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Abstract: Assuming that data are collected sequentially from indepen-
dent streams, we consider the simultaneous testing of multiple binary hy-
potheses under two general setups; when the number of signals (correct
alternatives) is known in advance, and when we only have a lower and an
upper bound for it. In each of these setups, we propose feasible procedures
that control, without any distributional assumptions, the familywise error
probabilities of both type I and type II below given, user-specified levels.
Then, in the case of i.i.d. observations in each stream, we show that the
proposed procedures achieve the optimal expected sample size, under every
possible signal configuration, asymptotically as the two error probabilities
vanish at arbitrary rates. A simulation study is presented in a completely
symmetric case and supports insights obtained from our asymptotic results,
such as the fact that knowledge of the exact number of signals roughly
halves the expected number of observations compared to the case of no
prior information.
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1. Introduction

Multiple testing, that is the simultaneous consideration of K hypothesis testing
problems, Hk

0 versus Hk
1 , 1 ≤ k ≤ K, is one of the oldest, yet still very active

areas of statistical research. The vast majority of work in this area assumes
a fixed set of observations and focuses on testing procedures that control the
familywise type I error (i.e., at least one false positive), as in Marcus, Eric and
Gabriel (1976); Holm (1979); Hommel (1988), or less stringent metrics of this
error, as in Benjamini and Hochberg (1995) and Lehmann and Romano (2005).

The multiple testing problem has been less studied under the assumption that
observations are acquired sequentially, in which case the sample size is random.
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The sequential setup is relevant in many applications, such as multichannel
signal detection (Mei, 2008; Dragalin, Tartakovsky and Veeravalli, 1999), outlier
detection (Li, Nitinawarat and Veeravalli, 2014), clinical trials with multiple
end-points (Bartroff and Lai, 2008), ultra high throughput mRNA sequencing
data (Bartroff and Song, 2013), in which it is vital to make a quick decision in
real time, using the smallest possible number of observations.

Bartroff and Lai (2010) were the first to propose a sequential test that controls
the familywise error of type I. De and Baron (2012a,b) and Bartroff and Song
(2014) proposed universal sequential procedures that control simultaneously the
familywise errors of both type I and type II, a feature that is possible due to
the sequential nature of sampling. The proposed sequential procedures in these
works were shown through simulation studies to offer substantial savings in the
average sample size in comparison to the corresponding fixed-sample size tests.

A very relevant problem to multiple testing is the classification problem, in
which there are M hypotheses, H1, . . . , HM , and the goal is to select the correct
one among them. The classification problem has been studied extensively in
the literature of sequential analysis, see e.g. Sobel and Wald (1949); Armitage
(1950); Lorden (1977); Tartakovsky (1998); Dragalin, Tartakovsky and Veer-
avalli (1999, 2000), generalizing the seminal work of Wald (1945) on binary
testing (M = 2). Dragalin, Tartakovsky and Veeravalli (2000) considered the
multiple testing problem as a special case of the classification problem under
the assumption of a single signal in K independent streams, and focused on
procedures that control the probability of erroneously claiming the signal to be
in stream i for every 1 ≤ i ≤ M = K. In this framework, they proposed an
asymptotically optimal sequential test as all these error probabilities go to 0.
The same approach of treating the multiple testing problem as a classification
problem has been taken by Li, Nitinawarat and Veeravalli (2014) under the as-
sumption of an upper bound on the number of signals in the K independent
streams, and a single control on the maximal mis-classification probability.

We should stress that interpreting multiple testing as a classification prob-
lem does not generally lead to feasible procedures. Consider, for example, the
case of no prior information, which is the default assumption in the multiple
testing literature. Then, multiple testing becomes a classification problem with
M = 2K categories and a brute-force implementation of existing classification
procedures becomes infeasible even for moderate values of K, as the number of
statistics that need to be computed sequentially grows exponentially with K.
Independently of feasibility considerations, to the best of our knowledge there
is no optimality theory regarding the expected sample size that can be achieved
by multiple testing procedures, with or without prior information, that control
the familywise errors of both type I and type II. Filling this gap was one of the
motivations of this paper.

The main contributions of the current work are the following: first of all,
assuming that the data streams that correspond to the various hypotheses are
independent, we propose feasible procedures that control the familywise errors
of both type I and type II below arbitrary, user-specified levels. We do so under
two general setups regarding prior information; when the true number of signals
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is known in advance, and when there is only a lower and an upper bound for
it. The former setup includes the case of a single signal considered in Dragalin,
Tartakovsky and Veeravalli (1999, 2000), whereas the latter includes the case
of no prior information, which is the underlying assumption in De and Baron
(2012a,b); Bartroff and Song (2014). While we provide universal threshold values
that guarantee the desired error control in the spirit of the above works, we
also propose a Monte Carlo simulation method based on importance sampling
for the efficient calculation of non-conservative thresholds in practice, even for
very small error probabilities. More importantly, in the case of independent and
identically distributed (i.i.d.) observations in each stream, we show that the
proposed multiple testing procedures attain the optimal expected sample size,
for any possible signal configuration, to a first-order asymptotic approximation
as the two error probabilities go to zero in an arbitrary way. Our asymptotic
results also provide insights about the effect of prior information on the number
of signals, which are corroborated by a simulation study.

The remainder of the paper is organized as follows. In Section 2 we formulate
the problem mathematically. In Section 3 we present the proposed procedures
and show how they can be designed to guarantee the desired error control.
In Section 4 we propose an efficient Monte Carlo simulation method for the
determination of non-conservative critical values in practice. In Section 5 we es-
tablish the asymptotic optimality of the proposed procedures in the i.i.d. setup.
In Section 6 we illustrate our asymptotic results with a simulation study. In Sec-
tion 7 we conclude and discuss potential generalizations of our work. Finally,
we present two useful lemmas for our proofs in an Appendix.

2. Problem formulation

Consider K independent streams of observations, Xk := {Xk
n : n ∈ N}, k ∈ [K],

where [K] := {1, . . . ,K} and N := {1, 2, . . .}. For each k ∈ [K], let Pk be the
distribution of Xk, for which we consider two simple hypotheses,

Hk
0 : Pk = Pk

0 versus Hk
1 : Pk = Pk

1 ,

where Pk
0 and Pk

1 are distinct probability measures on the canonical space of Xk.
We will say that there is “noise” in the kth stream under Pk

0 and “signal” under
Pk
1 . Our goal is to simultaneously test these K hypotheses when data from all

streams become available sequentially and we want to make a decision as soon
as possible.

Let Fn be the σ-field generated by all streams up to time n, i.e., Fn =
σ(X1, . . . , Xn), where Xn = (X1

n, . . . , X
K
n ). We define a sequential test for

the multiple testing problem of interest to be a pair (T, d) that consists of
an {Fn}-stopping time, T , at which we stop sampling in all streams, and an
FT -measurable decision rule, d = (d1, . . . , dK), each component of which takes
values in {0, 1}. The interpretation is that we declare upon stopping that there
is signal (resp. noise) in the kth stream when dk = 1 (resp. dk = 0). With an
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abuse of notation, we will also use d to denote the subset of streams in which
we declare that signal is present, i.e., {k ∈ [K] : dk = 1}.

For any subset A ⊂ [K] we define the probability measure

PA :=

K⊗
k=1

Pk; Pk =

{
Pk
0 , if k /∈ A

Pk
1 , if k ∈ A

,

such that the distribution of {Xn, n ∈ N} is PA when A is the true subset of
signals, and for an arbitrary sequential test (T, d) we set:

{A � d} := {(d \ A) �= ∅} =
⋃
j �∈A

{dj = 1},

{d � A} := {(A \ d) �= ∅} =
⋃
k∈A

{dk = 0}.

Then, PA(A � d) is the probability of at least one false positive (familywise type
I error) and PA (d � A) the probability of at least one false negative (familywise
type II error) of (T, d) when the true subset of signals is A.

In this work we are interested in sequential tests that control these probabili-
ties below user-specified levels α and β respectively, where α, β ∈ (0, 1), for any
possible subset of signals. In order to be able to incorporate prior information,
we assume that the true subset of signals is known to belong to a class P of
subsets of [K], not necessarily equal to the powerset, and we focus on sequential
tests in the class

Δα,β(P) := {(T, d) : PA(A � d) ≤ α and PA (d � A) ≤ β for every A ∈ P} .
We consider, in particular, two general cases for class P . In the first one, it is

known that there are exactly m signals in the K streams, where 1 ≤ m ≤ K−1.
In the second, it is known that there are at least � and at most u signals, where
0 ≤ � < u ≤ K. In the former case we write P = Pm and in the latter P = P�,u,
where

Pm := {A ⊂ [K] : |A| = m} , P�,u := {A ⊂ [K] : � ≤ |A| ≤ u} .
When � = 0 and u = K, the class P�,u is the powerset of [K], which corresponds
to the case of no prior information regarding the multiple testing problem.

Our main focus is on multiple testing procedures that not only belong to
Δα,β(P) for a given class P , but also achieve the minimum possible expected
sample size, under each possible signal configuration, for small error probabili-
ties. To be more specific, let P be a given class of subsets and let (T ∗, d∗) be a
sequential test that can designed to belong to Δα,β(P) for any given α, β ∈ (0, 1).
We say that (T ∗, d∗) is asymptotically optimal with respect to class P , if for every
A ∈ P we have as α, β → 0

EA [T ∗] ∼ inf
(T,d)∈Δα,β(P)

EA [T ] ,

where EA refers to expectation under PA and x ∼ y means that x/y → 1.
The ultimate goal of this work is to propose feasible sequential tests that are
asymptotically optimal with respect to classes of the form Pm and P�,u.
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2.1. Assumptions and notations

Before we continue with the presentation and analysis of the proposed multiple
testing procedures, we will introduce some additional notation, and impose some
minimal conditions on the distributions in each stream, which we will assume
to hold throughout the paper.

First of all, for each stream k ∈ [K] and time n ∈ N we assume that the prob-
ability measures Pk

0 and Pk
1 are mutually absolutely continuous when restricted

to the σ-algebra Fk
n = σ(Xk

1 , . . . , X
k
n), and we denote by

λk(n) := log
dPk

1

dPk
0

(Fk
n) (1)

the cumulative log-likelihood ratio at time n based on the data in the kth stream.
Moreover, we assume that for each stream k ∈ [K] the probability measures Pk

0

and Pk
1 are singular on Fk

∞ := σ(∪n∈NFk
n), which implies that

Pk
0

(
lim

n→∞
λk(n) = −∞

)
= Pk

1

(
lim

n→∞
λk(n) = ∞

)
= 1. (2)

Intuitively, this means that as observations accumulate, the evidence in favor
of the correct hypothesis becomes arbitrarily strong. The latter assumption is
necessary in order to design procedures that terminate almost surely under every
scenario. We do not make any other distributional assumption until Section 5.

We use the following notation for the ordered, local, log-likelihood ratio statis-
tics at time n:

λ(1)(n) ≥ . . . ≥ λ(K)(n),

and we denote by i1(n), . . . , iK(n) the corresponding stream indices, i.e.,

λ(k)(n) = λik(n)(n), for every k ∈ [K].

Moreover, for every n ∈ N we denote by p(n) the number of positive log-
likelihood ratio statistics at time n, i.e.,

λ(1)(n) ≥ . . . ≥ λ(p(n))(n) > 0 ≥ λ(p(n)+1)(n) ≥ . . . ≥ λ(K)(n).

For any two subsets A, C ⊂ [K] we denote by λA,C the log-likelihood ratio
process of PA versus PC , i.e.,

λA,C(n) := log
dPA
dPC

(Fn) =
∑

k∈A\C
λk(n)−

∑
k∈C\A

λk(n), n ∈ N. (3)

Finally, we use | · | to denote set cardinality, for any two real numbers x, y we
set x ∧ y = min{x, y} and x ∨ y = max{x, y}, and for any measurable event Γ
and random variable Y we use the following notation

EA[Y ; Γ] :=

∫
Γ

Y dPA.
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3. Proposed sequential multiple testing procedures

In this section we present the proposed procedures and show how they can be
designed in order to guarantee the desired error control.

3.1. Known number of signals

In this subsection we consider the setup in which the number of signals is known
to be equal to m for some 1 ≤ m ≤ K − 1, thus, P = Pm. Without loss of
generality, we restrict ourselves to multiple testing procedures (T, d) such that
|d| = m. Thus, the class of admissible sequential tests takes the form

Δα,β(Pm) = {(T, d) : PA(d �= A) ≤ α ∧ β for every A ∈ Pm} ,

since for any A ∈ Pm and (T, d) such that |d| = m we have

{A � d} = {d � A} = {d �= A}.

In this context, we propose the following sequential scheme: stop as soon as
the gap between the m-th and (m+ 1)-th ordered log-likelihood ratio statistics
becomes larger than some constant c > 0, and declare that signal is present
in the m streams with the top log-likelihood ratios at the time of stopping.
Formally, we propose the following procedure, to which we refer as “gap rule”:

TG := inf
{
n ≥ 1 : λ(m)(n)− λ(m+1)(n) ≥ c

}
,

dG := {i1(TG), . . . , im(TG)}.
(4)

Here, we suppress the dependence of (TG, dG) onm and c to lighten the notation.
The next theorem shows how to select threshold c in order to guarantee the
desired error control.

Theorem 3.1. Suppose that assumption (2) holds. Then, for any A ∈ Pm and
c > 0 we have PA(TG < ∞) = 1 and

PA (dG �= A) ≤ m(K −m)e−c. (5)

Consequently, (TG, dG) ∈ Δα,β(Pm) when threshold c is selected as

c = | log(α ∧ β)|+ log(m(K −m)). (6)

Proof. Fix A ∈ Pm and c > 0. We observe that TG ≤ T ′
G, where

T ′
G = inf

{
n ≥ 1 : λ(m)(n)− λ(m+1)(n) ≥ c, i1(n) ∈ A, . . . , im(n) ∈ A

}
= inf

{
n ≥ 1 : λk(n)− λj(n) ≥ c for every k ∈ A and j /∈ A

}
.

(7)

Due to condition (2), it is clear that PA(T
′
G < ∞) = 1, which proves that TG is

also almost surely finite under PA. We now focus on proving (5). The gap rule
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makes a mistake under PA if there exist k ∈ A and j /∈ A such that the event
Γk,j =

{
λj(TG)− λk(TG) ≥ c

}
occurs. In other words,

{dG �= A} =
⋃

k∈A,j /∈A
Γk,j ,

and from Boole’s inequality we have

PA(dG �= A) ≤
∑

k∈A,j /∈A
PA(Γk,j).

Fix k ∈ A, j /∈ A and set C = A ∪ {j} \ {k}. Then, from (3) we have that
λA,C = λk − λj and from Wald’s likelihood ratio identity it follows that

PA(Γk,j) = EC
[
exp{λA,C(TG)}; Γk,j

]
= EC

[
exp{λk(TG)− λj(TG)}; Γk,j

]
≤ e−c,

(8)

where the last inequality holds because λj(TG) − λk(TG) ≥ c on Γk,j . Since
|A| = m and |Ac| = K −m, from the last two inequalities we obtain (5), which
completes the proof.

3.2. Lower and upper bounds on the number of signals

In this subsection, we consider the setup in which we know that there are at
least � and at most u signals for some 0 ≤ � < u ≤ K, that is, P = P�,u.
In order to describe the proposed procedure, it is useful to first introduce the
“intersection rule”, (TI , dI), according to which we stop sampling as soon as all
log-likelihood ratio statistics are outside the interval (−a, b), and at this time
we declare that signal is present (resp. absent) in those streams with positive
(resp. negative) log-likelihood ratio, i.e.,

TI := inf
{
n ≥ 1 : λk(n) �∈ (−a, b) for every k ∈ [K]

}
,

dI := {i1(TI), . . . , ip(TI)(TI)},
(9)

recalling that p(n) is the number of positive log-likelihood ratios at time n. This
procedure was proposed by De and Baron (2012a), where it was also shown that
when the thresholds are selected as

a = | log β|+ logK, b = | logα|+ logK, (10)

the familywise type-I and type-II error probabilities are bounded by α and β
for any possible signal configuration, i.e., (TI , dI) ∈ Δα,β(P0,K).

A straightforward way to incorporate the prior information of at least � and
at most u signals in the intersection rule is to modify the stopping time in (9)
as follows:

τ2 := inf
{
n ≥ 1 : � ≤ p(n) ≤ u and λk(n) �∈ (−a, b) for every k ∈ [K]

}
, (11)



Sequential multiple testing 345

while keeping the same decision rule as in (9). Indeed, stopping according to τ2
guarantees that the number of null hypotheses rejected upon stopping will be
between � and u. However, as we will see in Subsection 5.3, this rule will not in
general achieve asymptotic optimality in the boundary cases of exactly � and
exactly u signals. In order to obtain an asymptotically optimal rule, we need
to be able to stop faster when there are exactly � or u signals, which can be
achieved by stopping at

τ1 := inf
{
n ≥ 1 : λ(�+1)(n) ≤ −a, λ(�)(n)− λ(�+1)(n) ≥ c

}
,

and τ3 := inf
{
n ≥ 1 : λ(u)(n) ≥ b, λ(u)(n)− λ(u+1)(n) ≥ d

}
,

respectively. Here, c and d are additional positive thresholds that will be selected,
together with a and b, in order to guarantee the desired error control.

We can think of τ1 as a combination of the intersection rule and the gap
rule that corresponds to the case of exactly � signals. Indeed, τ1 stops when
K − � log-likelihood ratio statistics are simultaneously below −a, but unlike
the intersection rule it does not wait for the remaining � statistics to be larger
than b; instead, similarly to the gap-rule in (4) with m = �, it requires the gap
between the top � and the bottom K − � statistics to be larger than c. In a
similar way, τ3 is a combination of the intersection rule and the gap rule that
corresponds to the case of exactly u signals.

Based on the above discussion, when we know that there are at least � and
at most u signals, we propose the following procedure, to which we refer as
“gap-intersection” rule:

TGI := min{τ1, τ2, τ3}, dGI := {i1(TGI), . . . , ip′(TGI)}, (12)

where p′ := (p(TGI)∧ �)∨u is a truncated version of the number of positive log-
likelihood ratios at TGI , i.e., if p

′ = � when p(TGI) ≤ �, p′ = u when p(TGI) ≥ u
and p′ = p(TGI) otherwise. In other words, we stop sampling as soon as one of
the stopping criterion in τ1, τ2 or τ3 is is satisfied, and we reject upon stopping
the null hypotheses in the p′ streams with the highest log-likelihood ratio values
at time TGI .

As before, we suppress the dependence on �, u and a, b, c, d in order to lighten
the notation. Moreover, we set λ(0)(n) = −∞ and λ(K+1)(n) = ∞ for every
n ∈ N, which implies that if � = 0, then τ1 = ∞, and if u = K, then τ3 = ∞.
When in particular � = 0 and u = K, that is the case of no prior information,
TGI = τ2 and (TGI , dGI) reduces to the intersection rule, (TI , dI), defined in (9).

The following theorem shows how to select thresholds a, b, c, d in order to
guarantee the desired error control for the gap-intersection rule.

Theorem 3.2. Suppose that assumption (2) holds. For any subset A ∈ P�,u

and positive thresholds a, b, c, d, we have PA(TGI < ∞) = 1 and

PA(A � dGI) ≤ |Ac|
(
e−b + |A| e−c

)
,

PA(dGI � A) ≤ |A|
(
e−a + |Ac| e−d

)
.

(13)
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In particular, (TGI , dGI) ∈ Δα,β(P�,u) when the thresholds a, b, c, d are selected
as follows:

a = | log β|+ logK, d = | log β|+ log(uK),

b = | logα|+ logK, c = | logα|+ log((K − �)K).
(14)

Proof. Fix A ∈ P�,u and a, b, c, d > 0. Observe that TGI ≤ τ2 ≤ τ ′2, where

τ ′2 = inf{n ≥ 1 : −λj(n) ≥ a, λk(n) ≥ b for every k ∈ A, j /∈ A}. (15)

Due to assumption (2), PA(τ
′
2 < ∞) = 1, which proves that TGI is also almost

surely finite under PA. We now focus on proving the bound in (13) for the fami-
lywise type-II error probability, since the corresponding result for the familywise
type-I error can be shown similarly. From Boole’s inequality we have

PA(dGI � A) = PA

(⋃
k∈A

{dkGI = 0}
)

≤
∑
k∈A

PA
(
dkGI = 0

)
. (16)

Fix k ∈ A. Whenever the gap-intersection rule mistakenly accepts Hk
0 , either

the event Γk := {λk(TGI) ≤ −a} occurs (which is the case when stopping at τ1
or τ2), or there is at least one j /∈ A such that the event Γk,j := {λj(TGI) −
λk(TGI) ≥ d} occurs (which is the case when stopping at τ3). Therefore,

{dkGI = 0} ⊂ Γk ∪ (∪j /∈AΓk,j),

and from Boole’s inequality we have

PA(d
k
GI = 0) ≤ PA(Γk) +

∑
j /∈A

PA (Γk,j) .

Identically to (8) we can show that for every j /∈ A we have PA (Γk,j) ≤ e−d.
Moreover, if we set C = A\{k} (note that C /∈ P�,u, but this does not affect our
argument), then λA,C = λk and from Wald’s likelihood ratio identity we have

PA(Γk) = EC
[
exp{λA,C(TGI)}; Γk

]
= EC

[
exp{λk(TGI)}; Γk

]
≤ e−a.

Thus,
PA(d

k
GI = 0) ≤ e−a + (K − |A|)e−d,

which together with (16) yields

PA(dGI � A) ≤ |A|(e−a + |Ac|e−d) ≤ |A|
K

(Ke−a) +
|Ac|
K

(uKe−d).

Therefore, if the thresholds are selected according to (14), then Ke−a = β and
uKe−d = β, which implies that

PA(dGI � A) ≤ |A|
K

β +
|Ac|
K

β = β,

and the proof is complete.
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4. Computation of familywise error probabilities via importance
sampling

The threshold specifications in (6) and (14) guarantee the desired error control
for the gap rule and gap-intersection rule respectively, however they can be
very conservative. In practice, it is preferable to use Monte Carlo simulation
to determine the thresholds that equate (at least, approximately) the maximal
familywise type I and type II error probabilities to the corresponding target
levels α and β, respectively. Note that this needs to be done offline, before the
implementation of the procedure.

When α and β are very small, the corresponding errors are “rare events”
and plain Monte Carlo will not be efficient. For this reason, in this section we
propose a Monte Carlo approach based on importance sampling for the effi-
cient computation of the familywise error probabilities of the proposed multiple
testing procedures.

To be more specific, let A ⊂ [K] be the true subset of signals and consider
the computation of the familywise type I error probability, PA(A � d), of an
arbitrary multiple testing procedure, (T, d). The idea of importance sampling
is to find a probability measure P∗

A, under which the stopping time T is finite
almost surely, and compute the desired probability by estimating (via plain
Monte Carlo) the expectation in the right-hand side of the following identity:

PA(A � d) = E∗
A
[
(Λ∗

A)
−1;A � d

]
,

which is obtained by an application of Wald’s likelihood ratio identity. Here, we
denote by Λ∗

A the likelihood ratio of P∗
A against PA at time T , i.e.,

Λ∗
A =

dP∗
A

dPA
(FT ),

and by E∗
A the expectation under P∗

A. The proposal distribution P∗
A should

be selected such that Λ∗
A is “large” on the event {A � d} and “small” on its

complement. This intuition will guide us in the selection of P∗
A for the proposed

rules.
For the gap rule (TG, dG) we suggest the proposal distribution to be a uniform

mixture over {PA∪{j}\{k}, k ∈ A, j /∈ A}, i.e.,

PG
A :=

1

|A| |Ac|
∑
k∈A

∑
j /∈A

PA∪{j}\{k}, (17)

whose likelihood ratio against PA at time TG is

ΛG
A :=

1

|A| |Ac|
∑
k∈A

∑
j /∈A

exp{λj(TG)− λk(TG)}.

Then, on the event {A � dG} there exists some k ∈ A and j /∈ A such that
λj(TG) − λk(TG) ≥ c, which leads to a large value for ΛG

A. On the other hand,
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on the complement of {A � dG}, {dG = A}, we have λj(TG)−λk(TG) ≤ −c for
every k ∈ A, j /∈ A, which leads to a value of ΛG

A close to 0.
For the intersection rule (TI , dI) we suggest the proposal distribution to be

a uniform mixture over {PA∪{j}, j /∈ A}, i.e.,

PI
A :=

1

|Ac|
∑
j /∈A

PA∪{j}, (18)

whose likelihood ratio against PA at time TI takes the form

ΛI
A :=

1

|Ac|
∑
j /∈A

exp{λj(TI)}.

Note that on the event {A � dI} there exists some j /∈ A such that λj(TI) ≥ b,
which results in a large value for ΛI

A. On the other hand, on the complement of
{A � dI} we have λj(TI) ≤ −a for every j /∈ A, which results in a value of ΛI

A
close to 0.

Finally, for the gap-intersection rule we suggest to use PI
A, the same proposal

distribution as in the intersection rule, when � < |A| < u. In the boundary case,
i.e. |A| = � or |A| = u, we propose the following mixture of PG

A and PI
A:

PGI
A :=

|A|
1 + |A| P

G
A +

1

1 + |A| P
I
A.

In Section 6 we apply the proposed simulation approach for the specification
of non-conservative thresholds in the case of identical, symmetric hypotheses
with Gaussian i.i.d. data. We also refer to Song and Fellouris (2016) for an
analysis of these importance sampling estimators.

5. Asymptotic optimality in the i.i.d. setup

From now on, we assume that, for each stream k ∈ [K], the observations
{Xk

n, n ∈ N} are independent random variables with common density fk
i with

respect to a σ-finite measure μk under Pk
i , i = 0, 1, such that the Kullback—-

Leibler information numbers

Dk
0 :=

∫
log

(
fk
0

fk
1

)
fk
0 dμ

k, Dk
1 :=

∫
log

(
fk
1

fk
0

)
fk
1 dμ

k

are both positive and finite. As a result, for each k ∈ [K] the log-likelihood ratio
process in the kth stream, defined in (1), takes the form

λk(n) =

n∑
j=1

log
fk
1 (X

k
j )

fk
0 (X

k
j )

, n ∈ N,

and it is a random walk with drift Dk
1 under Pk

1 and −Dk
0 under Pk

0 .
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Our goal in this section is to show that the proposed multiple testing pro-
cedures in Section 3 are asymptotically optimal. Our strategy for proving this
is first to establish a non-asymptotic lower bound on the minimum possible
expected sample size in Δα,β(P) for some arbitrary class P , and then show
that this lower bound is attained by the gap rule when P = Pm and by the
gap-intersection rule when P = P�,u as α, β → 0.

5.1. A lower bound on the optimal performance

In order to state the lower bound on the optimal performance, we introduce the
function

ϕ(x, y) := x log

(
x

1− y

)
+ (1− x) log

(
1− x

y

)
, x, y ∈ (0, 1), (19)

and for any subsets C,A ⊂ [K] such that C �= A we set

γA,C(α, β) :=

⎧⎪⎨
⎪⎩
ϕ(α, β), if C \ A �= ∅, A \ C = ∅,
ϕ(β, α), if C \ A = ∅, A \ C �= ∅,
ϕ(α, β) ∨ ϕ(β, α), otherwise.

Theorem 5.1. For any class P, A ∈ P and α, β ∈ (0, 1) such that α + β < 1
we have

inf
(T,d)∈Δα,β(P)

EA[T ] ≥ max
C∈P,C�=A

γA,C(α, β)∑
k∈A\C D

k
1 +

∑
k∈C\A Dk

0

. (20)

Proof. Fix (T, d) ∈ Δα,β(P) and A ∈ P . Without loss of generality, we assume
that EA[T ] < ∞. For any C ∈ P such that C �= A, the log-likelihood ratio
process λA,C , defined in (3), is a random walk under PA with drift equal to

EA[λ
A,C(1)] =

∑
k∈A\C

Dk
1 +

∑
k∈C\A

Dk
0 ,

since each λk is a random walk with drift Dk
1 under Pk

1 and −Dk
0 under Pk

0 .
Thus, from Wald’s identity it follows that

EA[T ] =
EA[λ

A,C(T )]∑
k∈A\C D

k
1 +

∑
k∈C\A Dk

0

,

and it suffices to show that for any C ∈ P such that C �= A we have

EA[λ
A,C(T )] ≥ γA,C(α, β). (21)

Suppose that C \ A �= ∅ and let j ∈ C \ A. Then, from Lemma A.1 in the
Appendix we have

EA
[
λA,C(T )

]
= EA

[
log

dPA
dPC

(FT )

]
≥ ϕ

(
PA(d

j = 1),PC(d
j = 0)

)
.
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By the definition of Δα,β(P), we have PA(d
j = 1) ≤ α and PC(d

j = 0) ≤ β.
Since the function ϕ(x, y) is decreasing on the set {(x, y) : x + y ≤ 1}, and by
assumption α+ β ≤ 1, we conclude that if C \ A �= ∅, then

EA[λ
A,C(T )] ≥ ϕ(α, β).

With a symmetric argument we can show that if A \ C �= ∅, then

EA[λ
A,C(T )] ≥ ϕ(β, α).

The two last inequalities imply (21), and this completes the proof.

Remark 5.1. By the definition of ϕ in (19), we have

ϕ(α, β) = | log β| (1 + o(1)), ϕ(β, α) = | logα |(1 + o(1)) (22)

as α, β → 0 at arbitrary rates.

5.2. Asymptotic optimality of the proposed schemes

In what follows, we assume that for each stream k ∈ [K] we have:

∫ (
log

(
fk
0

fk
1

))2

fk
i dμ

k < ∞, i = 0, 1. (23)

Although this assumption is not necessary for the asymptotic optimality of the
proposed rules to hold, it will allow us to use Lemma A.2 in the Appendix and
obtain valuable insights regarding the effect of prior information on the optimal
performance. Moreover, for each subset A ⊂ [K] we set:

ηA1 := min
k∈A

Dk
1 , ηA0 := min

j /∈A
Dj

0,

and, following the convention that the minimum over the empty set is ∞, we

define: η∅1 = η
[K]
0 := ∞.

5.2.1. Known number of signals

We will first show that the gap rule, defined in (4), is asymptotically optimal
with respect to class Pm, where 1 ≤ m ≤ K−1. In order to do so, we start with
an upper bound on the expected sample size of this procedure.

Lemma 5.2. Suppose that assumption (23) holds. Then, for any A ∈ Pm, as
c → ∞ we have

EA[TG] ≤
c

ηA1 + ηA0
+O

(
m(K −m)

√
c
)
.
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Proof. Fix A ∈ Pm. For any c > 0 we have TG ≤ T ′
G, where T ′

G is defined
in (7), and it is the first time that all m(K −m) processes of the form λk − λj

with k ∈ A and j /∈ A exceed c. Due to condition (23), each λk − λj with
k ∈ A and j /∈ A is a random walk under PA with positive drift Dk

1 +Dj
0 and

finite second moment. Therefore, from Lemma A.2 it follows that as c → ∞:

EA[T
′
G] ≤ c

(
min

k∈A,j /∈A
(Dk

1 +Dj
0)

)−1

+O
(
m(K −m)

√
c
)
,

and this completes the proof, since mink∈A,j /∈A(D
k
1 +Dj

0) = ηA1 + ηA0 .

The next theorem establishes the asymptotic optimality of the gap rule.

Theorem 5.3. Suppose assumption (23) holds and let the threshold c in the gap
rule be selected according to (6). Then for every A ∈ Pm, we have as α, β → 0

EA[TG] ∼ | log(α ∧ β)|
ηA1 + ηA0

∼ inf
(T,d)∈Δα,β(Pm)

EA[T ].

Proof. Fix A ∈ Pm. If thresholds are selected according to (6), then from
Lemma 5.2 it follows that as α, β → 0

EA[TG] ≤
| log(α ∧ β)|
ηA1 + ηA0

+O
(
m(K −m)

√
| log(α ∧ β)|

)
. (24)

Therefore, it suffices to show that the lower bound in Theorem 5.1 agrees with
the upper bound in (24) in the first-order term as α, β → 0. To see this, note
that for any C ∈ Pm such that C �= A we have C \ A �= ∅ and A \ C �= ∅, and
consequently

γA,C(α, β) = ϕ(α, β) ∨ ϕ(β, α).

This means that the numerator in (20) does not depend on C. Moreover, if we
restrict our attention to subsets in Pm that differ from A in two streams, i.e.,
subsets of the form C = A ∪ {j} \ {k} for some k ∈ A and j /∈ A, for which∑

i∈A\C
Di

1 +
∑

i∈C\A
Di

0 = Dk
1 +Dj

0,

then we have

min
C∈Pm,C�=A

⎡
⎣ ∑
i∈A\C

Di
1 +

∑
i∈C\A

Di
0

⎤
⎦ ≤ min

k∈A,j /∈A

[
Dk

1 +Dj
0

]
= ηA1 + ηA0 .

By the last inequality and Theorem 5.1 we obtain the following non-asymptotic
lower bound, which holds for any α, β such that α+ β < 1:

inf
(T,d)∈Δα,β(Pm)

EA[T ] ≥
max{ϕ(α, β), ϕ(β, α)}

ηA1 + ηA0
.
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By (22), we have as α, β → 0

max{ϕ(α, β), ϕ(β, α)} = | log(α ∧ β)| (1 + o(1)).

Consequently,

inf
(T,d)∈Δα,β(Pm)

EA (T ) ≥ | log(α ∧ β)|
ηA1 + ηA0

(1 + o(1)),

which completes the proof.

Remark 5.2. It is interesting to consider the special case of identical hypotheses,
in which fk

1 = f1 and fk
0 = f0, and consequently Dk

1 = D1 and Dk
0 = D0 for

every k ∈ [K]. Then, ηA1 = D1 and ηA0 = D0 for every A ⊂ [K], and from
Theorem 5.3 it follows that the first-order asymptotic approximation to the
expected sample size of the gap rule (as well as to the optimal expected sample
size within Δα,β(Pm)), | log(α∧β)|/(D1+D0), is independent of the number of
signals,m. We should stress that this does not mean that the actual performance
of the gap rule is independent of m. Indeed, the second term in the right-hand
side of (24) suggests that the smaller m(K − m) is, i.e., the further away the
proportion of signals m/K is from 1/2, the smaller the expected sample size of
the gap rule will be. This intuition will be corroborated by the simulation study
in Section 6 (see Fig. 2).

5.2.2. Lower and upper bounds on the number of signals

We will now show that the gap-intersection rule, defined in (12), is asymptoti-
cally optimal with respect to class P�,u for some 0 ≤ � < u ≤ K. As before, we
start with establishing an upper bound on the expected sample size of this rule.

Lemma 5.4. Suppose that assumption (23) holds. Then, for any A ∈ P�,u we
have as a, b, c, d → ∞

EA[TGI ] ≤

⎧⎪⎨
⎪⎩
max

{
a/ηA0 , c/(ηA0 + ηA1 )

}
(1 + o(1)) if |A| = �

max
{
a/ηA0 , b/ηA1

}
+O(K

√
a ∨ b) if � < |A| < u

max
{
b/ηA1 , d/(ηA0 + ηA1 )

}
(1 + o(1)) if |A| = u

Furthermore, if c− a = O(1) and d− b = O(1), then

EA[TGI ] ≤
{
a/ηA0 +O((K − �)

√
a) if |A| = �

b/ηA1 +O(u
√
b) if |A| = u

(25)

Proof. Fix A ∈ P�,u. By the definition of the stopping time TGI ,

EA[TGI ] ≤ min {EA[τ1],EA[τ2],EA[τ3]} .

Suppose first � < |A| < u and observe that τ2 ≤ τ ′2, where τ
′
2 is defined in (15).

Under condition (23), for every k ∈ A and j /∈ A, −λj and λk are random
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walks with finite second moments and positive drifts Dj
0 and Dk

1 , respectively.
Therefore, from Lemma A.2 we have that

EA[τ
′
2] ≤ max

{
a/ηA0 , b/ηA1

}
+O(K

√
a ∨ b).

Suppose now that |A| = � and observe that τ1 ≤ τ ′1, where

τ ′1 := inf{n ≥ 1 : −λj(n) ≥ a, λk(n)− λj(n) ≥ c for every k ∈ A, j /∈ A},

where −λj and λk − λj are random walks with finite second moments and
positive drifts Dj

0 and Dk
1 +Dj

0, respectively. The result follows again from an
application of Lemma A.2. If in addition we have that c − a = O(1), then
τ1 ≤ τ ′′1 , where

τ ′′1 := inf{n ≥ 1 : −λj(n) ≥ a, λk(n) ≥ c− a for every k ∈ A, j /∈ A}.

Therefore, the second part of the lemma follows again from an application of
Lemma A.2.

The next theorem establishes the asymptotic optimality of the gap-inter-
section rule.

Theorem 5.5. Suppose that assumption (23) holds and let the thresholds in
the gap-intersection rule be selected according to (14). Then for any A ∈ P�,u,
we have as α, β → 0

EA[TGI ] ∼ inf
(T,d)∈Δα,β(P�,u)

EA[T ]

∼

⎧⎪⎨
⎪⎩
max

{
| log β|/ηA0 , | logα|/(ηA0 + ηA1 )

}
if |A| = �

max
{
| log β|/ηA0 , | logα|/ηA1

}
if � < |A| < u

max
{
| logα|/ηA1 , | log β|/(ηA0 + ηA1 )

}
if |A| = u

.

Proof. Fix A ∈ P�,u. We will prove the result only in the case that |A| = �, as
the other two cases can be proved similarly. If thresholds are selected according
to (14), then from Lemma 5.4 it follows that

EA[TGI ] ≤ max

{
| log β|
ηA0

,
| logα|
ηA0 + ηA1

}
(1 + o(1)).

Thus, it suffices to show that this asymptotic upper bound agrees asymptot-
ically, up to a first order, with the lower bound in Theorem 5.1. Indeed, if C is
a subset in P�,u that has one more stream than A, i.e., C = A ∪ {j} for some
j /∈ A, then

γA,C(α, β)∑
i∈A\C D

i
1 +

∑
i∈C\A Di

0

=
ϕ(α, β)

Dj
0

.

Further, consider C = A ∪ {j}/{k} ∈ P�,u for some k ∈ A and j /∈ A, then

γA,C(α, β)∑
i∈A\C D

i
1 +

∑
i∈C\A Di

0

=
max{ϕ(α, β), ϕ(β, α)}

Dk
1 +Dj

0

.
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Therefore, from (5.1) it follows that for every α, β such that α+ β < 1

inf
(T,d)∈Δα,β(P�,u)

EA[T ] ≥ max
k∈A,j /∈A

max

{
ϕ(α, β)

Dj
0

,
max{ϕ(α, β), ϕ(β, α)}

Dk
1 +Dj

0

}

= max

{
ϕ(α, β)

ηA0
,

ϕ(β, α)

ηA1 + ηA0

}
.

From (22) it follows that as α, β → 0

inf
(T,d)∈Δα,β(Pl,u)

EA[T ] ≥ max

{
| log β|
ηA0

,
| logα|
ηA1 + ηA0

}
(1 + o(1)),

which completes the proof.

5.3. The case of no prior information

Recall that when we set � = 0 and u = K, the gap-intersection rule reduces
to the intersection rule, defined in (9). Therefore, setting � = 0 and u = K in
Theorem 5.5 we immediately obtain that the intersection rule is asymptotically
optimal in the case of no prior information, i.e., with respect to class P0,K ; this
is itself a new result to the best of our knowledge. However, a more surprising
corollary of Theorem 5.5 is that the intersection rule, which does not use any
prior information, is asymptotically optimal even if bounds on the number of
signals are available, when the following conditions are satisfied:

(i) the error probabilities are of the same order of magnitude, in the sense
that | logα| ∼ | log β|,

(ii) the hypotheses are identical and symmetric, in the sense that Dk
1 = Dk

0 =
D for every k ∈ [K].

On the other hand, a comparison with Theorem 5.3 reveals that, even in
this special case, the intersection rule is never asymptotically optimal when the
exact umber of signals is known in advance, in which case it requires roughly
twice as many observations on average as the gap rule for the same precision
level. The following corollary summarizes these observations.

Corollary 5.6. Suppose that assumption (23) holds and that the thresholds in
the intersection rule are selected according to (10). Then, for any A ⊂ [K] we
have as α, β → 0

EA[TI ] ≤ max

{
| logα|
ηA1

,
| log β|
ηA0

}
+O(K

√
| log(α ∧ β)|). (26)

Further, the intersection rule is asymptotically optimal in the class Δα,β(P0,K),
i.e., as α, β → 0

EA[TI ] ∼ max

{
| logα|
ηA1

,
| log β|
ηA0

}
∼ inf

(T,d)∈Δα,β(P0,K)
EA[T ].
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In the special case that | logα| ∼ | log β| and Dk
1 = Dk

0 = D for every k ∈ [K],

EA[TI ] ∼
| logα|
D

∼ inf
(T,d)∈Δα,β(P�,u)

EA[T ] for every A ∈ P�,u,

EA[TI ] ∼
| logα|
D

∼ 2 inf
(T,d)∈Δα,β(Pm)

EA[T ] for every A ∈ Pm,

for every 0 ≤ � < u ≤ K and 1 ≤ m ≤ K − 1.

Remark 5.3. Corollary 5.6 implies that, in the special symmetric case that
| logα| ∼ | log β| and Dk

1 = Dk
0 = D, prior lower and upper bounds on the

true number of signals do not improve the optimal expected sample size up
to a first-order asymptotic approximation. However, a comparison between the
second-order terms in (25) and (26) suggests that such prior information does
improve the optimal performance, an intuition that will be corroborated by the
simulation study in Section 6 (see Fig. 2).

Remark 5.4. In addition to the intersection rule, De and Baron (2012a) proposed
the “incomplete rule”, (Tmax, dmax), which is defined as

Tmax := max{σ1, . . . , σK} and dmax := (d1max, . . . , d
K
max),

where for every k ∈ [K] we have

σk := inf
{
n ≥ 1 : λk(n) �∈ (−a, b)

}
, dkmax :=

{
1, if λk(σk) ≥ b

0, if λk(σk) ≤ −a
. (27)

According to this rule, each stream is sampled until the corresponding test
statistic exits the interval (−a, b), independently of the other streams. It is clear
that, for the same thresholds a and b, Tmax ≤ TI . Moreover, with a direct
application of Boole’s inequality, as in De and Baron (2012a), it follows that
selecting the thresholds according to (10) guarantees the desired error control
for the incomplete rule. Therefore, Corollary 5.6 remains valid if we replace the
intersection rule with the incomplete rule.

6. Simulation study

6.1. Description

In this section we present a simulation study whose goal is to corroborate the
asymptotic results and insights of Section 5 in the symmetric case described in
Corollary 5.6. Thus, we set K = 10 and let fk

i = N (θi, 1) for each k ∈ [K], i =
0, 1, where θ0 = 0, θ1 = 0.5, in which case Dk

0 = Dk
1 = D = (1/2)(θ1)

2 = 1/8,
and the distribution of λk under Hk

1 is the same as −λk under Hk
0 . Furthermore,

we set α = β. This is a convenient setup for simulation purposes, since the
expected sample size and the two familywise errors of each proposed procedure
are the same for all scenarios with the same number of signals, i.e. for all A’s
with the same size.
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Fig 1. The x-axis is | log10(PA(A � d))|. The y-axis is the relative error of the estimate of
the familywise type-I error, PA(A � d), that is the ratio of the standard deviation of the
estimate over the estimate itself. Each curve is computed based on 100, 000 realizations.

For any user specified level α, we have two ways to determine the critical
value of each procedure. First, we can use upper bound on the error probability
to compute conservative threshold ((6) for the gap rule, and (14) for the gap-
intersection rule). Second, we can apply the importance sampling technique
of Section 4 to determine non-conservative threshold, such that the maximal
familywise type I error probability is controlled exactly at level α. As we see
in Fig. 1, the relative errors of the proposed Monte Carlo estimators, even for
error probabilities of the order 10−8, are smaller than 1.5% for the gap rule, 8%
for the gap-intersection rule, 1% for the intersection rule.

6.1.1. Gap rule

First, we consider the case in which the number of signals is known to be equal
to m (P = Pm) for m ∈ {1, . . . , 9}, and we can apply the corresponding gap
rule, defined in (4). Due to the symmetry of our setup, the expected sample
size EA[TG] and the error probability PA(dG �= A) are the same for A ∈ Pm

and A ∈ PK−m; thus, it suffices to consider m in {1, . . . , 5} , and an arbitrary
A ∈ Pm for fixed m.

We start with non-conservative critical value determined by Monte Carlo
method. For each m ∈ {1, 3, 5} and some A ∈ Pm, we consider α’s ranging
from 10−2 to 10−8. For each such α, we compute the threshold c in the gap-rule
that guarantees α = maxA∈Pm PA(dG �= A), and then the expected sample size
EA[TG] that corresponds to this threshold. In Fig. 2a we plot EA[TG] against
| log10(α)| when m = 1, 3, 5. In Table 1a we present the actual numerical results
for c = 10.

In Fig. 2a we also plot the first-order asymptotic approximation to the op-
timal expected sample size obtained in Theorem 5.3, which in this particular
symmetric case takes the form | logα|/(2D) = 4| logα|. From our asymptotic
theory we know that the ratio of EA[TG] over this quantity goes to 1 as α → 0,
and this convergence is illustrated in Fig. 2b.
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Fig 2. The x-axis in all graphs is | log10(α)|. In the first column, the y-axis denotes the
expected sample size under PA that is required in order to control the maximal familywise
type I error probability exactly at level α. The dash-dot lines in each plot correspond to the
first-order approximation, which is also a lower bound, to the optimal expected sample size
for the class Δα,α(P); due to symmetry, this lower bound does not depend on |A| in each
setup. In the second column, we normalize each curve by its corresponding lower bound.
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Fig 3. The x-axis is | log10(α)|, where α is user-specified level. The y-axis is the expected sam-
ple size. The dashed line uses the upper bound on the error probability to get conservative crit-
ical value, while the solid line uses the Monte Carlo approach to determine non-conservative
threshold such that the maximal familywise type I error is controlled exactly at level α.

Further, in Fig. 3a we present for the case P = P3 the expected sample size
of the gap rule when its threshold is given by the explicit expression in (6), and
compare it with the corresponding expected sample size that is obtained with
the sharp threshold, which is computed via simulation.

6.1.2. Gap-intersection rule

Second, we consider the case in which the number of signals is known to be
between 3 and 7 (P = P�,u = P3,7), and we can apply the gap-intersection rule,
defined in (12). Due to the symmetry of the setup and Lemma 3.2, we set a = b
and c = d = b+ log(u) = b+ log(7).

As before, we consider α’s ranging from 10−2 to 10−8. For each such α, we
obtain the threshold b such that maxA PA(A � dGI) = α, where the maximum
is taken over A ∈ P�,u, and then compute the corresponding expected sample
size EA[TGI ] for every A ∈ P�,u. In Fig. 2c we plot EA[TGI ] against | log10(α)| for
|A| = 3 and 5, since by symmetry EA[TGI ] is the same for |A| = k and 10−k, and
the results for |A| = 4 and 5 were too close. This is also evident from Table 1b,
where we present the numerical results for b = 10. In the same graph we also plot
the first-order asymptotic approximation to the optimal performance obtained
in Theorem 5.5, which in this case is | logα|/D = 8| logα|. By Theorem 5.5,
we know that the ratio of EA[TGI ] over 8| logα| goes to 1 as α → 0, which is
corroborated in Fig. 2d.

6.1.3. Intersection versus incomplete rule

Finally, we consider the case of no prior information (P = P0,10), in which we
compare the intersection rule with the incomplete rule. This is a special case
of the previous setup with � = 0 and u = K, but now the expected sample
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size (for both schemes) is the same for every subset of signals A, which allows
us to plot only one curve for each scheme in Fig. 2e (non-conservative critical
value is used). In the same graph we also plot the first-order approximation to
the optimal performance, | logα|/D = 8| logα|, whereas in Fig. 2f. we plot the
corresponding normalized version.

Further, in Fig. 3b we present the expected sample size of the intersection
rule when its threshold is given by the explicit expression in (14), and compare
it with the corresponding expected sample size that is obtained with the sharp
threshold, which is computed via simulation.

6.2. Results

There are a number of conclusions that can be drawn from the presented graphs.
First of all, from Fig. 2a it follows that the gap rule performs the best when
there are exactly m = 1 or 9 signals, whereas its performance is quite similar
for m = 3, 4, 5. As we mentioned before, this can be explained by the fact that
the second term in the right-hand side in (24) grows with m(K −m).

Second, from Fig. 2c we can see that the gap-intersection rule performs better
in the boundary cases that there are exactly 3 or 7 signals than in the case of 5
signals, which can be explained by the second order term in (25).

Third, from Fig. 2e we can see that the intersection rule is always better than
the incomplete rule, although they share the same prior information.

Fourth, from the graphs in the second column of Fig. 2 we can see that all
curves approach 1, as expected from our asymptotic results; however, the con-
vergence is relatively slow. This is reasonable, as we do not divide the expected
sample sizes by the optimal performance in each case, but with a strict lower
bound on it instead.

Fifth, comparing Fig. 2a with Fig. 2c and 2e, we verify that knowledge of
the exact number of signals roughly halves the required expected sample size in
comparison to the case that we only have a lower and an upper bound on the
number of signals.

Finally, we see by Tables 1a and 1b that the upper bounds (5) and (13) on
the error probabilities are very crude. Nevertheless, from Fig. 3a and 3b, we
observe that using these conservative thresholds in the design of the proposed
procedures leads to bounded performance loss as the error probabilities go to 0
relative to the case of sharp thresholds, obtained via Monte Carlo simulation.
This is expected, as the expected sample size scales with the logarithm of the
error probabilities.

7. Conclusions

We considered the problem of simultaneously testing multiple simple null hy-
potheses, each of them against a simple alternative, in a sequential setup. That
is, the data for each testing problem are acquired sequentially and the goal is
to stop sampling as soon as possible, simultaneously in all streams, and make a
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Table 1

The standard error of the estimate is included in the parenthesis. The upper bound is on the
error control given by (5) for the first table and by (13) for the second.

(a) P = Pm. (TG, dG) with c = 10.

m PA(dG �= A) EA(TG) Upper bound
1 5.041E-05 (3.101E-07) 64.071 (0.157) 4.086E-4
3 6.034E-05 (5.343E-07) 78.386 (0.157) 9.534E-4
5 6.145E-05 (5.859E-07) 81.070 (0.156) 1.135E-3

(b) P = P3,7. (TGI , dGI) with b = 10.

|A| PA(A � dGI) EA(TGI) Upper bound
3 3.653E-05 (5.447E-07) 142.173 (0.264) 4.540E-04
4 3.144E-05 (2.189E-07) 152.873 (0.264) 4.281E-04
5 2.621E-05 (1.825E-07) 152.895 (0.263) 3.891E-04
7 3.104E-07 (1.340E-08) 142.363 (0.270) 2.724E-04

correct decision for each individual testing problem. The main goal of this work
was to propose feasible, yet asymptotically optimal, procedures that incorporate
prior information on the number of signals (correct alternatives), and also to
understand the potential gains in efficiency by such prior information.

We studied this problem under the assumption that the data streams for the
various hypotheses are independent. Without any distributional assumptions on
the data that are acquired in each stream, we proposed procedures that control
the probabilities of at least one false positive and at least one false negative
below arbitrary user-specified levels. This was achieved in two general cases
regarding the available prior information: when the exact number of signals
is known in advance, and when we only have an upper and a lower bound
for it. Furthermore, we proposed a Monte Carlo simulation method, based on
importance sampling, that can facilitate the specification of non-conservative
critical values for the proposed multiple testing procedures in practice. More
importantly, in the special case of i.i.d. data in each stream, we were able to show
that the proposed multiple testing procedures are asymptotically optimal, in the
sense that they require the minimum possible expected sample size to a first-
order asymptotic approximation as the error probabilities vanish at arbitrary
rates.

These asymptotic optimality results have some interesting ramifications. First
of all, they imply that any refinements of the proposed procedures, for example
using a more judicious choice of alpha-spending and beta-spending functions,
cannot reduce the expected sample size to a first-order asymptotic approxima-
tion. Second, they imply that bounds on the number of signals do not improve
the minimum possible expected sample size to a first-order asymptotic approx-
imation, apart from a very special case. On the other hand, knowledge of the
exact number of signals does reduce the minimum possible expected sample size
to a first order approximation, roughly by a factor of 2. These insights were cor-
roborated by a simulation study, which however also revealed the limitations of a
first-order asymptotic analysis and emphasized the importance of second-order
terms.
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To our knowledge, these are the first results on the asymptotic optimality of
multiple testing procedures, with or without prior information, that control the
familywise error probabilities of both types. However, there are still some impor-
tant open questions that remain to be addressed. Do the proposed procedures
attain, in the i.i.d. setup, the optimal expected sample size to a second-order
asymptotic approximation as well? Does the first-order asymptotic optimality
property remain valid for more general, non-i.i.d. data in the streams? While
we conjecture that the answer to both these questions is affirmative, we believe
that the corresponding proofs require different techniques from the ones we have
used in the current paper.

There are also interesting generalizations of the setup we considered in this
paper. For example, it is interesting to consider the sequential multiple testing
problem when the goal is to control generalized error rates, such as the false
discovery rate (Bartroff and Song, 2013), instead of the more stringent fami-
lywise error rates. Another interesting direction is to allow the hypotheses in
the streams to be specified up to an unknown parameter, or to consider a non-
parametric setup similarly to Li, Nitinawarat and Veeravalli (2014). Finally, it
is still an open problem to design asymptotically optimal multiple testing pro-
cedures that incorporate prior information on the number of signals when it is
possible and desirable to stop sampling at different times in the various streams.

Appendix A: Two lemmas

A.1. An information-theoretic inequality

In the proof of Theorem 5.1 we use the following, well-known, information-
theoretic inequality, whose proof can be found, e.g., in Tartakovsky, Nikiforov
and Basseville (2014) (Chapter 3.2).

Lemma A.1. Let Q,P be equivalent probability measures on a measurable space
(Ω,G) and recall the function ϕ defined in (19). Then, for every A ∈ G we have

EQ

[
log

dQ

dP

]
≥ ϕ (Q(A),P(Ac)) .

A.2. A lemma on multiple random walks

For the proof of Lemmas 5.2 and 5.4 we need an upper bound on the expectation
of the first time that multiple random walks, not necessarily independent, are
simultaneously above given thresholds. We state here the corresponding result
in some generality.

Thus, let L ≥ 2 and suppose that for each l ∈ [L] we have a sequence of i.i.d.
random variables, {ξln, n ∈ N}, such that μl = E[ξl1] > 0 and Var[ξl1] < ∞. For
each l ∈ [L], let

Sl
n =

n∑
i=1

ξli, n ∈ N
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be the corresponding random walk. Here, no assumption is made on the depen-
dence structure among these random walks. For an arbitrary vector (a1, . . . , aL),
consider the stopping time

T = inf
{
n ≥ 1 : Sl

n ≥ al for every l ∈ [L]
}
.

The following lemma provides an upper bound on the expected value of T . The
proof is identical to the one in Theorem 2 in Mei (2008); thus we omit it. We
stress that although the theorem in the reference assumes independent random
walks, exactly the same proof applies to the case of dependent random walks.

Lemma A.2. As a1, . . . , aL → ∞,

E[T ] ≤ max
l∈[L]

(
al
μl

)
+O

⎛
⎝∑

l∈[L]

√
al
μl

⎞
⎠ ≤ max

l∈[L]

(
al
μl

)
+O

(
L
√
max
l∈[L]

{al}
)
.
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