL discipline.
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In the above, ¢ () and w(t) are an R-dimensional nonnegative vector functions
of time ¢ > 0, which can be interpreted as the (generic and scaled) queue-length
and workload processes, respectively. x(¢) is also an R-dimensional vector func-
tion of time ¢ > 0, associated with the “free process” in the prelimit networks
that captures the deviations of arrival and service processes from their means. The
“residuals”, u(1) and v(1), are R-dimensional vector constants.

The next lemma claims that the above can be approximated by the so-called
fluid model specified in (3.11)—(3.15). And it is indeed a uniform continuity prop-
erty if we consider all the processes involved in the D-space (e.g., [1]) equipped
with the uniform norm.

LEMMA B.1 (Uniform continuity). Let T and M be any given positive num-
bers. For any ¢, there exists a § > 0 such that for any (g (t), w(t), x(¢), u(1), v(1))
satisfying (B.1)-(B.5) and

(B.6) lq(0)] + [u(D)| + [v(1)| < M, supT|x(t)| <34,

=I=
we can find a fluid model (q(t), w(t), u(1), v(1)) satisfying (3.11)—(3.15) and
GO)] +|a(D| +[p()] < M,
supT|q(t) — g+ u) —a)| + [v(1) —v(1)| <e.

0<r<
In addition, if the last part of the condition in (B.6) is replaced by
sup |x(0)| + [u(D] + [v(1)] <4,
T

O<t<
we can further require u(1) = v(1) = 0 for the fluid model, which coincides with
the standard and nondelayed version in (2.22)—(2.26).

PROOF. If to the contrary, we can find an gy > 0 and a sequence {(q(i)(t),
wO @), xD @), u® (1), vD(1));i =1,2,...} satisfying (B.1)~(B.5) and

O]+ O]+ O <M, lim sup [xO@)| =0,

i—00(0<s<T

such that for all i, the following holds:
(B.7) supT|q<"><r> —gO] +uP (1) — @]+ @ (1) — B(1)] = &0,

0<t<
for any fluid model (g (¢), w(t), u(1), v(1)) satisfying (3.11)—(3.15) with |¢g(0)| +
lu(D] + v =M.

Applying the conventional approach for proving fluid limit theorem (refer to,
e.g., [10, 15], among many others), however, we can find a subsequence of i such
that as i — oo along the subsequence, we have
(B.8) sup |¢? (1) —q@)| + [P 1) —a()| + v (1) — 5(1)| = 0.

T

0<t<
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for some fluid model (g(¢),u(1),v(1)) satisfying (3.11)—(3.15) with |g(0)]| +
|[u(1)| + |v(1)| < M, which contradicts to (B.7).

To claim the limit (g (¢), #(1), v(1)) in the above convergence as a solution to
(3.11)—(3.15), it is necessary to verify (3.11)—(3.15) for the limit. Clearly, the tech-
nical details to do so are specific to the service discipline, but is routine given
existing studies mentioned just now. Here, we illustrate those techniques in the
context of static buffer priority discipline. Particularly, we must show that for the
allocation process d(¢) derived through the limit in (B.8), there is a set of non-
negative functions {¢,(¢)},er such that the specification in (2.27) is satisfied, that
is,

_ t
(B.9) a0 = &wads,

0
(B.10) Y &<l and Y &@m=1 ifg @) >0.

rerR reH,

First, note that the allocation processes d @ (1), along with some nonnegative
functions { g,(’)(t)}reR, also jointly satisfy the above relationships for each i. Then
it is easy to see that there exists nonnegative functions {¢,(¢)},er such that the
expression in (B.9) and the first condition in (B.10) hold. Second, suppose g, (t) >
0 for some fixed time ¢ > 0 and the class . Then we can find a number ¢ > 0
and a (small) interval [#1,] satisfying #; < ¢ < tz (t;1 =0 if + = 0) such that for
sufficiently large i we have for all u € [#112], qr (u) > ¢. This implies for all u €
(t1t2], X ren, S ’)(u) =1 and, therefore, 3,y d (u) Y ren, d (’)(tl) + (u —
). As i — oo, the later yields } .y d,-(u) = > reH, d.(t;) + (u — 11), which
implies the second condition in (B.10).

The additional part of the lemma is proved in the same manner. [J

To apply the above lemma for proving Lemma 3.4, we first spell out the dynam-
ics of the networks O/ (1) in perlod [0,T](.e., Qk(mkt)/y my in [ ]ykT/k G+
DY*T/k] or Q4 (0) /ky*my in [jky*micT, (j + Dky*mi TD).

First, the original and unscaled arrival process, restarted at time jky*m; T, is
also a (delayed) renewal process, which we denote as

ENI (1) = EF(jky*miT +1) — EX(jky*my T).
It is defined by the delayed starting time Urk J 0) := U,k ( jkykmk T) (the “initial”
residual arrival time) and the renewal sequence {u’,f(i )i > Ef ( jkykmk T)+2}.

Denote the corresponding nondelayed version as Ey kg (t), which is then defined
by the renewal sequence {u’r‘(i) i > EX (jkykmk T) + 2}. Denote

059 (0) = US (0)/ kykm,
BRI ) = BRI (6 mya) g and
EPM ) = EP (ky*mia) [y .
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Then
EfI ) — ayu = EP™ ([u = U5 O]F) — o' fu = T )]

+ l{uzﬁf*"m)}/kykmk — ) (u AT (0)).

Second, the service process is characterized as
Sk (1) = SK(DF(jky*mi T) + 1) — SH(D¥ (jky*mi T)),
DM (1) = DX (jky*mi T + 1) — DX (jky*mi T).

That is, Sf J (¢) is defined by the delayed starting time
VI (0) := VKD (jky*m T))
(the “initial” residual arrival time) and the renewal sequence
(k@) 1 i = SK(D, (jky*my T)) + 2).

Denote the corresponding nondelayed version as Sy ke (1), which is then defined
by the renewal sequence

[0k 1i = S5(D, (jky*mi T)) +2).
Denote
VEI(0) = VI (0)/ ky*my.
S5T () = S5 (kykmyu) / ky*my,
§okd (uy = 89K (ky*mpu) / ky*my  and
DI (u) = DM (ky*myu)  ky*my.
Then we write
S99 ) = pru = SP% ([u = VEIO]F) = e [u = VEI )]

(B.11) ) g
1 s vk o /Ky ke — e (u AV (0)).

Note that Df’f (u), the allocation process, must satisfy conditions specific to the
service discipline, like the one in (2.8), or the one in (2.27) for the corresponding
fluid model below. (In the discussion below, for ease of exposition, we will not
describe and verify such conditions further, which is routine, though tedious, given
the discussions above and the extensive related literatures.)
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Third, the routing process and its fluid scaling are denoted as, for s, r € R,

O () = @, (S§ (DS (jky* micT)) + n) — @, (SF(Dr (jky*miT))).

o/ (u) = o/ (| ky* mn ).

kykmy
Finally, the queue-length process can be written as
07/ () = 07/ (0) + EfY (u)
+ O/ (557 (D ) = 877 (D w)
= 077 O+ (EpY ) —apu) = (577 (D) ) =y Dy ()
+3" per(SEI (D (w)) — g DX ()
+ ) (&5 (557 (D W) = psr S5/ (D w))
+ (Offu - Oer/t) + <O(rM - NfrD;lf’J(u) + Z psrﬂsbf’j(u))
= 0K (0) — o, (u A U (0))
+ wr (D () A VEI () + 37 pyrits (DX () A VI (0))
(B.12) +(EPM ([u =T O]) = of[u = U5 )]
— (85 ([DF ) = VEIO]T) = e [ D ) = VI O] 7)
+ 3 por(SRI([DE () — VET )] )
— s [DE () — VI (0)]T)
+ Y (5 (597 (DS ) = por S5 (DS ()

1

+ kykmy (Huza’f’f(m} -1

(DF =V )
2 Porl pt 27 (0)})

N
—(of =) (u ATEI(0) + (o —aty)u

+ (aru - ,urD;]f’j(u) + Zpsr,us[)f’j(u)>-
s
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PROOF OF LEMMA 3.4. To apply Lemma B.1, we denote the terms in (B.12)
which we show will vanish as follows for convenience:

X ()i =2p — g+ 2§+ o + (af — o) (u —u AT (0))

1
(B.13) + kykmy, (l{uzﬁf’fm)}

+ 2 per I{Di"f(uzvs"'f(on)’
N

~ 1589 =74 0y

where
Ep 1= B2 (= U O)]) = af[u— 0 )]
s := 5989 ([Df ) = VI O]) = we [DF ) = VI O],
==Y per (ORI (DR ) — VETIO)]7) = o[ DET ) — VT )],
So =Y (B8 (S (DS @) = purSET (DS W))).

First, we estimate the term involving the arrival process, X g. For any u € [0, T'],

we have
1 L
%l = g [E7 (o i [u = T O] )
— E%*(kmyt) — ky*mpa [u — l_/rk’j(())]+|
1 1 k k. ./
< sup —|—(EZ" (kmp(t + y*u
Jup T T 7 (ki )
— Eo*(kmy 1)) — kyFoku’
(B.14)
1 1 - -
=— sup |—(EP*(mi(z + y'u')) — EZ*(mpr)) — yrofu'
Y* welo, 711 Mk
]

LB (x4 G = DT +u)
mig

1
<— sup
yk ,:ZI w'el0,T]

— Ef’k(mk(r +@G@—D1T))) — ofu'l.

r

[Here, we denote 7 := jykT — Urk’O(O)/kmk + Urk’j(O)/kmk for convenience.]
Estimate the time 7 + (i — 1)T inside the supremum above for j < kA /yXT,
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. k
<[y,

y
_UHo | uo)

k
T
kmy kmy Y

T4+ G — DT < jy*T

kA L
< yk—TykT + yKURT(0) + Y*T < kA + y*M + YFT.

Since |WX(0)/my| < 1, we have y* < 1+ k/logk for @ € Q% (A, my). The above
estimate implies

T+ — DT <k(A+ O(1/logk)) <kA

for sufficiently large k. The above inequality indicates that the time periods in-
volved in (B.14) fall within those covered in Q’%(A, T, my), so that the bound in
that event can be invoked for each item in (B.14); that is, we have for sufficiently
large k, for any my > |@k(0)| v1and we QK(A, T,my), foralli=1,..., (ykL

1 -
—(Eo*(my(t + (i = DT 4u'))
n

sup
u’el0,T]

— E%*(mp(z + (i = DT))) — oFu’

(B.15)

1 - _
(B +)) — B2 o) — afal

< sup sup
t€[0,kAlu’€[0,T]

<34,

where the second inequality follows from the definition of QK(A, T, my) (C
Q’%(A, T, my)) with sufficiently large k (say, 1/logk < 8). Then we have from
(B.14) and (B.15),

1

(B.16) SE<—
y

[y¥]8 < 2.

Second, we estimate the terms involving the service process, X g and Z;’. The
approach is similar to the estimation of X . For any u € [0, T'], we have

1 — .
|Zs| = [P (kmit + ky*mi[ D7 ) = VI )] ) = S7K (kmyer)
ky~*my
— ky*mig, [DF ) = VI O]
< sup |S,0’k(kmkf + kykmku’) — Sf’k(kmkf) — kykmkuru/|

wepo.7] kykmy

1 1 - _
= * SI[EpT] m—k(S;”k(mk(r + yku/)) — Sf’k(mk'c)) — YR’
u'€[0,
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1 A
<— Z sup

1 -
- — (8¢ (mi(z + (i = DT +u'))
Y* T welo,T]

mg

— S';”k(mk(t + @@ —DT))) — pru'|.

[Here, reusing the notation, we denote 7 := Df(jkykmk T)/kmy — U,"’O(O)/kmk +

U,k J (0)/ kmy for convenience.] The first inequality in the above is because for
uel0,T],

[Df (u) = VI (O] < DF () < T.
Estimate the time v + (i — 1)T inside the supremum above for j < kA /y¥T,
i <[y,
. k,j
Df(jky*miT) UFCO) U O)
- + +y
kmy kmy kmy
<V IT + Y TR ) + YT <ka+y M+ yiT
<k(A+ O(1/logk)) <kA,

T+(G—DT < T

forw e Q]%(A, my) and sufficiently large k. Hence, we have for sufficiently large
k, for any my > |EX(0)| v 1 and w € Q¥(A, T, my),
1

p (SO*(my(t + G — DT +u')) — K (my (v + (i — DT))) — pwou’

sup
' €[0,T]

1 - _
(S -+ ) = 57 me) =

< sup sup <é

te[0,kA1u'€[0,T]

’

and thereafter,

(B.17) Yg <26.

This immediately yields the following for some constant «':
(B.18) T <k’s.

Third, we estimate the term involving the routing process, X¢. Note that

Df J (u) < u by definition. Then, frorrl (B.11), we have for sufficiently large k,
for any my > |EX(0)| v 1 and w € Q¥(A, T, my), u € [0, T,

SKI (DR ) = 1 DX )+ B+ 1510 - ko o)/ K 10
— wr (D5 () A VEI(0)).
<uu+28+1=<2u,T <2,T.
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Using the above bound, we estimate each term in ¥4, denoted as X :
2k, j(ck,j(Rk.J k. j (k. j
|2<l>,s| = ‘q)srj (Sa J(Ds J(u))) - pSVSs j(Ds ](u))‘

= sup |&>§}j (u/) - psru/|
u'e€l0,6, T

= sup (®F, (SK(DX(jky*myT)) + |ky myu’ ])

u'€l0,k, T]

kykmy

= @, (S5 (Dr (jky* miT)))) = psrt’

1 - o
= e (%, (SK(DX(jy*miT)) + y*myu')

sup
u'e[0,k,T]

1
yk

— &, (84(D, (jy*mT)))) — poryad

1 - _
m_k(q)]scr(mk(f + yku/)) - q)_ly{r(mkf)) - psryku/

1
= sup
V" uw'el0,x,T1

1 A
<2 suwp

1 -
— (@5, (mi(z + ( — Dicu T + 1))
y i—1 ' €[0,k,T]

mg

— &D];r(mk(t + (i — Dk, T))) — psrtt|.

[Here, reusing the notation again, we denote t := Sf(Df( j ykmk T))/my for con-
venience.] Estimate the time 7 + (i — 1)k, T inside the supremum above for
J<kA/YT,i<[yR,

1 -
T (= DT < 800y miT) + y e T
k

1 - k
< — S(mg - kA (1 —> T
~ my s (i )+ +10gk “u

< 130"( kA)+1+<1+ k ) T
— 57" (my - — |k
“my ° k logk) "

<< kA-i-kA ! >+1+<1+ k ) T
=\ kT logk logk fut

< ki, (A+ O(1/logk) < ki, A,

for w € QX(A, T, my) and sufficiently large k. [Note that the fourth inequality
above is due to the bound in the definition of Q’;(A, T, my).] Hence, we have for



3694 H. Q. YE AND D. D. YAO
sufficiently large k, for any my > |@"(O)| viand w € Qk(A, T,my),

1
sup  |[— (®F (my(t + (i — DT +ud))
w'el0,k, T1 1Mk

— ®F, (ma(t + (i — DiyT))) — pyru’

= sup sup : —(F (mi(t +u')) — F (myt)) — pyut’
1€[0,kic, AJu'€l0,k, T Mk
<34,
and thereafter,
Yo <26.

This yields the following for some constant «” immediately:
(B.19) Yo <k”§.

From (B.13), (B.16), (B.17), (B.18), (B.19), we know that the condition in
(B.6) in Lemma B.1 [in particular, supy., .7 |x(¢)| < &, with § redefined prop-
erly] can be justified for all sufficiently large k, all j =0, 1,...,kA/y*T and
all w € QX(A, T, my). Moreover, verifying the other conditions in (B.1)-(B.5) is
rather straightforward. Therefore, Lemma B.1 can be invoked to claim the conclu-
sion in (a).

We sketch the proof for part (b) only. Note that the time 7' can be chosen such
that

(B.20) T>08%0),  DFOT) > vEO(0),

for r € R, for sufficiently large k. The second inequality is a consequence of the
conclusion in (a) and the uniform attractlon property in Theorem 3.3: given the
bounded initial state |EX-2(0)| = |"k(0)|/ y*my <1, the process Dk 0() is close
to d,(r) for sufficiently large k, whereas d. (1) is close to (A / M)t for sufﬁ01ently
large t. The inequalities in (B.20) implies that for j > 1, U J (0) [resp., Vr J 0]
must be a portion of an interarrival time (resp., a service time) of class-r other than
the initial residual arrival time u’r‘(l) [resp., the initial service time vf(l)] of the
original kth network. Hence, following the definition in (3.1), (3.2), we have for
1<j<kA/y*T andr e R,

US O) <up ™ (®mid), VI (0) <ot ™ (PmiA).

Consequently, give the assumption w € QX(A, T, my) C QK (A, my) NQK (A, my),
the above inequalities imply the first conclusion in part (b), which along with the
last conclusion in Lemma B.1, further implies the second conclusion in part (b).

O
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