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Abstract

We obtain the optimal proxy variance for the sub-Gaussianity of Beta distribution,
thus proving upper bounds recently conjectured by Elder (2016). We provide different
proof techniques for the symmetrical (around its mean) case and the non-symmetrical
case. The technique in the latter case relies on studying the ordinary differential
equation satisfied by the Beta moment-generating function known as the confluent
hypergeometric function. As a consequence, we derive the optimal proxy variance
for the Dirichlet distribution, which is apparently a novel result. We also provide a
new proof of the optimal proxy variance for the Bernoulli distribution, and discuss
in this context the proxy variance relation to log-Sobolev inequalities and transport
inequalities.
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1 Introduction

The sub-Gaussian property (Buldygin and Kozachenko, 1980, 2000; Pisier, 2016) and
related concentration inequalities (Boucheron et al., 2013; Raginsky and Sason, 2013)
have attracted a lot of attention in the last couple of decades due to their applications
in various areas such as pure mathematics, physics, information theory and computer
sciences. Recent interest focused on deriving the optimal proxy variance for discrete
random variables like the Bernoulli distribution (Buldygin and Moskvichova, 2013;
Kearns and Saul, 1998; Berend and Kontorovich, 2013) and the missing mass (McAllester
and Schapire, 2000; McAllester and Ortiz, 2003; Berend and Kontorovich, 2013; Ben-
Hamou et al., 2017). Our focus is instead on two continuous random variables, the
Beta and Dirichlet distributions, for which the optimal proxy variance was not known
to the best of our knowledge. Some upper bounds were recently conjectured by Elder
(2016) that we prove in the present article by providing the optimal proxy variance
for both Beta and Dirichlet distributions. Similar concentration properties of the Beta
distribution have been recently used in many contexts including Bayesian adaptive data
analysis (Elder, 2016), Bayesian nonparametrics (Castillo, 2016) and spectral properties
of random matrices (Perry et al., 2016).
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Beta and Dirichlet sub-Gaussianity

We start by reminding the definition of sub-Gaussian property for random variables:

Definition 1.1 (Sub-Gaussian variables). A random variable X with finite mean µ = E[X]

is sub-Gaussian if there is a positive number σ such that:

E[exp(λ(X − µ))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R. (1.1)

Such a constant σ2 is called a proxy variance (or sub-Gaussian norm), and we say that X
is σ2-sub-Gaussian. If X is sub-Gaussian, one is usually interested in the optimal proxy
variance:

σ2
opt(X) = min{σ2 ≥ 0 such that X is σ2-sub-Gaussian}.

Note that the variance always gives a lower bound on the optimal proxy variance:
Var[X] ≤ σ2

opt(X). In particular, when σ2
opt(X) = Var[X], X is said to be strictly sub-

Gaussian.

Every compactly supported distribution, as is the Beta(α, β) distribution, is sub-
Gaussian. This can be seen by Hoeffding’s classic inequality: any random variable X
supported on [0, 1] with mean µ satisfies

∀λ ∈ R, E
[
eλ(X−µ)

]
≤ e

λ2

8 ,

thus exhibiting 1
4 as an upper bound to the proxy variance. This bound can be improved

by taking into account the location of the mean µ within the interval [0, 1]. An early step
in this direction is the second inequality in Hoeffding (1963) paper, indexed (2.2). It
states that if µ < 1/2, then for any positive ε, P(X − µ > ε) ≤ e−ε

2g(µ), where

g(µ) =
1

1− 2µ
ln

1− µ
µ

(1.2)

thus indicating that X has a right tail lighter than a Gaussian tail of variance 1
2g(µ) .

Hoeffding’s result was strengthened by Kearns and Saul (1998) to comply with Defini-
tion 1.1 of sub-Gaussianity1 as follows

E[exp(λ(X − µ))] ≤ exp

(
λ2

4g(µ)

)
for all λ ∈ R, (1.3)

thus indicating that 1
2g(µ) is a distribution-sensitive proxy variance for any [0, 1]-supported

random variable with mean µ (see also Berend and Kontorovich, 2013, for a detailed
proof of this result). If this is the optimal proxy variance for the Bernoulli distribution
(see Theorem 2.1 and Theorem 3.1 of Buldygin and Moskvichova, 2013), it is clear from
our result (Theorem 2.1) that it does not hold true for the Beta distribution. However,
fixing α

α+β = µ and letting α→ 0, β → 0, the Beta(α, β) distribution concentrates to the
Bern(µ) distribution, and we show that we recover the optimal proxy variance for the
Bernoulli distribution (Theorem 3.1).

An interesting common feature between optimal proxy variances for the Bernoulli
distribution: 1

2g(µ) , and that of the Beta distribution derived later on, is that they
deteriorate in a similar fashion as the mean µ goes to 0 or 1, see for instance the left
panel of Figure 1. We briefly present here classical proof techniques for sub-Gaussianity
hinging on certain tools from functional analysis. We show how they apply in the
Bernoulli setting, and let as an interesting open problem how our proof in the Beta
distribution setting could be supplemented by these same functional analysis tools.

1Note indeed that Equation (1.1), together with Markov inequality, imply P(X − µ > ε) ≤ e
− ε2

2σ2 .
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Beta and Dirichlet sub-Gaussianity

Essentially two (related) functional inequalities allow one to derive a sub-Gaussian
property: log-Sobolev inequalities, which date back to Gross (1975), and transport
inequalities. The relation with the former inequalities is called Herbst’s argument. It
states that if a probability measure satisfies a log-Sobolev inequality with some constant,
then it is sub-Gaussian with the same constant as a proxy variance2 (see for instance
Ledoux, 1999, Section 2.3 and Proposition 2.3). The optimal constant in the log-Sobolev
inequality satisfied by the Bernoulli distribution also produces its optimal proxy variance
(Ledoux, 1999, Corollary 5.9).

The relation with transport inequalities is usually referred to as Marton’s argument
(see for instance Raginsky and Sason, 2013, Section 3.4). Define the Wasserstein distance
between two probability measures P and Q on a space X by

W (P,Q) = inf
π∈Π(P,Q)

∫
X×X

d(x, y)π(dx, dy),

where Π(P,Q) is the set of probability measures on X × X with fixed marginal distri-
butions respectively P and Q. The Wasserstein distance depends on some choice of a
distance d on X . A probability measure P is said to satisfy a transport inequality with
constant c, if for any probability measure Q dominated by P ,

W (P,Q) ≤
√

2cD(Q||P ), (1.4)

where D(Q||P ) is the entropy, or Kullback–Leibler divergence, between P and Q. The
transport inequality (1.4) is denoted by T(c).

Bobkov and Götze (1999) proved that T(c) implies c-sub-Gaussianity. See also Propo-
sition 3.6 and Theorem 3.4.4 of Raginsky and Sason (2013) for general results. Further
developments in the discrete X setting are interesting for our purposes. Equip a discrete
space X with the Hamming metric, d(x, y) = 1{x 6=y}. The induced Wasserstein distance
then reduces to the total variation distance, W (P,Q) = ‖P − Q‖TV. In that setting,
Ordentlich and Weinberger (2005) proved the distribution-sensitive transport inequality:

‖P −Q‖TV ≤

√
1

g(µP )
D(Q||P ), (1.5)

where the function g is defined in Equation (1.2) and the coefficient µP is called the bal-
ance coefficient of P , and is defined by µP = max

A⊂X
min{P (A), 1−P (A)}. In particular, the

Bernoulli balance coefficient is easily shown to coincide with its mean. Hence, applying

the result of Bobkov and Götze (1999) to the T
(

1
2g(µP )

)
transport inequality (1.5) yields a

distribution-sensitive proxy variance of 1
2g(µ) for the Bernoulli with mean µ. It is optimal,

see for instance Theorem 3.4.6 of Raginsky and Sason (2013). This viewpoint highlights
the key role played by the balance coefficient in the non-uniformity of the optimal proxy
variance for discrete distributions such as the Bernoulli. However, it is not clear how this
argument would carry over to non discrete distributions such as the Beta distribution
for explaining similar sensitivity to the mean. However, to quote Raginsky and Sason
(2013), the general approach may not produce optimal concentration estimates, that
often require case-by-case treatments. This is the route followed in this note for the Beta
distribution.

The outline of the note is as follows. We introduce the Beta distribution and state the
main result (Theorem 2.1) in Section 2.1. We then prove our result depending on whether
α = β (Section 2.2) or α 6= β (Section 2.3). In the first case, the proof is elementary and
based on comparing the coefficients of the entire series representations of the functions

2The implied predicate is actually stronger than sub-Gaussianity, but it is not useful for our purposes.
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Beta and Dirichlet sub-Gaussianity

Figure 1: Left : curves of Var[Beta(α, β)] (green), σ2
opt(α, β) (purple) and 1

4(α+β+1) (dotted

black) for the Beta(α, β) distribution with α+β set to 1, σ2
opt(µ) for the Bern(µ) distribution

(blue); varying mean µ on the x-axis. Center: curves of σ2
opt(µ) for the Bern(µ) distribution

(blue), and of σ2
opt(α, β) for the Beta(α, β) distribution with α + β varying on a log

scale from 0.1 (purple) to 10 (red); varying mean µ on the x-axis. Right : surfaces of
Var[Beta(α, β)] (green) and σ2

opt(α, β) (purple), for values of α and β varying in [0.2, 4].

of both sides of inequality (1.1). However, it does not directly carry over to the second
case, whose proof requires some finer analysis tool: the study of the ordinary differential
equation (ODE) satisfied by the confluent hypergeometric function 1F1. Although the
second proof also covers the case α = β upon slight modifications, the independent proof
for the symmetric case is kept owing to its simplicity. As a by-product, we derive the
optimal proxy variance for the Bernoulli and the Dirichlet distributions in Section 3. The
R code for the plots presented in this note and for a function deriving the optimal proxy
variance in terms of α and β is available at http://www.julyanarbel.com/software.

2 Optimal proxy variance for the Beta distribution

2.1 Notations and main result

The Beta(α, β) distribution, with α, β > 0, is characterized by a density on the segment
[0, 1] given by:

f(x) =
1

B(α, β)
xα−1(1− x)β−1,

where B(α, β) =
∫∞

0
xα−1(1 − x)β−1dx = Γ(α)Γ(β)

Γ(α+β) is the Beta function. The moment-

generating function of a Beta(α, β) distribution is given by a confluent hypergeometric
function (also known as Kummer’s function):

E[exp(λX)] = 1F1(α;α+ β;λ) =

∞∑
j=0

Γ(α+ j)Γ(α+ β)

(j!)Γ(α)Γ(α+ β + j)
λj . (2.1)

This is equivalent to say that the jth raw moment of a Beta(α, β) random variable X is
given by:

E[Xj ] =
(α)j

(α+ β)j
, (2.2)
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Beta and Dirichlet sub-Gaussianity

where (x)j = x(x+ 1) · · · (x+ j − 1) = Γ(x+j)
Γ(x) is the Pochhammer symbol, also known in

the literature as a rising factorial. In particular, the mean and variance are given by:

E[X] =
α

α+ β
, Var[X] =

αβ

(α+ β)2(α+ β + 1)
.

The Beta distribution is ubiquitous in statistics. It plays a central role in the binomial
model in Bayesian statistics where it is a conjugate prior distribution (the associated
posterior distribution is also Beta): if X ∼ Binomial(θ,N) and θ ∼ Beta(α, β), then
θ|X ∼ Beta(α+X,β+N−X). It is also key to Bayesian nonparametrics where it embodies,
among others, the distribution of the breaks in the stick-breaking representation of the
Dirichlet process and the Pitman–Yor process; marginal distributions of Polya trees
(Castillo, 2016); the posterior distribution of discovery probabilities under a Bayesian
nonparametrics model (Arbel et al., 2017). Our main result opens new research avenues
for instance about asymptotic (frequentist) assessments of these procedures.

Theorem 2.1 (Optimal proxy variance for the Beta distribution). For any α, β > 0,
the Beta distribution Beta(α, β) is σ2

opt(α, β)-sub-Gaussian with optimal proxy variance
σ2

opt(α, β) given by:
σ2

opt(α, β) = α
(α+β)x0

(
1F1(α+1;α+β+1;x0)

1F1(α;α+β;x0) − 1
)

where x0 is the unique solution of the equation

ln(1F1(α;α+ β;x0)) = αx0

2(α+β)

(
1 + 1F1(α+1;α+β+1;x0)

1F1(α;α+β;x0)

)
.

(2.3)

A simple and explicit upper bound to σ2
opt(α, β) is given by σ2

0(α, β) = 1
4(α+β+1) :

- for α 6= β we have Var[Beta(α, β)] < σ2
opt(α, β) < 1

4(α+β+1)

- for α = β we have Var[Beta(α, α)] = σ2
opt(α, α) = 1

4(2α+1) .

Equation (2.3) defining x0 is a transcendental equation, the solution of which is not
available in closed form. However, it is simple to evaluate numerically. The values
of the variance, optimal proxy variance and its simple upper bound are illustrated on
Figure 1. Note that for a fixed value of the sum of the parameters, α+β = S, the optimal
proxy variance deteriorates when α, or equivalently β, gets close to 0 or to S. This is
reminiscent of the Bernoulli optimal proxy variance behavior which deteriorates when
the success probability moves away from 1

2 (Buldygin and Moskvichova, 2013). The
intuition of the proof can be seen from Figure 2 (Section 2.3.3) where we represent

the difference λ 7→ exp
(
E[X]λ+ σ2

2 λ
2
)
− E[exp(λX)] for various values of σ2. The main

argument is that the optimal proxy variance is obtained for the curve (in magenta)
whose positive local minimum equals zero, thus leading to the system of equations of
Theorem 2.1.

Corollary 2.2. The Beta distribution Beta(α, β) is strictly sub-Gaussian if and only if
α = β.

As a direct consequence, we obtain the strict sub-Gaussianity of the uniform, the
arc-sine and the Wigner semicircle distributions, as special cases up to a trivial rescaling
of the Beta(α, α) distribution respectively with α equal to 1, 1

2 and 3
2 .

2.2 The Beta(α, α) distribution is strictly sub-Gaussian

Let σ2
0(α) = Var[Beta(α, α)] = 1

4(2α+1) . Since a random variable X ∼ Beta(α, α) is

symmetric around 1
2 , only its even centered moments are non-zero. The reason why

E[exp(λ(X − E[X]))] ≤ exp
(λ2σ2

0(α)
2

)
is because the coefficients of the series expansions
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Beta and Dirichlet sub-Gaussianity

at λ = 0 of each side:

E[exp(λ(X − E[X]))] =

∞∑
j=0

E
[
(X − 1/2)2j

] λ2j

(2j)!
, (2.4)

exp

(
λ2σ2

0(α)

2

)
=

∞∑
j=0

σ2j
0 (α)

2j
λ2j

j!
=

∞∑
j=0

λ2j

22j2j(2α+ 1)j(j!)
, (2.5)

satisfy the inequalities:

E

[(
X − 1

2

)2j
]

1

(2j)!
≤ σ2j

0 (α)

2j
1

j!
. (2.6)

Indeed, algebra yields:

E

[(
X − 1

2

)2j
]

=
(2j)!

22jj!

Γ(2α)Γ(α+ j)

Γ(α)Γ(2(α+ j))
=

(2j)!

22jj!

(α)j
(2α)2j

. (2.7)

Combining the expression of the raw moments (2.2) with the following inequality:

(α)j
(2α)2j

=
1

2j
j∏
l=1

(2α+ 2l − 1)

≤ 1

(2(2α+ 1))j
, (2.8)

in (2.4) concludes the proof.

Remark 2.3. The non-symmetrical distribution with α 6= β has even centered moments
whose expressions are not as simple as (2.7). Moreover, it has obviously non-zero odd
centered moments. For this last reason, the present proof does not carry over to the
case α 6= β.

2.3 Optimal proxy variance for the Beta(α, β) distribution

2.3.1 Connection with ordinary differential equations

In this section, we assume that X ∼ Beta(α, β) with β 6= α. We denote σ2
0 = 1

4(α+β+1) (we
omit the dependence on α and β for compactness) and define for all t ∈ R:

σ2
t =

(1− t)
4(1 + α+ β)

+ t
αβ

(α+ β)2(α+ β + 1)
=

1

4(1 + α+ β)
+

(β − α)2

4(α+ β)2(1 + α+ β)
t.

In other words, the decreasing function t 7→ σ2
t maps the interval [0, 1] to the interval

[σ2
1 , σ

2
0 ] with σ2

1 = Var[X]. Then, we introduce the function ut defined by:

ut(x)
def
= exp

(
α

α+ β
x+

σ2
t

2
x2

)
− E[exp(xX)] , ∀x ∈ R,

where σ2
t -sub-Gaussianity amounts to non negativity of ut on R. Since the confluent

hypergeometric function y : x 7→ y(x) = 1F1(α, α+ β;x) satisfies the linear second order
ordinary differential equation xy′′(x) + (α+ β − x)y′(x)− αy(x) = 0, we obtain together
with equation (2.1) that ut is the unique solution of the Cauchy problem:

xu′′t (x) + (α+ β − x)u′t(x)− αut(x)

= x
16(α+β)4(1+α+β)2 exp

(
α

α+βx+
σ2
t

2 x
2
)
P2(x; t),

ut(0) = 0 and u′t(0) = 0,

(2.9)
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Beta and Dirichlet sub-Gaussianity

where P2 is a polynomial of degree 2 in x:

P2(x; t) = 4(1− t)(α2 − β2)2(1 + α+ β)2

− 4(β2 − α2)(1 + α+ β)
(
(α+ β)2 − t(β − α)2

)
x+

(
(α+ β)2 − t(β − α)2

)2
x2.

For normalization purposes, we also define:

vt(x) = 16(α+ β)4(1 + α+ β)2ut(x) exp

(
− α

α+ β
x− σ2

t

2
x2

)
,

= 16(α+ β)4(1 + α+ β)2

(
1− E[exp(xX)] exp

(
− α

α+ β
x− σ2

t

2
x2

))
. (2.10)

The function vt is the unique solution of the Cauchy problem:{
xv′′t (x) +Q1(x; t)v′t(x) +Q0(x; t)vt(x) = xP2(x; t),

vt(0) = 0 and v′t(0) = 0,
(2.11)

with:

Q1(x; t) = α+ β − β − α
α+ β

x+
(α+ β)2 − t(β − α)2

2(α+ β)2(1 + α+ β)
x2,

Q0(x; t) =
1

16(α+ β)4(1 + α+ β)2
xP2(x; t).

Note that ut and vt have the same sign hence proving that ut is positive (resp. negative)
is equivalent to proving that vt is positive (resp. negative). From standard theory on
ODEs (Birkhoff and Rota, 1989; Robinson, 2004), we get that the functions ut and vt are
C∞(R). Indeed, the only possible singularity is at x = 0 but the initial conditions imply
that the function is regular at this point. In particular, a Taylor expansion at x = 0 shows
that:

v′′t (0) =
P2(0; t)

1 +Q1(0; t)
= 4(β2 − α2)2(1 + α+ β)(1− t). (2.12)

We also observe that the discriminant of the polynomial x 7→ P2(x; t) is given by:

∆t = 16t(1 + α+ β)2(β2 − α2)2
(
(α+ β)2 − t(β − α)2

)2
.

Hence we conclude that for t > 0, P2 admits two distinct real zeros that are positive,
while for t < 0 it remains strictly positive on R. For t = 0, P2 admits a double zero and
thus remains positive on R appart from its zero.

By definition (2.10), we want to study the sign of vt on R. Indeed, showing that vt is
positive on R then X is equivalent to showing σ2

t -sub-Gaussianity. We first observe that
we may restrict the sign study on R+. Indeed, if we prove that:

∀λ ≥ 0 , E[exp(λX)] = 1F1(α;α+ β;λ) ≤ exp

(
λα

α+ β
+
λ2σ2

t

2

)
. (2.13)

then, the case λ < 0 is automatically obtained by noting that 1−X ∼ Beta(β, α), whose
mean is β

α+β = 1− α
α+β . Therefore, applying (2.13) to 1−X gives that for all λ < 0:

E[exp(λX)] = exp(λ)E[exp(−λ(1−X))]

≤ exp(λ) exp

(
−λ(1− α

α+ β
) +

σ2
t λ

2

2

)
= exp

(
λ

α

α+ β
+
σ2
t λ

2

2

)
.

Eventually, in agreement with the general theory, we observe that for t > 1 (i.e. σ2
t <

Var[X]), X is not σ2
t -sub-Gaussian. Indeed, the series expansion at x = 0 (2.12), shows

that for t > 1, vt is strictly negative in a neighborhood of 0. On the contrary, for t < 1,
the function vt is strictly positive in a neighborhood of 0 so that we may not directly
conclude. Note also that for any value of t, we always have lim

x→∞
vt(x) = +∞.
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Beta and Dirichlet sub-Gaussianity

2.3.2 Proof that the Beta(α, β) distribution is σ2
0-sub-Gaussian

In this section, we take t = 0. As explained above, this corresponds to a case where
P2 is positive on R (apart from its double zero). We prove that u0(x) > 0 for x > 0 by
proceeding by contradiction. Let us assume that there exists x1 > 0 such that u0(x1) = 0.
Since the non-empty set {x > 0 / u0(x) = 0} is compact (because u0 ∈ C∞(R)) and
excludes a neighborhood of 0, we may define x0 = min{x > 0 such that u0(x) = 0} > 0.
Let us now define the set:

M = {0 < x < x0 such that u′0(x) = 0 and u′0 changes sign at x}.

Since u0(0) = u0(x0) = 0 and the facts that u0 is strictly positive in a neighborhood of 0

and u′0 is continuous on R, Rolle’s theorem shows that M is not empty and that:

m = min{x ∈M} exists and 0 < m < x0.

Evaluating the ODE (2.9) at x = m and using the fact that the polynomial P2 is positive
on R (appart from its double zero) leads to:

mu′′0(m) + 0− αu0(m) ≥ 0 ⇒ u′′0(m) ≥ α

m
u0(m) > 0. (2.14)

However, combined with u′0(m) = 0, this contradicts the fact that u′0 changes sign at
x = m.

Thus, we conclude that there cannot exist x1 > 0 such that u0(x1) = 0. Since u0 is
strictly positive in a neighborhood of 0 and continuous on R, we conclude that it must
remain strictly positive on R∗+.

Remark 2.4. In this proof, the case β = α requires an adaptation since u′′0(0) = 0. Thus,

we must determine u(4)
0 (0) > 0 (u(3)

0 (0) = 0 by symmetry) to ensure that the function u0

is locally convex and remains strictly positive in a neighborhood of 0. Apart from this
minor verification, the rest of the proof applies also to this case.

2.3.3 Proof of the optimal proxy variance for the Beta(α, β) distribution

In this section we assume that β 6= α. From general theorems regarding ODEs, we have
that the application:

g :

{
[0,+∞)× [0,+∞) → R

(x, t) 7→ g(x, t) = vt(x),
(2.15)

is smooth (g ∈ C∞([0,+∞)× [0,+∞))). Indeed, the t-dependence of the coefficients of
the ODE (2.11) is polynomial and thus smooth. The x-dependence of the coefficients of
the ODE (2.11) is polynomial and as explained above, the only possible singularity in x
is at x = 0 but initial conditions ensure that the solutions x 7→ vt(x) are always regular
there. Since for all t ≥ 0 we have lim

x→∞
vt(x) = +∞, we also have that the function:

h :

{
[0,+∞) → R

t 7→ min{vt(x), x ∈ R∗+},

is continuous.

We now observe that for any 0 ≤ t < 1, the functions vt are strictly positive in a
neighborhood of 0. More precisely, if we choose a segment [0, t0] with t0 < 1, then for
all 0 ≤ t ≤ t0 we have that v′′t (0) ≥ v′′t0(0) = 4(β2 − α2)2(1 + α + β)(1 − t0) > 0. Hence,
we may choose η > 0 such that for all 0 ≤ t ≤ t0, we have vt is strictly positive on ]0, η].
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Beta and Dirichlet sub-Gaussianity

Moreover, since lim
x→∞

v0(x) = +∞, v0 is bounded from below on [η,+∞[ by a constant

A > 0. Thus, since g is continuous, there exists a neighborhood of t = 0 in which all
solutions vt remain greater than A

2 on [η,+∞[ and thus strictly positive on R∗+. This
shows that for t > 0, σ2

0 is not optimal.

Let us now introduce the set:

T+ = {t ≥ 0 such that vt is positive on R∗+}.

Then, from the results presented above, we know that T+ is non-empty, that it contains a
neighborhood of 0 and that it is bounded from above by 1. Moreover, by connection with
the initial problem (2.10), T+ is an interval and thus is of the form [0, topt] with 0 < topt < 1.
Indeed t ∈ T+ implies by construction that for all s ≤ t, s ∈ T+. Note also that t < 1

since v1 is strictly negative in a neighborhood of 0 and thus min{v1(x), x ∈ R∗+} < 0.
Hence, the continuity of h shows that there exists a neighborhood of t = 1 in which
the solutions vt are non-positive on R∗+. For t = topt the function vtopt must have a
zero on R∗+ otherwise by continuity of h we may find a neighborhood of topt for which
min{vt(x), x ∈ R∗+} remains strictly positive thus contradicting the maximality of topt.
Since vtopt must remain positive, the zero is at least a double zero and therefore we find
that there exists x0 > 0 such that vtopt(x0) = 0, v′topt

(x0) = 0 and v′′topt
(x0) ≥ 0. From (2.1)

and (2.10), the conditions vtopt(x0) = 0, v′topt
(x0) = 0 are equivalent to the following system

of equations (we use here the contiguous relations for the confluent hypergeometric
function: 1F

′
1(a; b;x) = a

b 1F1(a; b;x)): 1F1(α;α+ β;x0) = exp

(
α

α+βx0 +
σ2
topt

2 x2
0

)
,

α
α+β 1F1(α+ 1;α+ β + 1;x0) =

(
α

α+β + σ2
topt
x0

)
1F1(α;α+ β;x0).

(2.16)

This is equivalent to say that x0 ≡ x0(α, β) is the solution of the transcendental equation:

1F1(α;α+ β;x0) = exp

(
αx0

2(α+ β)

(
1 +

1F1(α+ 1;α+ β + 1;x0)

1F1(α;α+ β;x0)

))
,

and that σ2
topt

is given by:

σ2
topt

=
α

(α+ β)x0

(
1F1(α+ 1;α+ β + 1;x0)

1F1(α;α+ β;x0)
− 1

)
.

Note that by symmetry, we have x0(β, α) = −x0(α, β) hence, σ2
topt

(β, α) = σ2
topt

(α, β).
Moreover, if β > α then x0(α, β) > 0 while α > β implies x0(α, β) < 0. We may illustrate
the situation with Figure 2 which displays the difference function x 7→ ut(x).

Remark 2.5. The system of equations (2.16) admits only one solution on R∗+. Indeed,
let us transpose the problem from vtopt to utopt using (2.10) and assume that there exist
two points 0 < x0 < x1 such that utopt(x0) = 0, u′topt

(x0) = 0 and utopt(x1) = 0, u′topt
(x1) = 0

with utopt strictly positive on (x0, x1) (hence u′′topt
(x0) ≥ 0 and u′′topt

(x1) ≥ 0). Using (2.9),
this implies that P2(x0; topt) ≥ 0 and P2(x1; topt) ≥ 0. If we denote x− < x+ the potential
distinct positive zeros of x 7→ P2(x; topt) we may exclude that x0 ≤ x−. Indeed, if x0 ≤ x−
then we may apply the same argument to utopt on the interval [0, x0] as the one developed
for u0 in Section 2.3.2 and obtain a contradiction. Thus, the only remaining case is to
assume x1 > x0 > x+. In that case, since utopt(x0) = 0, u′topt

(x0) = 0, utopt(x1) = 0 and
x 7→ P2(x; topt) is positive on [x0, x1], we may apply the same argument to utopt on the
interval [x0, x1] as the one developed for u0 in Section 2.3.2 and obtain a contradiction.
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Beta and Dirichlet sub-Gaussianity

Figure 2: Difference function x 7→ ut(x). For t = 0 (simple upper bound σ2
0), the curve

[dotted black] remains strictly positive. For t = topt (optimal proxy variance σ2
opt), the

curve [magenta] has zero minimum (at x0). For t = 1 (leading to the variance), the
curve [dashed green] has negative second derivative at x = 0, hence is directly negative
around 0. The intermediate case with tnon opt in the interval (topt, 1) produces a curve
[orange, dash and dots] which is first positive, then negative, and positive again.

3 Relations to other distributions

3.1 Optimal proxy variance for the Bernoulli distribution

We show that our proof technique can be used to recover the optimal proxy variance
for the Bernoulli distribution, known since Kearns and Saul (1998). This is illustrated by
the center panel of Figure 1.

Theorem 3.1 (Optimal proxy variance for the Bernoulli distribution). For any µ ∈ (0, 1),
the Bernoulli distribution with mean µ is sub-Gaussian with optimal proxy variance
σ2

opt(µ) given by:

σ2
opt(µ) =

(1− 2µ)

2 ln 1−µ
µ

. (3.1)

Proof. In the limit α → 0 with α
α+β fixed equal to µ, the differential equation (2.9)

simplifies into:

u′′t,µ(x)− ut,µ(x) = exp

(
µx+

x2

8
− x2(2µ− 1)2t

8

)
(

(2µ− 1)2(1− t)
4

+
(2µ− 1)(1− t+ 4tµ(1− µ))

4
x− (1− t+ 4tµ(1− µ))2

16
x2

)
with the Cauchy initial conditions ut,µ(0) = 0 and u′t,µ(0) = 0. The solution of this Cauchy
problem is explicit and given by:

ut,µ(x) = exp

(
µx+

x2

8
− x2(2µ− 1)2t

8

)
− µex + µ− 1 (3.2)

Therefore the optimal proxy variance is given by σ2
opt(µ) = 1

4 −
1
4x(2µ − 1)2t0 where

t0 is determined by the system of equations: ut0,µ(x0) = 0 and u′t0,µ(x0), thus defining
implicitly t0 and x0 as functions of µ. In order to solve explicitly the last system of
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equations, we perform the change of variables: (µ, t) =
(

s
s+1 ,

2t̄
s+1 + 1

)
so that the

solution (3.2) is now given by:

ut̄,s(x) = exp

(
s

s+ 1
x− t̄

4(s+ 1)
x2

)
− s

s+ 1
ex − 1

s+ 1

Consequently, we have to solve the system:{
ut̄0,s(x0) = 0

u′t̄0,x(x0) = 0
⇔

 (s+ 1) exp
(

s
s+1x0 − t̄0

4(s+1)x
2
0

)
= sex0 + 1(

s− x0 t̄0
2

)
exp

(
s
s+1x0 − t̄0

4(s+1)x
2
0

)
= sex0

Introducing another change of variable (x0, y0) = (x0, x0t̄0), the last system is equivalent
to: {

s− y0 = s(1 + y0)ex0

1 + y0 = exp
(
− x0

s+1

(
s− y0

2

)) ⇔

{
s− y0 = s exp

(
y0+2
y0−2s ln(1 + y0)

)
x0 = s+1

y0
2 −s

ln(1 + y0)

We now observe that y0 = s − 1 and x0 = −2 ln s is a solution of the former system.
Performing back the various changes of variables, this is equivalent to say that t̄0 = y0

x0
=

2(1−s)
ln s so that t0 = 4(1−s)

(s+1) ln s + 1 or equivalently t0 = 1
(2µ−1)2 + 2

(2µ−1) ln 1−µ
µ

. Consequently,

the optimal proxy variance is given by:

σ2
opt(µ) =

1

4
− 1

4
(2µ− 1)2t0 =

(1− 2µ)

2 ln 1−µ
µ

which is precisely the optimal proxy variance of a Bernoulli random variable with
mean µ.

3.2 Optimal proxy variance for the Dirichlet distribution

We start by reminding the definition of sub-Gaussian property for random vectors:

Definition 3.2 (Sub-Gaussian vectors). A random d-dimensional vector X with finite
mean µ = E[X] is σ2-sub-Gaussian if the random variable u>X is σ2-sub-Gaussian for

any unit vector u in the simplex Sd−1 = {u ∈ [0, 1]d /
d∑
i=1

ui = 1}. This is equivalent to say

that:

E[exp(λ>(X − µ))] ≤ exp

(
‖λ‖2σ2

2

)
for all λ ∈ Rd.

where ‖λ‖2 =
d∑
i=1

λ2
i . Eventually, a random vector X is said to be strictly sub-Gaussian, if

the random variables u>X are strictly sub-Gaussian for any unit vector u ∈ Sd−1.

Let d ≥ 2. The Dirichlet distribution Dir(α), with positive parameters α = (α1, . . . ,

αd)
>, is characterized by a density on the simplex Sd−1 given by:

f(x1, . . . , xd;α1, . . . , αd) =
1

B(α)

d∏
i=1

xαi−1
i ,

where B(α) = 1
Γ(ᾱ)

d∏
i=1

Γ(αi) and ᾱ =
d∑
i=1

αi. It generalizes the Beta distribution in the

sense that the components are Beta distributed. More precisely, for any non-empty and
strict subset I of {1, . . . , d}:

X = (X1, . . . , Xd)
> ∼ Dir(α) =⇒

∑
i∈I

Xi ∼ Beta

∑
i∈I

αi,
∑
j /∈I

αj

 .
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However, we remind the reader that the components (Xi)1≤i≤d are not independent and
the variance/covariance matrix is given by:

∀ i 6= j : Cov[Xi, Xj ] = − αiαj
ᾱ2(1 + ᾱ)

and ∀ 1 ≤ i ≤ d , Var[Xi] =
αi(ᾱ− αi)
ᾱ2(1 + ᾱ)

.

Eventually, if we define n = (n1, . . . , nd)
> ∈ Nd, then the moments of the Dirichlet

distribution are given by:

E

[
d∏
i=1

Xni
i

]
=
B(α+ n)

B(α)
.

This is equivalent to say that the moment-generating function of the Dirichlet distribution
is:

E[exp(λ>X)] =

∞∑
m=0

∑
n1+···+nd=m

B(α+ n)

B(α)

λn1
1 . . . λndd

(n1)! . . . (nd)!
,

=

∞∑
m=0

∑
n1+···+nd=m

λn1
1 . . . λndd

(n1)! . . . (nd)!

Γ(ᾱ)

Γ(ᾱ+ n̄)

d∏
i=1

Γ(αi + ni)

Γ(αi)
,

=
∞∑
m=0

∑
n1+···+nd=m

λn1
1 . . . λndd

(n1)! . . . (nd)!

1

(ᾱ)n̄

d∏
i=1

(αi)ni ,

where we have defined λ = (λ1, . . . , λd)
> ∈ Rd and n̄ =

d∑
i=1

ni.

Let us define ei the ith canonical vector of Rd and X = (X1, . . . , Xd)
> ∼ Dir(α). From

Definition 1.1 and the results regarding the Beta(α, β) distribution obtained in Section

2.3, we immediately get that e>i X = Xi is σ2
i -sub-Gaussian with σ2

i
def
= σ2

opt(αi, ᾱ − αi)
defined from Theorem 2.1. Moreover, in direction ei, σ2

i is the optimal proxy variance.
Therefore, the remaining issue is to generalize these results for arbitrary unit vectors on
Sd−1. We obtain the following result:

Theorem 3.3 (Optimal proxy variance for the Dirichlet distribution). For any parameter
α, the Dirichlet distribution Dir(α) is sub-Gaussian with optimal proxy variance σ2

opt(α)

given from Theorem 2.1 and:

σ2
opt(α) = σ2

opt(αmax, ᾱ− αmax) where αmax = max
1≤i≤d

{αi}.

Proof. We first observe that the computations of σ2
opt(αi, βi = ᾱ−αi) correspond to cases

where the sum αi+βi is fixed to ᾱ and thus independent of i. Therefore, σ2
opt(αi, ᾱ−αi) is

maximal when |(ᾱ−αi)−αi| is minimal, i.e. when the distance from αi to 1
2 ᾱ is minimal.

It is easy to see that this corresponds to choosing αi = αmax = max{αi , 1 ≤ i ≤ d} (by
looking at the two possible cases αmax ≤ 1

2 ᾱ and αmax >
1
2 ᾱ).

We then observe that σ2
max cannot be improved. Indeed, let us denote i0 one of the

components for which the maximum is obtained. Then, if we take u = ei0 , the discussion
presented above shows that σ2

i0
= σ2

max is the optimal proxy variance in this direction.
Hence the optimal proxy variance cannot be lower than σ2

max.
Let us now prove that X is σ2

max-sub-Gaussian. Let u = (u1, . . . , ud)
> be a unit vector on

Sd−1 and λ ∈ R. We define for clarity λ = λu. We have:

E
[
exp

(
λu>X

)]
= E

[
exp

(
λ>X

)]
= E

[
exp

(
d∑
i=1

λiXi

)]
,

=

∞∑
m=0

∑
n1+···+nd=m

λn1
1 . . . λndd

(n1)! . . . (nd)!

1

(ᾱ)n̄

d∏
i=1

(αi)ni . (3.3)
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Note that we also have:

d∏
i=1

E [exp(λiXi)] =

d∏
i=1

 ∞∑
j=0

(αi)j
(j!)(ᾱ)j

λji


=

∞∑
m=0

∑
n1+···+nd=m

λn1
1 . . . λndd

(n1)! . . . (nd)!

d∏
i=1

(αi)ni
(ᾱ)ni

. (3.4)

Moreover we have the inequality:

d∏
i=1

(ᾱ)ni ≤ (ᾱ)n̄,

because both sides have the same number of terms in the product (i.e. n̄) but those of
the right hand side are always greater or equal to those of the left hand side. Hence,
from (3.3) and (3.4), we find:

E
[
exp

(
λ>(X − µ)

)]
≤

d∏
i=1

E [exp(λi(Xi − µi))] .

Using the optimal proxy variance of the Beta distribution proven in Theorem 2.1, we
find:

E
[
exp

(
λ>(X − µ)

)]
≤

d∏
i=1

E [exp(λi(Xi − µi))] ≤
d∏
i=1

exp

(
λ2
iσ

2
i

2

)

≤
d∏
i=1

exp

(
λ2
iσ

2
max

2

)
= exp

(
σ2

max‖λ‖2

2

)
,

thus showing that X is σ2
max-sub-Gaussian and concluding the proof.

Note that using Theorem 3.3, we obtain the following corollary:

Corollary 3.4. For any integer d ≥ 2, the Dirichlet distribution Dir(α1, . . . , αd) is strictly
sub-Gaussian if and only if d = 2 and α1 = α2.

Indeed, we first need to require α1 = · · · = αd
def
= α so that all directions have the same

optimal proxy variance. Then, each component satisfies Xi = e>i X ∼ Beta(α, (d− 1)α)

and Theorem 2.1 shows that σ2
i is the optimal proxy variance for Xi if and only if

α = (d− 1)α, i.e. if and only if d = 2.
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