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DYNAMICS OF A PLANAR COULOMB GAS1

BY FRANÇOIS BOLLEY, DJALIL CHAFAÏ AND JOAQUÍN FONTBONA

Sorbonne Université and Université Paris-Dauphine and Universidad de Chile

We study the long-time behavior of the dynamics of interacting planar
Brownian particles, confined by an external field and subject to a singular pair
repulsion. The invariant law is an exchangeable Boltzmann–Gibbs measure.
For a special inverse temperature, it matches the Coulomb gas known as the
complex Ginibre ensemble. The difficulty comes from the interaction which
is not convex, in contrast with the case of one-dimensional log-gases associ-
ated with the Dyson Brownian motion. Despite the fact that the invariant law
is neither product nor log-concave, we show that the system is well-posed for
any inverse temperature and that Poincaré inequalities are available. More-
over, the second moment dynamics turns out to be a nice Cox–Ingersoll–Ross
process, in which the dependency over the number of particles leads to iden-
tify two natural regimes related to the behavior of the noise and the speed of
the dynamics.

1. Introduction and statement of the results.

1.1. The model and its well-posedness. This work is concerned with the dy-
namics of N ≥ 2 particles at positions x1, . . . , xN in R

d , d ≥ 1, confined by an
external field and experiencing a singular pair repulsion. The configuration space
that we are interested in is the open subset D ⊂ (Rd)N defined by

(1.1) D := (
R

d)N \ ⋃
i �=j

{
(x1, . . . , xN) ∈ (

R
d)N : xi = xj

}
,

where i, j run over {1, . . . ,N}. The boundary of D in the compactification of
(Rd)N is

∂D := {∞} ∪ ⋃
i �=j

{
(x1, . . . , xN) ∈ (

R
d)N : xi = xj

}
.
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The vector x = (x1, . . . , xN) ∈ D encodes the position of the N particles, and the
energy H(x) of this configuration is modeled by

(1.2) H(x) := 1

N

N∑
i=1

V (xi) + 1

2N2

∑
1≤i �=j≤N

W(xi − xj ) =: HV (x) + HW(x).

Here, V : Rd → R∪ {+∞} is an external confinement potential such that V (z) →
+∞ as z → ∞, and W : Rd \ {0} → R is a pair or two-body interaction potential
such that W(z) = W(−z) and W(z) → +∞ as z → 0 (singularity). Unless oth-
erwise stated, we consider particles in R

2 ≡ C, with quadratic confinement and
Coulomb repulsion, namely

(1.3) d = 2, V (z) = |z|2, W(z) = log
1

|z|2 .

Here, |z| denotes the Euclidean norm of z ∈ R
2 (modulus of the complex num-

ber z). With this notation, we study the system of N interacting particles in R
2

modeled by a diffusion process XN = (XN
t )t≥0 on D, solution of the stochastic

differential equation

(1.4) dXN
t =

√
2
αN

βN

dBN
t − αN∇H

(
XN

t

)
dt,

for any choice of speed αN > 0 and inverse temperature βN > 0; here, (BN
t )t≥0 is

a standard Brownian motion of (R2)N . In other words, letting XN
t = (X

i,N
t )1≤i≤N

and BN
t = (B

i,N
t )1≤i≤N denote the components of XN

t and BN
t ,

dX
i,N
t =

√
2
αN

βN

dB
i,N
t − αN

N
∇V

(
X

i,N
t

)
dt

− αN

N2

∑
j �=i

∇W
(
X

i,N
t − X

j,N
t

)
dt, 1 ≤ i ≤ N.

Since V (z) = |z|2 and W(z) = −2 log |z|, we have more explicitly

(1.5)

dX
i,N
t =

√
2
αN

βN

dB
i,N
t − 2

αN

N
X

i,N
t dt

− 2
αN

N2

∑
j �=i

X
j,N
t − X

i,N
t

|Xi,N
t − X

j,N
t |2 dt, 1 ≤ i ≤ N.

To lightweight the notation, we will very often drop the notation N in the su-
perscript, writing in particular Xt , Bt , Xi

t and Bi
t instead of XN

t , BN
t , X

i,N
t and

B
i,N
t , respectively. We shall see later that the cases βN = N and βN = N2 are par-

ticularly interesting, the latter being related to the complex Ginibre ensemble in
random matrix theory.
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Global pathwise well-posedness of a solution X to the stochastic differential
equation (1.5) is not automatically granted since W is singular. Nevertheless, the
set D is path-connected (see Lemma 3.1) and, given an initial condition X0 in D,
one can resort to classic stochastic differential equations properties to define, in a
unique pathwise way, the process XN up to the explosion time

(1.6) T∂D := sup
ε>0

Tε ∈ [0,+∞].
Here,

Tε = inf
{
t ≥ 0 : max

1≤i≤N

∣∣Xi
t

∣∣ ≥ ε−1 or min
1≤i≤N

∣∣Xi
t − X

j
t

∣∣ ≤ ε
}

is the first exit time of a typical compact set in D. Then one can show that explosion
never occurs.

THEOREM 1.1 (Global well-posedness and absence of explosion). For any
X0 = x ∈ D, pathwise uniqueness and strong existence on [0,+∞) hold for the
stochastic differential equation (1.5) on [0,+∞), and we have T∂D = +∞ a.s.

The absence of explosion provided by Theorem 1.1 is remarkably independent
of the choice of the inverse temperature, and this is in contrast with the behavior
of the Dyson Brownian motion associated with the one-dimensional log-gas; see,
for instance, [48]. The proof of Theorem 1.1 is given in Section 3. It uses the fact
that W is the fundamental solution of the Poisson–Laplace equation. The main
idea is similar to the one used for other singular repulsion models, such as in [48],
or for vortices such as in [31], but the result ultimately relies on quite specific
properties of our model (1.5). Note also that our particles will never collide and in
particular never collide at the same time, in contrast with for instance the singular
attractive model studied in [34]; see also [19] for the control of explosion using the
Fukushima technology.

Hence there exists a unique Markov process X = (Xt)t≥0 solution of (1.4). Its
infinitesimal generator L is given for a smooth enough f : D →R by

(1.7) Lf = αN

βN

�f − αN∇H · ∇f.

Here, � and ∇ are understood in (R2)N ≡ R
2N and u · v = 〈u, v〉 denotes the Eu-

clidean scalar product. By symmetry of the evolution, the law of Xt is exchange-
able for every t ≥ 0, as soon as it is exchangeable for t = 0. Recall that the law
of a random vector is exchangeable when it is invariant by any permutation of the
coordinates of the vector. It is then natural to encode the particle system with its
empirical measure

μN
t = 1

N

N∑
i=1

δXi
t
.
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1.2. Second moment dynamics. Theorem 1.2 gives the evolution of the second
moment

HV (Xt) = 1

N

N∑
i=1

∣∣Xi
t

∣∣2 =
∫
R2

|x|2μN
t (dx)

of μN
t . This evolution depends on the choices for αN and βN , for which

meaningful choices are discussed in Section 1.4. We let W1 denote the
(Kantorovich–)Wasserstein transportation distance of order one defined by
W1(μ, ν) = inf{E[|X − Y |] : X ∼ μ,Y ∼ ν} for every probability measures μ

and ν on R with finite first moment.

THEOREM 1.2 (Second moment dynamics). The process (HV (Xt))t≥0 is an
ergodic Markov process, equal in law to the Cox–Ingersoll–Ross process (Rt )t≥0
given by the unique solution in [0,∞) of the stochastic differential equation

(1.8) dRt =
√

8αN

NβN

Rt dbt + 4
αN

N

[
N

βN

+ N − 1

2N
− Rt

]
dt,

where (bt )t≥0 is a real standard Brownian motion. In particular, its invariant dis-
tribution is the Gamma law 	N on R+ with shape parameter N + N−1

2N
βN and

scale parameter βN , and density with respect to the Lebesgue measure on R given
by

r ∈ R �→ γN(r) := β
N+ βN (N−1)

2N

N

	(N + βN(N−1)
2N

)
r(N−1)(1+ βN

2N
)e−rβN 1r≥0.

Moreover, for any t ≥ 0 we have

(1.9) W1
(
Law

(
HV (Xt)

)
,	N

) ≤ e−4
αN
N

tW1
(
Law

(
HV (X0)

)
,	N

)
.

Furthermore, for any x ∈ D and t ≥ 0, we have

(1.10)

E
[
HV (Xt) | X0 = x

]
= HV (x)e−4αN t/N +

(
1

2
+ N

βN

− 1

2N

)(
1 − e−4αN t/N )

.

In particular, as t → ∞, the left-hand sides in (1.9) and (1.10) converge to 0 and
1/2 + N/βN − 1/(2N), respectively, with a speed independent of N as soon as
αN is linear in N .

A Cox–Ingersoll–Ross (CIR) process also naturally arises as the dynamics of
the second empirical moment of the vortex system studied in [30]. Theorem 1.2 is
proved in Section 4.
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1.3. Invariant probability measure and long-time behavior. Despite the repul-
sive interaction, the confinement is strong enough to give rise to an equilibrium.
Namely, the Markov process (Xt)t≥0 admits a unique invariant probability mea-
sure which is reversible. It is the Boltzmann–Gibbs measure P N on D ⊂ (R2)N

with density

(1.11)

dP N(x1, . . . , xN)

dx1 · · ·dxN

= e−βNH(x1,...,xN )

ZN

= e− βN
N

∑N
i=1 |xi |2

ZN

∏
1≤i<j≤N

|xi − xj |
2βN

N2 ,

where

ZN :=
∫
D

e−βNH(x1,...,xN ) dx1 · · ·dxN

is a normalizing constant known as the partition function. Such a Boltzmann–
Gibbs measure with a Coulomb interaction is called a Coulomb gas. Actually,
H(x) → +∞ when x → ∂D and e−βH is Lebesgue integrable on D for any β > 0,
see Lemma 3.2. Moreover, the density of P N does not vanish on D. One can
extend it on (R2)N by zero, seeing P N as a probability measure on (R2)N . Since
the domain D and the function H are both invariant by permutation of the N

particles, the law P N is exchangeable. The behavior of P N relies crucially on the
“inverse temperature” βN . The choice βN = N2 gives a determinantal structure
to P N which is known in this case as the complex Ginibre ensemble in random
matrix theory. As we will see in Section 1.4.1, there is another interesting regime
which is βN = N .

In Theorem 1.3 below, we quantify the long time behavior of our Markov pro-
cess XN via a Poincaré inequality for its invariant measure P N . Recall that if S is
an open subset of Rn and F is a class of smooth functions on S, then a probability
measure μ on S satisfies a Poincaré inequality on F with constant c > 0 if for
every f ∈ F ,

(1.12)
Varμ(f ) := Eμ

(
f 2) − (Eμf )2

≤ cEμ

(|∇f |2)
where Eμ(f ) :=

∫
f dμ;

see [49] for instance. If f is the density with respect to μ of a probability measure
ν, then the quantity Varμ(f ) = Eμ(|f − 1|2) is nothing else but the chi-square
divergence χ(ν‖μ).

THEOREM 1.3 (Poincaré inequality). Let F be the set of C∞ functions f :
D → R with compact support in D, in the sense that the closure of {x ∈ D :
f (x) �= 0} is compact and is included in D. Then for any N , the probability mea-
sure P N on (R2)N satisfies a Poincaré inequality on F with a constant which may
depend on N .
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By (1.7), the invariance of P N gives

−EP N (f Lf ) = αN

βN

EP N

(|∇f |2)
,

where |∇f |2 = ∑n
i=1 |∇xi

f |2 for ∇f = (∇xi
f )1≤i≤N in (R2)N . Let P N

t be the
law of XN

t in (R2)N . Up to determining a dense class of test functions stable by the
dynamics, it is classical (see [49], Section 3.2, or [5]) that the Poincaré inequality
(1.12) for P N with constant c = cN imply the exponential convergence of P N

t to
P N , namely

χ
(
P N

t ‖ P N ) ≤ e
− 2t

cN

αN
βN χ

(
P N

0 ‖ P N )
.

More precisely, provided we already know that P N
t has a smooth density f N

t , we
have

d

dt
VarP N

(
f N

t

) = d

dt

∫ (
f N

t

)2 dP N = 2
∫

f N
t Lf N

t dP N ≤ −2
αN

βNcN

VarP N

(
f N

t

)
.

Theorem 1.3 is proved in Section 5. Poincaré inequalities can classically be proved
by spectral decomposition, tensorization, convexity, perturbation or Lipschitz de-
formation arguments; see [5]. None of these approaches seem to be available
for P N .

REMARK 1.4 (Eigenvector). It turns out that HV is up to an additive constant
an eigenvector of L. Namely, from (2.7) we get

LU = −4αN

N
U where U := HV − N

βN

− N − 1

2N
.

This fact is the key of the proof of Theorem 1.2. However, due to the varying sign
of U , we do not know how to use U with the Lyapunov method to get a Poincaré
inequality.

REMARK 1.5 (Tensorization). The invariant measure P N of X is not prod-
uct, in contrast for instance with the case of vortex models with constant intensity
studied in [31].

REMARK 1.6 (Convexity). Neither the domain D nor the energy H : D → R

are convex (see Proposition 5.1), and thus the law P N is not log-concave. Re-
markably, for one-dimensional log-gases, one can order the particles, which has
the effect of producing a convex domain instead of D on which H is convex, and
in this case P N satisfies in fact a logarithmic Sobolev inequality which is stronger;
see, for instance, the book [27] and also [21] for the optimal Poincaré constant.
Here, d = 2 and the one-dimensional trick is not available.
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REMARK 1.7 (Lipschitz deformation). The law P N is not a Lipschitz defor-
mation of the Gaussian law on MN(C). Actually, the map which to M ∈ MN(C)

associates its eigenvalues in C is not Lipschitz. To see it, take M,M ′ ∈ Mn(C)

with Mj,j+1 = 1 for j = 1, . . . , n−1 and Mjk = 0 otherwise, and (M ′ −M)jk = ε

if (j, k) = (n,1) and (M ′ −M)jk = 0 otherwise. Then the eigenvalues of M ′ −M

are {
ε1/ne2ikπ/n : 0 ≤ k ≤ n − 1

}
,

while the Hilbert–Schmidt norm and operator norm of M ′ − M are both equal
to ε. Note that in contrast, this map is Lipschitz for Hermitian matrices and more
generally for normal matrices; this statement is known as the Hoffman–Wielandt
inequality [37].

The proof of Theorem 1.3 is based on a Lyapunov function and as usual this
does not provide in general a good dependence on N . Of course it is natural to ask
about the dependence in N and in αN and βN of the best constant in Theorem 1.3
and, specifically, if convergence to equilibrium can be expected to hold at a rate that
does not depend on N , as in [44]. Theorem 1.8 below and the previous Theorem 1.2
and Remark 1.4 constitute steps in that direction.

THEOREM 1.8 (Uniform Poincaré inequality for the one particle marginal).
If βN = N2, then the one-particle marginal law P 1,N of P N on R

2 satisfies a
Poincaré inequality, with a constant which does not depend on N . In particular,
the smallest (i.e., best) constant for P N is bounded below uniformly in N .

Theorem 1.8 is proved in Section 6.
Although the measure P N is not product, at least in the regime βN = N2 a

product structure arises asymptotically as N goes to infinity. More precisely, for
k ≤ N , let P k,N be the kth dimensional marginal distribution of the exchangeable
probability measure P N , as in (1.16); then, in the regime βN = N2, we have

(1.13) P k,N − (
P 1,N )⊗k → 0, N → ∞

weakly with respect to continuous bounded functions. It follows from Theorem 1.9
below.

THEOREM 1.9 (Chaoticity). Let βN = N2 and let μ∞ be the uniform distri-
bution on the unit disc {z ∈ C : |z| ≤ 1} with density ϕ∞(z) = π−11|z|≤1. For every
fixed k ≥ 1,

P k,N → μ⊗k∞ , N → ∞
weakly with respect to continuous and bounded functions. Moreover, denoting
ϕk,N the density of the marginal distribution P k,N , as defined in (1.16), we have

ϕ1,N → ϕ∞ and ϕ2,N → ϕ⊗2∞ , N → ∞
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uniformly on compact subsets of respectively{
z ∈ C : |z| �= 1

}
and

{
(z1, z2) ∈ C

2 : |z1| �= 1, |z2| �= 1, z1 �= z2
}
.

Theorem 1.9 is proved in Section 7. Note that the convergence of ϕ1,N cannot
hold uniformly on arbitrary compact sets of C since the pointwise limit is not
continuous on the unit circle. Moreover, the convergence of ϕ2,N cannot hold on
{(z, z) : z ∈ C, |z| < 1} since, by (1.16), ϕ2,N (z, z) = 0 for any N ≥ 2 and z ∈ C

while ϕ1,N (z)ϕ1,N (z) →N 1/π2 �= 0 when |z| < 1, and this phenomenon is due to
the singularity of the interaction.

The case βN = N2 is related to random matrix theory; see Section 1.4.1. To our
knowledge, Theorem 1.8 and Theorem 1.9 have not appeared previously in this
domain.

1.4. Comments and open problems.

1.4.1. Inverse temperature. Following [23], there are two natural regimes
βN = N and βN = N2.

• Random matrix theory regime: βN = N2. This is natural from the point of view
of random matrices. Namely, let M be a random N × N complex matrix with
independent and identically distributed Gaussian entries on C with mean 0 and
variance 1/N with density z ∈ C �→ π−1N exp(−N |z|2). The variance scaling
is chosen so that by the law of large numbers, asymptotically as N → ∞, the
rows and the columns of M are stabilized: they have unit norm and are orthog-
onal. The density of the random matrix M is proportional to

M �→ ∏
1≤j,k≤N

exp
(−N |Mjk|2) = exp

(−N Tr
(
MM∗))

.

The spectral change of variables M = U(D +N)U∗, which is the Schur unitary
decomposition, gives that the joint law of the eigenvalues of M has density

(1.14) ϕN,N(z1, . . . , zn) := N
N(N+1)

2

1!2! · · ·N !
e−∑N

i=1 N |zi |2

πN

∏
i<j

|zi − zj |2

with respect to the Lebesgue measure on C
N . This law is usually referred to as

the “complex Ginibre ensemble;” see [12, 32, 35, 42]. This matches P N with
(1.3) with βN = N2 so that the density of P N on (R2)N = C

N can be written as

(1.15)
dP N(z1, . . . , zN)

dz1 · · ·dzN

= ϕN,N(z1, . . . , zN).

It is a well-known fact (see [45], page 271, [39], page 150, or [32, 38]) that for
every 1 ≤ k ≤ N , the kth dimensional marginal distribution P k,N of P N has
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density

(1.16)

ϕk,N(z1, . . . , zk) =
∫
CN−k

ϕN,N(z1, . . . , zN)dzk+1 · · ·dzN

= (N − k)!
N !

e−N(|z1|2+···+|zk |2)

πkN−k
det

[(
eN(Nzizj )

)
1≤i,j≤k

]
,

where eN(w) := ∑N−1
�=0 w�/�! is the truncated exponential series. The energy

H is a quadratic functional of the empirical measure μN := 1
N

∑N
i=1 δxi

of the
particles

(1.17)
H(x1, . . . , xN) =

∫
V (x)μN(dx) + 1

2

∫∫
�=

W(x − y)μN(dx)μN(dy)

=: E �=
(
μN )

,

where “ �=” indicates integration outside the diagonal. Since βN � N as N →
∞, under (P N)N , the sequence of empirical measures (μN)N satisfies a large
deviation principle with speed (βN)N and good rate function E − infE where E
is given for nice probability measures μ on R

2 by

E(μ) :=
∫

V (x)μ(dx) + 1

2

∫∫
W(x − y)μ(dx)μ(dy).

See, for instance, [23, 36, 47] and references therein. The functional E is strictly
convex where it is finite, lower semicontinuous with compact level sets, and it
achieves its global minimum for a unique probability measure μ∞ on R

2, which
is the uniform distribution on the unit disc with density z ∈ C �→ π−11|z|≤1.
From the large deviation principle, it follows that almost surely

(1.18) μN −→
N→∞ μ∞ := arg infE

weakly, regardless of the way we put (P N)N in the same probability space.
• Crossover regime: βN = N . In this case P N has density proportional to

(x1, . . . , xN) ∈ D �→ e−∑N
i=1 |xi |2 ∏

1≤i<j≤N

|xi − xj | 2
N .

We do not have a determinantal formula as in (1.16), and this gas is not associ-
ated with a standard random matrix ensemble. It is a two-dimensional analogue
of the one-dimensional gas studied in [1] leading to a Gauss–Wigner crossover.
Following [23], we can expect that under (P N)N the sequence of empirical
measures (μN)N satisfies a large deviation principle with speed (βN)N and rate
function Ẽ − inf Ẽ ; here, Ẽ is given for every probability measure μ on R

2 by

Ẽ(μ) := E(μ) − S(μ) where S(μ) := −
∫ dμ

dx
log

dμ

dx
dx
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when μ is absolutely continuous with respect to the Lebesgue measure, while
S(μ) := +∞ otherwise. S is the so-called Boltzmann–Shannon entropy. The
minimizer of Ẽ is no longer compactly supported but can still be characterized
by Euler–Lagrange equations, and is a crossover between the uniform law on
the disc and the standard Gaussian law on R

2. See [23] for the link with Sanov’s
large deviation principle.

1.4.2. Dyson Brownian motion. If we start with an N × N random matrix,

Mt = (
M

j,k
t

)
1≤j,k≤N

with i.i.d. entries following the diffusion dM
j,k
t = dB

j,k
t −N∇V (M

j,k
t )dt then the

eigenvalues in C = R
2 of Mt will not match our diffusion X solution of (1.4). This

is due to the fact that Mt is not a normal matrix in the sense that MtM
∗
t �= M∗

t Mt

with probability one as soon as Mt has a density. In fact, the Schur unitary decom-
position of Mt writes Mt = UtTtU

∗
t where Ut is unitary and Tt = Dt +Nt is upper

triangular, Dt is diagonal and Nt is nilpotent. The dynamics of Dt is perturbed
by Nt . The dynamics (1.4) is not the analogue of the Dyson Brownian motion, the
process of the eigenvalues associated with the Gaussian unitary ensemble, the one-
dimensional log-gas studied in [2, 43]. We refer to [7, 13] and references therein
for more information on this topic.

1.4.3. Initial conditions. In the case of the one-dimensional log-gas known
as the Dyson Brownian motion, the stochastic differential equation still admits a
unique strong solution when the particles coincide initially. This is proved in [2],
Proposition 4.3.5, by crucially using the ordered particle system. Unfortunately, it
does not seem possible to extend such an argument to higher dimensions. But it is
likely that at least weak well-posedness should still hold for our model.

1.4.4. Arbitrary dimension, confinement and interaction. As in [23], many as-
pects should remain valid in arbitrary dimension d ≥ 2, with a Coulomb repulsion
and a more general confinement V . For instance, by analogy with the case without
interaction studied in [49], Theorem 2.2.19, it is natural to expect that Theorem 1.1
remains valid beyond the quadratic confinement case, for example, in the quadratic
“dispersive” case V (x) = −|x|2, and in confined cases for which V (x) → +∞ as
x → ∞ with polynomial growth. Nevertheless, our choice is to entirely devote the
present article to the two-dimensional quadratic confinement case: this model is
probably the richest in structure, notably due to its link with the Ginibre Coulomb
gas, which is a remarkable exactly solvable model.

The model with nonsingular interaction has extensively been studied in arbi-
trary dimension, in relation with McKean–Vlasov equations; see [44, 46, 50] and
references therein. The model in dimension d = 1 with logarithmic singular inter-
action has also extensively been studied; see, for instance, [10, 14, 20, 29, 43] and
references therein. See also [6].
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1.4.5. Logarithmic Sobolev inequality and other functional inequalities. It is
natural to ask whether P N satisfies a logarithmic Sobolev inequality, which is
stronger than the Poincaré inequality with half the same constant; see [3, 5]. In-
deed, for P N , a Lyapunov approach is probably usable by following the lines of
[17], Proof of Proposition 3.5 (see also [18]), but there are technical problems
due to the shape of D which comes from the singularity of the interaction. Ob-
serve that the one-particle marginal P 1,N satisfies indeed a logarithmic Sobolev
inequality with a constant uniform in N , as mentioned in Remark 6.2 after the
proof of Theorem 1.8.

Still about functional inequalities, the study of concentration of measure for
Coulomb gases in relation with Coulomb transport inequalities is considered in
the recent work [24].

1.4.6. Mean-field limit. In the regime βN = N2, by (1.18) the empirical mea-
sure μN under P N tends to μ∞ as N → ∞. More generally, when the law of X0
is exchangeable and for general βN , one can ask about the behavior of the empir-
ical measure of the particles μN

t := 1
N

∑N
i=1 δXi

t
as N → ∞ and as t → ∞. This

corresponds to study the following scheme:

P N
t −→

t→∞ P N and

μN
t −→

t→∞ μN

↓ ↓
μt −→

t→∞ μ∞

for a suitable deterministic limit μ∞.
At fixed N , the limit limt→∞ P N

t = P N , valid for an arbitrary initial condition
X0 = x, corresponds to the ergodicity phenomenon for the Markov process X,
quantified by the Poincaré inequality of Theorem 1.3. By the mean-field structure
of (1.5) and (1.7), it is natural to expect that if

σ := lim
N→∞

αN

βN

∈ [0,+∞)

then the sequence ((μN
t )t≥0)N

converges, as a continuous process with values in

the space of probability measures in R
2, to a solution of the following McKean–

Vlasov partial differential equation with singular interaction:

(1.19) ∂tμt = σ�μt + ∇ · (
(∇V + ∇W ∗ μt)μt

)
.

The convergence of ((μN
t )t≥0)N

can be thought of as a sort of law of large num-
bers. This is well understood in the one-dimensional case with logarithmic interac-
tion (see, for instance, [20, 48]), using tightness and characterization of the limit-
ing laws. However, the uniqueness arguments used in one-dimension are no longer
valid for our model, and different ideas need to be developed; see [22]. We also
refer to [26] and references therein for the analysis of similar evolution equations
without noise and confinement.
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Theorem 1.2 suggests to take αN = N . Let us comment on the couple of special
cases already considered in our large deviation principle analysis of (P N)N : βN =
N2 and βN = N , when αN = N .

• Random matrix theory regime with vanishing noise: αN = N and βN = N2.
In this case σ = 0 and the limiting McKean–Vlasov equation (1.19) does not
have a diffusive part. Since αN = N , we have a constant speed for the second
moment evolution. Since βN = N2, we have explicit determinantal formulas
for P N from the complex Ginibre ensemble (1.16). The absence of diffusion
implies that if we start from an initial state μ0 which is supported in a line,
then μt will still be supported in this line for any t ∈ [0,∞), and will thus
never converge as t → ∞ to the uniform distribution on the unit disc of the
complex plane. In particular, the long time equilibrium depends clearly on the
initial condition.

• Crossover regime with nonvanishing noise: αN = N and βN = N . In this case,
σ = 1 and the McKean–Vlasov equation (1.19) has a diffusive term. This regime
is also considered in [15, 16] for instance; see also [33]. The Keller–Segel model
studied in [19, 34] is the analogue with an attractive interaction instead of repul-
sive.

2. Useful formulas. In this section, we gather several useful formulas related
to the energy H = HV + HW and the operator L, defined in (1.2) and (1.7), re-
spectively. Recall that V (z) = |z|2 and W(z) = −2 log |z| on R

2 \ {0}, giving

∇V (z) = 2z and ∇W(z) = − 2z

|z|2 .

Moreover, we let |x|2 = ∑N
i=1 |xi |2 for x = (x1, . . . , xN) ∈ (R2)N .

Gradient. By (1.2), for any x ∈ D and i ∈ {1, . . . ,N},
(2.1) ∇xi

HV (x) = 1

N
∇V (xi) = 2

N
xi

and

(2.2) ∇xi
HW(x) = 1

N2

∑
j �=i

∇W(xi − xj ) = − 2

N2

∑
j �=i

xi − xj

|xi − xj |2
.

Hessian. By (2.1)–(2.2), for any x ∈ D and i, j ∈ {1, . . . ,N},

∇2
xi ,xj

HV (x) =
⎧⎨⎩

1

N
∇2V (xi) if i = j,

0 if i �= j,

and

∇2
xi ,xj

HW(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+ 1

N2

∑
k �=i

∇2W(xi − xk) if i = j,

− 1

N2 ∇2W(xi − xj ) if i �= j .
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This gives

(2.3) ∇2HV = 2

N
I2N and ∇2HW = 1

N2 A,

where I2N is the 2N × 2N identity matrix and A is a N × N bloc matrix with
diagonal and off-diagonal 2 × 2 blocs

Ai,i = ∑
k �=i

∇2W(xi − xk), Ai,j = −∇2W(xi − xj ), i �= j.

Operator. The generator L defined in (1.7) on functions f : D →R is given by

(2.4)

Lf (x) = αN

βN

�f (x) − αN

N

N∑
i=1

∇V (xi) · ∇xi
f (x)

− αN

N2

∑
1≤i �=j≤N

∇W(xi − xj ) · ∇xi
f (x)

= αN

βN

�f (x) − 2
αN

N

N∑
i=1

xi · ∇xi
f (x)

+ 2
αN

N2

∑
1≤i �=j≤N

(xi − xj ) · ∇xi
f (x)

|xi − xj |2 .

Let us compute now LHV , LHW and LH . First of all, since ∇W is odd, we get
by symmetrization from (2.1)–(2.2) that

(2.5)

|∇H |2(x) = 1

N2

N∑
i=1

∣∣∇V (xi)
∣∣2 + 1

N4

N∑
i=1

∣∣∣∣∑
j �=i

∇W(xi − xj )

∣∣∣∣2

+ 1

N3

∑
i �=j

(∇V (xi) − ∇V (xj )
) · ∇W(xi − xj )

= 4

N2 |x|2 + 4

N4

N∑
i=1

∣∣∣∣∑
j �=i

xi − xj

|xi − xj |2
∣∣∣∣2 − 4

N − 1

N2 .

Moreover, from (2.3) and �W = 0 on D, we get

(2.6) �HW(x) = 0 and �H(x) = �HV (x) =
N∑

i=1

1

N
�V (xi) = 4.
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By (2.1)–(2.2) and by symmetry we also have

(2.7)

LHV (x) = αN

βN

�HV (x) − αN∇H(x) · ∇HV (x)

= 4
αN

βN

− 4αN

N2 |x|2 + 4αN

N3

N∑
i=1

∑
j �=i

xi − xj

|xi − xj |2
· xi

= 4
αN

βN

− 4αN

N2 |x|2 + 2αN

N3

∑
1≤i �=j≤N

xi − xj

|xi − xj |2
· (xi − xj )

= 4
αN

βN

+ 2αN

N − 1

N2 − 4αN

N
HV (x)

and likewise

(2.8)

LHW(x) = αN

βN

�HW(x) − αN∇H(x) · ∇HW(x)

= 2αN

N − 1

N2 − 4
αN

N4

N∑
i=1

∣∣∣∣∑
j �=i

xi − xj

|xi − xj |2
∣∣∣∣2

From (2.7) and (2.8), we finally get

(2.9)

LH(x) = LHV (x) + LHW(x)

= 4
αN

βN

+ 4αN

(
N − 1

N2 − 1

N
HV (x) − 1

N2

N∑
i=1

∣∣∣∣ 1

N

∑
j �=i

xi − xj

|xi − xj |2
∣∣∣∣2

)
.

Note that the fact that the singular repulsion potential W is the fundamental
solution of the diffusion part � simplifies the expression of LH , in contrast with
the situation in dimension 1 studied in [48], page 559; see also [43].

3. Proof of Theorem 1.1.

LEMMA 3.1 (Connectivity). The set D defined by (1.1) is path-connected in
(R2)N .

PROOF. It suffices to show that for any x := (x1, . . . , xN) ∈ D and y :=
(y1, . . . , yN) ∈ D, there exists a continuous map γ := (γ1, . . . , γN) : [0,1] �→ D

such that γ (0) = x and γ (1) = y, which must be understood as the position in
time of N moving particles in space. This corresponds to move a cloud of N

distinct and distinguishable particles into another cloud of N distinct and distin-
guishable particles. Let us proceed by induction on N . The property is immedi-
ate for N = 1. Suppose that N ≥ 1 and assume that one has already constructed
t ∈ [0,1] �→ (γ1(t), . . . , γN(t)). One can first construct γN+1 in such a way that
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{t ∈ [0,1] : γN+1(t) ∈ {γ1(t), . . . , γN(t)}} is a finite set. Second, one may modify
the path γN+1, locally at the intersection times by varying the speed, in order to
make this set empty. This is possible since d = 2, and possibly impossible if d = 1
since a particle cannot bypass another one. �

LEMMA 3.2 (Coercivity). For any fixed N , we have H ≥ 0,

lim
x→∂D

H(x) = +∞,

and e−βH is Lebesgue integrable on D for any β > 0.

PROOF. Let x = (x1, . . . , xN) in D. Then

1

2

∑
i �=j

|xi − xj |2 = 1

2

N∑
i,j=1

|xi − xj |2 = N

N∑
i=1

|xi |2 −
∣∣∣∣∣

N∑
i=1

xi

∣∣∣∣∣
2

≤ N |x|2

so for uij = |xi − xj |2 it holds

2N2H(x) = N |x|2 + N |x|2 − ∑
i �=j

loguij ≥ N |x|2 + ∑
i �=j

(
uij

2
− loguij

)
.

But u/2 − logu ≥ 1 − log(2) ≥ 1/4 for all u > 0, so

(3.1) H(x) ≥ |x|2
2N

+ 1

2N2

N(N − 1)

4
≥ |x|2

2N
+ 1

16
.

In particular, H ≥ 0 and e−βH is Lebesgue integrable on D for any β > 0.
We now prove that H(x) → +∞ as x → ∂D. It suffices to show that for

any R > 0 there exists A > 0 and ε > 0 such that H(x) ≥ R as soon as
max1≤i≤N |xi | ≥ A or min1≤i �=j≤N |xi − xj | ≤ ε. First, let us fix R > 0. Then,
by (3.1), H(x) ≥ R as soon as |x|2 ≥ 2NR, giving such an A.

Then, for ε > 0 to be chosen later, assume that for some i �= j we have
|xi − xj | ≤ ε. Then, by definition of H(x),

N2H(x) ≥ 2 log
1

|xi − xj | + ∑
1≤k �=l≤N
{k,l}�={i,j}

log
1

|xk − xl| .

We can assume that max1≤r≤N |xr | ≤ A otherwise we have already seen that
H(x) ≥ R. Hence, for any (k, l) with k �= l we have

log
1

|xk − xl| ≥ − log
(
1 + |xk|) − log

(
1 + |xl|) ≥ −2 log(1 + A)

using the inequality |a − b| ≤ (1 + |a|)(1 + |b|) for a, b ∈C. As a consequence,

N2H(x) ≥ −2 log ε − 2N2 log(1 + A),

which is ≥ R for a small enough ε. �
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In the sequel, we use the notation Px = P[· | X0 = x] and Ex = E[· | X0 = x].

PROOF OF THEOREM 1.1. We first construct the process X starting in
D up to its explosion time. Given an initial condition x ∈ D, for each ε ∈
(0,min1≤i �=j≤N |xi − xj |) we consider a smooth function Wε on R

2 coinciding
with W on {z ∈ R

2 : |z| ≥ ε} and we set

Hε = HV + HWε.

Given a Brownian motion B in a fixed probability space, we let Xε denote the
unique pathwise solution to the stochastic differential equation

(3.2) dXε
t =

√
2
αN

βN

dBt − αN∇Hε(Xε
t

)
dt, Xε

0 = x.

Notice that for ε′ ∈ (0, ε], the processes Xε and Xε′
coincide up to the stopping

time

T ε,ε′ = inf
{
s ≥ 0 : min

i �=j

∣∣(Xε′
s

)i − (
Xε′

s

)j ∣∣ ≤ ε
}
.

For each ε ∈ (0,min1≤i �=j≤N |xi −xj |), we can thus unambiguously define a stop-
ping time T ε and a process X on [0, T ε], setting T ε = T ε,ε′

and X = Xε′
for any

ε′ ∈ (0, ε). By continuity, we have T ε′
> T ε a.s., and so X is uniquely defined up

to the stopping time T∂D defined in (1.6). On the other hand, the process X satis-
fies equation (1.5) on each interval [0, T ε), and hence on [0, T∂D), too. Thus, we
just have to prove that T∂D = ∞ a.s.

Given R > 0, define the stopping times

T ′
R := inf

{
t ≥ 0 : H(Xt) > R

} ∈ [0,∞] and

T ′ := lim
R→∞T ′

R = sup
R>0

T ′
R ∈ [0,∞].

Lemma 3.2 gives {T ′ = ∞} ⊂ {T∂D = ∞}: indeed on {T ′ = ∞}, for every t ≥ 0
we have sups∈[0,t] H(Xs) < ∞; by Lemma 3.2 this means that T∂D = ∞.

Let us now show that Px(T
′ = ∞) = 1. Thanks to (2.9), we have LH ≤ c on D

for c = 4αN(1/βN +1/N). Moreover, given R ≥ 1 and proceeding as in the end of
the proof of Lemma 3.2 we can choose ε < e−CRN2 logN for a numerical constant
C such that the function H (resp., LH ) coincides with Hε (resp., LHε) along the
trajectory of X on the interval [0, T ′

R]; we can therefore apply the Itô formula to
Xt∧T ′

R
and Hε to get that

(3.3)

Ex

(
H(Xt∧T ′

R
)
) − H(x) = Ex

(∫ t∧T ′
R

0
LH(Xs)ds

)

≤ Ex

(∫ t∧T ′
R

0
c ds

)
≤ ct,
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for each t ≥ 0. In particular,

sup
R>0

Ex

(
H(Xt∧T ′

R
)
)
< ∞.

On the other hand, since H is everywhere nonnegative by Lemma 3.2, we have

R1T ′
R≤t ≤ H(Xt∧T ′

R
),

from which it follows that

Px

(
T ′

R ≤ t
) ≤ 1

R
sup
R>0

Ex

(
H(Xt∧T ′

R
)
)
.

Finally, Px(T
′ ≤ t) = limR→∞ Px(T

′
R ≤ t) = 0, for any t ≥ 0, and thus Px(T

′ =
∞) = 1. �

Note that our proof of nonexplosion notably differs from the one of [48] and
[43]: we deal with ∂D at once, instead of handling separately ∞ and xi �= xj ,
thanks to the geometric Lemma 3.2.

REMARK 3.3. (a) From the previous proof, we see that the process X and the
process Xε as in (3.2) coincide up to the stopping time T ε . Moreover, T ε → ∞
a.s. as ε → 0. This readily implies that Xε → X a.s. uniformly on each finite time
interval [0, T ] and, in particular that Law(Xε) → Law(X) in C([0, T ], (R2)N).

(b) Since H is bounded from below and LH is bounded from above, letting
R → ∞ in the first equality in (3.3) and using twice Fatou’s lemma we get that

Ex

(
H(Xt)

) − H(x) ≤ Ex

(∫ t

0
LH(Xs)ds

)
with both sides finite, for all t ≥ 0.

4. Proof of Theorem 1.2.

PROOF OF THEOREM 1.2. By the Itô formula and (2.7), N−1|Xt |2 = HV (Xt)

evolves according to the stochastic differential equation

(4.1)

dHV (Xt) = LHV (Xt)dt +
√

2
αN

βN

∇HV (Xt)dBt

=
(

4
αN

βN

+ 2αN

N − 1

N2 − 4αN

N
HV (Xt)

)
dt +

√
2
αN

βN

2

N
Xt dBt .

The process HV (Xt) thus satisfies, until the first time it hits 0, the stochastic differ-
ential equation (1.8) with the Brownian motion bt defined by dbt = Xt ·dBt|Xt | . Stan-

dard properties of the CIR process (see [25]) and the fact that 4αN

βN
+ 2αN

N−1
N2 ≥

4 αN

NβN
, imply this stopping time is ∞ a.s. Pathwise uniqueness for (1.8) ensures
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that the law of HV (Xt) is the same as for the CIR process (in particular, its invari-
ant distribution is given in [25]).

Ergodicity of the solution R to (1.8) is proved in [41] by a nonquantitative ap-
proach. Let us prove the long time convergence bound (1.9) in Wasserstein−1
distance. By standard arguments, it is enough to show that for any pair (Rx

t ,R
y
t )

of solutions to (1.8) driven by the same (fixed) Brownian motion bt , and such that
(Rx

0 ,R
y
0 ) = (x, y), one has

E
[∣∣Rx

t − R
y
t

∣∣] ≤ e−4
αN
N

t |x − y|.
This can be done adapting classical uniqueness argument for square root diffusions
found in [40]. Indeed, consider the function

x ∈ R+ �→ ρ(x) :=
√

8αN

NβN

x

and the sequence {a�}�≥1 defined as

a0 = 1 and a� = a�−1e
−�

8αN
NβN , � ≥ 1.

Note that a� ↘ 0 and
∫ a�−1
a�

ρ(z)−2 dz = �. For each � ≥ 1, let moreover z �→
ψ�(z) be a nonnegative continuous function supported on (a�, a�−1) such that∫ a�−1
a�

ψ�(z)dz = 1 and 0 ≤ ψ�(z) ≤ 2�−1ρ(z)−2 for a� < z < a�−1. Consider also
the even nonnegative and twice continuously differentiable function φ� defined by

φ�(x) =
∫ |x|

0
dy

∫ y

0
ψ�(z)dz, x ∈ R

For all x ∈ R, it satisfies: φ�(x) ↗ |x|, φ′
�(x) → sign(x) as � → ∞, 0 ≤ φ′

�(x)x ≤
|x| and 0 ≤ φ′′

� (x) 8αN

NβN
|x| ≤ 2�−1. Applying the Itô formula to φ� and ζt := Rx

t −
R

y
t , we get

φ�(ζt ) =M�
t − 4

αN

N

∫ t

0
φ′

�(ζs)ζs ds + 4
αN

NβN

∫ t

0
φ′′

� (ζs)ζs ds

for some martingale M�
t . Taking expectation, letting � → ∞ and applying Gron-

wall’s lemma, the desired inequality is obtained. Assertion (1.10) follows from
(4.1), noting that the function f (t) = E[HV (Xt) | X0 = x] solves

f (t) = f (0) +
∫ t

0

(
4
αN

βN

+ 2αN

N − 1

N2 − 4αN

N
f (s)

)
ds

for all t > 0, and integrating this equation. �
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5. Proof of Theorem 1.3.

PROPOSITION 5.1 (Lack of convexity). The set D defined by (1.1) is not con-
vex. Moreover, the Hessian matrix of the function H is not always positive definite
on D.

PROOF. The set D is not convex since 0 ∈ [−x, x] ∩ Dc for any x ∈ D.
The convexity of H could be studied using a bloc version of the Ghershgorin

theorem (see [28]) if W were convex. Unfortunately, it turns out that W is nowhere
convex. More precisely, setting z = (a, b)� ∈R

2 \ {(0,0)}, we get

W(z) = − log
(|z|2) = − log

(
a2 + b2)

and

∇W(z) = −2
z

|z|2 = −2
(a, b)�

a2 + b2 and ∇2W(z) = 2

(
a2−b2 2ab

2ab b2−a2

)
(a2 + b2)2 .

Thus

Tr
(∇2W(z)

) = 0 and det
(∇2W(z)

) = − 4

|z|4 .

Consequently, the two eigenvalues λ±(z) of ∇2W(z) satisfy

λ−(z) = −λ+(z) = − 2

a2 + b2 = − 2

|z|2 −→
z→0

−∞,

and have respective eigenvectors (−b, a) and (a, b). In particular, W is not convex.
Now, by (2.3), if we fix x1, . . . , xN−1 and let xN tend to x1, then ∇2W(x1 − xj )

will remain bounded for any j ∈ {2, . . . ,N − 1} while the smallest eigenvalue of
∇2W(x1 − xN) blows down to −∞. Therefore, ∇2

x1,x1
H(x1, . . . , xN), and thus

∇2H(x1, . . . , xN) is not positive definite for such points.
Note however that we may also use (2.3) to get that ∇2H(x1, . . . , xN) is positive

definite at points of D for which all the differences xi − xj are large enough. �

The following lemma is the gradient version of Lemma 3.2.

LEMMA 5.2 (Gradient coercivity). For any N and x = (x1, . . . , xN) in D, we
have ∣∣∇H(x)

∣∣2 ≥ 4

N2 |x|2 + 4

N4

∑
i �=j

1

|xi − xj |2 − 4
N − 1

N2 .

In particular,

lim
x→∂D

∣∣∇H(x)
∣∣ = +∞.
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PROOF. This is a consequence of (2.5) and the fact that for any N and any
distinct x1, . . . , xN ∈ R

2,

(5.1) SN :=
N∑

i=1

∣∣∣∣∑
j �=i

xi − xj

|xi − xj |2
∣∣∣∣2 −

N∑
i=1

∑
j �=i

1

|xi − xj |2 ≥ 0.

For the proof of (5.1), we first observe that

S2 = 0

and we now consider N ≥ 3 for which

SN = 2
N∑

i=1

∑
1≤j<k≤N

j,k �=i

(xi − xj ) · (xi − xk)

|xi − xj |2|xi − xk|2 .

Decomposing
N∑

i=1

∑
1≤j<k≤N

j,k �=i

· = ∑
1≤i<j<k≤N

· + ∑
1≤j<i<k≤N

· + ∑
1≤j<k<i≤N

·

and letting I = j, J = i and K = k in the second sum on the right-hand side and
I = j, J = k and K = i in the third sum, we see that SN/2 is equal to∑

1≤i<j<k≤N

|xj − xk|2(xi − xj ) · (xi − xk)

|xi − xj |2|xj − xk|2|xk − xi |2

+ |xk − xi |2(xj − xi) · (xj − xk)

|xi − xj |2|xj − xk|2|xk − xi |2 + |xi − xj |2(xk − xi) · (xk − xj )

|xi − xj |2|xj − xk|2|xk − xi |2 .

But

|xj − xk|2 = |xi − xj |2 + |xi − xk|2 − 2(xi − xj ) · (xi − xk)

so

SN = 4
∑

1≤i<j<k≤N

|xi − xj |2|xi − xk|2 − (xi − xj ) · (xi − xk)
2

|xi − xj |2|xj − xk|2|xk − xi |2 .

Hence SN ≥ 0 by the Schwarz inequality. This shows also that equality is achieved
when xi − xj and xi − xk are parallel for any i, j, k for instance when xi = (i,0)

for any i, thanks to the equality case in the Schwarz inequality. Let us observe
from the proof that the same bound would hold in any Hilbert space. �

The following lemma is the counterpart on HW of Theorem 1.2 for HV . It is
likely that the bounds in the lemma are not optimal, as we would expect bounds
independent of N . This is probably due to our use of the bound (5.1). The lemma
is not used but has its own interest as we see that the particular speed αN = N

naturally appears in the upper bounds, as in Theorem 1.2.
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LEMMA 5.3 (Energy evolution). For every x ∈ D and t ≥ 0, let us define

ηx(t) := 2N

N − 1
Ex

[
HW(Xt)

]
where HW(x) := 1

2N2

∑
i �=j

W(xi − xj ).

Then, for every x ∈ D and t ≥ 0,

ηx(t) ≤ − log
(

e−ηx(0)−4αN t/N + 2

N

(
1 − e−4αN t/N ))

and in particular

ηx(t) ≤ log
N

2(1 − e−4αN t/N)
and ηx(t) ≤ max

(
ηx(0), log

N

2

)
.

PROOF. Taking expectation to the first line in equation (4.1) and subtracting
the obtained identity from the inequality in Remark 3.3 b), we get

Ex

(
HW(Xt)

) − HW(x) ≤ Ex

(∫ t

0
LHW(Xs)ds

)
for all t ≥ 0. But from (2.8) and (5.1) we get

LHW(x) = 2
αN

N2 (N − 1) − 4
αN

N4

N∑
i=1

∣∣∣∣∑
j �=i

xi − xj

|xi − xj |2
∣∣∣∣2

≤ 2
αN

N2 (N − 1) − 4
αN

N4

∑
i �=j

1

|xi − xj |2

= 4
αN

N2

N − 1

N

[
N

2
− 1

N(N − 1)

∑
i �=j

1

|xi − xj |2
]
.

On the other hand, by the Jensen inequality,

HW(x) = N − 1

2N

1

N(N − 1)

∑
i �=j

log
1

|xi − xj |2

≤ N − 1

2N
log

(
1

N(N − 1)

∑
i �=j

1

|xi − xj |2
)
.

Therefore, we get

LHW(x) ≤ 4
αN

N2

N − 1

N

[
N

2
− e

2N
N−1 HW (x)

]
.
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Using again the Jensen inequality, it follows that

ηx(t) ≤ ηx(0) + 2N

N − 1

∫ t

0
ExLHW(Xs)ds

≤ ηx(0) + 8αN

N2

∫ t

0

[
N

2
−Ex

[
e

2N
N−1 HW (Xs)

]]
ds

≤ ηx(0) + 8αN

N2

∫ t

0

[
N

2
− eηx(s)

]
ds.

Therefore,

e−ηx(t) ≥ e−ηx(0)−4αN t/N + 2

N

(
1 − e−4αN t/N ) ≥ min

{
2

N
, e−ηx(0)

}
by time integration for the first bound and then, for the second bound, by writing
the obtained expression as the interpolation between 2/N and e−ηx(0). Dropping
the e−ηx(0)−4αN t/N term gives the second upper bound in the lemma. �

PROOF OF THEOREM 1.3. In order to prove that P N satisfies a Poincaré in-
equality, we follow the approach developed in [4] based on a Lyapunov function
together with a local Poincaré inequality (see also the proof of [17], Theorem 1.1).
This approach amounts to find a positive C2 function φ on D, a compact set K ⊂ D

and positive constants c, c′, such that on D

Lφ ≤ −cφ + c′1K.

Such a φ is called a Lyapunov function. Indeed, for a centered f ∈ F this gives∫
f 2 dP N ≤

∫
K

c′

cφ
f 2 dP N +

∫
−Lφ

cφ
f 2 dP N.

The first term of the right-hand side can be controlled using a local Poincaré in-
equality, in other words a Poincaré inequality on every ball included in D, by
comparison to the uniform measure. The second one can be handled using an inte-
gration by parts which is allowed since f ∈ F . See [4] and [17] for the details.

For our model P N , we take the C∞ function

φ = eγH

for some γ > 0. This function is larger than or equal to 1 by Lemma 3.2, and the
probability measure P N has a smooth positive density on D, which provides a
local Poincaré constant that may depend on N however.

Let us check that φ is a Lyapunov function. To this end, let us show that there
exist constants c, c′′ > 0 and a compact set K ⊂ D such that, on D,

Lφ

φ
≤ −c + c′′1K.
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Indeed, since φ is positive and bounded on the compact set K , this gives, on D,

Lφ ≤ −cφ + c′′ sup
x∈K

∣∣φ(x)
∣∣1K = −cφ + c′1K.

In order to compute Lφ/φ, we observe that

∇φ = γφ∇H and �φ = γ 2φ|∇H |2 + γφ�H.

Therefore, by (1.7),

βN

αNγ

Lφ

φ
= �φ − βN∇H · ∇φ

γφ
= �H + (γ − βN)|∇H |2.

Now �H = 4 on D by (2.6). Moreover, by Lemma 5.2, for γ < βN there exists a
compact set K ⊂ D such that

(βN − γ ) inf
(x1,...,xN )∈Kc

|∇H |2(x1, . . . , xN) > 5.

One can take for instance

K =
{
x ∈ (

R
2)N : |x| ≤ R and min

i �=j
|xi − xj | ≥ ε

}
for R > 0 large enough and ε > 0 small enough.

Then βN/(αNγ )Lφ/φ ≤ −1 on D \ K and the Poincaré inequality is proved.
Note that we can take γ = 1 if βN ≥ N . �

REMARK 5.4 (Poincaré inequality for P 2). Let us give an alternative direct
proof of the Poincaré inequality for the probability measure P 2. Consider indeed
the change of variable (u, v) = ((x1 + x2)/2, (x1 − x2)/2) on R

2 ×R
2, which has

the advantage to decouple the variables (this miracle is available only in the two
particle case N = 2). Letting β = β2, we get a probability density function on
R

2 ×R
2 proportional to

(u, v) ∈ R
2 ×R

2 �→ e−β|u|2−β|v|2−+β/2 log |v| = e−β|u|2 |v|β/2e−β|v|2 .
This probability measure is the tensor product of the Gaussian measure, which
satisfies a Poincaré inequality, and of the measure μ with density

e−β�(v)

Z
with �(v) = |v|2 − 1

2
log |v|.

The measure μ is not log-concave at all (singularity at zero notably) but �(v) is a
convex function of the norm r = |v|. Hence [9], Theorem 1, ensures that μ satisfies
a Poincaré inequality, and then so does our product measure by tensorization.

Note that one can prove Poincaré for μ by using a Lyapunov function as in the
proof of Theorem 1.3, instead of [9], Theorem 1, namely, if L′ := � − β∇� · ∇
in dimension two and φ = eβ�/2, then

L′φ
φ

= β

2
�� − β2

4
|∇�|2, ∇�(v) = 2v − v

2|v|2 , �� = 4
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for v �= 0 (recall that log |v| is harmonic in dimension two). Therefore,

L′φ
φ

= 2β2 − β2
(
|x| − 1

4|x|
)2

≤ −c + c′1K

for the compact set

K := {
x ∈ R

2 : r ≤ |x| ≤ R
}

with 0 < r < R well chosen.

6. Proof of Theorem 1.8. Recall that if μN is the random empirical measure
under P N then for any continuous and bounded test function f : R2 → R, using
exchangeability and (1.15),

EP N

∫
R2

f (x)μN(dx) =
∫
(R2)N

(
1

N

N∑
k=1

f (xk)

)
ϕN,N(x1, . . . , xN)dx1 · · ·dxN

=
∫
R2

f (x)ϕ1,N (x)dx = EP 1,N (f ),

where P 1,N is the 1-dimensional marginal of P N . By Theorem 1.9, as N → ∞,
the density ϕ1,N of P 1,N tends to the density of the uniform distribution μ∞ on the
unit disc of R2. The probability measure μ∞ satisfies a Poincaré inequality for the
Euclidean gradient, since for instance it is a Lipschitz contraction of the standard
Gaussian on R

2. Unfortunately, the convergence of densities above is not enough
to deduce that P 1,N satisfies a Poincaré inequality (uniformly in N or not).

PROOF OF THEOREM 1.8. The idea is to view P 1,N as a Boltzmann–Gibbs
measure and to use some hidden convexity. Namely, from (1.16) its density is given
on R

2 by

(6.1) ϕ1,N (x) = e−N |x|2−ψ(
√

Nx)

π
with ψ(x) := − log

N−1∑
�=0

|x|2�

�! .

If we now write f (x) = |x|2 + ψ(x) = g(r2) with r = |x| and g(t) = t −
log

∑N−1
�=0 t�/�!, then

∇f (x) = 2g′(r2)
x and ∇2f (x) = 4g′′(r2)

x ⊗ x + 2g′(r2)
I2

and

g′(t) =
tN−1

(N−1)!∑N−1
�=0

t�

�!
≥ 0 and g′′(t) = tN−2

(N − 2)!
(
∑N−1

�=0
t�

�! − t
N−1

∑N−2
�=0

t�

�! )

(
∑N−1

�=0
t�

�! )
2 ≥ 0.

It follows that f is convex (note that its Hessian vanishes at the origin), and in
other words P 1,N is log-concave. Therefore, according to a criterion stated in [8],
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Theorem 1.2, and essentially due to Kannan, Lovász and Simonovits, it suffices to
show that the second moment of P 1,N is uniformly bounded in N .

But, using the density (6.1) of P 1,N , this moment is

(6.2)

∫
R2

|x|2P 1,N (dx) =
N−1∑
�=0

N�

�!
∫ ∞

0
r2(�+1)2re−Nr2

dr

=
N−1∑
�=0

N�

�!
(� + 1)!
N�+2 = N + 1

2N
≤ 1

2
.

This concludes the argument thanks to the Bobkov criterion. �

With βN = N2 and since P 1,N = EμN , (6.2) is consistent with (1.10) since in
this case

lim
t→∞E

[
HV (Xt) | X0 = x

] = 1

2
+ 1

N
− 1

2N
= N + 1

2N
.

Note also that, by (6.2), the second moment of P 1,N = EμN tends to 1/2 as N →
∞; this turns out to be the second moment of its weak limit μ∞ since∫

R2
|x|2μ∞(dx) = 2π

π

∫ 1

0
r3 dr = 1

2
.

Observe finally that a bound on the second moment of P 1,N = EμN can be ob-
tained as follows. Let M be a N ×N random matrix with i.i.d. entries of Gaussian
law N (0, 1

2N
I2) (in other words an element of the complex Ginibre ensemble);

then, by Weyl’s inequality ([37], Theorem 3.3.13) on the eigenvalues,∫
R2

|x|2EμN(dx) = 1

N
E

N∑
k=1

∣∣λk(M)
∣∣2 ≤ 1

N
E

N∑
k=1

λk

(
MM∗)

= 1

N
ETr

(
MM∗) = 1.

REMARK 6.1 (Poincaré via spherical symmetry). The probability measure
P 1,N is also spherically symmetric or rotationally invariant, as in Bobkov [9] (see
also [11]). Namely, in the notation f (x) = g(r2) with r = |x| for the “potential”
of the density of P 1,N , as in the proof of Theorem 1.8, let h(r) = g(r2). Then

f (x) = h(r), ∇f (x) = h′(r) x

|x| and

∇2f (x) = h′′(r)x ⊗ x

|x|2 + h′(r)

( x2
2 −x1x2

−x1x2 x2
1

)
|x|3 .



DYNAMICS OF A PLANAR COULOMB GAS 3177

The matrix on the right-hand side has nonnegative trace and null determinant, and
is thus positive semidefinite (it is the Hessian of the norm x �→ |x| = r). Moreover,

h′(t) = 2g′(t2)
t, h′′(t) = 4g′′(t)t2 + 2g′(t2) ≥ 0.

It follows that P 1,N is a spherically symmetric probability measure on R
2, and its

density is a log-concave function of the norm (and it vanishes at the origin). Now
according to [9], Theorem 1, it follows that the probability measure P 1,N satisfies
a Poincaré inequality with a constant which depends only on the second moment,
which again is bounded in N .

REMARK 6.2 (Logarithmic Sobolev inequality). According to Bobkov’s re-
sult [8], Theorem 1.3, we even get for P 1,N a logarithmic Sobolev inequality with
a uniform constant in N provided that P 1,N has a sub-Gaussian tail uniformly in
N (which is stronger than the second moment control). This is indeed the case.
Namely, if Z ∼ P 1,N , then for any real R ≥ 0,

P(Z ≥ R) =
∫ 2π

0

∫ +∞
R

e−Nr2

π

N−1∑
�=0

(Nr2)�

�! r dθ dr = 1

N

∫ +∞
NR2

e−s
N−1∑
�=0

s�

�! ds.

Moreover,

1

N

N−1∑
�=0

s�

�! ≤ sN

N ! ≤ 2Ne
1
2 s

for s ≥ N . Hence, for R ≥ 2,

P(Z ≥ R) ≤
∫ +∞
NR2

2Ne− 1
2 s ds = 2N+1e− 1

2 NR2 ≤ 4e− 1
2 R2

.

7. Proof of Theorem 1.9. Proof of the first part of Theorem 1.9. It is a conse-
quence of (1.18) and of the following theorem. Indeed, by Lebesgue’s dominated
convergence, (1.18) implies that EF(μN) tends to F(μ∞) for every continuous
and bounded function F : P(E) → R. In other words, (i) holds in Theorem 7.1,
whence (ii), which is exactly the first part of Theorem 1.9.

THEOREM 7.1 (Characterizations of chaoticity). Let E be a Polish space and
P(E) be the Polish space of Borel probability measures on E endowed with the
weak convergence topology. Let μ be an element of P(E) and let (P N)N a se-
quence of exchangeable probability measures on EN . Let us define the random
empirical measure

μN = 1

N

N∑
i=1

δXi
,

where (X1, . . . ,XN) has law P N . Then the following properties are equivalent:
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(i) the law of μN converges to δμ weakly in P(P(E));
(ii) for any fixed k ≤ N the kth dimensional marginal distribution P k,N of P N

converges weakly in P(Ek) to the product probability measure μ⊗k ;
(iii) the 2nd dimensional marginal P 2,N of P N converges to μ⊗2 weakly in

P(E2).

PROOF. Theorem 7.1 is stated for instance in [51], page 260, [46], Proposi-
tion 4.2, and [50], Proposition 2.2, but with a sketchy proof that (iii) implies (i). For
the reader’s convenience, we detail this proof when E satisfies the following prop-
erty: there exists a countable subset D of the set Cb(E) of continuous and bounded
functions E → R, such that for (μn)n,μ in P(E), it holds

∫
φ dμn → ∫

φ dμ for
any φ in Cb(E) as soon as it holds for any φ in D. For instance, this property holds
when E is the Euclidean space.

Since P(P(E)) is metrizable, it is enough to check that for any sequence (Nk)k

there exists a subsequence (Nkj
)j such that the law of μ

Nkj converges to δμ. But,
by expanding the square, exchangeability and (iii),

E

(∣∣∣∣∫
E

φ dμNk −
∫
E

φ dμ

∣∣∣∣2)
→ 0, k → +∞

for any φ in Cb(E), and hence in D. Hence for any such φ there exists a sub-
sequence still denoted (Nkj

)j such that
∫

φ dμ
Nkj → ∫

φ dμ almost surely. Now,
by a diagonal extraction argument, we can build another subsequence (Nkj

)j such

that, almost surely,
∫

φ dμ
Nkj → ∫

φ dμ for any φ in D. By definition of D, this
implies that, almost surely, μ

Nkj converges to μ in the metric space P(E). It fol-
lows that the law of μ

Nkj converges to δμ by the Lebesgue dominated convergence
theorem. Hence (i) since P(P(E)) is metrizable. �

Proof of the second part of Theorem 1.9. We first describe the behavior of the
one-marginal density function ϕ1,N . From (1.16), it is given by

ϕ1,N (z) = e−N |z|2

π
eN

(
N |z|2)

, z ∈ C,

where eN(w) := ∑N−1
�=0 w�/�! is the truncated exponential series. Then, pointwise

in C,

(7.1) ϕ1,N (z) → 1

π

(
1|z|<1 + 1

2
1|z|=1

)
, N → ∞.

Namely, by rotational invariance, it suffices to consider the case z = r > 0. Next, if
Y1, . . . , YN are i.i.d. random variables following the Poisson distribution of mean
r2, then

e−Nr2
eN

(
Nr2) = P(Y1 + · · · + YN < N) = P

(
Y1 + · · · + YN

N
< 1

)
.
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Now, as N → ∞, Y1+···+YN

N
→ r2 almost surely by the law of large numbers, and

thus the right-hand side above tends to 0 if r > 1 and to 1 if r < 1. In other words,

e−Nr2
eN

(
Nr2) → 1r<1

provided r �= 1. For r = 1, by the central limit theorem we get

P

(
Y1 + · · · + YN

N
< 1

)
= P

(
Y1 + · · · + YN − N√

N
< 0

)
→ 1

2
.

In fact, the convergence in (7.1) holds uniformly on compact sets outside the
unit circle |z| = 1, as shown in Lemma 7.2 below. It cannot hold uniformly on
arbitrary compact sets of C since the pointwise limit is not continuous on the unit
circle.

We now turn to the two-marginal density function ϕ2,N . By (1.16), it is given
by

(7.2)

ϕ2,N (z1, z2)

= N

N − 1

e−N(|z1|2+|z2|2)

π2

(
eN

(
N |z1|2)

eN

(
N |z2|2) − ∣∣eN(Nz1z2)

∣∣2)
= N

N − 1
ϕ1,N (z1)ϕ

1,N (z2) − N

N − 1

e−N(|z1|2+|z2|2)

π2

∣∣eN(Nz1z2)
∣∣2

for every z1, z2 ∈ C.
It follows that for any N ≥ 2 and z1, z2 ∈ C,

(7.3)

�N(z1, z2) := ϕ2,N (z1, z2) − ϕ1,N (z1)ϕ
1,N (z2)

= 1

N − 1
ϕ1,N (z1)ϕ

1,N (z2)

− N

N − 1

e−N(|z1|2+|z2|2)

π2

∣∣eN(Nz1z2)
∣∣2.

In particular, using ϕ2,N ≥ 0 for the lower bound,

−ϕ1,N (z1)ϕ
1,N (z2) ≤ �N(z1, z2) ≤ 1

N − 1
ϕ1,N (z1)ϕ

1,N (z2).

From this and Lemma 7.2, we first deduce that for any compact subset K of {z ∈
C : |z| > 1}

lim
N→∞ sup

z1∈C
z2∈K

∣∣�N(z1, z2)
∣∣ = lim

N→∞ sup
z1∈K
z2∈C

∣∣�N(z1, z2)
∣∣ = 0.

To conclude the proof of Theorem 1.9 it remains to show that �N(z1, z2) → 0
as N → ∞ when z1 and z2 are in compact subsets of |z1| < 1, |z2| < 1. In this
case, |z1z2| ≤ 1 and Lemma 7.2 give∣∣eN(Nz1z2)

∣∣2 ≤ 2e2NRe(z1z2) + 2r2
N(z1z2).
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Next, using the elementary identity 2Re(z1z2) = |z1|2 + |z2|2 − |z1 − z2|2, we get

(7.4) e−N(|z1|2+|z2|2)∣∣eN(Nz1z2)
∣∣2 ≤ 2e−N |z1−z2|2 + 2e−N(|z1|2+|z2|2)r2

N(z1z2).

Since |z1z2| ≤ 1, the formula for rN in Lemma 7.2 gives

e−N(|z1|2+|z2|2)r2
N(z1z2) ≤ e−N(|z1|2+|z2|2−2−log |z1|2−log |z2|2) (N + 1)2

2πN
.

Using (7.3), (7.4) and the bounds ϕ1,N ≤ 1/π and u−1− logu > 0 for 0 < u < 1,
it follows that �N(z1, z2) tends to 0 as N → ∞ uniformly in z1, z2 on compact
subsets of {

(z1, z2) ∈C
2 : |z1| < 1, |z2| < 1, z1 �= z2

}
.

This achieves the proof of Theorem 1.9.

LEMMA 7.2 (Exponential series). Let eN(w) := ∑N−1
�=0 w�/�! denote the trun-

cated exponential series. For every N ≥ 1 and z ∈ C,∣∣eN(Nz) − eNz1|z|≤1
∣∣ ≤ rN(z),

where

rN(z) := eN

√
2πN

|z|N
(

N + 1

N(1 − |z|) + 1
1|z|≤1 + N

N(|z| − 1) + 1
1|z|>1

)
.

In particular, for any compact subset K ⊂ C \ {z ∈ C : |z| = 1},
lim

N→∞ sup
z∈K

∣∣∣∣ϕ1,N (z) − 1|z|≤1

π

∣∣∣∣ = π−1 lim
N→∞ sup

z∈K

∣∣e−N |z|2eN

(
N |z|2) − 1|z|≤1

∣∣ = 0.

PROOF. As in Mehta [45], Chapter 15, for every N ≥ 1, z ∈ C, if |z| ≤ N then

∣∣ez − eN(z)
∣∣ =

∣∣∣∣∣
∞∑

�=N

z�

�!
∣∣∣∣∣ ≤ |z|N

N !
∞∑

�=0

|z|�
(N + 1)�

= |z|N
N !

N + 1

N + 1 − |z| ,

while if |z| > N then

∣∣eN(z)
∣∣ ≤

N−1∑
�=0

|z|�
�! ≤ |z|N−1

(N − 1)!
N−1∑
�=0

(N − 1)�

|z|� ≤ |z|N−1

(N − 1)!
|z|

|z| − N + 1
.

Therefore, for every N ≥ 1 and z ∈C,∣∣eN(Nz) − eNz1|z|≤1
∣∣

≤ NN

N !
(
|z|N N + 1

N + 1 − |Nz|1|z|≤1 + |z|N−1 |Nz|
|Nz| − N + 1

1|z|>1

)
.

It remains to use the Stirling bound
√

2πNNN ≤ N !eN to get the first result. �
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