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1 Introduction

Let M be a complete smooth Riemannian manifold of dimension n. We assume that M
is connected and stochastic complete, by the latter we mean that its minimal heat kernel
satisfies

∫
pt(x, y)dy = 1. Let us denote by r the Riemannian distance and by C([0, 1];M)

the space of continuous curves: σ : [0, 1]→M . This is a Banach manifold modelled on
the Wiener space, a chart containing a path σ is given by a tubular neighbourhood of σ
and the coordinate map is induced from the exponential map given by the Levi-Civita
connection on the underlying finite dimensional manifold. For x0, y0 ∈M we denote by
Cx0

M and Cx0,y0
M , respectively, the based and the pinned space of continuous paths

over M :

Cx0
M = {σ ∈ C([0, 1];M) : σ(0) = x0},

Cx0,y0
M = {σ ∈ C([0, 1];M) : σ(0) = x0, σ(1) = y0}.

The pullback tangent bundle of Cx0
M consisting of continuous v : [0, 1] → TM with

v(0) = 0 and v(t) ∈ Tσ(t)M where σ ∈ C([0, 1];M) which for each σ can be identified
by parallel translation with continuous paths on Tx0

M , the latter is identified with Rn

with a frame u0. To define gradient operators we make a choice of a family of L2 sub-
spaces together with an Hilbert space structure, and so we have a family of continuously
embedded L2 subspaces Hσ which defines the L2 sub-bundle H := ∪σHσ. Firstly we
denote by H the Cameron-Martin space over Rn,

H :=

{
h ∈ C([0, 1];Rn) : h(0) = 0, |h|H1 :=

(∫ 1

0

|ḣs|2ds
) 1

2

<∞
}
,
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Semi-classical Brownian Bridges

and by H0 its subset consisting of h with h(1) = 0. If //·(σ) denotes stochastic parallel
translation along a path σ we denote by Hσ and H0

σ the Bismut tangent spaces:

Hσ = {//·(σ)h : h ∈ H}, H0
σ = {//·(σ)h : h ∈ H,h(1) = 0},

specifying respectively the ‘admissible’ tangent vectors at σ ∈ Cx0
M and vectors at

σ ∈ Cx0,y0
M . These vector spaces are given the inner product inherited from the

Cameron-Martin space H.
There are many questions concerning the path space Cx0

M and its topologically
less trivial subspaces Cx0,x0

M . Some questions are concerned with the topology, some
others are concerned with the ‘Laplacian’ d∗d, where d∗ is the L2 dual of the differential
d, and with the properties of the probability measure defining the L2 spaces. These
include the questions whether a Poincaré inequality (spectral gap) holds or whether
the stronger Logarithmic Sobolev inequality holds for the relevant probability measure
on a particular manifold with a particular Riemannian metric. One programme for the
topology is to follow the Hodge-de Rham theory for smooth compact manifolds which
in particular observes that the L2 de Rham cohomology groups defined by the complex
of exterior differential forms are topological invariants. The fundamental questions are
then concerned with whether there is a complex of L2 exterior differentials on the path
spaces which plays the role of the natural L2 de Rham complex of finite dimensional
manifolds. Observing that these manifolds and their tensor tangent spaces are locally
Banach spaces, it is non-trivial to choose a suitable family of Hilbert sub-spaces [20].
These call for the Cameron-Martin theory of Gaussian measures when the space is Rn

with the trivial Euclidean metric. For non-linear spaces, including Rn with a non-trivial
Riemannian metric, there is no longer a suitable Gaussian measure. These call for
Malliavin calculus in which the integration by parts formula is the basis for all studies
and which implies in particular the closability of the fundamental operator d.

As we mentioned earlier, for an L2 analysis on Cx0,y0M we need a probability measure
which is usually taken to be the probability distribution of the conditioned Brownian
motion. The heat kernel measure, the distribution of a Brownian sheet, offers also an
alternative measure, see [35, 12, 38]. See also [30] for a study of the measure induced
by a conditioned hypoelliptic stochastic process. The Brownian bridge measures are
notoriously difficult to analyse, in particular the Poincaré inequality are known for very
few classes of Riemannian manifolds, [3, 2, 7]. If we suppose that M has a pole y0, by
which we mean that the exponential map expy0

: Ty0
M → M is a diffeomorphism, an-

other probability measure, the probability distribution of the Semi-classical Riemannian
bridge, becomes available to us. For a simply connected Riemannian manifold with
non-positive sectional curvature, every point is a pole. The Semi-classical Riemannian
bridge measures are easier to handle, Poincaré inequalities for these measures could
lead to Poincaré inequalities for the Brownian bridge measures, especially if they are
equivalent.

We denote by ν = νx0,y0
the probability distribution of the Semi-classical Brownian

bridge and by L2(Cx0,y0
M ;R) the corresponding L2 space. A Semi-classical Riemannian

Brownian bridge (x̃s, s ≤ 1) is a time dependent strong Markov process with generator
1
24+∇ log k1−s(·, y0) where,

kt(x0, y0) := (2πt)−
n
2 e−

r2(x0,y0)
2t J−

1
2 (x0),

and J(y) = |detDexp−1
y0

(y) expy0
| is the Jacobian determinant of the exponential map

at y0. Semi-classical Riemannian Brownian bridges (Semi-classical bridge for short)
were introduced by K. D. Elworthy and A. Truman in [14, 15], over thirty years ago, in
their semi-classical analysis for Schrödinger operators and was inspired by Classical
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Mechanics. They also gave a heat kernel formula in terms of the Semi-classical bridge,
which was further explored in [16] and [37]. If pt is the heat kernel, the Brownian
bridge is a Markov process with generator 1

2∆ +∇ log p1−t(·, y0). Let us discuss briefly
the two time dependent potential functions that drives the Brownian motion to the
terminal value. They are close to each other as t → 1, by Varadhan’s asymptotic
relations [41]: (1− t) log p1−t(x, y0) ∼ − 1

2r
2(x, y0). There is also the relation limt→1(1−

t)∇ log p1−t(x, y0) = −γ̇(0) where γ is normal geodesic from y0 to x. The two drift vector
fields ∇ log p1−t(·, y0) and ∇ log k1−t(·, y0) differ by − 1

2∇ log J near the terminal time.
Let us consider the unbounded linear differential operator d on L2(Cx0,y0

M ;R) taking
values in L2(∪σH∗σ) where for v ∈ ∪σH∗σ, its L2 norm is

‖v‖ :=

(∫
Cx0,y0

M

(∣∣//−1
· v·(σ)

∣∣
H

)2
dν(σ)

) 1
2

.

Another norm can be given, taking into accounts of the damping effects of the Ricci
curvature, which will be discussed later. As the distance function from the Semi-classical
bridge to the pole is precisely the n-dimensional Bessel bridge where n = dim(M), the
advantage of the Semi-classical Brownian bridge measure is that it is easier to handle,
which we demonstrate by studying the elementary property of the divergence operator.
Our main result is an integration by parts formula for d. First order Feyman-Kac type
formulas together with estimates for the gradient of the Feynman-Kac kernel using the
Semi-classical bridge process and the damped stochastic parallel translation can be
found in [34].

Denote by OM the space of orthonormal frames over M and {Hi} the canonical
horizontal vector fields on OM associated to an orthonormal basis {ei} of Rn so that
Hi is the horizontal lift of uei. For a tangent vector v on M , we will denote by ṽ the
horizontal lift of v to TOM . Let {Ω,F ,Ft,P} be a filtered probability space on which
is given a family of independent one-dimensional Brownian motions {Bi}. We define
Bt = (B1

t , . . . , B
n
t ). Let u0 ∈ π−1(x) be a frame at x, ut and ũt be the solution to the

stochastic differential equations,

dus =

n∑
i=1

Hi(us) ◦ dBis, dũs =

n∑
i=1

Hi(ũs) ◦ dBis + Ãs(ũs)ds, ũ0 = u0, (1.1)

where ◦ denote Stratonovich integration and As = ∇ log k1−s(·, y0) and Ãs its horizontal
lift to the orthonormal frame bundle. Then x̃s := π(ũs) is a Semi-classical bridge from x0

to y0 in time 1. Let Ricx denote the Ricci curvature at x ∈M , by Ric]x : TxM → TxM we
mean the linear map given by the relation 〈Ric]xu, v〉 = Ricx(u, v).

Denote r = r(·, y0) for simplicity. We will need the following geometric conditions.
Set

Φ =
1

2
J

1
24J− 1

2 =
1

8
|∇logJ |2 − 1

4
∆(logJ). (1.2)

C1: The Ricci curvature is bounded.
C2: |∇Φ| + |∇(log J)| ≤ c(ear

2

+ 1) for some c > 0 and a is an explicit constant to be
given later.
C3: Φ is bounded from below.
C4: For each t, kt and |∇kt| are bounded, |∇Φ| is bounded.

The condition that the Ricci curvature is bounded ensures that the solution to the
canonical SDE is differentiable in the sense of Malliavin calculus. It also implies that
|Wt| is bounded where Wt is the solution to the stochastic damped parallel translation
equation for the Brownian motion (i.e. with the right hand side − 1

2Ric]), and that the
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integration by parts formula holds for the Brownian motion measure. Observe that kt
and |∇kt| are bounded if rJ−

1
2 and J−

1
2∇ log J−

1
2 grow at most exponentially. Here we

do not strive for the best possible conditions, as the optimal conditions will manifest
themselves when Clark-Ocone formula and Poincaré inequalities are studied.

Our main results is the following integration by parts theorem, whose proof is given
in §2. In §3 we discuss the equivalence of the Semi-classical bridge measures and the
Brownian bridge measures, see also [32] for further studies in this direction.

Theorem 1.1. Assume C1–C4 hold. Then for any F,G ∈ Cyl and h ∈ H0 the following
integration by parts formula holds,∫

Cx0,y0M

G(σ)dF (//·(σ)h·) ν(dσ) +

∫
Cx0,y0M

F (σ)dG (//·(σ)h·) ν(dσ)

=E

[
(FG)(x̃·)

∫ 1

0

〈ḣs +
1

2
ũ−1
s Ric](ũshs), dB̃s〉

]
+ E

[
(FG)(x̃·)

∫ 1

0

dΦ(ũshs)ds

]
.

Here dB̃s = dBs + ũ−1
s ∇ log k1−s(x̃s) ds. In particular d : Cyl ⊂ L2(Cx0,y0

M)→ L2(∪σHσ)

is closable and

div(G ũ·h) = dG (ũ·h·)−G
∫ 1

0

〈ḣs +
1

2
ũ−1
s Ric](ũshs), dB̃s〉 −G

∫ 1

0

dΦ(ũshs)ds.

For based path space over a compact manifold, with Brownian motion measure (the
Wiener measure), this was proved in [9], for non-compact manifolds see [18, 20], [22],
[40], and [6]. For pinned manifolds with measure coming from the classical Brownian
bridge measure, this was proved in [10] and [29], for a local formula see [8].

Let us now clarify the definition of d. A common definition for d, which we use, is
to take its initial domain to be Cyl, the set of cylindrical functions of the form F (σ) =

f(σt1 , . . . , σtm) where m ∈ N, 0 < t1 < t2 < · · · < tm < 1, and f is a BC1 function on
the m-fold product space of M , or Cyl0 the subset containing f(σt1 , . . . , σtm) where f is
compactly supported. The H-derivative (Malliavin derivative) of F in the direction of
u·(σ)h· ∈ TσCx0M is:

(dF )(//·(σ)h·) =

m∑
k=1

∂kf
(
//tk(σ)htk

)
,

where ∂kf denotes the derivative of f in its kth component and // denotes parallel
translation and identified with u in the sequel. Denote by G(s, t) and G0(s, t), respectively,
the Green’s functions of d

ds on (0, 1) with suitable Dirichlet conditions: G(s, t) = s ∧ t and
G0(s, t) = s ∧ t− st. Then

(∇F )(σ)(t) =

m∑
k=1

G(tk, t)//tk,t(σ)∇kf(σt1 , σt2 , . . . , σtm),

(∇0F )(σ)(t) =

m∑
k=1

G0(tk, t)//tk,t(σ)∇kf(σt1 , σt2 , . . . , σtm),

where ∇kf denotes the gradient of f in the kth variable. We have

‖∇F‖2 =

m∑
i,j=1

G(tk, tj)〈//tk,tj∇kf,∇jf〉,

‖∇0F‖2 =

m∑
i,j=1

G0(tk, tj)〈//tk,tj∇kf,∇jf〉.
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It is an open problem whether the closure of d with initial domain BC1 agrees wth the
closure of d with initial value the cylindrical functions. This is the Markov uniqueness
problem, studied in [19] where it was only proved that the latter including BC2.

Open Question. It remains to study the validity of Poincaré inequality for ν and use
it to explore whether a Poincaré inequality holds for the Brownian bridge measure. See
§3 for a conjecture.

2 Proof of Theorem 1.1

To clarify the singularities at the terminal time we first prove a lemma concerning
the divergence of a suitable vector field on the path space. Let ũt be as defined by (1.1),

x̃t = π(ũt). Recall that kt(x0, y0) = (2πt)−
n
2 e−

r2(x0,y0)
2t J−

1
2 (x0) and

dB̃s = dBs + ũ−1
s ∇ log k1−s(x̃s, y0) ds.

The reference to y0 will be dropped from time to time for simplicity. Define ricu =

u−1 Ric]u.

Lemma 2.1. Assume stochastic completeness, C2, and h ∈ H0. Then,∫ t
0

〈
ḣs + 1

2 ricũs(hs), dB̃s

〉
converges to

∫ 1

0

〈
ḣs + 1

2 ricũs(hs), dB̃s

〉
as t→ 1. Furthermore,

lim
t→1

E (〈∇ logk1−t(·, y0), ũtht〉)2
= 0,

∫ t
0
〈ḣs + 1

2 ricũs(hs), dB̃s〉 converges in L2(Ω,P) as t approaches 1, and∫ 1

0

〈
ḣs +

1

2
ricũs(hs), dB̃s

〉
=

∫ 1

0

〈
ḣs +

1

2
ricũs(hs), dBs

〉
−
∫ 1

0

dΦ(ũshs)ds

−
∫ 1

0

∇d (logk1−s(x̃s, y0)) (ũsdBs, ũshs).

Proof. The singularities in the integral
∫ 1

0

〈
ḣs + 1

2 ricũs(hs), dB̃s

〉
come from the involve-

ment of ∇ log k1−s(x̃s, y0) and we only need to worry about

αt :=

∫ t

0

〈
ḣs +

1

2
ricũs(hs), ũ

−1
s ∇ log k1−s(x̃s, y0)

〉
ds. (2.1)

To deal with
∫ t

0

〈
ḣs, ũ

−1
s ∇ log k1−s(x̃s, y0)

〉
ds, which involves the derivative of hs, we

use integration by parts. Since D
ds (ushs) = usḣs, by stochastic calculus applied to

d (logk1−s) (ushs), where d denotes spatial differentiation, we see that

〈∇logk1−t(x̃t), ũtht〉

=

∫ t

0

〈
∇logk1−s(x̃s), ũsḣs

〉
ds+

n∑
i=1

∫ t

0

∇d (logk1−s) (ũsei, ũshs)dB
i
s

+

∫ t

0

∇d (logk1−s) (∇logk1−s(x̃s), ũshs)) ds

+

∫ t

0

(
1

2
trace∇2 +

∂

∂s

)
(d (logk1−s(x̃s))) (ũshs) ds,

the first term on the right hand side being αt. By the following identities,

∇logk1−s(x) = −r(x)∇r(x)

1− s
+∇log(J−

1
2 ), ∆r =

n− 1

r
+ 〈∇r,∇ log J〉,
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the following set of formulas are easy to verify.

∆logk1−s = − n

1− s
− r〈∇r,∇ log J〉

1− s
− 1

2
∆(log J),

∂

∂s
log k1−s =

n

2(1− s)
− r2

2(1− s)2
,

|∇ log k1−s|2 =
r2

(1− s)2
+

1

4
|∇ log J |2 +

r〈∇r,∇ log J〉
1− s

.

(2.2)

It follows that(
1

2
∆ +

∂

∂s

)
(logk1−s) +

1

2
|∇ log k1−s|2 =

1

8
|∇logJ |2 − 1

4
∆(logJ) = Φ. (2.3)

Let ∆1 := −(dd∗ + d∗d) denote the Laplace-Beltrami Kodaira operator on differential

1-forms. By the Weitzenböck formula,
(

1
2 trace∇2 + ∂

∂s

)
d =

(
1
2∆1d+ 1

2Ric]d+ ∂
∂sd
)
,

observing that trace∇2 = −∇∗∇, and consequently,(
1

2
trace∇2 +

∂

∂s

)
d (logk1−s(x̃s))

=d

(
1

2
∆ +

∂

∂s

)
(logk1−s(x̃s)) +

1

2
Ric] (dlogk1−s(x̃s))

=− 1

2
d(|∇log k1−s(·)|2) + dΦ +

1

2
Ric] (dlogk1−s(x̃s)) .

Thus

∇d (logk1−s) (∇logk1−s(x̃s), ũshs)) +

(
1

2
trace∇2 +

∂

∂s

)
(d (logk1−s)) (ũshs)

= dΦ(ũshs) +
1

2
Ric (∇logk1−s(x̃s), ũshs) .

Let us return to 〈∇logk1−t(x̃t), ũtht〉:

〈∇logk1−t(x̃t), ũtht〉

=

∫ t

0

〈
∇logk1−s(x̃s), ũsḣs

〉
ds+

n∑
i=1

∫ t

0

∇d (logk1−s) (ũsei, ũshs)dB
i
s

+

∫ t

0

dΦ(ũshs) ds+
1

2

∫ t

0

Ric (∇logk1−s(x̃s), ũshs) ds.

We thus obtain the following relation:

αt = 〈∇logk1−t(x̃t), ũtht〉+
1

2

∫ t

0

D log k1−s(Ric](ũshs))ds

= 〈∇ logk1−t(·), ũtht〉 −
∫ t

0

〈∇Φ, ũshs〉 ds

−
n∑
i=1

∫ t

0

∇d (logk1−s) (ũsei, ũshs) dB
i
s.

We will prove that each of the terms on the right hand side converges as t approaches 1.
Furthermore 〈∇ logk1−t(·), ũtht〉 converges to zero. We first observe that there exists a
constant C such that E[r(x̃t)

p] ≤ Ct
p
2 . Indeed rt := r(x̃t, y0) satisfies

rt − r0 =βt +

∫ t

0

1

2
∆r(x̃s)ds−

∫ t

0

r(x̃s)

1− s
ds− 1

2

∫ t

0

〈∇r,∇ log J〉x̃s ds
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=βt +

∫ t

0

n− 1

2rs
ds−

∫ t

0

rs
1− s

ds,

where βt is a one dimensional Brownian motion and we have used the fact that ∆r =
n−1
r + 〈∇r,∇ log J〉. Thus rs is a Bessel bridge starting at r(x0, y0) and ending at 0

at time 1. In particular limt↑1 x̃t = y0 and (rt, t ≤ 1) is a continuous semi-martingale.
Furthermore for any p > 1, E[r(x̃t)

p] ≤ Ct
p
2 . If Kt denotes the standard Gaussian kernel

on Rn then for z1, z2 ∈ Rn with |z1 − z2| = r(x0, y0),

E[r(x̃t, y0)p] =
1

K1(z1, z2)

∫
Rn
|z − z2|pKt(z1, z)K1−t(z, z2)dz ≤ C|z1 − z2|

p
2 .

We also know that E[e2ar2
t ] <∞ for some a and t ≤ 1, invoking condition C2.

We show below that (2.1) has a limit as t→ 1. Firstly, since |dΦ| ≤ cear2

,

lim
t→1

E

[∫ 1

t

〈∇Φ, ũshs〉 ds
]2

= 0.

We work with the first term on the right hand side. By the definition of k1−t,

〈∇ logk1−t(·, y0), ũtht〉 =
r(x̃t)〈∇r(x̃t), ũtht〉

1− t
+ 〈∇logJ

− 1
2

x̃t
, ũtht〉.

Since |d(logJ
− 1

2
x )| ≤ cear(x)2

, limt→1〈∇logJ
− 1

2

x̃t
, ũtht〉 converges in L2(Ω). Thus

lim
t↑1

E
∣∣∣〈∇logJ−

1
2 (x̃t), ũtht〉

∣∣∣2 = 0, (2.4)

using the fact that ht → 0. Also, by the symmetry of the Euclidean bridge,
E[r2(x̃t, y0)] ≤ C (t ∧ (1− t)) and hence

E

∣∣∣∣r(x̃t) 〈∇r(x̃t), ũtht〉1− t

∣∣∣∣2 ≤ C |ht|21− t
.

Since h1 = 0, and h ∈ H,

|ht|2

1− t
=

1

1− t

∣∣∣∣∫ 1

t

ḣsdr

∣∣∣∣2 ≤ ∫ 1

t

|ḣs|2ds→ 0,

as t→ 1, using the fact that h ∈ H. We conclude that

lim
t→1

E [〈∇ logk1−t(·), ũtht〉]2 = 0.

For the final term we observe that

∇d (logk1−s) (ũsei, ũshs) = −∇r(ũsei)∇r(ũshs)
1− s

− r∇dr(ũsei, ũshs)
1− s

.

We further observe that the Frobenius norm of the Hessian of the distance function
satisfies:

‖∇dr‖F :=

 n∑
i,j=1

〈∇Ei∂r,Ej〉

 1
2

≤ 1√
n− 1

∆r ≤ 1√
n− 1

(
n− 1

r
+ 〈∇r,∇ log J〉

)
.

Since |∇ log J | ≤ cear2

, for some constant C, which may depend on n,

E

[
n∑
i=1

∫ t

0

∇d (logk1−s) (ũsei, ũshs) dB
i
s

]2

≤ C
∫ t

0

|hs|2

(1− s)2
ds ≤ C |ht|

2

1− t
+ 4C

∫ t

0

|ḣs|2ds.
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This follows from the following standard computation,∫ t

0

|hs|2

(1− s)2
ds =

|ht|2

1− t
−
∫ t

0

〈hs, 2ḣs〉
1− s

ds ≤ |ht|
2

1− t
+ 2

∫ t

0

|ḣs|2ds+
1

2

∫ t

0

|hs|2

(1− s)2
ds. (2.5)

This concludes the proof of the convergence of the integral. The required identity follows
from the formula, given earlier, for αt.

Let ut be the solution to the equation dut =
∑n
i=1Hi(ut) ◦ dBit with initial value

u0 ∈ π−1(x0). Then xt := π(ut) is a Brownian motion on M starting at x0 and the
integration by parts formula holds on L2(Cx0M ;µ). For any F,G ∈ Cyl, and h ∈ H(Tx0M)

with h(0) = 0, d is the differential on L2(Cx0M) with respect to the Brownian motion
measure:

E[dF (u·h·)G] = −E[FdG(u·h·)] + E

[
FG

∫ 1

0

〈ḣs +
1

2
u−1
s Ric](ushs), dBs〉

]
. (2.6)

If M is compact, see e.g. B. Driver [9]. This is also known to hold if the Ricci curvature
is bounded from below. The divergence of u·h· is

div(u·h·) =

∫ 1

0

〈ḣs +
1

2
u−1
s Ric]us(ushs), dBs〉.

The following lemma completes the proof of Theorem 1.1.

Lemma 2.2. Suppose stochastic completeness, C2–C4, and suppose that the integration
by parts formula (2.6) holds for the Brownian motion measure.

Proof. Let h ∈ H0. Our plan is to pass the integration on the path space to the pinned
path space by a Girsanov transform. We first observe that if F ∈ Dom(d), adapted to Gt
where t < 1, then

E[dF (ũh·)] = E

[
dF (uh·)

k1−t(xt)

k1(x0)
e−

∫ t
0

Φ(xs)ds

]
.

In fact, the formula for the probability density between the original probability measure
on Gt and the one for which Bt −

∫ t
0
u−1
s ∇logk1−s(xs) ds is a Brownian motion, is:

Mt = exp

[
m∑
i=1

∫ t

0

〈∇logk1−s(xs, y0), usei〉dBis −
1

2

∫ t

0

|∇logk1−s(xs, y0)|2ds

]
.

By an application of Itô’s formula, and identities (2.2–2.3) in the proof of Lemma 2.1,

Mt =
k1−t(xt, y0)

k1(x0, y0)
exp

(
−
∫ t

0

Φ(xs)ds

)
.

Since the Brownian motion and the Semi-classical bridge are conservative, then (Ms, s ≤
t) is a martingale for any t < 1.

Since Φ is bounded from below and has bounded derivative, e−
∫ t
0

Φ(xs)ds can be
approximated by smooth cylindrical functions in the domain of d. Next we observe that

∇k1−s(·, y0) = 2π(1− s)−n2 e−
r2

2(1−s) J−
1
2

(
− r∇r

1− s
+∇logJ−

1
2

)
,

is bounded and smooth, so k1−t(xt,y0)
k1(x0,y0) e

−
∫ t
0

Φ(xs)ds belongs to the domain of d. Conse-
quently, for F,G measurable with respect to the canonical filtration up to time t < 1, we

ECP 22 (2017), paper 38.
Page 8/15

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP69
http://www.imstat.org/ecp/


Semi-classical Brownian Bridges

apply Girsanov transform to the equation dut = H(ut) ◦ dBt and the integration by parts
formula (2.6) to see

E[G(x̃·) dF (ũ·h·)] = E [dF (u·h·)G(x·)Mt]

= E [(FG)(x·)Mt div(u·h·)]−E [(FG)(x·) dMt(u·h·)]−E[F (x·) dG(u·h·)Mt]

=E

[
(FG)(x·)Mt

∫ t

0

〈
ḣs +

1

2
u−1
s Ric]us(hs), dBs

〉]
−E[F (x·)dG(u·h·)Mt]

−E

[
(FG)(x·)Mt d

(
logk1−t(xt, y0)−

∫ t

0

Φ(xs)ds

)
(u·h·)

]
.

Using Girsanov transform again, we shift from (us, Bs) to (ũs, B̃s) and obtain that

E[G(x·)dF (ũ·h·] =E

[
(FG)(x̃·)

∫ t

0

〈ḣs +
1

2
ũ−1
s Ric]ũs(hs), dB̃s〉

]
−E[F (x̃·) dG(ũ·h·)]

−E

[
(FG)(x̃·)〈∇logk1−t(x̃t, y0), ũtht〉 − (FG)(x̃·)

∫ t

0

dΦ(ushs)ds

]
.

We take t ↑ 1, by (2.4) and Lemma 2.1, limt↑1〈∇logk1−t(x̃t, y0), ũtht〉 = 0 in L2, hence

E[G(x̃·)dF (ũ·h·)] + E[F (x̃·)dG(ũ·h·)]

=E

[
(FG)(x̃·)

∫ 1

0

〈
ḣs +

1

2
ũ−1
s Ric](ũshs), dB̃s

〉]
+ E

[
(FG)(x̃·)

(∫ 1

0

dΦ(ũshs)ds

)]
.

By a limiting procedure we see that the identity holds for G = 1. In particular we
conclude that d is a closable operator. Furthermore, Dom(div) contains Gũh where
G ∈ Cyl and

div(ũ·h·) = −
∫ 1

0

〈
ḣs +

1

2
ũ−1
s Ric](ũshs), dB̃s

〉
−
(∫ 1

0

dΦ(ũshs)ds

)
.

The conclusion of Theorem 1.1 follows. Observe that under condition C1, the integration
by parts formula holds for the Brownian motion measure. This completes the proof of
Lemma 2.2.

2.1 Comment

Let us consider briefly for which manifolds our assumptions on Φ hold. Denote by
∂r the radial curvature which, evaluated at x ∈ M , is the unit vector field tangent to
the normal geodesic between x and the pole pointing away from the pole. The Hessian
of r describes the change of the Riemannian tensor in the radial directions, while the
change of the volume form in the radial direction is associated to the Laplacian of r.
More precisely we have:

L∂rg = 2 Hess(r), L∂rdvol = ∆rdvol, ∆r =
n− 1

r
+ dr(∇ log J),

indicating how the Jacobian determinant adjusts the speed of the convergence so that
the Semi-classical bridge behaves exactly like the Euclidean Brownian bridge.

For the Hyperbolic space, Φ is bounded from the formula below,

Φ = −1

8
(n− 1)2c2 +

1

8
(n− 1)(n− 3)

(
1

r2
− c2 sinh−2(rc)

)
.

If (N, o) is a model space, its Riemannian metric in the geodesic polar coordinates

takes the form g = dr2 + f2(r)dθ2, then on N \ {o}, Hess(r) = f ′(r)
f(r) (g − dr ⊗ dr). For
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the hyperbolic space of constant sectional curvature −c2, the Riemannian metric is
g = dr2+( 1

c sinh(cr))2dθ2. Also Hess(r2) = 2dr⊗dr+2cr coth(cr)(g−dr⊗dr). Furthermore

its Jacobian determinant is J = ( sinh(cr)
cr )(n−1).

For manifolds of non-constant curvature we may use the Hessian comparison theorem.
The radial curvature at a point x ∈ M is the sectional curvature in a plane at TxM
containing the radial vector field ∂r. Let us recall a comparison theorem from [25, R.
E. Greene and H. Wu]: let (N, o) be another Riemannian manifolds with a pole which
we denote by o. Suppose that (γ(t), t ∈ [0, b]) is a normal geodesic in M with the initial
point y0 and (γ2(t) : t ∈ [0, b]) a normal geodesic in N from o. We suppose that the radial
curvature at γ2(t) is greater than or equal to the radial curvatures at γ(t). By this we
mean the curvature operator R on M and R2 on N satisfy the relation 〈R(w, γ̇)w, γ̇〉 ≤
〈R2(w2, γ̇2)w2, γ̇2〉 for any unit vectors w ∈ STγ(t)M and w2 ∈ STγ2(t)N , satisfying the
relation 〈w, ∂r〉 = 〈w2, ∂r〉 where ∂r denotes the radial vector fields for both manifolds.
Then for any nondecreasing function α : R+ → R, Hess(α ◦ r2)(γ2(t)) ≤ Hess(α ◦ r)(γ(t)),
where r2 is the Riemannian distance function on N from o. For a precise Hessian
formulas and Hessian estimates for heat kernels on manifolds with a pole please see
[31, 1].

3 Conclusion and further questions

We have proved an integration by parts formula on L2(Cx0,y0
, ν) where ν is the

probability measure induced by the Semi-classical bridge. A probability measure µ on
the path space is said to satisfy the Poincaré inequality if there exists a constant c such
that ∫ (

F −
∫
Fdµ

)2

dµ ≤ c
∫

(|∇F |H)
2
dµ

for all F ∈ Dom(d) and the inner product on H can be defined either by stochastic
parallel translation or by damped stochastic parallel translation.

Conjecture. A Poincaré inequality holds for the Semi-classical bridge measure on a class
of Cartan-Hadamard manifolds. Of course it is reasonable to assume growth conditions
on J , J−1 and suitable conditions on the range of the sectional curvature. Observe that
the closure of d depends on the measure used.

We remark that, for the Brownian bridge measure the question whether the Poincaré
inequality holds is not solved satisfactorily. The spectral gap inequality is known to hold
for Gaussian measure on Rn by L. Gross [26], who also made a conjecture on its validity.
The spectral gap inequality has been proven to hold on the hyperbolic space [7], for a
class of radially symmetric Riemannian manifolds in [2] where asymptotics estimates
for the spectral gap are also given. The latter is based on estimates in [1]. See also
[3, 23, 5, 21, 17]. A counter example exists [13], see also [28, 24].

It is interesting to investigate the equivalence of the Semi-classical bridge, ν, and the
Brownian bridge measure, ν1, which might lead to new results /method on the spectral
gap problem for the Brownian bridge measure. For the rest of this section we assume
that the standard SDEs for the Brownian bridge and for the Semi-classical bridge are
conservative. Let (ũt) be defined as in (1.1), which is conservative, and let x̃s = π(ũs),
the Semi-classical bridge with initial value x0.

Remark 3.1. Since the Brownian bridges and the Semi-classical bridges are globally
defined, then for any t < 1 the Radon Nikodym derivative is: dν1

dν = eNt−
1
2 〈N〉t where

Nt =

∫ t

0

〈∇ log p1−s(x̃s, y0)−∇ log k1−s(x̃s, y0), ũsdBs〉 .

Observe that
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(a) ν1 is absolutely continuous w.r.t. ν on [0, 1] if and only if Gt := eNt−
1
2 〈N〉t converges

in L1 as t→ 1.

(b) Suppose that Gt → Ḡ in L1(Ω), in which case the convergence holds also a.s.. If
furthermore Ḡ > 0 a.s., then the two measures are equivalent.

If {Nt − 1
2 〈N〉t, t ∈ [0, 1)} is L1 bounded, it converges almost surely and so does Gt. If

furthermore limt→1(Nt(ω)− 1
2 〈N〉t(ω)) 6= −∞, then Ḡ(ω) > 0. If furthermore Nt − 1

2 〈N〉t
converges in L1 then its limit is finite almost surely and Ḡ > 0. However, the convergence
of Gt in L1 is a difficult question, which cannot be casually replaced by “almost sure
convergence plus Ḡ ∈ L1”. The standard example is the 1-dimensional Brownian motion
stopped when it hits 1.

For the invertibility of dν2

dν1
, where ν1, ν2 are measures on a topological group, quasi-

invariant under the action of a subgroup whose action is ergodic for ν1, see [4]. The
authors used this to prove the equivalence of the heat kernel measure, ν2, and the
Brownian bridge measure, ν1, on a loop space over a simply connected compact Lie
group. The quasi-invariance of ν1, ν2 were proved in [36] and [10] respectively, the
ergodicity of ν1 in [27], and the fact that ν2 < ν1 in [11]. In the latter a characterisation
for the heat kernel measure by a potential from [5] is a key. We, on the other hand,
will continue to follow the outline in the early remark. For a Riemannian metric of the
form dr2 + f(r)2dθ2 on Rn, suppose that ln J has bounded derivatives of all orders, and
some other conditions, Aida [1] proved that sup |∇ log pt(x, y0)− 1

t exp−1
y0

(x)| is uniformly

bounded on [0, 1) ×M , c.f. [25]. Observe that ∇ log k1−t(x, y0) = −∇r
2

2t −
1
2∇ log J and

hence the assumptions below are reasonable.

Lemma 3.2. Let C1, C2, C3, and δ < 1 be positive constants s.t. C1 + C2

1−δ ≤
1
4 . Suppose

that |∇ log p1−t(x,y0)
k1−t(x,y0) |

2 ≤ C1r
2(x, y0) + C2

r2(x,y0)
(1−t)δ + C3 for all t < 1. Then the Brownian

bridge measure and the Semi-classical bridge measure are equivalent.

Proof. Since r(x̃s, y0) is the n-dimensional Bessel bridge, Eec sups∈[0,1] r
2(x̃s,y0) is finite

for any c < 1
8 . We simply use the standard representation of the Brownian bridge by

a Brownian motion (Bt) from which: r(x̃s, y0) ≤ (1 − s)r(x0, y0) + |Bs − sB1|. Since

〈N,N〉t =
∣∣∣∇ log p1−s(·,y0)

k1−s(·,y0) (x̃s)
∣∣∣2, the following quantity is finite:

sup
t<1

Ee
1
2 〈N,N〉t ≤ eC3Ee( 1

2C1+ 1
2
C2
1−δ ) sups∈[0,1] r

2(x̃s,y0).

By Novikov’s criterion, Gt converges in L1. Since {Nt− 1
2 〈N,N〉t, t ∈ [0, 1)} is L2 bounded,

it converges in L2 and so has a finite limit. Thus limt→1Gt 6= 0.

By a theorem in [15], the elementary formula

pt(x0, y0) = kt(x0, y0)Ee
∫ t
0

Φ(x̃s)ds

holds if Φ is bounded from below and more generally if E
[
e
∫ t
0

Φ(x̃s)ds
]
< ∞, [31]. The

latter holds if Φ(x) ≤ C1 + C2r
2(x, y0) where C2 <

1
8 . Let W̃s denote the solution to the

equation
D

dt
W̃t = −1

2
Ric](W̃t)−

1

2
Hess(log J)(W̃t)−

Hess r2(·, y0)(W̃t)

2(1− t)
with initial value the identity. Set

α(t, x) = sup
|v|=1,v∈TxM

{
−Ricx(v, v)−Hess(log J)(v, v)− Hess r2(·, y0)(v, v)

(1− t)

}
,
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then |W̃t| is controlled by lower bounds on α(t, x). For the hyperbolic space, the Hessian
of the distance square is given by the explicit formula Hess(r2) = 2dr⊗dr+2cr coth(cr)(g−
dr ⊗ dr). Suppose that we may differentiate logEe

∫ t
0

Φ(x̃s)ds with respect to the initial
point, then

d logEe
∫ t
0

Φ(x̃s)ds(v) =
E
[
e
∫ t
0

Φ(x̃s)ds
∫ t

0
dΦ(W̃s(v))]ds

]
Ee

∫ t
0

Φ(x̃s)ds
. (3.1)

See [1] for this. Suppose that for each t, α(t, ·) is bounded from below we expect that

E
[
df(W̃t(v0))

]
= d(Ef(x̃t))(v0), x0 ∈M, v0 ∈ Tx0M,

for every function f ∈ BC1, see e.g. [33, 31]. If Φ ∈ BC1 then equation (3.1) should
follow by discrete time approximation and by induction.

Proposition 3.3. Suppose that Φ is bounded, then pt(x0,y0)
kt(x0,y0) is bounded. Suppose that

furthermore (3.1) holds. Then for any v ∈ Tx0M , where ∇ denotes differentiation w.r.t.
the first space variable,∣∣∣∣∇ log

p1−t(x0, y0)

k1−t(x0, y0)

∣∣∣∣2 ≤ c ∣∣∣∣E∫ t

0

dΦ(W̃s(v))ds

∣∣∣∣2 ≤ cE∫ 1−t

0

e
∫ s
0
α(r,x̃r)dr|∇Φ(x̃s)|2ds.

If there exist a constant C such that |∇Φ| ≤ C and sup(t,x)∈[0,1)×M α(t, x) ≤ C (e.g. if
r is convex and if Ric + Hess(log J) ≥ −C) then the Brownian bridge measure and the
Semi-classical bridge measure are equivalent.

Proof. By the assumption, p1−t(x0, y0) = k1−t(x0, y0)E
[
e
∫ 1−t
0

Φ(x̃s)ds
]
, the first statement

follows trivially from the estimate 1

Ee
∫ 1−t
0 Φ(x̃s)ds

≤ Ee−
∫ 1−t
0

Φ(x̃s)ds. We differentiate the

elementary formula and conclude that there exists a constant c such that for any v ∈
Tx0

M with |v| = 1,

∣∣∣∣∇ log
p1−t(x0, y0)

k1−t(x0, y0)

∣∣∣∣2 =

∣∣∣∣∣∣
E
[
e
∫ 1−t
0

Φ(x̃s)ds
∫ 1−t

0
dΦ(W̃s(v))]ds

]
Ee

∫ 1−t
0

Φ(F̃s(x))ds

∣∣∣∣∣∣
2

≤ cE
∣∣∣∣∫ 1−t

0

dΦ(W̃s(v))ds

∣∣∣∣2 .
This follows from Cauchy-Schwartz’s inequality and and the boundedness of |Φ|. Since

d

dt
|W̃t|2 = −(Ric + Hess log J)(W̃t, W̃t)−

Hess r2(W̃t, W̃t)

1− t
,

we see that |W̃t|2 ≤ e
∫ t
0
α(s,x̃s)ds and

∣∣∣∇ log p1−t(x0,y0)
k1−t(x0,y0)

∣∣∣2 ≤ cE [∫ 1−t
0

e
∫ s
0
α(r,x̃r)dr|∇Φ(x̃s)|2ds

]
.

The rest of the conclusion follows from Lemma 3.2.

Finally we discuss the equivalence of the radial parts of the two bridge processes,
especially on radially symmetric manifolds. Set

∂r log J = 〈∇r(·, y0),∇ log J〉, ∂r∇ log p1−t(·, y0) = 〈∇ log p1−t(·, y0),∇r(·, y0)〉.

Proposition 3.4. Suppose that ∂r log J and ∂r∇ log p1−t(·, y0) are functions of r(·, y0).
Let δ < 1

2 and c1, c2, c3 be positive constants such that c1 + c2
1−2δ ≤

1
4 . Suppose that∣∣∣∣r(·, y0)

1− t
+ ∂r∇ log p1−t(·, y0)− 1

2
∂r log J

∣∣∣∣2 ≤ c1r2(·, y0) + c2
r(·, y0)

(1− t)δ
+ c3.

Then the radial parts of the Semi-classical bridge and that of the Brownian bridge are
equivalent.
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Proof. The radial process, r̃t = (x̃t, y0), of the Semi-classical bridge satisfies the SDE

dr̃t = dβt +
1

2

n− 1

r̃t
dt− r̃t

1− t
dt,

where βt is a 1-dimensional Brownian motion. Since ∆r = n−1
r − ∇ log J , the radial

process of the Brownian bridge satisfies

drt = dβt +
1

2

n− 1

rt
dt− 1

2
∂r∇ log Jdt+ ∂r log p1−t(·, y0)dt.

Thus (rs) is absolutely continuous with respect to (r̃s) on [0, t] where t < 1 with Radon
Nikodym derivative the exponential martingale of

Nt =

∫ t

0

(
−1

2
∂r log J + ∂r log p1−s(·, y0) +

r̃s
1− s

)
dβs.

Observe that

〈N,N〉t =

∫ t

0

∣∣∣∣−1

2
∂r log J + ∂r log p1−s(·, y0) +

r̃s
1− s

∣∣∣∣2 ds
≤
∫ 1

0

(
c1r̃

2
s + c2

r̃s
(1− s)δ

+ c3

)
ds.

Then by the Cauchy-Schwartz inequality applied to the middle term, the exponential
integrability of the Bessel bridge, and Novikov’s criterion, both eNt−

1
2 〈N,N〉t and (Nt)

2

are uniformly integrable. In particular the two measures are equivalent.

We conclude the discussion on the equivalence problem with the following obser-
vation: the probability distribution of the equation dzt = dBt − c zt

1−tdt, where c 6= 1, is
singular with respect to that of the classical Brownian bridge measure on [0, 1]. This
and a comparison of their respective Cameron-Martin spaces are proved in [32], where
generalised Brownian bridges are studied.
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