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1 Introduction and statement of results

In this paper, we present a new and perhaps simpler proof of a fundamental result
concerning cycles of random permutations which gives some intuition for the connection
between Touchard polynomials and the Poisson distribution. We also introduce a rather
novel permutation statistic and study its distribution. This quantity, indexed by m, is
the number of sets of size m fixed by the permutation. This leads to a new and simpler
derivation of the exponential generating function for the number of covers of certain
multisets.

We begin by recalling some basic facts concerning Bell numbers and Touchard
polynomials, and their connection to Poisson distributions. The facts noted below
without proof can be found in many books on combinatorics; for example, in [12], [14].
The Bell number Bn denotes the number of partitions of a set of n distinct elements.
Elementary combinatorial reasoning yields the recursive formula

Bn+1 =

n∑
k=0

(
n

k

)
Bk, n ≥ 0, (1.1)

where B0 = 1. Let

EB(x) =

∞∑
n=0

Bn
n!
xn, (1.2)
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Permutation fixing set, Touchard polynomial, cover of multiset

denote the exponential moment generating function of {Bn}∞n=0. Using (1.1) it is easy to
show that E′B(x) = exEB(x), from which it follows that

EB(x) = ee
x−1. (1.3)

A random variable X has the Poisson distribution Pois(λ), λ > 0, if P (X = k) =

e−λ λ
k

k! , k = 0, 1, . . . . Let Mλ(t) = EetX denote the moment generating function of X, and

let µn;λ = EXn denote the nth moment of X. Since M (n)
λ (0) = µn;λ, we have

Mλ(t) =

∞∑
n=0

µn;λ
n!

tn. (1.4)

However a direct calculation gives

M(t) =

∞∑
k=0

etke−λ
λk

k!
= eλ(e

t−1). (1.5)

From (1.2)-(1.5), it follows that the nth moment µn;1 of a Pois(1)-distributed random
variable satisfies

µn;1 = Bn. (1.6)

Since

µn;1 = EXn =

∞∑
k=0

(e−1
1

k!
)kn,

we conclude that

Bn =
1

e

∞∑
k=0

kn

k!
, (1.7)

which is known as Dobínski’s formula.
The Stirling number of the second kind

{
n
k

}
denotes the number of partitions of a set

of n distinct elements into k nonempty sets. We will need the formula

xn =

n∑
j=0

{
n

j

}
(x)j , (1.8)

where (x)j = x(x−1) · · · (x− j+ 1) is the falling factorial, and one defines (x)0 =
{
0
0

}
= 1.

It is enough to prove this for positive integers x, in which case xn is the number of
functions f : [n]→ X, where |X| = x. We now count such functions in another way. For
each j ∈ [x], consider all those functions whose range contains exactly j elements. The
inverse images of these elements give a partition of [n] into j nonempty sets, {Bi}ji=1.
We can choose the particular j elements in

(
x
j

)
ways, and we can order the sets {Bi, }ji=1

in j! ways. Thus there are
{
n
j

}(
x
j

)
j! =

{
n
j

}
(x)j such functions.

Now using (1.8) and the fact that (k)j = 0 for j > k, we can write the nth moment
µn;λ of a Pois(λ)-distributed random variable as

µn;λ =

∞∑
k=0

(e−λ
λk

k!
)kn =

∞∑
k=0

(e−λ
λk

k!
)
( n∑
j=0

{
n

j

}
(k)j

)
=

∞∑
k=0

(e−λ
λk

k!
)
( k∧n∑
j=0

{
n

j

}
(k)j

)
= e−λ

n∑
j=0

{
n

j

} ∞∑
k=j

λk
(k)j
k!

=

n∑
j=0

{
n

j

}
λj .

(1.9)
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The Touchard polynomials Tn(x), n ≥ 0, are defined by

Tn(x) =

n∑
j=0

{
n

j

}
xj .

Thus, (1.9) gives the formula
µn;λ = Tn(λ). (1.10)

Since

µn;λ =

∞∑
k=0

(e−λ
λk

k!
)kn,

we conclude from (1.10) that

Tn(x) = e−x
∞∑
k=0

kn

k!
xk. (1.11)

Since Tn(1) =
∑n
j=0

{
n
j

}
= Bn, the Dobínski formula (1.7) is contained in (1.11).

Let Sn denote the set of permutations of [n] =: {1, . . . , n}. For σ ∈ Sn, let C(n)
m (σ)

denote the number of cycles of length m in σ. Let Pn denote the uniform probability
measure on Sn. We can now think of σ ∈ Sn as random, and of C(n)

m as a random variable.
Using generating function techniques and/or inclusion-exclusion formulas, one can show
that under Pn, the distribution of the random variable C(n)

m converges weakly to Z 1
m

,

where Z 1
m

has the Pois( 1
m )-distribution; equivalently;

lim
n→∞

Pn(C(n)
m = j) = e−

1
m

1

mjj!
, j = 0, 1 . . . . (1.12)

More generally, we consider the Ewens sampling distributions, Pn;θ, θ > 0, on Sn
as follows. Let N (n)(σ) denote the number of cycles in the permutation σ ∈ Sn, and let
s(n, k) = |{σ ∈ Sn : N (n)(σ) = k}| denote the number of permutations in Sn with k cycles.
It is known that the polynomial

∑n
k=1 s(n, k)θk is equal to the rising factorial θ(n), defined

by θ(n) = θ(θ + 1) · · · (θ + n− 1). For θ > 0, define the probability measure Pn;θ on Sn by

Pn;θ({σ}) =
θN

(n)(σ)

θ(n)
.

Of course, Pn;1 reduces to the uniform measure Pn. The following theorem is well-known.

Theorem C. Under Pn,θ, the random vector (C
(n)
1 , C

(n)
2 , · · · , C(n)

m , . . .) converges weakly
to (Zθ, Z θ

2
, · · · , Z θ

m
, · · · ), where the random variables {Z θ

m
}∞m=1 are independent, and

Z θ
m

has the Pois( θm )-distribution:

(C
(n)
1 , C

(n)
2 , · · ·C(n)

m , . . .)
w⇒ (Zθ, Z θ

2
, · · · , Z θ

m
· · · ); (1.13)

equivalently,

lim
n→∞

Pn;θ(C
(n)
1 = j1, C

(n)
2 = j2, . . . , C

(n)
m = jm) =

m∏
k=1

e−
θ
k

( θk )jk

jk!
,

for all m ≥ 1 and j1, . . . jm ∈ Z+.

(1.14)

Theorem C can be proved using moment generating functions; see for example, [1],
[11]. We will use the method of moments to give a new and perhaps simpler proof of
Theorem C. More significantly, it which will give intuition for (1.10), or equivalently, for
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(1.11); that is for the connection between the moments of Poisson random variables and
Touchard polynomials. The key to this connection comes by representing the random
variables C(n)

m as sums of indicator random variables. We note that, at least in the case
of uniformly distributed permutations, one can ostensibly find a different proof by the
moment method in the literature [2], but that proof seems more complicated than ours,
and more importantly, doesn’t provide the above-noted intuition. The paper [2] gives a
formula from [13] on factorial moments, and then states that with this formula the proof
follows by the moment method. However, the derivation of that formula in [13] is not
explicit and seems more complicated than our proof.

We now consider a permutation statistic that hasn’t been studied much. (Indeed, it
was only after completing the first version of this paper that we were directed to any
papers on this subject.) For σ ∈ Sn and A ⊂ [n], define σ(A) = {σj : j ∈ A}. If σ(A) = A,

we will say that σ fixes A. Let F (n)
m (σ) denote the number of sets of cardinality m that

are fixed by σ. (Note that F (n)
1 (σ) = C

(n)
1 (σ), the number of fixed points of σ.) A little

thought reveals that

F (n)
m (ω) =

∑
(l1,...,lm):

∑m
j=1

jlj=m

lj≤C(n)
j ,j∈[m]

m∏
j=1

(
C

(n)
j (ω)

lj

)
. (1.15)

For example, if σ ∈ S9 is written in cycle notation as σ = (379)(24)(16)(5)(8), then

F (9)
4 (ω) = 5, with the sets A ⊂ [9] for which |A| = 4 and σ(A) = A being {3, 5, 7, 9},
{3, 7, 8, 9}, {1, 2, 4, 6}, {2, 4, 5, 8}, {1, 5, 6, 8}.

We consider the uniform measure Pn = Pn;1 on Sn. From Theorem C and (1.15)

it follows that the random variable F (n)
m under Pn converges weakly as n → ∞ to the

random variable

Fm =:
∑

(l1,...,lm):
∑m
j=1

jlj=m

lj≤Z 1
j
,j∈[m]

m∏
j=1

(
Z 1
j

lj

)
, (1.16)

where {Z 1
j
}mj=1 are independent and Z 1

j
has the Pois( 1

j )-distribution.

Remark. Note that F1 = Z1, F2 =
(
Z1

2

)
+ Z 1

2
, F3 = Z 1

3
+ Z 1

2
Z1 +

(
Z1

3

)
.

For k,m ∈ N, consider the multiset consisting of m copies of the set [k]. A collection
{Γl}rl=1 such that each Γl is a nonempty subset of [k], and such that each j ∈ [k] appears
in exactly m from among the r sets {Γl}rl=1, is called an m-cover of [k] of order r. Denote
the total number of m covers of [k], regardless of order, by vk;m. Note that when m = 1,
we have vk;1 = Bk, the kth Bell number, denoting the number of partitions of a set of k
elements. Also, it’s very easy to see that v1;m = 1 and v2,m = m+ 1.

By calculating directly the moments of F (n)
m , we will prove the following theorem.

Theorem 1.1. For m, k ∈ N,
EFkm = vk;m.

In particular, EFm = 1 and EF2
m = m+ 1; thus, Var(Fm) = m.

Remark. It is natural to suspect that Fm converges weakly to 0 as m → ∞; that is,
limm→∞ P (Fm ≥ 1) = 0. This is in fact a hard problem. In [9] it was shown that

Pn(F (n)
m ) ≤ Am−

1
100 , for 1 ≤ m ≤ n

2 and n ≥ 2. Thus indeed, Fm converges weakly

to 0 as m → ∞. A lower bound on P (Fm ≥ 1) of the form A logm
m was obtained in [6].

These results were dramatically improved in [10] where it was shown that P (Fm ≥ 1) =

m−δ+o(1) as m → ∞, where δ = 1 − 1+log log 2
log 2 ≈ 0.08607. And very recently, in [8], this

latter bound has been refined to A1m
−δ(1+logm)−

3
2 ≤ P (Fm ≥ 1) ≤ A2m

−δ(1+logm)−
3
2 .
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Let

Vm(x) =

∞∑
k=1

vk;m
k!

xk

denote the exponential generating function of the sequence {vk;m}∞k=1. Of course, by
Theorem 1.1 Vm is also the moment generating function of the random variable Fm:
Vm(x) = EexFm . Using (1.16) and Theorem 1.1, we will give an almost immediate proof
of the following representation theorem for Vm(x). We use the notation [zm]P (z) = am,
where P (z) =

∑∞
m=0 amz

m.

Theorem 1.2.

Vm(x) = EexFm = e−
∑m
j=1

1
j

∑
u1,...,um≥0

( m∏
j=1

j−uj

uj !

)
exγm(u), (1.17)

where

γm(u) = [zm]

m∏
j=1

(1 + zj)uj .

Remark. When m = 2, 3, the above formula reduces to

V2(x) = e−
3
2 e

1
2 e
x
∞∑
r=0

e(
r
2)x

r!
;

V3(x) = e−
11
6 e

ex

3

∞∑
r=0

e(
r
3)x+

1
2 e
rx

r!
.

The formula for m = 2 was proved by Comtets [4] and the formula for m = 3 was proved
by Bender [3]. The case of general m was proved by Devitt and Jackson [5]. They
also prove that there exists a number c such that the extraction of the coefficient vk;m
from the exponential generating function Vm(x) can be done in no more than ckm log k

arithmetic operations.
In section 2 we will give our new proof of Theorem C via the method of moments. In

section 3 we prove Theorems 1.1 and 1.2.

2 A proof of Theorem C via the method of moments

If a sequence of nonnegative random variables {Xn}∞n=1 satisfies supn≥1EXn <∞,
then the sequence is tight, that is, pre-compact with respect to weak convergence. Let X
be distributed as one of the accumulation points. If for some k ∈ N, limn→∞EXk

n exists
and equals µk, and supn≥1EX

k+1
n <∞, then the {Xk

n}∞n=1 are uniformly integrable, and
thus EXk = µk. Thus, if

µk =: lim
n→∞

EXk
n exists for all k ∈ N, (2.1)

then EXk = µk, for all k. The Stieltjes moment theorem states that if

sup
k≥1

µ
1
k

k

k
<∞, (2.2)

then the sequence {µk}∞k=1 uniquely characterizes the distribution [7]. We conclude then
that if a sequence of nonnegative random variables {Xn}∞n=1 satisfies (2.1) and (2.2),
then the sequence is weakly convergent to a random variable X satisfying EXk = µk.
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An extremely crude argument shows that the Bell numbers satisfy Bk ≤ kk; thus

sup
k≥1

B
1
k

k

k
<∞. (2.3)

By (1.10), the kth moment µk; θm of the Pois( θm )-distributed random variable Z θ
m

is equal

to Tk( θm ). Now Tk( θm ) is bounded from above by Tk(θ), for all m ≥ 1, and Tk(θ) ≤
Bk max(1, θk). Thus, in light of (2.3) and the previous paragraph, if we prove that

lim
n→∞

En;θ(C
(n)
m )k = Tk(

θ

m
), k,m ∈ N, (2.4)

where En;θ denotes the expectation with respect to Pn;θ, then we will have proved that

C
(n)
m under Pn;θ converges weakly to Z θ

m
, for all m ∈ N. And if we then prove that

lim
n→∞

En;θ

m∏
j=1

(C
(n)
j )kj =

m∏
j=1

Tkj (
θ

j
), m ≥ 2, kj ∈ N, j = 1, . . . ,m, (2.5)

then we will have completed the proof of Theorem C.
We first prove (2.4). In fact, we will first prove (2.4) in the case of the uniform

measure, Pn = Pn;1. Once we have this, the case of general θ will follow after a short
explanation. Assume that n ≥ mk. For D ⊂ [n] with |D| = m, let 1D(σ) be equal to 1 or 0
according to whether or not σ ∈ Sn possesses an m-cycle consisting of the elements of
D. Then we have

C(n)
m (σ) =

∑
D⊂[n]

|D|=m

1D(σ), (2.6)

and

En(C(n)
m )k =

∑
Dj⊂[n],|Dj |=m

j∈[k]

En

k∏
j=1

1Dj . (2.7)

Now En
∏k
j=1 1Dj 6= 0 if and only if for some l ∈ [k], there exist disjoint sets {Ai}li=1

such that {Dj}kj=1 = {Ai}li=1. If this is the case, then

En

k∏
j=1

1Dj =
(n− lm)!((m− 1)!)l

n!
. (2.8)

(Here we have used the assumption that n ≥ mk, since otherwise n−ml will be negative
for certain l ∈ [k].) The number of ways to construct a collection of l disjoint sets {Ai}li=1,
each of which consists of m elements from [n], is n!

(m!)l(n−lm)! l!
. Given the {Ai}li=1, the

number of ways to choose the sets {Dj}kj=1 so that {Dj}kj=1 = {Ai}li=1 is equal to the

Stirling number
{
k
l

}
, the number of ways to partition a set of size k into l nonempty

parts, multiplied by l!, since the labeling must be taken into account. From these facts
along with (2.7) and (2.8), we conclude that for n ≥ mk,

En(C(n)
m )k =

k∑
l=1

( (n− lm)!((m− 1)!)l

n!

)( n!

(m!)l(n− lm)!

){k
l

}
=

k∑
l=1

1

ml

{
k

l

}
= Tk(

1

m
),

(2.9)

proving (2.4) in the case θ = 1.
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For the case of general θ, we note that the only change that must be made in the
above proof is in (2.8). Recalling that s(n, k) denotes the number of permutations in Sn
with k cycles, we have

En;θ

k∏
j=1

1Dj =
((m− 1)!)l

∑n−ml
k=1 s(n− lm, k)θk+l

θ(n)
=
θ(n−ml)((m− 1)!)l

θ(n)
θl ∼

(n−ml)!((m− 1)!)l

n!
θl = θlEn

k∏
j=1

1Dj , as n→∞.

(2.10)

Thus, instead of (2.9), we have

En;θ(C
(n)
m )k ∼

k∑
l=1

(
θ

m
)l
{
k

l

}
= Tk(

θ

m
), as n→∞.

We now turn to (2.5). The method of proof is simply the natural extension of the
one used to prove (2.4); thus, since the notation is cumbersome we will suffice with
illustrating the method by proving that

lim
n→∞

En(C(n)
m1

)k1(C(n)
m2

)k2 = Tk1(
1

m1
)Tk2(

1

m2
). (2.11)

Let n ≥ m1k1 +m2k2. By (2.6), we have

En(C(n)
m1

)k1(C(n)
m2

)k2 =
∑

D1
j
⊂[n],|D1

j
|=m1

j∈[k1]

∑
D2
j
⊂[n],|D2

j
|=m2

j∈[k2]

En

k1∏
j=1

1D1
j

k2∏
j=1

1D2
j
. (2.12)

Now En
∏k1
j=1 1D1

j

∏k2
j=1 1D2

j
6= 0 if and only if for some l1 ∈ [k1] and some l2 ∈ [k2],

there exist disjoint sets {A1
i }
l1
i=1, {A2

i }
l2
i=1 such that {Dr

j}
kr
j=1 = {Ari }

lr
i=1, r = 1, 2. If this

is the case, then

En

k1∏
j=1

1D1
j

k2∏
j=1

1D2
j

=
(n− l1m1 − l2m2)!((m1 − 1)!)l1(m2 − 1)!)l2

n!
. (2.13)

The number of ways to construct disjoint sets {A1
i }
l1
i=1, {A2

i }
l2
i=1, with the A1

i each con-
sisting of m1 elements from [n] and the A2

i each consisting of m2 elements from [n], is
n!

(m1!)l1 (m2!)l2 (n−l1m1−l2m2)! l1!l2!
. Given {A1

i }
l1
i=1, {A2

i }
l2
i=1, the number of ways to choose

the sets {D1
j}
k1
j=1, {D2

j}
k2
j=1 so that {D1

j}
k1
j=1 = {A1

i }
l1
i=1 and {D2

j}
k2
j=1 = {A2

i }
l2
i=1 is equal to({

k1
l1

}
l1!
)({

k2
l2

}
l2!
)
. We have

(n− l1m1 − l2m2)!((m1 − 1)!)l1(m2 − 1)!)l2

n!
×

n!

(m1!)l1(m2!)l2(n− l1m1 − l2m2)!l1!l2!
=

1

ml1
1 m

l2
2 l1!l2!

.

From these fact along with (2.12) and (2.13), we conclude that for n ≥ m1k1 +m2k2,

EnC
(n)
m1

)k1(C(n)
m2

)k2 =

k2∑
l2=1

k1∑
l1=1

1

ml1
1 m

l2
2

{
k1
l1

}{
k2
l2

}
= Tk1(

1

m1
)Tk2(

1

m2
),

proving (2.11). �
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3 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Since F (n)
m converges weakly to Fm, it follows from the discussion

in the first paragraph of section 2 that it suffices to show that

lim
n→∞

En(F (n)
m )k = vk;m. (3.1)

Let n ≥ km. For D ⊂ [n], let 1D(σ) equal 1 or 0 according to whether or not σ ∈ Sn
induces an embedded permutation on D. Then we have

F (n)
m (ω) =

∑
D⊂[n]

|D|=m

1D(ω), (3.2)

and

En(F (n)
m )k =

∑
Dj⊂[n],|Dj |=m

j∈[k]

En

k∏
j=1

1Dj . (3.3)

There is a one-to-one correspondence between collections {Dj}kj=1, satisfying Dj ⊂ [n]

and |Dj | = m, and collections {AI}I⊂[k] of disjoint sets satisfying AI ⊂ [n] and satisfying∑
I:i∈I

lI = m, for all i ∈ [k], (3.4)

where
lI = |AI |, I ⊂ [k]. (3.5)

The correspondence is through the formula

AI =
(
∩i∈I Di

)
∩
(
∩i∈[k]−I ([n]−Di)

)
, I ⊂ [k]. (3.6)

Now
∏k
j=1 1Dj (ω) = 1 if and only if for all I ⊂ [k], σ induces an embedded permutation

on AI . Thus, we have

En

k∏
j=1

1Dj =
(n−

∑
I⊂[k] lI)!

∏
I⊂[k] lI !

n!
. (3.7)

Given the values lI = |AI |, I ⊂ [k], the number of ways to construct the disjoint sets

{AI}I⊂[k] is n!
(n−

∑
I⊂[k] lI)!

∏
I⊂[k] lI !

. Using this with (3.3)-(3.7), it follows that En(F (n)
m )k

equals the number of solutions {lI}I⊂[k] to (3.4).
To complete the proof, we will show that the number of solutions to (3.4) is vk;m.

Consider the set ∪kj=1Dj ⊂ [n]. Label the elements of this set by {xi}ri=1. Of course,
m ≤ r ≤ km. Now construct the sets {Γi}ri=1 by Γi = {j : xi ∈ Dj}. By construction, the
sets {Γi}ri=1 form an m-cover of [k] (of order r). There is a one-to-one correspondence
between solutions to (3.4) and m covers of [k]; indeed, lI = |{i ∈ [k] : Γi = I}|. �

Proof of Theorem 1.2. We use (1.16) to calculate Vm(x) = EexFm . We have

Vm(x) = E exp(xFm) = E exp
(
x

∑
(l1,...,lm):

∑m
j=1

jlj=m

lj≤Z 1
j
,j∈[m]

m∏
j=1

(
Z 1
j

lj

))
=

∑
u1≥0,··· ,um≥0

m∏
j=1

(
1

j
)uj

1

uj !
e−

1
j exp

(
x

∑
(l1,...,lm):

∑m
j=1

jlj=m

lj≤uj ,j∈[m]

m∏
j=1

(
uj
lj

))
.

(3.8)
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Thus, to complete the proof, we only need to show that

∑
(l1,...,lm):

∑m
j=1

jlj=m

lj≤uj ,j∈[m]

m∏
j=1

(
uj
lj

)
= γm(u), (3.9)

where

γm(u) = [zm]

m∏
j=1

(1 + zj)uj . (3.10)

Expanding with the binomial formula, we have

m∏
j=1

(1 + zj)uj =

m∏
j=1

( uj∑
lj=0

(
uj
lj

)
zjlj
)
. (3.11)

From (3.11) and (3.10), it follows that (3.9) holds. �
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