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Abstract.

In recent years, the role of epidemic models in informing public

health policies has progressively grown. Models have become increasingly
realistic and more complex, requiring the use of multiple data sources to esti-
mate all quantities of interest. This review summarises the different types of
stochastic epidemic models that use evidence synthesis and highlights cur-

rent challenges.

Key words and phrases:
modelling, mechanistic modelling.

1. BACKGROUND

Epidemic models have become increasingly central
to public health decision making, providing quantita-
tive support to the efficient planning of health-care re-
sources, the determination of optimal control strate-
gies and the assessment of interventions to interrupt
disease transmission. All of these require knowledge
on hidden aspects of epidemics, such as current dis-
ease prevalence, severity, incidence and transmission,
which can only be indirectly inferred through mod-
elling. As a consequence of this crucial role of mod-
els, the methodologies underpinning epidemic mod-
elling have come under increasing scrutiny. This has
lead to more frequent adoption of rigorous approaches

Paul Birrell is a Senior Investigator Statistician at the MRC
Biostatistics Unit, University of Cambridge, School of
Clinical Medicine, Cambridge Institute of Public Health,
Forvie Site, Robinson Way, Cambridge Biomedical Campus,
Cambridge CB2 OSR, United Kingdom (e-mail:
paul.birrell@mrc-bsu.cam.ac.uk). Daniela De Angelis is a
Programme Leader at the MRC Biostatistics Unit,
University of Cambridge, School of Clinical Medicine,
Cambridge Institute of Public Health, Forvie Site, Robinson
Way, Cambridge Biomedical Campus, Cambridge CB2
OSR, United Kingdom (e-mail:

daniela.deangelis @mrc-bsu.cam.ac.uk). Anne Presanis is a
Senior Investigator Statistician at the MRC Biostatistics
Unit, University of Cambridge, School of Clinical
Medicine, Cambridge Institute of Public Health, Forvie
Site, Robinson Way, Cambridge Biomedical Campus,
Cambridge CB2 OSR, United Kingdom (e-mail:
anne.presanis @mrc-bsu.cam.ac.uk).

34

Evidence synthesis, state-space models, epidemic

to linking models to data [21], increasing realism and,
therefore, model complexity, and the need to use rich
data arrays to guarantee reliable estimation. The result
has been a recent proliferation of models incorporating
data from multiple sources (e.g., [1, 13]).

We will summarise and review some selected key ex-
amples in this literature by characterising models using
a common construct. Most epidemic processes can be
expressed through a state vector X; representing un-
observable characteristics of the epidemic and a vec-
tor of observable quantities Y;, under a generalised
parameter-driven state-space framework:

XX 1—1,Y14-1 ~ py (-1 Xi—1)
(state equation),
Yo X1, Y1~ pgo(1X:)

(observation equation),

(1.1)

(1.2)

where t = 1,...,T and the p(-|-) are appropriately
chosen probability density functions [10]. Equation
(1.1) governs the development of the epidemic system,
characterised by a vector of parameters ¢. Equation
(1.2) relates the underlying epidemic process to rele-
vant potential data Y;. These data are typically imper-
fect observations associated with X, constrained by
the limitations of surveillance schemes and subject to
(a vector of) nuisance parameters, 7. State vectors con-
sist of all latent quantities that may change over time,
usually probabilistically, and ¢ governs their temporal
development. In some cases, the state vector is simply
a deterministic function of ¢. More commonly, epi-
demic models are compartmental, partitioning a pop-
ulation according to, for example, infection status. The
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distribution of individuals in each model compartment
is part of the state vector, as is any quantity describing
model dynamics that evolves over time, for example,
incidence of infection A; [6] or the transmission po-
tential B;, the disease transmission rate conditional on
contact between an infectious and a susceptible indi-
vidual [34].

The focus of the statistical analysis could be to es-
timate unobserved system states X .7 either sequen-
tially (filtering) or retrospectively (smoothing), and/or
to make inference about components of 8 = (¢, 5)
that have some crucial interpretation. These parame-
ter components might measure some headline statistic
for the epidemic, such as the epidemic’s reproductive
number Ry, the average number of secondary infec-
tions caused by a single primary infection in a wholly
susceptible population, or the effect of an intervention.
This inference, ideally, would be based on direct obser-
vations Y, on the states X, that is,

(13) Y, =X;+n"ey,, whereey;~N(0,1I).

However, equation (1.3) implies observation of, for in-
stance, new infections as they occur, which, especially
in large populations, is rarely feasible. More realisti-
cally, data are indirectly related to the quantities of in-
terest and inference becomes possible only through the
integration of data from multiple sources. Thus, given
0,Y, = (Y,], e Y,N) is a collection of N independent
data sources with observed values y, = ( y,l, e, y[N ).

Evidence does not just come in the form of data.
There are also modelling assumptions that underlie the
parametric forms of pg(-) and p(g. y) (), based on rele-
vant literature, expert opinion and/or collateral data not
included in the model. In particular, pragmatic choices
might need to be made over which parameter com-
ponents can realistically be estimated by the available
data, and which components it is prudent to assume to
be known from literature (but can be varied as part of
a sensitivity analysis). Synthesis of these kinds of evi-
dence can be formalised by adopting a Bayesian frame-
work centered on the posterior distribution

p(0,x1.71y1.7)

o« p(yi.rlxrr,0)p(x1:710)p(),
where p(0), the prior distribution for 6, encodes all
that is known of @ from sources external to the present
study. The posterior distribution represents a natural
synthesis of this additional external information with
yur-

In this paper, we shall provide an overview of ev-
idence syntheses in stochastic epidemic modelling

(1.4)

where multiple types of data are explicitly used in
an integrated analysis. In Section 2, we will focus on
nonmechanistic statistical models for epidemic data,
that is, where transmission is not explicitly modelled.
Initially, these models will be static, and the aim of
the analysis is to estimate the current state of an epi-
demic. This setup will then be extended by adding a
time dimension, initially to estimate time-varying dis-
ease incidence. In Section 3, we consider how multi-
ple sources of data are used for inference in mecha-
nistic models for disease transmission. In Section 3.1,
the dynamics governing transmission are assumed to
be deterministic [i.e., var (X;|X;—1) = 0, V¢], so that
stochasticity is only provided by the observational
component (1.2). Section 3.2 reviews evidence syn-
theses in epidemic models with stochastic dynamics
[i.e., var (X;|X;—1) # 0]. The paper concludes with a
discussion, identifying some ongoing and future chal-
lenges in the use of multiple datasets in stochastic epi-
demic modelling.

2. NONMECHANISTIC EPIDEMIC MODELLING
2.1 Static Models

Often estimation of the state of an epidemic at a par-
ticular point in time is of interest. In such examples,
static or ‘snapshot’ models are used, and the temporal
evolution in equations (1.1) and (1.2) is not relevant:

X ~pg(),
Y ~ pg(-|X).

In many cases, X will be a deterministic function of ¢,
that is, X = X (¢), or can be integrated out of the anal-
ysis entirely if estimation of ¢ is the focus. We shall
therefore write 8 = (¢, 5, X).

As anticipated in Section 1, data come in the form of
N independent components y = (y!,..., y"), where
each y",n e€1,..., N may be multivariate. The aim of
the evidence synthesis is to estimate a set of K basic
parameters 8 = (61, ..., 0k) from the complete array
of information. Each dataset y” is assumed to inform
a function ¥, = v¥,,(@) of the basic parameters, where
Y, is denoted a functional parameter. If v, (0) = 6,
the data y” are said to directly inform 6y, whereas if the
function is more complex and/or a function of multiple
components of @, y" indirectly informs one or more pa-
rameters. Denote by ¥ the collection of functional pa-
rameters (¥, ...¥y) informed by y. Assuming con-
ditional independence of each dataset, the likelihood is
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F1G. 1. Directed acyclic graph (DAG) of a model with basic pa-
rameters, functional parameters and data.

then
N

L®:y) =[] La(¥n(0):y"),

n=1

where each L, (v, (0); y") is the contribution of y”
to the basic parameters. Either this likelihood is max-
imised, in a frequentist setting, or in the Bayesian set-
ting we consider here, a posterior distribution is ob-
tained [equation (1.4)], summarising all information,
both direct and indirect, as well as prior, on the basic
parameters.

Such an evidence synthesis model can be repre-
sented as a directed acyclic graph (DAG) that encodes
the conditional independence assumptions [25]. In the
example of Figure 1, each basic parameter 6y € 0, de-
noted by double circles, is a founder node of the DAG,
that is, using family relationships to describe the re-
lationships between nodes, it has no parents, only de-
scendants. Functional parameters v, € ¥ (single cir-
cles) are children of the basic parameters of which they
are functions, with the dashed arrows denoting the (de-
terministic) functional relationship. By contrast, a solid
arrow denotes a distributional (stochastic) relationship
between nodes. Squares denote observed quantities y”.
In a more complex hierarchical model with multiple
levels, consequential nodes internal to the DAG may be
either deterministically or stochastically related to their
ancestors or descendants. Repetition over variables is
represented by ‘plates’, rounded rectangles surround-
ing the repeated nodes as, for example, the repetition
of each y",n € 1... N informing a different functional
parameter ¥, in the figure.

Evidence synthesis methods in the context of health-
care were introduced in a synthesis of HIV preva-
lence data from different groups, reviewed in [1].
These have inspired a proliferation of comprehen-
sive evidence syntheses for static models of infec-
tious diseases, including Hepatitis C virus (e.g., [28]),
influenza severity (e.g., [35]) and campylobacter
infection [2]. A key example is the estimation of HIV
prevalence, undiagnosed prevalence in particular, in
different European countries [11, 14, 31], including an-
nually for the United Kingdom (UK) (https://www.gov.
uk/government/statistics/hiv-in-the-united-kingdom).
Estimates are produced from multiple routine HIV
surveillance datasets combined with contemporaneous
cross-sectional survey data.

Figure 2(a) presents a DAG of this general ap-
proach, summarised in [14]. Here, the ¥ are expressed
as a function of basic parameters 6 = {(p,, g, §g) :
g €1,...,G}, where p, is the proportion of a pop-
ulation in a particular risk group g for HIV; m, is
the proportion of group g infected; and &, is the
proportion of infections in group g that are detected
(diagnosed). Example functional parameters include
Vng(0) = mg(1 — &), the prevalence of undiagnosed
infection and v,,4(0) = Npgmed,, the number of di-
agnosed infections in group g. As the data are either
proportions or counts, the likelihood is comprised of
binomial and Poisson terms whose parameters are the
functional parameters ¥. Two key challenges in build-
ing such an evidence synthesis are: sparse data lead-
ing to identifiability issues and requiring hierarchical
models to borrow strength, that is, extending the DAG
of Figure 2(a) vertically; and in contrast, multiple data
sources informing the same parameter, with a resultant
potential for these data to conflict. Such conflicts are
typically due to unaccounted biases, and need to be de-
tected, measured and resolved (see [13] and references
therein).

The motivation behind evidence synthesis is to frame
all the available information on the state of an epi-
demic within a single integrated analysis to address
identifiability. For a number of reasons, however, in-
cluding computational efficiency, conflict assessment
or uncertainty in model structure, it may be convenient
to break the problem into smaller components, for ex-
ample, [28] fit a model for HCV prevalence in two
stages. Although this ‘modular’ approach is often rea-
sonable and computationally convenient, merging the
resulting submodels into a single analysis is nontrivial
(see Section 4).
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(a) Snapshot of system at a single time point (b)
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FIG. 2. (a) DAG of a HIV prevalence model with basic parameters 0 = {(pg,mg,8¢) : g € 1,..., G}. (b) Linking a series of snap-
shot HIV prevalence models at multiple time points t, to estimate HIV incidence in a ODE-driven compartmental model. Time t data

yi=OLyE

.. Y} are augmented by demographic and other data z; = (y; ", ..

ntl .,ytN), informing some of the transition rates A;,

such as migration and new HIV diagnoses. The parameters from (a), both basic and functional, are now encapsulated within 6;.

2.2 Dynamic Models

When interest is in estimating the temporal evolu-
tion of an epidemic, and the rates of infection in par-
ticular, dynamic models are necessary. There are two
alternative approaches depending on the nature of the
available information: linking the snapshot analyses of
Section 2.1 over time; or using routine time series data
on the sequelae of infection. In the first approach, at
time ¢, the observational model is

Y~ po(-1X:),

and the snapshots are linked over time via some
smoothing of the state variables X,. In the case of
the HIV prevalence example (Figure 2), for a generic
risk group g and a series of snapshots over time, this
linkage is achieved by embedding a continuous-time
multi-state model in the serial snapshot evidence syn-
thesis [27]. The population is partitioned into disease
states X; and model dynamics are described by a sys-
tem of ordinary differential equations. Time-varying
transition rates, including HIV incidence, are the ba-
sic parameters ¢ = A;, which are identifiable through
the inclusion of additional demographic data z;, con-
tributing to the likelihood as Poisson or binomial terms.
The basic parameters 8, = (o, 7, §;) of the prevalence
model are now deterministic functions 8, = f(X;) of
the disease states in the dynamic model.

Such temporally linked snapshot evidence syntheses
can be used also to estimate state vectors, X, that rep-
resent log-incidence, as in a study of toxoplasmosis

[38], where temporal smoothing of the state vector is
through a random walk, for example,

log(X;) ~log(X,—1) + ¢ ex .

In the second (dynamic) approach, when the avail-
able data are time series counts of clinical endpoints,
back-calculation has been widely employed to estimate
disease incidence by combining the time series with in-
formation on the time from infection to the end point
(the incubation period). The basic convolution equa-
tion

t
@.1) w(n) = /0 h(s) f(t — s)ds

expresses the link between the rate of occurrence of
a clinical end point, u(t), the rate i(-) at which new
infections occur and the distribution of the time from
infection to the end point, f(-).

To estimate HIV incidence, equation (2.1), initially
based on AIDS diagnoses, has been developed exten-
sively to incorporate additional data, for example, to:
improve identifiability of A(-) in the recent past [12],
identify recent infections amongst new diagnoses (e.g.,
[43]) and provide a more comprehensive description of
the epidemic.

In particular, various discrete-time multi-state back-
calculations have been proposed, where states are de-
fined by CD4 cell counts ([6] and references therein).
Through such an approach, estimation of the number
of undiagnosed infections is possible, by incorporating
data on HIV diagnoses and CD4 counts taken at di-
agnosis. In such models, the distribution f(-) in equa-
tion (2.1) is characterised by progression rates through
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disease states and diagnosis probabilities, d;. Together
with incidence, /;, these quantities are modelled by
[6] using random walks and the backcalculation can
be framed as a state-space model as in equations (1.1)
and (1.2) [40]. Here, the state vector, X; = (h;, d;, E;),
comprises the infection and diagnosis rates, as well as
the state occupancies, E;. As new infections are as-
sumed to occur according to a Poisson process, the
likelihood is tractable when marginalised over the E;,
which greatly improves the efficiency and accuracy
with which inference on (4;, d;) can be drawn. In this
case, the diagnoses are Poisson distributed and the CD4
data follow a multinomial distribution. The challenge
here is to be able to incorporate additional sources of
data, such as information from tests for recent infec-
tion performed on new diagnoses, whilst maintaining
this tractability.

3. EVIDENCE SYNTHESIS IN MECHANISTIC
TRANSMISSION MODELS

The classic approach to tracking the spread of an
epidemic is through compartmental models that parti-
tion the population into Susceptible/Infected/Removed
(SIR) states [3], or one of many similar variants. In
the epidemic modelling literature, these models are la-
belled as mechanistic transmission models. They dif-
fer from the multi-state models of Section 2 due to
the explicit modelling of the transmission mechanisms,
where rates of infection are a function of the prevalent
number of infected and infectious individuals. The dy-
namics of such mechanistic models unfold according
to a system of ordinary or stochastic differential equa-
tions or their discrete-time difference approximations.

3.1 Deterministic Epidemic Dynamics

Models with a deterministic state relationship, but
for which states are imperfectly observed, can be ex-
pressed as

X: = f¢(Xt—l),
Y, ~ P()(‘|Xt),

where fg4(-) is a deterministic function, characterised
by parameter ¢, and X; represents the distribution
of the population in the SIR states, that is, X; =
(8, It, Ry). Typically, ¢ will include rates of transition
between model states, relative rates of contact between
different population strata and the transmission poten-
tial. Movements between model states will be unob-
served, and as in Section 2, the use of multiple data

(3.1)

sources becomes necessary to identify both parame-
ters and latent quantities. A number of examples ex-
ist where traditional epidemic surveillance information
is augmented by additional serological, demographic,
administrative or environmental data.

Surveillance and serological data. Serological data,
from testing of blood samples to detect the presence of
antibodies, provide crucial information on the level of
immunity in a population. The important role played
by this type of data in uncovering an epidemic’s dy-
namics is highlighted in applications to influenza data
from Israel [42] and from England [8]. Due to the pres-
ence of asymptomatic infection, the magnitude of the
epidemic cannot be estimated while the epidemic is on-
going from influenza-like illness data and associated
virological swabbing alone. This idea is extended in
[16], where changes in the immunity profile of a pop-
ulation and the fluctuating transmissibility of the virus
between temporally distinct waves of infection are es-
timated.

In the language of transmission modelling, serologi-
cal data Y°™ provide direct evidence on the number of
people in the susceptible state. Incorporation of these
data extends the observation model characterised by py
in equation (3.1). The additional component, at time ¢,
is typically binomial:

YlS‘€I‘0|Xt ~ Bin(n?ero’ ptsero)’

where

S€ro

p; = P(seropositive at time t) =1 — §; /N

and n;*"° is an assumed known sample size and N is

the population size.

However, serological data can hold richer informa-
tion than mere binary responses. In an application to
the Dutch A/HIN1pdm influenza outbreak [37], data
obtained from more sensitive micro-array assays are
used to give a probabilistic interpretation of immu-
nity. This is achieved via the specification of a mixture
model for the log-titre values, classifying individuals
into groups who are susceptible, recently infected or
have long-held immunity. Here, the Y™ are continu-
ous responses distributed as
— S0 .
N P16,
where the p(-|@) for & = (u, o) are normal density
functions, corresponding to the distribution of log-titre
values for susceptible (s), recently infected (r) and im-
mune (i) subgroups.

S()—S[

i S X N
Y;ero"“ﬁtp('wb)"F p(_|0r)+
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The impact of serological data can be significant.
Adapting figures from [8], Figures 3(a) and (b) show
estimates and predictions of the number of new
A/HIN1pdm influenza infections, when only data on
syndromic consultations with a doctor are used. Anal-
yses are carried out approximately three quarters of
the way through and towards the end of the epidemic,
respectively, without any serological information. Fig-
ures 3(c) and (d) display the same results from analyses
that additionally use the serological data. In the bot-
tom row of Figure 3, epidemic projections appear to be
nested as data accrue, with credible intervals narrow-
ing. In the top row, a coherent picture of the epidemic is
only obtained once the epidemic is almost over. In the
absence of direct serological information on the num-

(a) No serological data, at t = 178
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(c) Including serological data, at ¢t = 178
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ber of infections, fitting a transmission model to doctor
consultation data alone is of limited utility. A major
epidemiological challenge, however, is to develop sys-
tems that can ensure the timely provision of these data
during an ongoing pandemic.

Surveillance and demographic, administrative or en-
vironmental data. An example of joint modelling of
surveillance and demographic data is in [27], where
the model in Figure 2(b) is extended to include a com-
ponent of disease transmission utilising information z;,
on aging, migration and mortality. This is a rare ex-
ample where such data are directly modelled, that is,
both (Y,, Z,) have distributions, whereas more com-
monly, demographic data are treated as fixed covari-

(b) No serological data, at ¢t = 245

Weekly Infections, London
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I I I
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(d) Including serological data, at t = 245
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FI1G. 3. Forecasts of the number of new A/HIN1pdm influenza infections after t = 178 and 245 days of 2009 pandemic data, in the absence
[(a) and (b)] and presence [(c) and (d)] of serological data: posterior median (red central line); 95% credible interval (light grey region) for
a forecast at a previous time (grey dashed vertical lines); 95% credible interval (dark grey region) for a ‘current’ forecast at t (red dashed

vertical lines).
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ates, rather than a joint outcome. In the latter case, the
system equation in (3.1) is replaced by

X = f¢(Xzfl, Zy).

These explanatory data can come in many forms: [5]
uses vaccination data to inform transition rates out of a
susceptible state; [9] use commuting data to describe
inter-region transmission; [42] relate transmission of
A/H1N1pdm influenza in Israel to an index of ‘mean
absolute humidity’.

3.2 Stochastic Epidemic Dynamics

The full state-space specification of equations (1.1)
and (1.2) is required in two contexts. The first con-
text arises when the numbers of infected individuals
are small enough for stochastic fluctuations in trans-
mission to significantly impact on the future epidemic
trajectory (‘demographic stochasticity’). Statistical in-
ference based on a model with deterministic dynamics
can lead to poor forecasts for the timing of an epidemic
peak and can preclude the possibility of epidemic ex-
tinction when R > 1, no matter how small the popula-
tion of infected individuals. Second, deterministic dy-
namics are inadequate in the presence of environmen-
tal or other external factors not captured by the trans-
mission model. Stochasticity in the temporal evolution
of parameter values (‘environmental stochasticity’) can
eliminate the possibility of over-optimistic, possibly
biased forecasts that may otherwise result. Models that
account for demographic stochasticity, such as, for ex-
ample, the chain multinomial [40], model the evolution
of the epidemic in discrete time. The evolution of the
SIR-type disease states X; forms a Markov process as
in equation (1.1). However, the second context of envi-
ronmental stochasticity is more prevalent in the litera-
ture. Here, mechanistic transmission models are driven
by a time-varying transmission potential 8;, commonly
modelled as a stochastic process. In [17] and [41], f;
is cast as Wiener and Gaussian processes, respectively,
whereas [34] impose a random effects model on the
probability p, of a susceptible individual in popula-
tion subgroup g being infected within a chain-binomial
model. The probability of a member of group g not be-
ing infected by any other infectious individual is ex-
pressed as

9

< pg )w, Zg/ Cg/,glg/,t—l
Ng
where wy o Cygr ol 1 is the total number of in-

fectious contacts experienced by a member of g, with
C being a contact matrix and [y, | giving the time

t — 1 number of infectious individuals in strata g’.
The correlated random effects, w;, absorb any tempo-
ral fluctuations in infectivity and rates of contact. Here,
due to the stratified population, the transmission po-
tential has to be expressed for each type of contact,

,g’g, = w;(pgCyq ¢/Ng). A global value is derived as
the dominant eigenvalue of a matrix $;, commonly

known as the next-generation matrix, that has ,B,g 8 as
its (g, g")th entry.

The motivation for the use of multiple sources of
data in stochastic epidemic modelling is no different
to the deterministic case. However, there are fewer ex-
amples of their use.

Surveillance data. Of these few examples, [34] con-
stitutes a rare instance of using multiple epidemiolog-
ical time series: the observations y;.r comprise both
laboratory-confirmed data on ‘mild’ cases and data on
(nested) admissions to hospitals and to ICUs. Both of
the types of stochasticity described above are incorpo-
rated. However, the complexity inherent in this model
means that its run-time on a high-performance com-
puting cluster is measured in months. Whilst this is
not an impediment to retrospective epidemic analysis,
it is deeply prohibitive for real-time analysis. Compu-
tational, potentially sequential, methods that enable a
more swift use of such a model would be of great util-
ity.

Surveillance and phylogenetic data. The synthesis
of genetic and epidemiological data is more com-
mon in the literature and is used to improve under-
standing of the transmission dynamics of a particular
pathogen. Genetic sequence data (comprising the se-
quences themselves, together with associated sampling
times) can allow reconstruction of transmission trees
either by modelling the evolution of the pathogen ex-
plicitly using coalescent models to estimate the branch-
ing points of the trees (e.g., [15] and references therein)
or by using the genetic distance between the observed
sequences [39]. The precise method depends on the as-
sumptions that are appropriate for the pathogen and
epidemic under investigation. These assumptions cover
the possible presence of: within-host pathogen genetic
variation; transmission bottlenecks (where a subset of
the within-host variants are transmitted); unobserved
cases; and introductions into the population. Attendant
epidemiological data can add precision to the recon-
struction of transmission trees, for example, by provid-
ing information on infectious periods or generation in-
tervals, or on the dates at which particular individuals
were at risk of infection [15].
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There is an increasing body of work linking phylo-
genies into mechanistic transmission models. A gen-
eral framework for identifying SIR and SEIR transmis-
sion models on the basis of phylogenetic data alone is
developed in [24], additionally presenting an applica-
tion incorporating time series data on removals from
the population. Similarly, it is noted in [29] that phy-
logenetic information is of particular utility in the case
where the surveillance data that are typically used to in-
form transmission modelling are highly noisy or only
weakly informative. Their work demonstrates the im-
proved estimation of epidemiological parameters pos-
sible when the analysis of epidemiological surveil-
lance data using a continuous-time, continuous-space
stochastic epidemic model is augmented by a sample
of infection lineages.

As identified by [23], the challenge remains to re-
lax many of the assumptions listed above for phylo-
genetic modelling, whilst incorporating additional as-
pects of outbreak dynamics. Consideration of an ever-
increasing array of epidemiological data should make
this a more achievable goal.

4. DISCUSSION

The recent increase in the number of evidence syn-
theses, mostly Bayesian, to estimate latent characteris-
tics of epidemics is testimony of the crucial role of data
from multiple sources. This role has been comprehen-
sively explored in other reviews [1, 14], but briefly, in-
clude two key aims: identifiability of a wider range of
(unobservable) quantities that can inform public health
efforts to control epidemics than would be achievable
from a single data source; and increased precision in
estimates of these quantities, due to the use of all avail-
able relevant data, both direct and indirect. Advan-
tages of Bayesian evidence synthesis include the abil-
ity to: introduce and formally quantify expert judge-
ment in the form of prior distributions; readily account
for and estimate known biases in observational data
through the introduction of bias parameters with care-
fully chosen priors; and minimise selection bias. How-
ever, the adoption of evidence synthesis methods, to
achieve identifiability and precision, necessitates mod-
els of increasing realism and complexity, which are
in turn accompanied by some general challenges that
remain open questions [13], as we have highlighted
through various examples in this review.

Complex models imply a need for various model
building strategies, including hierarchical modelling
for identifiability and modular approaches. How best

to achieve identifiability from the currently available
data is an active area of research. An algebraic deter-
mination, ahead of any inference, of parameter iden-
tifiability in a complex dynamic system has been ex-
plored recently in systems biology (e.g., [20]): such
methods have the potential to be adapted to transmis-
sion modelling. A promising alternative is the exten-
sion of value-of-information methods to the evalua-
tion of gains in precision in parameter estimates result-
ing from collecting or incorporating further evidence,
proposed in application to the HIV prevalence context
in [22].

Reasons for a modular approach, dividing a complex
model into smaller submodels, include: understanding
the influence of each evidence source on joint infer-
ence; assessing and resolving conflict during the model
building process; and computational tractability. How-
ever, incorporating the results of each submodel into a
second-stage joint model in a manner that retains the
feedback from different data sources to common pa-
rameters is not straightforward. Recent work that al-
lows for principled inference from a fully joint model
given posterior samples from submodels has been pro-
posed [19]. The application of this ‘Markov melding’
approach to evidence syntheses has the potential to fa-
cilitate the increasingly realistic and complex models
required in the stochastic epidemic field.

The potential for conflicting evidence is a challenge,
but evidence synthesis provides a framework in which,
once any conflict has been detected, measured and re-
solved, models are internally validated: an adequate
final model is consistent with every data source in-
cluded. However, systematic cross-validatory conflict
assessment [13] as with any modular approach, is com-
putationally intensive: adaptation is needed to enable
timely inference. Conflict resolution through, for ex-
ample, bias modelling and evidence weighting meth-
ods, is a next step [13]. However, while in a frequentist
framework there are well-established methods to ac-
count for selection biases in the types of observational
data usually included in epidemic evidence syntheses,
Bayesian equivalents are still in their infancy [36].

A recurring theme through each of the above chal-
lenges is that of computationally efficient statistical in-
ference. In the context of epidemic modelling, timely
estimation is crucial to address public health policy
needs in the midst of an emerging epidemic [13].
Much progress has been made in developing and ap-
plying efficient algorithms for epidemic evidence syn-
theses, such as: sequential Bayesian methods [33, 7],
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including likelihood-free particle MCMC [29] and ap-
proximate Bayesian computation [30]. Alternatively, to
achieve computational efficiency, one might approxi-
mate the complex epidemic model with a readily im-
plementable proxy. Shaman and colleagues have ex-
tensively used an extended Kalman filter (e.g., [32]),
to provide a stochastic time series approximation to
the dynamics of SIR models. Another approach is
Bayesian emulation [18], which seeks to characterise
an epidemic model with an emulator, built from a dy-
namic Gaussian process prior. A similar emulation ap-
proach is adopted by [4], who use history matching to
calibrate a complex, multi-output epidemic simulation
model. This latter work is an attempt to tackle the next
challenge, to broaden the scope of all such algorithms
to handle multiple datasets, possibly diverse in nature.

4.1 Conclusions

A recent review of infectious disease modelling [26]
suggests that the full potential of mechanistic mod-
els that ‘simultaneously link data from diverse, hetero-
geneous data sources’ has yet to be reached. This is
certainly true for fully stochastic transmission models,
though rare examples of such models embedded within
an evidence synthesis do exist [30, 34]. Such rarity and
the challenges discussed above motivate the need for
further development in this area.

However, the many examples reviewed in Sec-
tion 3.1, particularly for deterministic models, suggest
that evidence synthesis for mechanistic models is both
a well established and rapidly expanding field.
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