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Abstract

We investigate generalizations of the classical percolation critical probabilities pc, pT
and the critical probability p̃c defined by Duminil-Copin and Tassion [11] to bounded
degree unimodular random graphs. We further examine Schramm’s conjecture in the
case of unimodular random graphs: does pc(Gn) converge to pc(G) if Gn → G in the
local weak sense? Among our results are the following:

• pc = p̃c holds for bounded degree unimodular graphs. However, there are
unimodular graphs with sub-exponential volume growth and pT < pc; i.e., the
classical sharpness of phase transition does not hold.

• We give conditions which imply lim pc(Gn) = pc(limGn).
• There are sequences of unimodular graphs such that Gn → G but pc(G) >

lim pc(Gn) or pc(G) < lim pc(Gn) < 1.

As a corollary to our positive results, we show that for any transitive graph with sub-
exponential volume growth there is a sequence Tn of large girth bi-Lipschitz invariant
subgraphs such that pc(Tn) → 1. It remains open whether this holds whenever the
transitive graph has cost 1.
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1 Introduction

1.1 Motivation and results

There are several definitions of the critical probability for percolation on the lat-
tices Zd, which have turned out to be equivalent not only on Zd, but also in the
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On percolation critical probabilities and unimodular random graphs

more general context of arbitrary transitive graphs [28, 1, 16, 4, 11, 12]. One of
our goals is to investigate the relationship between these different definitions when
the graph G is an ergodic unimodular random graph [9, 2], which is the natural ex-
tension of transitivity to the disordered setting. We examine the generalizations of
pc = sup{p : Pp(there is an infinite cluster) = 0}, pT = sup {p : Ep(|Co|) <∞} and p̃c,
defined by Duminil-Copin and Tassion [11]. The last quantity was in fact designed to
give a simple new proof of pc = pT for transitive graphs, and to address the question
of locality of critical percolation: whether the value of pc depends only on the local
structure of the graph.

More precisely, Schramm’s “locality conjecture”, stated first explicitly in [8], says that
pc(Gn)→ pc(G) holds whenever Gn is a sequence of vertex-transitive infinite graphs such
that Gn converges locally to G (i.e., for every radius r, the r-ball in Gn, for n large enough,
is isomorphic to the r-ball in G) and supn pc(Gn) < 1. Typically, however, the natural
setting for such locality statements is not the class of transitive graphs, but the class of
unimodular random graphs. Indeed, there are several interesting probabilistic quantities,
most often related in some way to random walks, which have turned out to possess
locality, mostly in the generality of unimodular random graphs: see [9, 23, 25, 10, 6, 17]
for specific examples, and [30, Chapter 14] for a partial overview. Therefore, it is natural
to investigate Schramm’s conjecture in the setup of unimodular random graphs and see
what the proper notion of critical probability may be from the point of view of locality.

The conjecture has been proved for some special transitive graphs. Grimmett and
Marstrand [18] proved that pc

(
Z2 × {−n, . . . , n}d−2

) n→∞−−−−→ pc(Z
d). Benjamini, Nachmias

and Peres [8] verified that the convergence holds if (Gn) is a sequence of d-regular graphs
with large girth and Cheeger constants uniformly bounded away from 0. Martineau and
Tassion [27] proved that the convergence holds if (Gn) is a sequence of Cayley graphs of
Abelian groups converging to a Cayley graph G of an Abelian group, and pc(Gn) < 1 for
all n. The inequality

lim inf
n→∞

pc(Gn) ≥ pc(G)

is known for any convergent sequence of transitive graphs; see [30, Section 14.2], and
[11]. Given the scarcity of transitive examples, it is a natural wish to try and find classes
of unimodular graphs that satisfy the locality or at least the lower semicontinuity of the
critical probability.

In Subsection 1.3, we define the generalized critical probabilities pc, pT , p̃c, paT , and
p̃ac for unimodular random graphs; somewhat simplistically saying, the first three will be
quenched versions of the quantities mentioned above, while the last two will be annealed
versions.

In Section 2, we examine the relationship between these different generalizations.
The main positive result of this section, used many times in the rest of the paper, is the
following:

Theorem 1.1. If (G, o) is a bounded degree unimodular random rooted graph, then
pc(G) = p̃c(G) holds a.s., where p̃c is the quantity introduced by Duminil-Copin and
Tassion [11]; see (1.1) below.

Our further results on the relationship of the different definitions of critical probabili-
ties are summarized in Table 2.1. The one sentence summary is that although pc = p̃c
always holds, otherwise almost anything can happen, unless the random graph satisfies
some very strong uniformity conditions; one that we call “uniformly good” suffices for
most purposes. The notion of uniformly good unimodular graphs (see Definition 2.1)
captures the property of the original definition of p̃c that there is a bounded size witness
for p being less than p̃c. This class of graphs includes all quasi-transitive unimodular
graphs and unimodular trees of sub-exponential growth.
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In Section 3 we investigate the extension of Schramm’s conjecture to unimodular
random graphs: does pc(Gn) converge to pc(G) if Gn → G in the local weak sense (i.e.,
the laws of the r-balls in Gn converge weakly, for every r) and sup pc(Gn) < 1? First we
note that locality holds for unimodular Galton–Watson trees with bounded degrees, but
not in general.

Example 1.2. Let Xn and X be uniformly bounded non-negative integer valued ran-
dom variables with mean larger than 1. Denote by UGW∞(Xn) and UGW∞(X) the
unimodular Galton–Watson trees with these offspring distributions, conditioned to be
infinite. If UGW∞(Xn) → UGW∞(X) in the local weak sense, then pc(UGW∞(Xn)) →
pc(UGW∞(X)).

We discuss this family of graphs in more detail in Example 3.2. This example motivates
our investigations on the locality of the critical probability in the class of unimodular
random graphs and it shows that it is natural to restrict one’s attention to bounded
degree graphs.

In Subsection 3.2, we prove some general positive results: lower semicontinuity of p̃ac
and the following two propositions, giving some particular settings where locality of pc
holds:

Proposition 1.3. Let G be a uniformly good unimodular random graph. Furthermore,
let Gn be uniformly bounded degree unimodular random graphs converging to G in the
local weak sense, in a uniformly sparse way: there is a positive integer k such that for
each n there is a coupling νn of µG and µGn

such that G ⊆ Gn and there is a sequence
of positive integers rn → ∞ that satisfies |(E(Gn) \ E(G)) ∩ BGn

(o, rn)| ≤ k νn-almost
surely. Then limn→∞ pc(Gn) = pc(G).

Although uniformly good unimodular graphs are not much more general than quasi-
transitive graphs, the main point of this proposition is that it gives examples satisfy-
ing locality, beyond transitive graphs and unimodular Galton–Watson trees; see, e.g.,
Example 3.4. Also, it draws attention to how fragile locality is in the realm of unimod-
ular random graphs: in Subsection 3.3, we show by examples that neither uniformly
sparse convergence, nor a uniformly good limit suffices alone for locality: there are
such sequences of unimodular random graphs with Gn → G but pc(G) > lim pc(Gn) or
pc(G) < lim pc(Gn) < 1.

In the quite special setting of unimodular trees of uniform subexponential growth (see
Definition 2.4), the assumption of uniformly sparse convergence from Proposition 1.3
can be relaxed:

Proposition 1.4. If G is a bounded degree unimodular random tree with uniformly
subexponential volume growth, then all five critical percolation densities equal 1, and G
is uniformly good. If Gn is a sequence of bounded degree unimodular random graphs
with uniformly subexponential volume growth and girth tending to infinity, then pc(Gn),
p̃c(Gn), p̃ac(Gn) all tend to 1.

A corollary to this result is that if G is a transitive graph of subexponential volume
growth, then there exists a sequence of invariant bi-Lipschitz spanning subgraphs Gn
such that pc(Gn) → 1. As we will explain in Section 4, this is a strengthening of the
simple fact that groups of subexponential growth have cost 1, as defined in [20], studied
further in [14, 15]. We do not know if this strengthening holds for all groups of cost 1,
which class includes, besides all amenable groups, direct products G×Z for any group
G, and SL(d,Z) with d ≥ 3. A related question is whether every amenable transitive
graph has an invariant random Hamiltonian path. This is the invariant infinite version
of what is known as Lovász’ conjecture, namely, that every finite transitive graph has
a Hamiltonian path, even though he has not conjectured a positive answer. The best
general results seem to be [5] and [29].
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Our positive results notwithstanding, a key conclusion of our work seems to lie in the
counterexamples: there appears to be no perfect definition of a “critical density” that
would make locality a robust phenomenon, true for a large class of unimodular random
graphs and thus possibly more accessible for a proof in the transitive case.

1.2 Notation

Graphs. We always consider locally finite and rooted graphs. The root is denoted by
o. We denote by e− and e+ the endpoints of the (directed) edge e. When a subgraph
S is given (maybe implicitly) and it contains exactly one endpoint of e, then we denote
that endpoint by e−. We write x ∼ y if x and y are adjacent vertices in G. We will
use distG(x, y) for the graph distance between the vertices x and y in the graph G. We
denote by BG(o, r) the ball around o of radius r in G, i.e., the subgraph induced by the
vertex set {x ∈ V (G) : distG(o, x) ≤ r}. For any subset S of the vertices, let ∂ES :=

{e ∈ E(G) : e− ∈ S, e+ /∈ S} be the edge boundary of S, let ∂in
V S := {x ∈ S : ∃y ∼ x, y /∈ S}

be the internal vertex boundary of S, and let ∂out
V S := {x /∈ S : ∃y ∼ x, y ∈ S} be the outer

vertex boundary of S. For a rooted graph (G, o) we denote by S(G) the set of finite
subsets of G which contain the root o.

Several of our examples will use percolation on Z2. The subgraph spanned by the
box [−n, n]2 will be denoted by Qn. We will also use the standard dual percolation on the
dual lattice (Z+ 1

2 )2.

When we talk about invariant random subgraphs of a Cayley graph Γ of a group G,
we will always mean that the measure on subgraphs is invariant under the natural action
of G. When we talk about invariant random subgraphs of a transitive graph Γ, with no
group action specified, then we mean invariance under the automorphism group Aut(Γ).

Unimodular random graphs. Let G? be the space of isomorphism classes of locally
finite labeled rooted graphs, and let G?? be the space of isomorphism classes of locally
finite labeled graphs with an ordered pair of distinguished vertices, each equipped with
the natural local topology: two (doubly) rooted graphs are “close” if they agree in “large”
neighborhoods of the root(s). If (G, o) is a random rooted graph, then denote by µG the
distribution of it on G?, and let EG be the expectation with respect to µG. We omit the
index G from this notation if it is clear what the measure is.

Definition 1.5 ([2], Definition 2.1). We say that a random rooted graph (G, o) is unimod-
ular if it obeys the Mass Transport Principle:

EG

 ∑
x∈V (ω)

f(ω, o, x)

 = EG

 ∑
x∈V (ω)

f(ω, x, o)


for each Borel function f : G?? → [0,∞].

There are several other equivalent definitions; see [30, Definition 14.1]. Also, it is an
open question if this class is strictly larger than the class of sofic measures: the closure
of the set of finite graphs under local weak convergence.

An important class of unimodular graphs consists of Cayley graphs of finitely gener-
ated groups and of invariant random subgraphs of a Cayley graph:

Proposition 1.6 ([2], Remark 3.3). Let Γ be a Cayley graph of a finitely generated group
and let o be a vertex of Γ. If G is a random subgraph of Γ that is invariant under the
action of the group, then (G, o) is unimodular.

The class of unimodular probability measures is convex. A unimodular probability
measure is called extremal if it cannot be written as a convex combination of other
unimodular probability measures.
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Percolation. For simplicity, we will consider only bond percolation processes on uni-
modular random graphs. For a fixed instance ω of the random graph G let Pωp be the
probability measure obtained by the Bernoulli(p) bond percolation on ω and let Eωp be the
expectation with respect to Pωp . The percolation cluster (i.e., the connected component)
of the root o will be Co.

1.3 Critical probabilities

The long studied critical probabilities pc = sup {p : Pp(|Co| =∞) = 0} first defined
by Hammersley and pT = sup {p : Ep(|Co|) <∞} introduced by Temperley have natural
generalizations to extremal unimodular random graphs. Let (G, o) be an extremal
unimodular random graph. In this case the critical probability pc(ω) of an instance of
(G, o) is almost surely a constant and the same holds for pT (see [2], Section 6.). Hence
one can define

pc = inf
{
p : µ

(
Pωp (|Co| =∞) > 0

)
= 1
}

= sup
{
p : µ

(
Pωp (|Co| =∞) = 0

)
= 1
}

and
pT = sup

{
p : µ

(
Eωp (|Co|) <∞

)
= 1
}

= inf
{
p : µ

(
Eωp (|Co|) =∞

)
= 1
}
.

It may happen that although Eωp (|Co|) <∞ for µ-almost every ω, the expectation of these
quantities with respect to µ is infinite. This provides a second natural extension of pT to
unimodular random graphs defined using the average size of Co:

paT = sup
{
p : E

(
Eωp (|Co|)

)
<∞

}
= inf

{
p : E

(
Eωp (|Co|)

)
=∞

}
.

It follows from the definitions that pc ≥ pT ≥ paT . It is known that pc = pT in the case
of transitive graphs; see [28, 1, 4, 11]. For unimodular random graphs (even with sub-
exponential volume growth), the three critical probabilities can differ; we will present
such graphs in Examples 2.8 and 2.10.

Duminil-Copin and Tassion [11] introduced the following local quantity for transitive
graphs: let (G, o) be a rooted graph, S ∈ S(G) be a finite subgraph containing the root,
and define

φp(S) :=
∑
e∈∂ES

pPp(o
S←→ e−) ,

the expected number of open edges on the boundary of S such that there is an open path
from o to e− in S. Then, they defined the critical probability

p̃c := sup{p : there is an S ∈ S(G) s.t. φp(S) < 1}
= inf{p : φp(S) ≥ 1 for all S ∈ S(G)} .

(1.1)

They proved that transitive graphs satisfy pc = p̃c.
How to generalize this definition to unimodular random graphs is not a priori clear.

The simplest way to define a similar critical probability seems to be a quenched version:
find a suitable Sω ∈ S(ω) for almost every configuration ω. For a subgraph S ∈ S(ω)

denote by

φωp (S) :=
∑
e∈∂ES

pPωp

(
o

ω,p←−→
S

e−
)

the expected number of open edges on the boundary of S in ω such that there is an open
path from o to e− in the percolation on ω with parameter p. Then let

p̃c := sup
{
p : µ

({
ω : ∃Sω ∈ S(ω) s.t. φωp (Sω) < 1

})
= 1
}
. (1.2)
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Remark 1.7. Suppose p satisfies the following: for almost every ω there is an Sω ∈ S(ω)

with φωp (Sω) < c. Then unimodularity implies [2, Lemma 2.3.] that for almost every ω
and every vertex x there is some finite connected set Sω,x 3 x such that

φω,xp (Sω,x) := p
∑

e∈∂ESω,x

P

(
x

ω,p←−→
Sω,x

e−
)
< c.

In the original definition (1.1) of p̃c, there is no control on what the set S could be,
which makes the definition rather ineffective. This becomes particularly problematic in
the random graph case (1.2), where a bad neighborhood of o may force Sω to be huge
and hard to find. However, it will follow from our Lemma 2.2 that, for transitive graphs,
the existence of an S with φp(S) < 1 is equivalent to the existence of a positive integer r
with φp(B(o, r)) < 1. This provides a second natural extension of the definition of p̃c to
the random case: we consider the ball of radius r in the random graph ω and we take
the expectation of φωp (Bω(o, r)) with respect to µ. Then the following critical probability
is another extension of the definition of p̃c:

p̃ac := sup{p : ∃r such that E
(
φωp (Bω(o, r))

)
< 1}.

1.4 Operations preserving unimodularity

We give now the general description of some operations on the space of unimodular
graphs that we will use in our counterexamples in Subsections 2.2 and 3.3. This
subsection is not necessary to understand the positive results of the paper.

Some of our examples arise from Cayley graphs using operations from G? to G?. One
of these operations is the edge replacement defined in [2], Example 9.8: we replace
each edge of a unimodular graph G by a finite graph with two distinguished vertices
corresponding to the endpoints of the edge, then we find the correct new distribution
for the root that makes the measure unimodular. If the finite graphs are random, each
must have finite expected vertex size. In this section, we define further operations,
called vertex replacement and contraction, and we prove that if the initial graph is a
unimodular labeled graph with appropriate labels, then the resulting graph by such an
operation is also unimodular.

Vertex replacement. Let (Γ, o) be a unimodular random labeled graph with distribution
µ, where the labels are in the form (Gx, ϕx), where Gx is a finite graph and ϕx is a map
from {(x, y) ∈ E(ω) : y ∼ x} to V (Gx). If the labeling satisfies Eµ|V (Go)| <∞, then we
can define the following rooted random graph H(Γ): we choose (Γ, o, {(Gx, ϕx) : x ∈
V (Γ)}) with respect to the probability measure µ biased by |V (Go)|, and replace each
vertex x of Γ by the graph Gx and each edge e of Γ by the edge {ϕe−(e), ϕe+(e)}. Let the
root o′ of H(Γ) be a uniform random vertex of V (Go). Denote the law of (H(Γ), o′) by µ′.

We claim that if µ is unimodular with Eµ|V (Go)| <∞, then µ′ is also unimodular. Let
f(ω, u, v) be a Borel function from G?? to [0,∞] and let

f̄(ω̄, x, y) :=
1

Eµ|V (Go)|

∑
u∈V (Gx),v∈V (Gy)

f(H(ω̄), u, v)

which is an isomorphism-invariant Borel function on the subspace of G?? that consists
of graphs with labels of the above form. We show that µ′ obeys the Mass Transport
Principle: ∫ ∑

v∈V (ω)

f(ω, o′, v)dµ′(ω, o′)

=

∫ ∑
o′∈V (Go),v∈V (H(ω̄))

1

|V (Go)|
f(H(ω̄), o′, v)

|V (Go)|
Eµ|V (Go)|

dµ(ω̄, o)
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=

∫ ∑
x∈V (ω̄)

∑
o′∈V (Go),v∈V (Gx)

1

Eµ|V (Go)|
f(H(ω̄), o′, v)dµ(ω̄, o)

=

∫ ∑
x∈V (ω̄)

f̄(ω̄, o, x)dµ(ω̄, o)

=

∫ ∑
x∈V (ω̄)

f̄(ω̄, x, o)dµ(ω̄, o)

=

∫ ∑
v∈V (ω)

f(ω, v, o′)dµ′(ω, o′).

Contraction. Let (Γ, o) be a unimodular random edge-labeled graph with distribution
µ, where the labels of the edges are 0 or 1. We denote by G the random subgraph of
Γ spanned by all the vertices and the edges with label 1. For a vertex x of Γ let Cx be
the connected component of x in G. We define the contracted graph H(Γ): in practice,
this is what we get by identifying every vertices in the same component of G. More
formally, first we choose (Γ, o,G) with respect to the distribution µ biased by 1

|Co| . The

vertices of H(Γ) are the connected components of G and we join two vertices by an edge
iff there is an edge in Γ which connects the two components. Let the root o′ of H(Γ) be
the connected component Co. Denote the law of (H(Γ), o′) by µ′.

We claim that if µ is unimodular then µ′ is also unimodular. Let f(ω, u, v) be a Borel
function from G?? to [0,∞] and let

f̄(ω̄, x, y) :=
1

|Cx||Cy|
f(H(ω̄), Cx, Cy)

which is an isomorphism-invariant Borel function on the subspace of G?? that consists
of graphs with edges labeled by 0 or 1, such that the subgraph defined by the edges
with label 1 consists of finite components. We show that µ′ obeys the Mass Transport
Principle:∫ ∑

v∈V (ω)

f(ω, o′, v)dµ′(ω, o′) =

∫ ∑
x∈V (ω̄)

1

|Cx|
f(H(ω̄), Co, Cx)

1

|Co|Eµ
(

1
|Co|

)dµ(ω̄, o)

=
1

Eµ

(
1
|Co|

) ∫ ∑
x∈V (ω̄)

f̄(ω̄, o, x)dµ(ω̄, o)

=
1

Eµ

(
1
|Co|

) ∫ ∑
x∈V (ω̄)

f̄(ω̄, x, o)dµ(ω̄, o)

=

∫ ∑
v∈V (ω)

f(ω, v, o′)dµ′(ω, o′).

2 Relationship of the critical probabilities

We will start by proving Theorem 1.1 that states that all bounded degree unimodular
graphs satisfy pc = p̃c. This theorem will be used in many of our further results.

In the transitive case, the quantity φp(S) in the definition of p̃c can be used to give
a short proof (see [11]) of Menshikov’s theorem [28]: if Γ is a transitive graph and
p < pc(Γ), then there exist a ϕ(p) such that

Pp (o↔ B(o, r)c) ≤ e−ϕ(p)r. (2.1)

If a graph satisfies this exponential decay for each p < pc and has sub-exponential
volume growth, then it is easy to see that pT = pc. In Lemma 2.2, we give a condition
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for unimodular random graphs that implies (2.1), and we prove in Corollary 2.5 that
this condition implies pc = pT = paT if the graph has uniform sub-exponential volume
growth. However, in Examples 2.8 and 2.10 we present unimodular random graphs with
uniform polynomial volume growth and pT < pc and paT < pT , respectively. This shows
that Menshikov’s theorem is not true in the generality of unimodular graphs.

The results of this section are summarized in Table 2.1.

p̃c = pc bounded degree
pc ≥ pT ≥ paT always
pc = paT bounded degree uniformly good with sub-exp. growth
pc > pT Example 2.8, with polynomial growth
pT > paT Example 2.10, with polynomial growth
pc ≤ p̃ac bounded degree uniformly good
pc > p̃ac Example 2.9, not uniformly good
pc < p̃ac Example 2.11, uniformly good

Table 2.1: Relationship of the critical probabilities

2.1 Positive results

Our first result is indispensable to the rest of the paper. The second part of the proof
is a slight modification of the proof in [11] for our setting, while the first part depends on
new ideas. The main difficulty is that we cannot find isomorphic sets Sω,x for different
vertices x, and hence we cannot bound Pp (o↔ B(o, r)c) in terms of r. We build instead
a tree Tω using the sets Sω,x, and bound the probability that the subtree given by the
percolation survives. The survival of that subtree is equivalent to the infinite size of the
cluster of the root in the percolation on G.

Proof of Theorem 1.1. We prove first that p̃c ≤ pc. Fixing p < p̃c, we will show that p ≤ pc.
We claim that there exists a constant c = c(p) < 1 such that we can find for almost every
ω a set Sω ∈ S(ω) that satisfies φωp (Sω) ≤ c. Let p′ := p+p̃c

2 < p̃c. Let Sω ∈ S(ω) be such
that φωp′(Sω) < 1. The sets Sω satisfy

φωp (Sω) =
∑

e∈∂ESω

pPωp (o↔ e−) ≤ p

p′

∑
e∈∂ESω

p′Pωp′(o↔ e−)

=
p

p′
φωp′(Sω) ≤ p

p′
=: c .

Recall the definition of φω,xp (Sω,x) from Remark 1.7. Unimodularity implies that almost
every ω satisfies the following: for each x ∈ ω there is a set Sω,x containing x such that
φω,xp (Sω,x) ≤ c. Fix such an Sω,x in an arbitrary measurable way.

Fix ω and denote by Tω the following recursively defined tree: the vertices of the
tree are finite sequences of vertices of ω. The root of the tree is (o). If (x0, x1, . . . , xk)

is a vertex of Tω, its children are the sequences (x0, x1, . . . , xk, xk+1) such that for all
j = 1, . . . , k + 1, we have xj ∈ ∂out

V Sω,xj−1
, and there exist vertices x′j ∈ ∂in

V Sω,xj−1
such

that x′j ∼ xj , with paths from xj−1 to x′j in Sω,xj−1
that are disjoint from each other

and from the edges {x′j , xj}, as j = 1, . . . , k + 1. We say that the union of the above
paths and edges is a good path through x0, x1, . . . , xk, xk+1. See Figure 2.1. Denote by
Ln := {(x0, x1, . . . , xn) ∈ Tω} the vertex set of Tω on the nth level.

Let Tω(p) be the random subtree of Tω defined in a similar way using the same sets
Sω,x but allowing only good paths that are open in Bernoulli(p) percolation on ω. It is
easy to check that in fact Tω(p) ⊆ Tω. Denote by Ln(p) the set of vertices of Tω(p) in the
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ω

x0

Sω,x0

x′1

x1

Sω,x1

x′2

x2

Sω,x2

Figure 2.1: A “good path” that gives the vertex (x0, x1, x2) of Tω.

nth level. A self-avoiding infinite ray inside the p-percolation configuration gives rise to a
growing sequence of good paths in the percolated ω, therefore if the cluster of the origin
in the p-percolation on ω is infinite, then there is an infinite path in Tω(p). Conversely,
an infinite path in Tω(p) corresponds to an infinite growing sequence of open good paths
in the p-percolated ω, which are necessarily parts of an infinite component containing
the origin.

We claim that for almost every ω the expected number of vertices in Ln(p) converges
to 0 as n → ∞. More precisely, the expectation of the number of vertices in Ln(p)

decreases exponentially in n. In the first two inequalities we use the notation � for
the occurrence of events on disjoint edge sets and we apply the BK inequality ([16],

Theorem 2.12). We denote the event
{
x0

ω,p←−→
B

xk by a good path through x0, x1, . . . , xk

}
by
{
x0

ω,p←−−−−−−−−→
B,(x0,x1,...,xk)

xk

}
.

Eω
(
|Ln(p)|

)
=

∑
(x0,...,xn)∈Ln

Pω
(
x0

ω,p←−−−−−−−→
B,(x0,...,xn)

xn

)

≤
∑

(x0,...,xn−1)∈Ln−1

e∈∂ESω,xn−1

Pω

({
x0

ω,p←−−−−−−−−→
B,(x0,...,xn−1)

xn−1

}
�
{
e is open

}
�
{
xn−1

ω,p←−−−−→
Sω,xn−1

e−
})

≤
∑

(x0,...,xn−1)∈Ln−1

e∈∂ESω,xn−1

Pω
(
x0

ω,p←−−−−−−−−→
B,(x0,...,xn−1)

xn−1

)
pPω

(
xn−1

ω,p←−−−−→
Sω,xn−1

e−
)

=
∑

(x0,...,xn−1)∈Ln−1

Pω
(
x0

ω,p←−−−−−−−−→
B,(x0,...,xn−1)

xn−1

)
φω,xn−1
p (Sω,xn−1) ≤ Eω (|Ln−1(p)|) c .

It follows by induction that Eω
(
|Ln(p)|

)
≤ cn. Therefore,

Pω(|Co| =∞) = Pω(Tω(p) survives) = lim
n→∞

Pω(|Ln(p)| ≥ 1) ≤ lim
n→∞

Eω|Ln(p)| = 0 ,

hence p ≤ pc.
Next we prove that p̃c ≥ pc. Let

q(p) := µ(
{
ω : φωp (S) ≥ 1 for all S ∈ S(ω)}

)
,

Note that q(p) is non-decreasing in p, and q(p) > 0 for every p > p̃c by the definition of p̃c.
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Fix ω and let H ∈ S(ω) be fixed. We will use Lemma 1.4. of [11]:

d

dp
Pωp

(
o

ω,p←−→ Hc
)
≥
(

1− Pωp
(
o

H,p←−→ Hc
))

inf
S:o∈S⊆H

φHp (S) ≥ C(p) inf
S:o∈S⊆H

φHp (S) ,

where C(p) = (1− p)D ≤ 1−Pω
(
o

ω,p←−→ Hc
)

for every ω and H, with D being the almost

sure bound on the degree of the graph G. The probabilities above depend only on the
structure of ω in K = H ∪ ∂out

V H, hence we can use the above inequality to estimate the

derivative of the probability µ
(
o

ω,p←−→ Bω(o, r)c
)

, as follows. Consider the following sets

of finite rooted graphs: let Hr be the set of possible (r + 1)-neighborhoods of the graphs
with degree at most D, i.e.

Hr := {(K, o) : distK(o, x) ≤ r + 1 and degK(x) ≤ D , for all x ∈ V (K)} ,

and let

Hr(p) :=
{

(K, o) ∈ Hr : φKp (S) ≥ 1 , for all S ∈ S(BK(o, r))
}
.

Note that ∑
K∈Hr(p)

µ ({ω : Bω(o, r + 1) = K}) =

µ(
{
ω : φωp (S) ≥ 1 for all S ∈ S(Bω(o, r))}

)
≥ q(p),

hence we have

d

dp
µ
(
o

ω,p←−→ B(o, r)c
)

=
∑

(K,o)∈Hr

µ
(
Bω(o, r + 1) = K

) d
dp
Pp

(
o

K,p←−→ BK(o, r)c
)

≥
∑

(K,o)∈Hr(p)

µ
(
Bω(o, r + 1) = K

)
C(p) inf

S:o∈S⊆BK(o,r)
φKp (S)

≥ q(p)C(p).

Integrate the above inequality on the interval
[
p+p̃c

2 , p
]
. Using the monotonicity of q(p)

and C(p), we get

µ
(
o

ω,p←−→ B(o, r)c
)
≥ p− p̃c

2
q

(
p+ p̃c

2

)
C(p).

This gives a positive lower bound that is uniform in r. Thus µ
(
o

ω,p←−→∞
)
> 0, and

p ≥ pc.

One advantage of the definition of p̃c for transitive graphs is that it enables one to
check whether a certain p is under p̃c using a finite witness. This characteristic makes
the next definition natural.

Definition 2.1. We say that a bounded degree unimodular random graph G is uniformly
good if for any p < pc there exists a positive integer r(p) such that µG({ω : ∃Sω ⊆
Bω(o, r(p)), o ∈ Sω s.t. φωp (Sω) < 1}) = 1.

This class of graphs includes unimodular quasi-transitive graphs (obvious) and uni-
modular random trees of uniform sub-exponential growth (see Definition 2.4 and the
proof of Proposition 1.4 in Subsection 3.2). Furthermore, uniformly good unimodular
graphs satisfy the following exponential decay of φp(Bω(o, r)) in r.

Lemma 2.2. Let G be a bounded degree unimodular random graph. G is uniformly good
if and only if for all p < pc there are constants c = c(p) < 1 and R(p) such that if r ≥ R(p),
then φωp (B) ≤ cr for almost every ω and every finite B ⊇ Bω(o, r).
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For the proof of Lemma 2.2 we use the same tree Tω as in the proof of Theorem 1.1.
The uniformly good property implies a uniform linear lower bound in r on the distance of
the root from any vertex of Tω that corresponds to a boundary point of B (namely the
points of the set π defined in the proof). This property and the boundedness of the size
of the sets Sω,x allows us to prove the estimate of the lemma.

Proof. If the constants c(p) and R(p) exist, then the sets Sω := Bω(o,R(p)) indicate that
G is uniformly good.

To prove the other direction, assume that G is uniformly good, and fix p < pc. We can
show as in the proof of Theorem 1.1 that there exists a constant c0 < 1 and a positive
integer r0 such that for almost every ω and every x ∈ ω there exists a finite connected
set Sω,x ⊆ Bω(x, r0) containing x that satisfies φω,xp (Sω,x) ≤ c0. Fix an ω and the sets Sω,x
as above, a positive integer r and a finite set B ⊇ Bω(o, r). We define the trees Tω and
Tω(p) as in the proof of Theorem 1.1. On every directed path in Tω from o to infinity
there is a first vertex (x0, . . . , xk) such that xk /∈ B. Let π be the set of these vertices, i.e.

π := {(x0, . . . , xk) ∈ Tω : x0, . . . , xk−1 ∈ B, xk /∈ B}.

Note that π is a minimal set in Tω that separates o from infinity, hence every non-
backtracking infinite path from o has exactly one vertex in π. An argument as in the first
part of the proof of Theorem 1.1 shows that

Eω (|π ∩ Tω(p)|) =
∑

(x0,...,xk)∈π

Pω
(
x0

ω,p←−−−−−−→
B,(x0,...,xk)

xk

)

≤
∑

(x0,...,xk)∈π

∑
(x′1,...,x

′
k)

k∏
j=1

Pω
(
xj−1

ω,p←−−−−→
Sω,xj−1

x′j

)
p =: F (π, p),

where (x′1, . . . , x
′
k) denotes a sequence of vertices in ω such that x′j ∈ Sω,xj−1

and x′j ∼ xj
for any j = 1, . . . , k. First we bound φωp (B) in terms of F (π, p) using the uniform bound
on the size of the sets Sω,x, then we prove a geometric bound on F (π, p) using a linear
bound in r on the distance of o and π in Tω. These two estimates will imply the statement
of the lemma.

Denote by π̄ the set of the parents of the vertices in π, i.e.

π̄ := {(x0, . . . , xk) ∈ Tω : x0, . . . , xk ∈ B, ∃xk+1 /∈ B, (x0, . . . , xk+1) ∈ Tω}.

If for some e ∈ ∂EB the event
{
o

ω,p←−→
B

e−
}

occurs, then there is some (x0, . . . , xk) ∈ π̄
such that there is a good path through x0, . . . , xk in the percolation and a disjoint
path from xk to e− in Sω,xk

. For any fixed (x0, . . . , xk) the number of edges in ∂EB ∩
(E(Sω,xk

) ∪ ∂ESω,xk
) is bounded above by |E(Sω,xk

) ∪ ∂ESω,xk
| ≤ Dr0+1 where D is the

almost sure bound on the degree of the graph G. We have

φωp (B) = p
∑

e∈∂EB

Pω
(
o

ω,p←−→
B

e−
)

≤
∑

e∈∂EB

∑
(x0,...,xk)∈π̄

(x′0,...,x
′
k)

Pωp

({
x0

ω,p←−−−−−−→
B,(x0,...,xk)

xk

}
�
{
xk

ω,p←−−→
Sω,xk

e−
})

≤
∑

(x0,...,xk)∈π̄
(x′0,...,x

′
k)

( k∏
j=1

Pω
(
xj−1

ω,p←−−−−→
Sω,xj−1

x′j

)
p

) ∑
e∈∂EB∩(E(Sω,xk

)∪∂ESω,xk)

Pωp

(
xk

ω,p←−−→
Sω,xk

e−
)

≤
∑

(x0,...,xk)∈π̄
(x′0,...,x

′
k)

( k∏
j=1

Pω
(
xj−1

ω,p←−−−−→
Sω,xj−1

x′j

)
p

)
Dr0+1 = F (π̄, p)Dr0+1. (2.2)
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To estimate (2.2), note that F (π, p) equals

∑
(x0,...,xk)∈π̄

(x′0,...,x
′
k)

( k∏
j=1

Pω
(
xj−1

ω,p←−−−−→
Sω,xj−1

x′j

)
p

) ∑
xk+1:(x0,...,xk+1)∈π

x′k+1∈Sω,xk
,x′k+1∼xk+1

Pω
(
xk

ω,p←−−→
Sω,xk

x′k+1

)
p

≥
∑

(x0,...,xk)∈π̄
(x′0,...,x

′
k)

( k∏
j=1

Pω
(
xj−1

ω,p←−−−−→
Sω,xj−1

x′j

)
p

)
pr0+1 = F (π̄, p)pr0+1

by the assumption that the graph is uniformly good. Combined this with (2.2) gives

φωp (B) ≤ Dr0+1

pr0+1
F (π, p). (2.3)

Now we show that F (π, p) ≤ c
r
r0
0 , which combined with (2.3) proves the lemma. Let

πn :=
⋃
m≤n (π ∩ Lm) ∪ {v ∈ Ln : v has a descendant in π}, which is a minimal vertex set

that separates the root from infinity. Let R := max{n : Ln ∩ π 6= ∅} < ∞, thus π = πR.
Note that each πn is the disjoint union of πn+1 \ Ln+1 ⊆ π and πn \ πn+1 ⊆ Ln. We
estimate F (π, p) by summing over a larger set: the union of πR \ LR and {(x0, . . . , xR) :

(x0, . . . , xR−1) ∈ πR−1 \ πR, xR ∈ ∂out
V Sω,xR−1

} ⊇ πR ∩ LR. That is, using the bound∑
e∈∂ESω,xR−1

Pω
(
xR−1

ω,p←−−−−→
Sω,xR−1

e−
)
p = φω,xR−1

p (Sω,xR−1
) ≤ 1

for the second term in the following estimation, we have that

F (π, p) ≤
∑

(x0,...,xk)∈πR\LR

∑
(x′1,...,x

′
k)

k∏
j=1

Pω
(
xj−1

ω,p←−−−−→
Sω,xj−1

x′j

)
p

+
∑

(x0,...,xR−1)∈πR−1\πR

(x′1,...,x
′
R−1)

(R−1∏
j=1

Pω
(
xj−1

ω,p←−−−−→
Sω,xj−1

x′j

)
p

) ∑
e∈∂ESω,xR−1

Pω
(
xR−1

ω,p←−−−−→
Sω,xR−1

e−
)
p

≤
∑

(x0,...,xk)∈πR−1

∑
(x′1,...,x

′
k)

k∏
j=1

Pω
(
xj−1

ω,p←−−−−→
Sω,xj−1

x′j

)
p = F (πR−1, p).

A similar argument shows that F (π, p) ≤ F (πn, p) for any n ≤ R. If (x0, . . . , xk) ∈ π, then
distω(o, xk) ≥ r, hence the distance between o and π in Tω is at least r

r0
, thus πn = Ln

for any n ≤ r
r0

. If we apply the above argument for F (πn, p) with n ≤ r
r0

, then the first

term disappear, and the inequality φ
ω,xn−1
p (Sω,xn−1

) ≤ c0 gives

F (π, p) ≤ F (π r
r0
, p) ≤ F (π r

r0
−1, p)c0 ≤ · · · ≤ c

r
r0
0 .

This combined with (2.3) proves the lemma.

Corollary 2.3. If G is a uniformly good unimodular graph, then pc ≤ p̃ac.

Proof. Let p < pc, and let c and R(p) be as in Lemma 2.2. We have E
(
φωp (Bω(o,R(p)))

)
≤

cR < 1, thus p ≤ p̃ac.

We will see in Remark 2.9 that, without the assumption of uniform goodness, the
inequality pc ≤ p̃ac does not necessarily hold. Also, we will show in Example 2.11 that
there are uniformly good graphs with pc < p̃ac.
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Definition 2.4. A random rooted graph (G, o) has uniform sub-exponential volume
growth if for any c < 1 and ε > 0 there is an R such that µ (ω : |Bω(o, r)|cr < ε) = 1 for
any r > R.

Corollary 2.5. If G is a uniformly good unimodular graph with uniform sub-exponential
volume growth, then pc = pT = paT .

Proof. Let p < pc = p̃c and let c and R(p) be as in Lemma 2.2. Denote by D the maximum
degree of G. Let R > R(p) such that µ

(
{ω : |Bω(o, r)|cr/2 < 1}

)
= 1 for any r > R and let

ω satisfy this event for all r > R simultaneously. Then we have

Eωp (|Co|) =

∞∑
n=1

Pωp (|Co| ≥ n) =

∞∑
r=1

|Bω(o,r+1)|∑
n=|Bω(o,r)|+1

Pωp (|Co| ≥ n)

≤
∞∑
r=1

|Bω(o,r+1)|∑
n=|Bω(o,r)|+1

Pωp

(
o

p,ω←−→ Bω(o, r)c
)

≤
∞∑
r=1

|Bω(o, r + 1)|min{φωp (Bω(o, r)) , 1}

≤
R+1∑
r=2

|Bω(o, r)|+
∞∑

r=R+1

|Bω(o, r + 1)|cr

≤
R+1∑
r=2

Dr +

∞∑
r=R+1

cr/2 <∞

This gives a uniform upper bound on Eωp (|Co|) thus Ep (|Co|) <∞. It follows that p ≤ paT ,
hence paT ≥ pc. The other direction follows from the definition of paT .

Subexponential volume growth also appears in Theorem 1.4, Example 3.6 and Corol-
lary 4.1.

2.2 Counterexamples

We show in Examples 2.8 and 2.10 that there are unimodular random graphs of
uniform subexponential (in fact, quadratic) volume growth, but pT < pc and paT < pT .
Both constructions will use Bernoulli percolation on Z2 as an ingredient; moreover,
although we define the graph in the second example as a vertex replacement of Z2, it
could be defined even as an invariant random subgraph of Z2. We further give examples
of graphs with p̃ac < pc and p̃ac > pc; see Examples 2.9 and 2.11, respectively. First we
need a lemma that will be useful in our examples.

Lemma 2.6. For any ε > 0 there is a probability p1 < 1 such that for n large enough, the
vertices (0,−n), (0, n), (−n, 0), (n, 0) are in the same cluster in Bernoulli(p1) percolation
on Qn with probability at least 1− ε.

Proof. The occurrence of the events in the following two claims implies the occurrence
of the event in the statement of the lemma, hence we will be done by a union bound.

Claim 1: For any p > 1/2 and n > n0(p, ε) large enough, in Bernoulli(p) percolation on
Qn, with probability at least 1−ε/2, there is a giant cluster with the following properties:
it joins all the sides of Qn, while every other cluster in Qn has diameter at most n/5. This
was proved in [3, Proposition 2.1].

Claim 2: There exists p1 < 1 such that for all n and all p > p1,

Pp
(
diam(C(0,n)) ≥ n

)
≥ 1− ε/8 .
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Similarly for (0,−n), (−n, 0), and (n, 0), instead of (0, n). The proof follows from a
standard Peierls contour argument, thus we leave it to the reader.

We will use the following unimodular random graph, the canopy tree, in several of
our examples. It is the local weak limit of large balls in the 3-regular tree:

Definition 2.7 (Busemann functions and canopy tree). Let T be the 3-regular infinite
tree with a root o, a distinguished end ξ, and a Busemann function (see [32]) h : T→ Z

that gives the levels w.r.t. to ξ. More precisely, to define h, for any vertex x, let (ξ, x) be
the unique infinite simple path from x which is in the equivalence class ξ. Denote by
x∧ o the unique vertex in T such that (ξ, x∧ o) = (ξ, x)∩ (ξ, o), i.e., the first vertex where
(ξ, x) and (ξ, o) coalesce. Finally, let h(x) := dist(o, x ∧ o)− dist(x, x ∧ o).

Let Λ ⊂ T be the subgraph spanned by the vertices x with h(x) ≥ 0. This tree Λ is
called the canopy tree. Denote by L(n) := {x ∈ V (T) : h(x) = n} the nth vertex level and
by LE(n) := {e ∈ E(T) : e− ∈ L(n), e+ ∈ L(n+ 1)} the nth edge level of T, or, for n ≥ 0,
of Λ. If we choose the root o of Λ such that P(o ∈ L(n)) = 2−n−1, we get a unimodular
random graph.

Example 2.8. There is a unimodular graph with uniform polynomial volume growth and
pT < pc. In particular, the exponential decay of two-point connection probabilities fails
for p ∈ (pT , pc) on this graph.

Proof. We define the graph G as an edge replacement (see [2], Example 9.8) of the
canopy tree: each e ∈ LE(n) is replaced by (Q2n(e), (0,−2n), (0, 2n)), where Q2n(e) is
isomorphic to Q2n . It is easy to see that the volume of BG(o, r), for any root o and
radius r, is at most Cr2, for some absolute constant C < ∞. Indeed, if the root is in
Q2n(e), then BG(o, r) intersects the cubes Q2l(e′) with e′ ∈ (ξ, e) only if l ≤ log2 r or l = n.
Furthermore, each such Q2l(e′) has more vertices than the sum of the number of vertices
of Q2k(e′′) with e′ ∈ (ξ, e′′), which are the further cubes that may intersect BG(o, r). It

follows that |BG(o, r)| ≤ max
{
r2,
∑log2 r
l=n 22l+3

}
≤ Cr2.

We will now show that pT (G) < pc(G) = 1. Consider Bernoulli(p) percolation ω on G
and, as a deterministic function of it, define the following percolation λ on Λ: an edge
e ∈ LE(n) is open in λ if and only if the vertices (0,−n) and (0, n) ∈ Qn(e) are connected
by an open path in ω. Clearly, there exists an infinite cluster in ω if and only if there is an
infinite cluster in λ. The law of λ is stochastically dominated by a Bernoulli(1− (1− p)3)
percolation on Λ, because if e ∈ LE(n) is open, then at least one of the edges in Qn(e)

adjacent to (0, n) is open. The tree Λ has one end, hence, for any p < 1,

PGp (∃ an infinite cluster) ≤ PΛ
1−(1−p)3(∃ an infinite cluster) = 0 .

That is, pc(G) = 1.
An easy first moment computation (that we omit) shows that pT (Λ) = 1/

√
2. Now let

0 < ε < 1 − 1/
√

2. It follows from Lemma 2.6 that there exists p1 < 1 and some large
N such that Pp1(e ∈ λ) ≥ 1 − ε for all e ∈ LE(n) with n ≥ N . Thus, for o ∈ L(N), the
cluster Co in λ, restricted to the levels n ≥ N , stochastically dominates Bernoulli(1− ε)
percolation on Λ. The latter has infinite expected size, hence the expected size of the
cluster in ω of (0,−N) ∈ QN (e) for e ∈ LE(N) is also infinite. That is, pT (G) ≤ p1 < 1.

Example 2.9. The canopy tree Λ (see Definition 2.7) satisfies p̃ac = 1√
2
, thus this is an

example of a not uniformly good unimodular graph with pc > p̃ac.

Proof. It is easy to check that E(φp(B(o, r))) equals 2p(
√

2p)r if r is even, and equals
3(
√

2p)r+1/2 if r is odd. This sequence converges to 0 for p < 1/
√

2, while remains above
1 for p > 1/

√
2, which implies the claim.
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Example 2.10. There is a unimodular graph with polynomial volume growth and paT <
pT .

Proof. Let X be a positive integer valued random variable such that P(X = k) = ck−5/2

for all k ≥ 1. Then EX < ∞ and E(X2) = ∞. We define the graph G as a vertex
replacement (see Subsection 1.4) of Z2 with respect to the following labels as follow.
Let {Xn, X

′
n : n ∈ Z} be iid copies of X, and for each vertex (m,n) ∈ Z2, let G(m,n) be

isomorphic to the subgraph of Z2 spanned by the vertices in [0, 2Xm]× [0, 2X ′n], and for
the edges going from (m,n) to North, East, South, and West, let the image of ϕ(m,n) be
the corresponding midpoint of the box G(m,n). We can also think of the resulting graph
as an invariant random subgraph of Z2.

Denote by Y and Y ′ half the length of the sides of the box of o in G, i.e., the law of
X0 and X ′0 biased by X0X

′
0. Then

P(Y = k, Y ′ = l) =
kl

(EX)2
P(X = k,X ′ = l),

hence Y and Y ′ are independent with distribution P(Y = k) = ck−3/2

EX .
First we show that paT = 1

2 . G is a subgraph of Z2, hence paT (G) ≥ 1
2 . Fix p > 1

2 and
let ε > 0. Denote by M(Qn) the largest cluster in percolation with parameter p in the
box Qn, and let

A(Qn) :=
{
|M(Qn)| ≥ (1− ε)θ(p)|Qn|, diam(C) < ν log n ∀ open cluster C 6= M(Qn)

}
,

where θ(p) = Pp(|Co(Z2)| =∞), and ν is chosen as follows: by [16, Theorem 7.61], there
is an N = N(p) and ν = ν(p) such that, for any n ≥ N ,

Pp(A(Qn)) > 1− ε .

Let Z := min{Y, Y ′}, and consider the event D(G0,0) :=
{

dist(o, ∂in
V G0,0) ≥ ν logZ

}
. If Z

is large enough, then P
(
D(G0,0)

∣∣Z) ≥ 1− ε, since o is uniform in G0,0. Assuming that
D(G0,0) occurs, choose a box QZ ⊆ G0,0 that contains o such that dist(o, ∂in

V QZ) ≥ ν logZ.
Consider percolation on Z2 ⊃ QZ . If o is in the unique infinite cluster of this percolation
on Z2, then the diameter of Co(QZ) is at least ν logZ, hence

Pp

(
o ∈M(QZ),A(QZ)

∣∣∣Z = n,D(G0,0)
)
> θ(p)− ε

for n large enough. It follows that there is an N ′ such that

Ep (|Co|) ≥
∞∑

n=N ′

Pp

(
o ∈M(QZ),A(QZ),D(G0,0)

∣∣∣Z = n
)
P(Z = n) (1− ε)θ(p)n2

≥
∞∑

n=N ′

(θ(p)− ε)(1− ε)P(Z = n) (1− ε)θ(p)n2 =∞ ,

as desired.
To show that pT >

1
2 let e be an edge in Z2, and let Ge− and Ge+ be the subgraphs of

G that correspond to the endpoints of the edge. Let x := ϕe−(e) and y := ϕe+(e), i.e. let
{x, y} be the edge inG that joinsGe− andGe+ . If there is an open path inG(p) through the
edge {x, y}, that joins two vertices inGe−\{x} and inGe+\{y}, then the event J({x, y}) :=

{∃e′ ∈ E(Ge−) : e′ ∼ x, e′ open} ∩ {∃e′ ∈ E(Ge+) : e′ ∼ y, e′ open} ∩ {{x, y} open} occurs.
For a fixed configuration ofG the events J({ϕe−(e), ϕe+(e)}) are independent for different
edges, andPp(J({ϕe−(e), ϕe+(e)})) = p(1−(1−p)3)2. This probability is strictly increasing
in p and there is a p0 >

1
2 such that p(1− (1− p)3)2 > 1

2 iff p > p0. We consider a random
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subset H = H (G(p)) ⊆ E(Z2) obtained from the percolation G(p): let e ∈ H if and only
if the event J({ϕe−(e), ϕe+(e)}) occurs in G(p). The law of H is the same as the law of
Bernoulli(p(1− (1− p)3)2) bond percolation. We want to estimate the expected size of
Co(G) conditioned on the size of G0,0. If Co(G) intersects a box Gv, then the connected
component of o in H contains v. Therefore

Ep

(
|Co|

∣∣∣Y, Y ′) ≤ Ep
 ∑
v∈Z2:v∈Co(H)

|Gv|

∣∣∣∣∣∣Y, Y ′


≤ E(|Co(H)|) max
{
Y 2, (Y ′)2, (EX)2

}
,

which is finite if p < p0. It follows that for almost every configuration of (G, o) the
expected size EGp (Co) is finite if p < p0, hence pT ≥ p0.

Example 2.11. There is a quasi-transitive graph with p̃ac > pc.

Proof. Let Hk,l be the following finite directed multigraph: the vertex set is {x0, x1, . . . ,

xk}, and we have l loops at x0, then one edge from x0 to each xj , j = 1, . . . , k, and
one from each xj back to x0. Let Tk,l be the directed cover of Hk,l based at x0. Con-
sider two copies of Tk,l and connect the roots of them by an edge to get the infinite
quasi-transitive graph Gk,l, which has vertices of degree 2 and k + l + 1. One can
easily compute that to get a unimodular random graph one has to choose the root
according to µ(deg o = 2) = 1 − µ(deg o = k + l + 1) = k

k+2 . Hence E(deg o) = 4k+2l+2
k+2 .

The equality E
(
φωp (Bω(o, 0))

)
= pE(deg o) implies that p̃ac ≥

(
E(deg o)

)−1
= k+2

4k+2l+2 .
On the other hand, the critical probability of a directed cover of a finite graph is
pc(Tk,l) = (br(Tk,l))

−1
= (growth(Tk,l))

−1
= (λ∗(Hk,l))

−1, where λ∗(H) is the largest pos-
itive eigenvalue of the directed adjacency matrix of Hk,l; see [26], Section 3.3 and [22].
One can thus compute that pc(Gk,l) = pc(Tk,l) = 2

l+
√
l2+4k

. If we set, e.g., k = 3, l = 5,

then we have pc(G3,5) = 2
5+
√

37
< 5

24 =
(
EG3,5(deg o)

)−1 ≤ p̃ac(G3,5).

3 Locality of the critical probability

In this section we examine the question of Schramm’s locality conjecture: does
pc(Gn) converge to pc(G) if Gn → G in the local weak sense? The original question in
[8] was phrased for sequences of transitive graphs that converge to a transitive graph
in the local sense and satisfy sup pc(Gn) < 1. First we provide some simple examples
of unimodular graphs where the conjecture holds. In Example 3.1, we note that if Gn
and G are infinite clusters of an independent percolation with appropriate parameters,
then the convergence holds. In Example 3.2, we discuss unimodular Galton–Watson
trees, and give sufficient and necessary conditions on the offspring distribution to satisfy
locality of pc. Then we investigate the inequality lim inf pc(Gn) ≥ pc(G), which is known
for transitive graphs; see [11] for a simple proof, or the first paragraph of Subsection 3.2.
In Proposition 3.3 we show by a similar argument that the critical probability p̃ac satisfies
this inequality for unimodular random graphs. We prove Propositions 1.3 and 1.4
that state that under certain restrictions on the graphs G and Gn the convergence
lim pc(Gn) = pc(G) is true for unimodular random graphs. Examples 3.5 and 3.6 provide
graph sequences with lim pc(Gn) < pc(G). These indicate that unimodular graphs do not
satisfy Schramm’s conjecture in general and show that the conditions in Proposition 1.3
and 1.4 are necessary. We show in Example 3.7 a sequence with pc(G) < lim pc(Gn) < 1.
In this example G and each Gn satisfy the conditions of Corollaries 2.3 and 2.5, thus pc =

pT = paT and also p̃ac(G) < lim p̃ac(Gn) < 1. This shows that none of the generalizations of
the critical probabilities satisfies the extension of Schramm’s conjecture for unimodular
graphs in general.
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3.1 Basic examples

We present now two natural classes of unimodular random graphs that satisfy
Schramm’s conjecture. The first example is very easy; the proof is left as an exer-
cise.

Example 3.1. Let Γ be a transitive unimodular graph and let pn → p ∈ (pc(Γ), 1]. Let
Gn (resp. G) be the connected component of the root in the Bernoulli(pn) (resp. p)
percolation on Γ conditioned to be infinite. Then pc(Gn)→ pc(G) < 1.

Our second class of examples, unimodular Galton–Watson trees, is less trivial. Let X
be a non-negative integer valued random variable, the offspring distribution of the tree,
and let UGW (X) be the unimodular Galton–Watson tree measure on rooted trees: the
probability that the root o has k children is

PUGW (X)(deg o = k) =
P(X = k − 1)

kE( 1
X+1 )

(3.1)

for k ≥ 1, while the number of children of each descendant is according to X, indepen-
dently of the other vertices. This measure is unimodular (see [2], Example 1.1), and if
EX > 1, then P(|UGW (X)| = ∞) > 0, thus we can consider the measure UGW∞(X)

which is UGW (X) conditioned on the event {|UGW (X)| =∞}. The measure UGW∞ is
also unimodular, being an ergodic component of a unimodular measure.

Example 3.2. Let UGW∞(X) be the unimodular Galton–Watson tree with offspring
distribution X, conditioned to be infinite. If Xn and X are non-negative integer valued
random variables s.t. the Xn satisfy EXn > 1, while X satisfies EX > 1 or P(X = 1) = 1,
then

(1) UGW∞(Xn)→ UGW∞(X) in the local weak sense iff Xn → X in distribution;

(2) pc(UGW∞(Xn))→ pc(UGW∞(X)) iff EXn → EX.

Before the proof, note that this example shows that pc is a continuous function of
UGW∞(X) when the trees have a uniform bound on their degrees (by the Dominated
Convergence Theorem), but not necessarily otherwise: if Xn → X in distribution, with
EXn > 1 and EX > 1, but EXn 9 EX, then the critical probabilities pc(UGW∞(Xn)) do
not converge to pc(UGW∞(X)). Nevertheless, Fatou’s lemma implies that the inequality
lim sup pc(UGW∞(Xn)) ≤ pc(UGW∞(X)) does hold without any assumptions. That is,
if the trees do not satisfy the locality of pc, then they also fail to satisfy the lower
semicontinuity discussed in the next subsection, proved to hold in many cases, including
transitive graphs. This suggests that a uniform bound on the degrees is a natural
condition when we investigate the locality of pc for unimodular graphs.

Proof. The critical probability pc(UGW∞(X)) equals 1
EX (see [26], Proposition 5.9),

therefore pc(UGW∞(Xn))→ pc(UGW∞(X)) iff EXn → EX. This shows part (2).
For part (1), for any nonnegative integer random variable X, let pk(X) := P(X = k),

let fX(t) :=
∑∞
k=0 pk(X)tk be the probability generating function of X, and let q =

q(X) := P(|GW (X)| < ∞), which is the smallest non-negative number that satisfies
fX(q) = q.

Assume that Xn → X in distribution, first with E(X) > 1. From Xn → X it follows
easily that UGW (Xn)→ UGW (X), while, from the uniform convergence of the convex
functions fXn

to the strictly convex function fX on [0, 1], we also get qn = q(Xn) →
q(X) < 1. Thus UGW∞(Xn)→ UGW∞(X).

Now assume that P(X = 1) = 1 and P(Xn = 1) → 1 with E(Xn) > 1. Using Bayes’
rule and (3.1),
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PUGW∞(Xn)(deg o = 2) =
PUGW (Xn) (|UGW (Xn)| =∞|deg o = 2)PUGW (Xn) (deg o = 2)

P (|UGW (Xn)| =∞)

=
1− q2

n

P(|UGW (Xn)| =∞)

P(Xn = 1)

2E( 1
Xn+1 )

=
(1− q2

n)P(Xn = 1)

2
∑∞
j=1P(Xn = j − 1)(1− qjn)/j

. (3.2)

We claim that PUGW∞(Xn)(deg o = 2)→ 1. If qn converges to some q∞ < 1, then plugging
P(Xn = 1)→ 1 into (3.2) yields the claim immediately. If qn → 1, then, simplifying the
numerator and the denominator of (3.2) by 1− qn, it becomes

(1 + qn)P(Xn = 1)

2
∑∞
j=1P(Xn = j − 1)(1 + qn + · · ·+ qj−1

n )/j
≥ (1 + qn)P(Xn = 1)

2
→ 1 . (3.3)

Finally, if qn does not converge, we can still apply one of these two arguments to any
convergent subsequence, and obtain the claim. Therefore, in the local weak limit, the
root has degree 2 almost surely. By unimodularity, every vertex has degree 2 almost
surely (see [2], Lemma 2.3), hence this limit must be Z. This is also UGW∞(X), thus we
have UGW∞(Xn)→ UGW∞(X).

For the other direction of part (1), suppose that there are Xn and X such that
UGW∞(Xn)→ UGW∞(X), but Xn 9 X. The set {Xn} of probability distributions must
be tight: otherwise, a uniform random neighbor of o in UGW∞(Xn), whose offspring
distribution stochastically dominates Xn because of the conditioning on

{
|UGW (Xn)| =

∞
}

, would have arbitrarily large degrees with a uniform positive probability, and thus
UGW∞(Xn) could not converge to the locally finite graph UGW∞(X). It follows from
this tightness that there is a subsequence {Xk(n)} that converges in distribution to a
random variable Y 6= X.

First we show that EY ≥ 1. Suppose EY < 1, then lim qn = q(Y ) = 1, hence

PUGW∞(Xn)(deg o = k) =
P(Xn = k − 1)(1 + · · ·+ qk−1

n )

k
∑∞
j=1P(Xn = j − 1)(1 + · · ·+ qj−1

n )/j
→ P(Y = k − 1).

It follows, that the expected degree of the root in the limit graph is EY + 1 < 2. The
local weak limit of the graphs UGW∞(Xn) is almost surely infinite, hence the expected
degree of the root is at least 2 (see [2], Theorem 6.1), a contradiction.

If we have P(Y = 1) = 1, then the first direction of part (1) implies that UGW∞(Xk(n))

converge to UGW∞(Y ) = Z. But we also have UGW∞(Xk(n)) → UGW∞(X), and it is
obvious that UGW∞(X) = Z implies that P(X = 1) = 1. That is, Xn would in fact
converge in distribution to X, a contradiction.

If EY = 1, but P(Y = 1) 6= 1, then the generating function fY (t) is strictly convex,
hence q(Xk(n)) → q(Y ) = 1. A computation similar to (3.2) and (3.3) gives that the
degree distribution of o in UGW∞(Xk(n)) converges to that of Y + 1. This must be the
degree distribution of o in the local limit UGW∞(X). Since P(Y + 1 = 2) 6= 1, we must
be in the case EX > 1. However, then we would have pc(UGW∞(X)) = 1/EX < 1, while
E(deg o) = E(Y + 1) = 2 implies that UGW∞(X) is a tree with at most two ends (see [2],
Theorem 6.2) hence pc = 1, again a contradiction.

The final case is that EY > 1, for which we can again use the first direction of part (1),
saying that UGW∞(Xk(n))→ UGW∞(Y ). If we prove that the distribution of UGW∞(X)

determines X, then we must have X = Y , and we are done, as before.
This invertibility follows from the construction in [26], Theorem 5.28, as follows.

Let T ∗ := GW (X∗), where the probability generating function of the positive integer
valued random variable X∗ is f∗(t) := fX(q+(1−q)t)

1−q , and let T̄ := GW (X̄), where f̄(t) =

EJP 22 (2017), paper 106.
Page 18/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP124
http://www.imstat.org/ejp/


On percolation critical probabilities and unimodular random graphs

fX̄(t) := f(qt)
q , and hence T̄ is almost surely finite. The law of GW (X) conditioned to be

infinite equals the law of the tree T constructed as follows: consider the rooted tree
T ∗, and attach to each vertex of T ∗ an appropriate number of independent copies of T̄ .
We get the law of UGW∞(X) if we attach to the root an appropriate random number of
independent copies of T and T̄ . It follows that the law of UGW∞(X) determines (f∗, f̄).

We get the function f from (f∗, f̄) by the transform f(s) = qf̄
(
s
q

)
, if 0 ≤ s ≤ q and

f(s) = (1− q)f∗
(
s−q
1−q

)
, if q ≤ s ≤ 1. There is a unique q for which the resulting f(s) has

the same second derivative from the left and from the right at s = q. Since f(s) has to
be analytic, we see that (f∗, f̄) uniquely determines f and hence X.

3.2 Semicontinuity and continuity

The quantity φp(S) can be used to give a short proof that pc(G) is lower semicontinu-
ous in the local topology of transitive graphs: that is, lim inf pc(Gn) ≥ pc(G) holds; see
[11, Section 1.2]. It can be proven for transitive graphs as follows: let p < pc(G), let
S ⊂ G be a set with φGp (S) < 1 and let r be such that S ⊂ BG(o, r). For n large enough
BGn

(o, r) ' BG(o, r), hence φGn
p (S) < 1, which implies p ≤ pc(Gn). For bounded degree

unimodular graphs, we will now show in a similar way that this inequality also holds for
p̃ac; however, it fails for p̃c = pc, in general.

Proposition 3.3. Let Gn and G be unimodular random graphs with uniformly bounded
degrees. If Gn converges to G then lim infn→∞ p̃ac(Gn) ≥ p̃ac(G).

Proof. Let p < p̃ac(G) and let r be such that EG
(
φωp (Bω(o, r))

)
< 1 − ε with some ε > 0.

Let n be large enough to satisfy∑
H∈Hr+1

|µGn
(Bω(o, r + 1) = H)− µG (Bω(o, r + 1) = H) | < ε

2Dr+1
,

where D is a uniform bound on the degrees of Gn and G and Hr is the set of possible
r-neighborhoods of the root in graphs with maximum degree D. Any H ∈ Hr+1 satisfies
φHp (Bω(o, r)) ≤ Dr+1. We obtain

EGn

(
φωp (Bω(o, r))

)
=

∑
H∈Hr+1

µGn (Bω(o, r + 1) = H)φHp (Bω(o, r))

≤
∑

H∈Hr+1

{
µG (Bω(o, r + 1) = H)φHp (Bω(o, r))

+ |µGn
(Bω(o, r + 1) = H)− µG (Bω(o, r + 1) = H) | · |∂EBH(o, r)|

}
≤ EG

(
φωp (S)

)
+
ε

2
< 1.

It follows that p̃ac(Gn) ≥ p thus lim inf p̃ac(Gn) ≥ p̃ac(G).

Now we prove Proposition 1.3, which states that if Gn converges to a uniformly good
unimodular graph G in a uniformly sparse way, then pc(Gn)→ pc(G). After the proof we
present an example that shows how this proposition can be applied. Another application
of the proposition appears in Example 4.2.

Proof of Proposition 1.3. First, G ⊆ Gn implies that pc(G) ≥ pc(Gn) for all n. For the
sake of simplicity, we prove the inequality lim pc(Gn) ≥ pc(G) for k = 1. It can be proved
for general k in a similar way. Let p < pc(G). Our aim is to find a subset Bn ∈ S(Gn) for
n large enough with φGn

p (Bn) < 1. Let n be sufficiently large to satisfy rn/2 > R(p) and

crn/2 < 1
3 . Fix a pair (ω, ωn) that satisfies the sparseness condition for rn. Then, in the

smaller ball Bωn
(o, rn/2), there is at most one edge {x, y} ∈ ωn \ω. If this edge exists, let
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Bn := Bωn
(o, rn/2) ∪ Bωn

(x, rn/2) ∪ Bωn
(y, rn/2); otherwise, just let Bn := Bωn

(o, rn/2).
Note that Bn ⊂ Bωn

(o, rn). Similarly, let B := Bω(o, rn/2) ∪ Bω(x, rn/2) ∪ Bω(y, rn/2),
omitting those terms in the union that do not exists in ω. (Note that it may happen
that x or y does not exist in ω, but not both, since Bωn

(o, rn/2) is connected.) The sets
Bn and B satisfy ∂EBn = ∂EB. We claim that we have φωn

p (Bn) < 1. There are three
possibilities in terms of the edge {x, y} for an open path connecting o and a vertex e− in
Bn: it connects o and e− in B or it connects x or y to e− in B. It follows that

φωn
p (Bn) = p

∑
e∈∂EBn

Pωn

(
o

ωn,p←−→
Bn

e−
)

≤ p
∑

e∈∂EB

[
Pω
(
o

ω,p←−→
B

e−
)

+ Pω
(
y

ω,p←−→
B

e−
)

+ Pω
(
x

ω,p←−→
B

e−
)]

= φωp (B) + φω,yp (B) + φω,xp (B) < 1

by Lemma 2.2. If x or y does not exist in ω, all its appearances in the above formulas
involving ω can be replaced by the other vertex, and the inequalities remain true. It
follows that p ≤ p̃c(Gn) = pc(Gn).

The following example is a graph sequence Gn where Proposition 1.3 applies.

Example 3.4. There is a uniformly good unimodular graph G and a sequence of unimod-
ular graphs Gn that satisfy the assumptions of Proposition 1.3.

Proof. Let G be a uniformly good unimodular graph of bounded degree; e.g., a uni-
modular quasi-transitive graph. Let Hn ⊂ V (G) be an invariant subset (i.e., given by
a unimodular labelling) such that min{distG(x, y) : x, y ∈ Hn} ≥ n almost surely. Such
a subset can be produced as a factor of iid process: let {ξx : x ∈ V (G)} be iid uniform
random variables on [0, 1] and let Hn := {x : ξx = min{ξy : y ∈ BG(x, n)}}. Consider
now an invariant perfect matching of the points of Hn (that is, an invariant partition
of Hn into pairs) and let Gn be the union of that matching and G. An example of such
a perfect matching can be constructed as follows. Let {ζe : e ∈ V (G)} be iid uniform
random variables on [0, 1] and consider the distance function d on V (G) defined as
d(x, y) = inf

∑
e∈P ζe, where P ranges over all paths connecting x and y. It is easy to

check that the infimum exists and is in fact a minimum; also, one can show that with the
resulting metric the set Hn is discrete, non-equidistant, and has no descending chains
(see [19] for the definitions). By a method similar to the proof of Proposition 9 in [19],
one can show that the stable matching on Hn is a perfect matching, just as desired.

For quasi-transitive graphs G, we have pT = pc. Then it is not surprising that, for any
p < pc, once n is large enough, adding the sparse perfect matching cannot glue too many
of the rather small finite clusters of G together, and hence we still have p < pc(Gn). That
is, one expects pc(Gn)→ pc(G). This indeed holds by our general proposition, while an
actual direct proof would need to handle some non-trivial technicalities.

Next, we turn to unimodular trees of uniform subexponential growth (see Defini-
tion 2.4), proving Proposition 1.4. This proposition gives further examples of uniformly
good unimodular graphs (see Definition 2.1), while the convergence part will be used in
Section 4.

Proof of Proposition 1.4. We start by proving the statement about the sequence Gn with
girth tending to infinity. By the uniform subexponential growth, for each p < 1 there are
positive integers r = r(p) and n0(p) such that

|BGn
(on, r)| pr < 1 (3.4)
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for every n ≥ n0(p), almost surely. Now, by the girth tending to infinity, there exists
n1(p) ≥ n0(p) such that, for every n ≥ n1(p), the ball BGn

(on, r) is a tree, and therefore

φGn
p (BGn

(on, r)) ≤ |BGn
(on, r)| pr . (3.5)

Combining (3.4) and (3.5), and taking p→ 1, the balls BGn(on, r) show that p̃c(Gn) and
p̃ac(Gn) tend to 1. By Theorem 1.1, we also have pc(Gn)→ 1.

Now, if G is a unimodular tree of subexponential growth, then (3.5) holds for every r,
hence p̃ac(G) = p̃c(G) = pc(G) = 1, and uniform goodness is also clear from the definition.
Then Corollary 2.5 implies pT (G) = paT (G) = 1, as well.

3.3 Counterexamples

Our first example will show that even if we keep the condition of uniformly sparse
convergence of Gn to G of Proposition 1.3, without G being uniformly good, the conclu-
sion may not hold. Next, Example 3.6 will show that keeping the limit uniformly good
but removing the condition of uniform sparseness will make the conclusion false. Finally,
Example 3.7 will show that the inequality of the lower semicontinuity may be strict even
when invariant subgraphs Gn of Z2 converge to Z2.

Example 3.5. There exists a sequence (Gn) of invariant random subgraphs of a Cayley
graph, converging to an invariant subgraph G in a uniformly sparse way, such that
lim pc(Gn) < pc(limGn).

Proof. The first step is to construct an invariant percolation on a Cayley graph of the
lamplighter group all whose clusters are isomorphic to the canopy tree Λ (see Definition
2.7. In more detail:

Consider the generators {Rs,R, sL, L} of the lampligher group Z2 o Z = ⊕ZZ2 o Z,
where R := (0, 1), L := (0,−1), and s := (e0, 0) ∈ Z2 o Z with e0 ∈ {0, 1}Z, (e0)j = δ0,j . It
is well-known (see, e.g., [32]) that the Cayley graph with respect to these generators is
the Diestel-Leader graph DL(2,2). This graph can be defined using two trees T1 and T2

which both are 3-regular infinite rooted trees with a distinguished end and Busemann
functions hi : Ti → Z, i = 1, 2, as in Definition 2.7. Each vertex x ∈ Ti has exactly one
neighbor x̄ with hi(x̄) = hi(x)− 1, called the parent of x. We call the other two neighbors
the children of x. Now consider the following percolation on T1: for each vertex x

we delete the edge connecting x to one of its two children, independently with equal
probabilities. We get a random subgraph of T1 consisting of infinite simple paths. We
then delete the edges in the graph DL(2,2) whose first coordinate is a deleted edge in
T1. The resulting random subgraph F ⊂ DL(2,2) is invariant under the action of the
lamplighter group and it consists of infinitely many components which are all isomorphic
to the canopy tree Λ ⊂ T. The probability that the root is in the nth level of its component
in F is clearly 2−n−1. The canopy tree with a random root chosen according to this
distribution is a unimodular random graph, as it also must be the case by Proposition 1.6.

The significance of the canopy tree for this construction (as in Example 2.8) will be
that it has one end, thus pc(Λ) = 1, while one can easily compute that pT (Λ) = 1/

√
2.

Now let G be the free product of Z2 := Z/2Z and the lamplighter group Z2 oZ. Let
Γ be the left Cayley graph of G with respect to the generators {a,Rs,R, sL, L} where
a is the generator of the free factor Z2. Let β : G −→ Z2 o Z be the natural projection
homomorphism: if w = a1b1 . . . akbk is a word in G such that aj ∈ Z2, bj ∈ Z2 o Z, j =

1, . . . , k, then β(w) := b1 . . . bk ∈ Z2 o Z. We now define G to be the following random
spanning subgraph of Γ: let e be in E(G) iff β(e−) and β(e+) are connected by an edge
in F . The distribution of G is invariant under the action of G and each component of G
is a canopy tree, hence pc(G) = 1.
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We define a sequence (Gn) of random subgraphs of Γ converging to G. We choose an
element b ∈ {0, 1, . . . n−1} uniformly at random. For each vertex in LT1(b+kn), k ∈ Z we
choose one of its descendants in LT1 (b+ (k + 1)n) uniformly at random and we choose
all vertices in LT2 (−b+ kn). Let Sn be the set of edges e ∈ E(Γ) such that e is labelled
by the generator a and both coordinates of β(e−) = β(e+) are chosen vertices in the
above procedure. Let Gn := G ∪ Sn.

We show that pc(Gn) ≤ 1√
2

for all n. Let p > 1√
2

= pT (Λ), let n be a positive integer

and consider Bernoulli(p) percolation on Gn. Denote by T (v) the component of the vertex
v inG and by Cv the component of the vertex v in the percolation onGn. Let s(v) := min{l :

LT (v)(l) ∩ Sn 6= ∅}. We define a branching process depending on the percolation on Gn.
For each vertex v of Γ letNv := {ax : x ∈ T (v)∩Cv∩Sn\{v}, {x, ax} is open}. Let Z1 := No
and let Zk+1 :=

⋃
v∈Zk

Nv. Note that Zi 6= Zj , i 6= j and Zj ⊂ Co. The distribution of |Nv|
depends only on the level of v in T (v) and on s(v). The distribution of |Nv| conditioned
on {o ∈ LT (o)(l), s(v) = s} with any l and s stochastically dominates the distribution of
|Nv| conditioned on the event {v ∈ LT (v)(0), s(v) = n− 1}. Therefore the distribution of
|Zk| stochastically dominates the distribution of the kth generation of the Galton–Watson
process with offspring distribution |Nv| conditioned on {v ∈ LT (v)(0), s(v) = n−1}, which
has infinite expectation. Hence µ(lim inf |Zk| > 0) > 0 which implies µ(|Co| =∞) > 0.

Example 3.6. There exists a sequence (Gn) of invariant random subgraphs of a Cayley
graph such that lim pc(Gn) < pc(limGn) and limGn is uniformly good.

Proof. Let Γ be a Cayley graph of a finitely generated group such that there exists a
random subgraph Ḡ which satisfies the following: the distribution of Ḡ is invariant
under the action of the group, it consists of infinitely many infinite components and each
component has critical percolation probability p̄ < 1. (A very simple example is that Γ is
Zd and Ḡ is a lamination by copies of Zd−1, with d ≥ 3.) Let G′ be an invariant random
connected subgraph of Γ such that pc(G′) > p̄. For example, if Γ is amenable, then one
can choose G′ to be an invariant spanning tree of Γ, which always exists and has at most
two ends, and hence pc(G′) = 1; see [7], Theorem 5.3. Moreover, if Γ has sub-exponential
volume growth (see Definition 2.4), then so does the spanning tree G′, and it is uniformly
good by Proposition 1.4.

Now let εn → 0 be a sequence of positive numbers and let Gn be the following random
subgraph of Γ: we remove each component of Ḡ with probability 1− εn and keep it with
probability εn independently for each component. Let Gn be the union of G′ and the
remaining components of Ḡ. It follows from Proposition 1.6 that Gn is unimodular. The
sequence (Gn) converges to G′, but pc(Gn) ≤ p̄ < pc(G

′) for each n. The sequence pc(Gn)

has a convergent subsequence, hence we can choose the corresponding subsequence
εk(n), and get lim pc(Gk(n)) ≤ p̄ < pc(G

′).
We get a similar example that is uniformly good if we set Γ := Z5, Ḡ :=

⋃
y∈Z2{y}×Z3

and G′ :=
⋃
x∈Z3 Z

2×{x}. In this example G′ is not connected, but each Gn is connected
almost surely, and pc(Gn) ≤ pc(Z3) < pc(limGn) = pc(Z

2) < 1 for each n.

Example 3.7. There exists a sequence (Gn) of invariant random subgraphs of a Cayley
graph such that 1 > lim pc(Gn) > pc(limGn).

Proof. We define Gn as a vertex and edge replacement (see Subsection 1.4 and [2],
Example 9.8) of Z2 where we replace each vertex x by the graph Qx isomorphic to Qn
and we replace each edge by a path of length two that joins the middle points of the
neighboring sides of the boxes corresponding to the endpoints of the edge. The graphs
Gn can be considered as deterministic subgraphs of Z2 with a randomly chosen root.
The sequence Gn converges to Z2.

EJP 22 (2017), paper 106.
Page 22/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP124
http://www.imstat.org/ejp/


On percolation critical probabilities and unimodular random graphs

We show that 1
2 < lim pc(Gn) < 1. Denote by Gn(p) the subgraph obtained by the

Bernoulli(p) percolation on Gn, and let Hn(p) be the following percolation on Z2: let an
edge {x, y} open, iff both edges are open in the path that joins the boxes Qx and Qy
in Gn. The existence of an infinite cluster in Gn(p) implies the existence of an infinite
cluster in Hn(p). The law of Hn equals the law of the Bernoulli(p2) percolation on Z2,
hence pc(Gn) ≥ 1√

2
for each n.

To show that lim sup pc(Gn) < 1, we define the percolation H̄n(p) on Z2. Denote by
Ax(n) the event that the vertices (0,−n), (0, n), (−n, 0), (n, 0) are in the same cluster
in Bernoulli(p) percolation on the box Qx ⊂ Gn. Let an edge {x, y} ∈ H̄n(p), iff {x, y} ∈
Hn(p), and both of the eventsAx(n) andAy(n) occurs. The existence of an infinite cluster
in H̄n(p) implies the existence of an infinite cluster in Gn(p). Let 1 > p0 >

1
2 be arbitrary.

There is an ε > 0 such that if the marginals of a 2-dependent percolation on Z2 are at
least (1− ε)4, then this percolation stochastically dominates Bernoulli(p0) percolation;
see [21, Theorem 0.0]. Lemma 2.6 implies, that we can find constants 1− ε < p1 < 1 and
N such that for any p > p1, n ≥ N and for any vertex x ∈ V (Z2) the event Ax(n) occurs
with probability at least 1 − ε, thus P(e ∈ H̄n(p)) ≥ p2

1(1 − ε)2 ≥ (1 − ε)4 for any edge
e ∈ E(Z2). The events {e1 ∈ H̄n} and {e2 ∈ H̄n} are independent if the distance of e1

and e2 is at least 2, hence H̄n(p) stochastically dominates Bernoulli(p0) percolation. It
follows that lim sup pc(Gn) ≤ p1 < 1.

4 On transitive graphs of cost 1

As proved in [7, Theorem 5.3], a transitive graph G is amenable if and only if it
has an invariant spanning tree T with at most two ends, hence with expected de-
gree 2 and pc(T ) = 1. Briefly: for the existence of T for an amenable G, see the
proof of Corollary 4.1 below, while from an invariant connected spanning graph T
with pc(T ) = 1 it is not hard to construct an invariant mean on G, and thus deduce
amenability.

Proposition 1.4 tells us that, under the stronger condition of subexponential growth,
we get a spanning tree T with the stronger property pT (T ) = paT (T ) = 1. Moreover, we
can achieve approximately 1-dimensional percolation behavior pc(Gk)→ 1 via connected
spanning subgraphs that have the same large-scale geometry as G.

Corollary 4.1. If G is a transitive amenable graph, then there is a sequence of invariant
random subgraphs Gk which satisfies the following: each Gk is a bi-Lipschitz (in particu-
lar, connected) spanning subgraph of G, the girth of Gk tends to infinity and Gk locally
converges to an invariant random spanning tree T with at most two ends.

If G is a transitive graph with sub-exponential volume growth, then lim pc(Gk) = 1.

Proof. We construct T as in [7], Theorem 5.3: let Fn be a sequence of Følner sets such
that

∑∞
n=1

|∂EFn|
|Fn| < 1. For each n and x ∈ V (G) choose a random gx,n ∈ Aut(G) that

takes o to x, and a random bit Zx,n that equals 1 with probability 1
|Fn| . Choose all gx,n

and Zx,n independently. Let ωn := E(G) \
⋃
x∈V (G),Zx,n=1 ∂E(gx,nFn); i.e., we remove all

edges in the boundaries of the translates of Fn with Zx,n = 1. Let ω̄n =
⋂
k≥n ωk. Each

ω̄n has only finite components.
To construct T and Gk, choose uniform labels Le in [0,1] independently for each

e ∈ E(G). For each finite component of ω̄1 take the minimal spanning tree of the
component with respect to the labels. Denote by T1 the union of these trees. Let T2 be
the union of T1 and the edges in ω̄2 \ ω̄1 with minimal labels such that the components of
T2 are spanning trees of the components of ω̄2. Continue inductively, and let T :=

⋃
Tn.

This is an invariant random spanning tree, which has at most 2 ends (otherwise it would
have infinitely many ends, which is impossible, since G is amenable).
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To construct Gk we define a color for each edge. Let all edges in T be green. In each
component of ω̄1 do the following: consider the edge with the smallest label which has
no color. If there is a path of length at most k between its endpoints consisting of green
edges, then color it red, otherwise color it green. Continue inductively for the edges in
the component. This procedure defines a color for each edge of ω̄1. If all edges in ω̄n
have a color, then continue coloring the edges of ω̄n+1 \ ω̄n in the same way. Let Gk be
the union of the green edges. It follows from the construction that Gk is invariant, its
girth is at least k + 2 and for each edge of G there is a path in Gk between its endpoints
with length at most k. The sequence Gk converges to T .

If G has sub-exponential volume growth, then so does T and each Gk, and all of them
are unimodular (by [31, Corollary 1] and Proposition 1.6 above). Thus pc(Gk)→ 1 follows
from Proposition 1.4.

It might be surprising at first sight that, as opposed to having a spanning subgraph
with pc = 1, the existence of a sequence Gk as in the corollary does not imply amenability:
if we chose the graph G in the next example to be any non-amenable Cayley graph, then
G × Z is non-amenable as well. Our originial example was the non-amenable special
case when G is the 3-regular infinite tree, but it was simplified and generalized by Yuval
Peres, as follows.

Example 4.2. Let G be the Cayley graph of a finitely generated group. Then G×Z has
a sequence of invariant bi-Lipschitz subgraphs Gk with pc(Gk)→ 1.

Proof. Let S = {s1, . . . , sn} be the generating set of the group that defines the Cayley
graph. Consider the following subgraphs Gk ⊆ G × Z: we keep all the edges in the
subgraphs {v}×Z and the edges {e}×{nkj+ ik} where j ∈ Z and e is an edge with label
si. We choose a uniform random integer b ∈ {0, . . . nk − 1} and translate this subgraph
by (id, b) to get the invariant subgraph Gk of G × Z. Each Gk is clearly bi-Lipschitz
equivalent to G×Z. On the other hand, we have pc(Gk)→ 1: either from Proposition 1.3,
or more directly, by observing that the universal cover Tk of Gk can be obtained from the
n+ 1-regular infinite tree by replacing “ n

n+1 proportion” of the edges by a path of length
at least k; for this tree, it is easy to see that pc(Tk)→ 1, while pc(Tk) ≤ pc(Gk) holds by
[26, Theorem 6.47].

So, what is the class of transitive graphs for which the existence of such a sequence
Gk may be expected? The answer seems to have something to do with the notion of
cost from measurable group theory. (See Subsection 1.1 for references.) The cost of
a group G is defined as half of the infimum of the expected degrees of its invariant
connected spanning graphs. The G-cost of a transitive graph G may be defined similarly,
over G-invariant random connected spanning subgraphs of G, where G ≤ Aut(G) is a
vertex-transitive subgroup of graph-automorphisms. It is not known in general that, if
we first fix a Cayley graph G of G, then the G-cost of G is always as small as the cost of
G (which is the cost of the complete graph on G). Nevertheless, we have seen that cost
1 can be achieved inside any Cayley graph of any amenable group (since the expected
degree of an infinite unimodular tree with at most two ends is 2).

We will now show that a sequence of invariant spanning subgraphsGk with pc(Gk)→ 1

implies that the cost is 1. The bi-Lipschitz condition does not appear here, but it is quite
possible that once we have a sequence with pc(Gk) → 1, it can always be modified to
fulfill the bi-Lipschitz property, as well. Note that the bi-Lipschitz condition is also natural
from the point of view of Elek’s combinatorial cost for sequences of finite graphs [13].

Lemma 4.3. If Γ is a Cayley graph of G, and there exists a sequence of G-invariant
connected spanning subgraphs Gk ⊂ Γ with pc(Gk)→ 1, then the cost of Γ, hence of G,
is 1.

EJP 22 (2017), paper 106.
Page 24/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP124
http://www.imstat.org/ejp/


On percolation critical probabilities and unimodular random graphs

Proof. Take εk → 0 such that pc(Gk) > 1 − εk. Then, all clusters of Bernoulli(1 − εk)
percolation on Gk are finite almost surely. Let the set of closed edges be denoted by
ηk ⊂ Gk ⊂ Γ, an invariant percolation itself. In each finite cluster, take a uniform random
spanning tree, a subtree of Gk. The union of all these finite spanning trees and ηk will be
ωk. One the one hand, it is clear that ωk is a connected spanning subgraph of Gk, hence
of Γ. On the other hand, the expected degree of o in ωk is at most Edegηk(o)+2 ≤ dεk+2,
where degΓ(o) = d. As k →∞, we obtain that the cost of Γ is 1.

We do not know if the converse of Lemma 4.3 holds:

Question 4.4. Does there exist, for any Cayley graph G of any group G of cost 1, a
sequence of G-invariant bi-Lipschitz spanning subgraphs Gk ⊂ G with pc(Gk)→ 1? At
least for amenable G?

For amenable Cayley graphs G, a first step of independent interest could be a positive
answer to the following question, mentioned in Subsection 1.1:

Question 4.5. For any amenable Cayley graph, is there an invariant random spanning
subtree of subexponential growth? More boldly, does there always exist an invariant
random Hamiltonian path?
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