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A large class of new bivariate copulas and their properties
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Abstract. In this paper, we shall construct a large class of new bivariate cop-
ulas. This class happens to contain several known classes of copulas, such as
Farlie–Gumbel–Morgenstern, Ali–Mikhail–Haq and Barnett–Gumbel, as its
especial members. It is shown that the proposed copulas improve the range
of values of correlation coefficient and thus they are more applicable in data
modeling. We shall also reveal that the dependent properties of the base cop-
ula are preserved by the generated copula under certain conditions. Several
members of the new class are introduced as instances and their range of cor-
relation coefficients are computed.

1 Introduction

Copulas are useful tools in constructing joint distributions. In fact, a copula is a
multidimensional distribution function (d.f.) whose marginals are uniformly dis-
tributed on [0,1]. We shall only focus on bivariate copulas and their properties in
this manuscript.

A bivariate copula is a function C : I 2 → I (= [0,1]) which satisfies the bound-
ary conditions

C(t,0) = C(0, t) = 0 and C(t,1) = C(1, t) = t, t ∈ I (1.1)

and the 2-increasing condition

C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0 (1.2)

for all u1, u2, v1, v2 in [0,1] such that u1 ≤ u2 and v1 ≤ v2.
According to Sklar’ s theorem (see Sklar (1959)), using a two-dimensional cop-

ula C(·, ·), any bivariate d.f. HX,Y can be represented as a function of its marginal
distributions FX and FY . In fact, if FX and FY are continuous d.f.’s, then there
exists a unique copula such that

HX,Y (x, y) = C
(
FX(x),FY (y)

)
, (1.3)

where

C(u, v) = P(U ≤ u,V ≤ v), U ≡ FX(x), V ≡ FY (y). (1.4)
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Assuming that C is differentiable with respect to its both arguments, equation (1.2)
is satisfied if

c(u, v) ≡ ∂2C(u, v)

∂u∂v
≥ 0. (1.5)

Furthermore, it is known that

∂C(u, v)

∂u
= P(V ≤ v|U = u) ≥ 0,

(1.6)
∂C(u, v)

∂v
= P(U ≤ u|V = v) ≥ 0.

For further details about copulas, see Nelsen (2006).
A known and useful family of copulas is FGM family. This family is used,

e.g., for competing risk problems Tolley and Norman (1979), the joint occurrence
of certain trace elements in water Cook and Johnson (1986) and a robustness is-
sue Delahorra and Fernandez (1995). However, a shortcoming of FGM copulas is
that they do not allow modeling of high dependencies because their spearman’s
ρ is limited to [−1

3 , 1
3 ]. To overcome this problem, many authors such as Huang

and Kotz (1999), Bairamov and Kotz (2002), Amblard and Girard (2002, 2009),
Amini, Jabbari and Mohtashami Borzadaran (2011) have tried to extend this fam-
ily. Recently Klein and Christa (2011) proposed a class of copulas which contains
FGM copulas as follows: A bivariate function

C(u, v; θ, γ ) = uv
[
1 + θφ(u)φ(v)

] 1
γ ∀u, v ∈ I (1.7)

is a copula if the function φ : [0,1] → � is a differentiable and monotone function
satisfying

1. φ(1) = 0,
2. |φ(u)| ≤ 1, u ∈ [0,1],
3. D = {γ 	= 0; |φ(u) + uφ′(u)

γ
| ≤ 1, u ∈ [0,1]},

4. either γ ∈ D and θ ∈ [−1,1] such that θγ > 0, or φ is nonnegative and mono-
tonely decreasing or nonpositive and monotonely increasing on u ∈ [0,1] and

γ ∈ D ∩ (
0,1] and θ ∈ [−1,0

)
or

γ ∈ D ∩ (−∞,−1] and θ ∈ (0,1].
Also, the bivariate function

C(u, v; θ) = uveθφ(u)φ(v), u, v ∈ I (1.8)

is a copula for θ ∈ [0,1] if

1. φ(1) = 0,
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2. |φ(u)| ≤ 1, u ∈ [0,1],
where φ : [0,1] → � is a differentiable and monotone function, and it is a copula
for θ ∈ [−1,0] if

1. φ(1) = 0,
2. |uφ′(u)| ≤ 1, u ∈ [0,1],
where φ : [0,1] → � is differentiable, nonnegative and monotonely decreasing or
nonpositive and monotonely increasing on [0,1].

The remainder of the paper is organized as follows. In Section 2, replacing the
independent copula uv in (1.7) and (1.8) by a general copula K(u, v), we shall
introduce a new class of copulas which extends several known classes of copulas,
such as FGM, AMH and BG and several other families. We shall discuss condi-
tions under which our generalization is justified. Several illustrating examples are
provided in Section 3. Dependent properties of the new class are studied in Sec-
tion 4. In Section 5, we shall discuss tail dependencies of members of this new
family. Measures of association are discussed in Section 6, where it is observed
that the new family can be used to model data with a wider range of correlation
than the FGM family.

2 A new class of bivariate copulas

Consider the bivariate copula (1.7) and (1.8) of Klein and Christa (2011). We re-
place the coefficient uv, the independent copula, by an arbitrary copula K(u, v).
That is, we consider the bivariate function

C(u, v; θ, γ ) = K(u, v)
[
1 + θφ(u)φ(v)

] 1
γ ∀u, v ∈ I, (2.1)

where θ ∈ [−1,1] and γ ∈ �/{0} and

C(u, v; θ) = K(u, v)eθφ(u)φ(v) ∀u, v ∈ I, (2.2)

where θ ∈ [−1,1].
The next theorems provide certain conditions under which C(u, v;γ, θ) and

C(u, v; θ) in (2.1) and (2.2), respectively, are indeed well defined copulas. First,
in order to simplify the statements of our theorems, we set up the following as-
sumptions and definitions:

Assumptions:

1. ∂2

∂u∂v
lnK(u, v) ≥ 0,∀(u, v) ∈ I 2.

2. G = {γ 	= 0; |φ(u) + φ′(u)

γ ∂
∂u

lnK(u,v)
| ≤ 1, |φ(v) + φ′(v)

γ ∂
∂v

lnK(u,v)
| ≤ 1, (u, v) ∈ I 2}.

3. 0 ≤ φ(u) ≤ 1 and be decreasing or −1 ≤ φ(u) ≤ 0 and be increasing.
4. φ(u) is a negative and nondecreasing function and

φ′(u) ≤ ∂

∂u
lnK(u, v), ∀v ∈ I.
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5. |φ′(u)| ≤ 1 and k(u,v)
K(u,v)

≥ 1 or k(u,v)
K(u,v)

≥ φ′(u)φ′(v) for u, v ∈ [0,1], where

k(u, v) = ∂2

∂u∂v
K(u, v).

Definitions:

Q0 =
{
γ 	= 0; k(u, v)

K(u, v)
≥ φ′(u)φ′(v)

γ 2[1 − φ(u)φ(v)] , (u, v) ∈ I 2
}
,

Q1 = {
γ 	= 0;φ(u) + A(u, v, γ ) ≥ 0, φ(v) + B(u, v, γ ) ≥ 0, (u, v) ∈ I 2}

,

Q2 =
{
γ 	= 0;

∣∣∣∣ φ′(u)√|γ | ∂
∂u

lnK(u, v)

∣∣∣∣ ≤ 1,

∣∣∣∣ φ′(v)√|γ | ∂
∂v

lnK(u, v)

∣∣∣∣ ≤ 1, (u, v) ∈ I 2
}
,

where

A(u, v, γ ) = φ′(u)

γ ∂
∂u

lnK(u, v)
, B(u, v, γ ) = φ′(v)

γ ∂
∂v

lnK(u, v)
.

Theorem 2.1. Let φ : [0,1] → [−1,1] be a monotone and differentiable function
with φ(1) = 0 and K(u, v) be differentiable with respect to its both arguments u

and v. Then, C(u, v; θ, γ ) = K(u, v)[1 + θφ(u)φ(v)] 1
γ is a copula

(i) under Assumptions 1 and 2 for θ ∈ [−1,1] provided that θγ > 0;
(ii) under Assumption 3 for γ ∈ (0,1]∩Q0 or γ ∈ (0,1]∩Q1 and −1 ≤ θ ≤ 0;

(iii) under Assumption 1 and 3 and K(u, v) = K(v,u) for all u, v ∈ I 2, for
γ ∈ (−∞,−1] ∩ Q2,0 ≤ θ ≤ 1.

Proof. Obviously boundary conditions are satisfied. Thus, it is sufficient to
prove that under the mentioned conditions C(u, v; θ, γ ) is 2-increasing. Let

c(u, v; θ, γ ) = ∂2

∂u∂v
C(u, v; θ, γ ). Hence, we have

c(u, v; θ, γ )

C(u, v; θ, γ )
(2.3)

= ∂2

∂u∂v
lnC(u, v; θ, γ ) + ∂

∂u
lnC(u, v; θ, γ )

∂

∂v
lnC(u, v; θ, γ ).

(i) Clearly, since K(u, v) is differentiable, under Assumption 2 we obtain

∂

∂u
lnC(u, v; θ, γ ) =

∂
∂u

lnK(u, v)

1 + θφ(u)φ(v)

{
1 + θφ(v)

[
φ(u) + φ′(u)

γ ∂
∂u

lnK(u, v)

]}

and

∂

∂v
lnC(u, v; θ, γ ) =

∂
∂v

lnK(u, v)

1 + θφ(u)φ(v)

{
1 + θφ(v)

[
φ(u) + φ′(v)

γ ∂
∂v

lnK(u, v)

]}
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are nonnegative. Moreover, by Assumption 1,

∂2

∂u∂v
lnC(u, v; θ, γ ) = ∂2

∂u∂v
lnK(u, v) +

θ
γ
φ′(u)φ′(v)

[1 + θφ(u)φ(v)]2

is nonnegative. Therefore, by (2.3), c(u, v) ≥ 0 and, thus, by (1.5) the 2-increasing
property holds.

(ii) We prove the case when φ(u) is nonnegative and decreasing, the other case
follows by replacing φ(u) with −φ(u) in the copula function. According to (2.3)

c(u, v; θ, γ )

C(u, v; θ, γ )
= ∂2

∂u∂v
lnK(u, v) +

θ
γ
φ′(u)φ′(v)

[1 + θφ(u)φ(v)]2

+
[

∂

∂u
lnK(u, v) +

θ
γ
φ′(u)φ(v)

1 + θφ(u)φ(v)

]

×
[

∂

∂v
lnK(u, v) +

θ
γ
φ(u)φ′(v)

1 + θφ(u)φ(v)

]
(2.4)

= k(u, v)

K(u, v)
+ θ

γ

φ(u)φ′(v)

1 + θφ(u)φ(v)

∂

∂u
lnK(u, v) + ∂

∂v
lnK(u, v)

× θφ′(u)

γ [1 + θφ(u)φ(v)]
{
φ(v) + φ′(v)[1 + θ

γ
φ(u)φ(v)]

[1 + θφ(u)φ(v)] ∂
∂v

lnK(u, v)

}
,

where k(u, v) = ∂2

∂u∂v
K(u, v). If 0 < γ ≤ 1, then

1 + θ
γ
φ(u)φ(v)

1 + θφ(u)φ(v)
= 1

γ

γ + θφ(u)φ(v)

1 + θφ(u)φ(v)
≤ 1

γ

and since φ′(u) ≤ 0 and θ ≤ 0, we have

θφ′(u)

{
φ(v) + φ′(v)[1 + θ

γ
φ(u)φ(v)]

[1 + θφ(u)φ(v)] ∂
∂v

lnK(u, v)

}
≥ θφ′(u)

{
φ(v) + B(u, v, γ )

}
.

Consequently, if γ ∈ (0,1] ∩ Q1

c(u, v; θ, γ )

C(u, v; θ, γ )
≥ k(u, v)

K(u, v)
+ θ

γ

φ(u)φ′(v)

1 + θφ(u)φ(v)

∂

∂u
lnK(u, v)

+ ∂

∂v
lnK(u, v)

θφ′(u)

γ [1 + θφ(u)φ(v)]
{
φ(v) + B(u, v, γ )

} ≥ 0,

and if γ ∈ (0,1] ∩ Q0 we can rewrite

c(u, v; θ, γ )

C(u, v; θ, γ )
≥ k(u, v)

K(u, v)
+ θ

γ

φ(u)φ′(v)

1 + θφ(u)φ(v)

∂

∂u
lnK(u, v)

+ θ

γ

φ′(u)φ(v)

1 + θφ(u)φ(v)

∂

∂v
lnK(u, v) + θφ′(u)φ′(v)

γ 2[1 + θφ(u)φ(v)] ≥ 0,
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because

θφ′(u)φ′(v)

γ 2[1 + θφ(u)φ(v)] ≥ −φ′(u)φ′(v)

γ 2[1 − φ(u)φ(v)] .

(iii) Similar to part (b), we just prove the case when φ(u) is nonnegative and de-
creasing. Since γ ∈ (−∞,−1)∩Q2, it follows that φ(u)+ φ′(u)

γ ∂
∂u

lnK(u,v)
≥ 0. Thus,

we have

c(u, v; θ, γ )

C(u, v; θ, γ )
= ∂2

∂u∂v
lnK(u, v) +

θ
γ
φ′(u)φ′(v)

[1 + θφ(u)φ(v)]2

+ {
1 + θφ(v)

[
φ(u) + A(u, v, γ )

]}
× {

1 + θφ(u)
[
φ(v) + B(u, v, γ )

]}

×
∂
∂u

lnK(u, v) ∂
∂v

lnK(u, v)

[1 + θφ(u)φ(v)]2

≥ ∂2

∂u∂v
lnK(u, v) +

θ
γ
φ′(u)φ′(v)

[1 + θφ(u)φ(v)]2

+
∂
∂u

lnK(u, v) ∂
∂v

lnK(u, v)

[1 + θφ(u)φ(v)]2

= ∂2

∂u∂v
lnK(u, v) +

∂
∂u

lnK(u, v) ∂
∂v

lnK(u, v)

[1 + φ(u)φ(v)]2

×
{

1 − θ
φ′(u)√|γ | ∂

∂u
lnK(u, v)

φ′(v)√|γ | ∂
∂v

lnK(u, v)

}
≥ 0.

This completes the proof. �

Theorem 2.2. Let φ be a differentiable function and φ(1) = 0. Then, C(u, v; θ) =
K(u, v)eθφ(u)φ(v) is a copula

(i) for θ ∈ [0,1] under Assumptions 1 and 4;
(ii) for θ ∈ [−1,0] under Assumptions 3 and 5.

Proof. (i) Obviously boundary conditions are satisfied. As before, it is sufficient
to show that c(u, v) ≥ 0. According to Assumption 4, we have

∂2

∂u∂v
lnC(u, v; θ) = ∂2

∂u∂v
lnK(u, v) + θφ′(u)φ′(v) ≥ 0 (2.5)

and since θφ(v) ≤ 0 we obtain

θφ′(u)φ(v) ≥ θφ(v)
∂

∂u
lnK(u, v).
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Thus,

∂

∂u
lnC(u, v; θ) ≥ ∂

∂u
lnK(u, v)

[
1 + θφ(v)

] ≥ 0,

and thus, (2.3) is nonnegative. Hence, the result follows.
(ii) Again, we have

c(u, v; θ)

C(u, v; θ)
= k(u, v)

K(u, v)
− ∂

∂u
lnK(u, v)

∂

∂v
lnK(u, v) + θφ′(u)φ′(v)

+ ∂

∂u
lnK(u, v)

∂

∂v
lnK(u, v)

[
1 + θ

φ′(u)φ(v)
∂
∂u

lnK(u, v)

]

×
[
1 + θ

φ(u)φ′(v)
∂
∂v

lnK(u, v)

]
.

Since θ ∈ [−1,0], by the properties of φ(u), we obtain

c(u, v; θ)

C(u, v; θ)
≥ k(u, v)

K(u, v)
+ θφ′(u)φ′(v) ≥ 0

that is, c(u, v) ≥ 0. �

3 Some examples

In this section, we introduce several members of our class of copulas. First, we
need to recall some copulas K(u, v) in Table 1 which are used in the sequel.

Table 1 Some bivariate copulas recalled

K(u,v) Parameter spaces

uv[1 + δ(1 − u)p(1 − v)p] p > 0, −1 ≤ δ ≤ (
p+1
p−1 )p−1

(see Huang and Kotz (1999))
uv[1 + δ(un − 1)(vn − 1)] n ∈ ℵ, − 1

n2 ≤ δ ≤ 1
(see Grane (2009))

uv[1 + δ(1 − up)(1 − vp)] p > 0, −(max{1,p})−2 ≤ δ ≤ 1
p

(see Huang and Kotz (1999))

uv[1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2] |α| ≤ 1, α + β ≥ −1, β ≤ 3−α+
√

9−6α−3α2

2
(see Lin (1987))

uv[1 + α(1 − u)(1 − v) + βuv(1 − u)(1 − v)] |α| ≤ 1, α + β ≥ −1, β ≤ 3−α+
√

9−6α−3α2

2
(see Lin (1987))
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Example 3.1. Based on Theorem 2.1(i) the bivariate function

C(u, v; θ, γ, δ, k)
(3.1)

= uv
[
1 + δ(1 − u)2(1 − v)2][

1 + θ
(
1 − uk)(1 − vk)] 1

γ ,

is a copula for u, v ∈ I when

(a) 0 ≤ θ ≤ 1, 0 ≤ δ ≤ 1, 0 ≤ k ≤ 1, γ ≥ 1

or

(b) 0 ≤ θ ≤ 1, 0 ≤ δ ≤ 2, 1 ≤ k ≤ 3, γ ≥ 3

and for −1 ≤ θ ≤ 0, 0 ≤ δ ≤ 1 when

(c) 0 ≤ k ≤ 1, γ ≤ −2

or

(d) 1 ≤ k ≤ 2, γ ≤ −4,

or

(e) 2 ≤ k ≤ 3, γ ≤ −6.

Here, φ(u) = 1 − uk , for which boundary condition of Theorem 2.1 holds. More-
over, by using Table 1

K(u, v; δ) = uv
[
1 + δ(1 − u)2(1 − v)2]

, δ ∈ [−1,3],
is a copula and

∂2

∂v ∂u
lnK(u, v; δ) = 4δ(1 − u)(1 − v)

[1 + δ(1 − u)2(1 − v)2]2 ≥ 0, δ ∈ [0,3]
for ∀u, v ∈ I . Now, we define

h(u, v; δ, γ, k) = φ(u) + φ′(u)

γ ∂
∂u

lnK(u, v; δ)

= 1 − uk − kuk[1 + δ(1 − u)2(1 − v)2]
γ [1 + δ(1 − u)2(1 − v)2 − 2δu(1 − u)(1 − v)2]

= 1 − ukf (u, v; δ, γ, k),

where

f (u, v; δ, γ, k) = 1 + k(1 + δ(1 − u)2(1 − v)2)

γ [1 + δ(1 − u)2(1 − v)2 − 2δu(1 − u)(1 − v)2] .
(a) In this case, since f (u, v; δ, γ, k) ≥ 1, it is sufficient to show that

ukf (u, v; δ, γ, k) ≤ 2.



A large class of new bivariate copulas and their properties 505

Figure 1 Illustrations of Fi(u, k) for i = 1,2,3 and f (u,0;1, γ, k) for γ = −4,−6,−8.

On the other hand, f (u, v; δ, γ, k) is decreasing in γ and v, so f (u, v; δ, γ, k) ≤
f (u,0; δ,1, k) for u ∈ [0,1], δ ∈ [0,1] and k ∈ [0,1] and f (u,0; δ,1, k) is in-
creasing function in δ, because

∂

∂δ
f (u,0; δ,1, k) = 2k(1 − u)u

(1 + δ − 4δu + 3δu2)2 ≥ 0.

So, the maximum of f (u, v; δ, γ, k) happens at v = 0, γ = 1 and δ = 1. Moreover,
As we see in Figure 1(a), 0 ≤ F1(u, k) = ukf (u,0;1,1, k) ≤ 2 for u ∈ [0,1], k ∈
[0,1]. Thus, we can conclude that 0 ≤ ukf (u, v; δ, γ, k) ≤ 2 for u, v ∈ [0,1], 0 ≤
δ ≤ 1, 0 ≤ k ≤ 1 and γ ≥ 1.

(b) By a similar argument, we can show that 0 ≤ F2(u, k) = ukf (u,0;2,3, k) ≤
2. Figure 1(b) confirms this claim for 0 ≤ u ≤ 1 and 1 ≤ k ≤ 3.

(c) In this case, since f (u, v; δ, γ, k) ≤ 1, it is sufficient to show that f (u, v;
δ, γ, k) ≥ 0. By a similar argument, we just investigate f (u, v; δ, γ, k) at v = 0,
γ = −2 and δ = 1. Figure 1(c) illustrates F3(u, k) = f (u,0;1,−2, k) ≥ 0 for 0 ≤
u ≤ 1 and 0 ≤ k ≤ 1.

Other cases are similarly proved. Figure 1(d)–(f) illustrates that 0 ≤ f (u,0;
1, γ, k) ≤ 1 for certain values of γ .

Example 3.2. Based on Theorem 2.1(i) the bivariate function

C(u, v; θ, γ,α, k)
(3.2)

= uv
[
1 + α

(
u2 − 1

)(
v2 − 1

)][
1 + θ

(
1 − uk)(1 − vk)]1/γ

,
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is a copula for

−1 ≤ θ ≤ 0, 0 ≤ α ≤ 0.4, γ ≤ −5k, k > 0,

or

0 ≤ θ ≤ 1, 0 ≤ α ≤ 0.4, γ ≥ 5k, k > 0.

First, we note that

K(u, v;α) = uv
[
1 + α

(
u2 − 1

)(
v2 − 1

)]
,

is a copula for α ∈ [−0.25,1] and

∂2

∂v ∂u
lnK(u, v;α) = 4αuv

[1 + α(u2 − 1)(v2 − 1)]2 ≥ 0, α ∈ [0,1].

Now, we define

r(u, v;α,γ, k) = φ(u) + φ′(u)

γ ∂
∂u

lnK(u, v;α)
= 1 − uk

{
1 + k

γ
R(u, v;α)

}
,

where

R(u, v;α) = 1 + α(u2 − 1)(v2 − 1)

1 + α(u2 − 1)(v2 − 1) + 2αu2(v2 − 1)
.

We note that it is sufficient to investigate the range of r(u, v;α,γ, k) at γ = −5k

and γ = 5k. Moreover, we can easily show that the function R(u, v;α) is a de-
creasing function in v and increasing function in α and u, so 1 ≤ R(u, v;α) ≤ 5.
Hence,

0 ≤ uk

{
1 − 1

5
R(u, v;α)

}
≤ 1,

u, v ∈ [0,1] ⇒ 0 ≤ r(u, v;α,γ, k) ≤ 1,

0 ≤ uk

{
1 + 1

5
R(u, v;α)

}
≤ 2,

u, v ∈ [0,1] ⇒ −1 ≤ r(u, v;α,γ, k) ≤ 1.

for α ∈ [0,0.4]. Figure 2 illustrates our claim for certain values of the parameters.

It is also worth noting that, similarly, the bivariate function

C(u, v; δ, θ, γ,p)
(3.3)

= uv
[
1 + δ

(
1 − up)(

1 − vp)][
1 + θ(1 − u)(1 − v)

] 1
γ ,
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Figure 2 Illustrations of r(u, v;α,γ, k).

is a copula for p > 0, 0 ≤ δ ≤ 1
2p

, γ ≥ 2 and 0 ≤ θ ≤ 1 or γ ≤ −2 and −1 ≤ θ ≤ 0.
Also, the bivariate function

C(u, v;α,β, θ, γ ) = uv
[
1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]

(3.4)
× [

1 + θ
(
e−u − e−1)(

e−v − e−1)] 1
γ ,

is also a copula for 0 ≤ β ≤ 1, 0 ≤ α < 1, −1 ≤ θ ≤ 0 and γ ≤ − 2
e(1−α)

or 0 ≤
θ ≤ 1 and γ ≥ 2

e(1−α)
and the bivariate function

C(u, v;α,β, θ, γ, k) = uv
[
1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]

(3.5)
× [

1 + θ(1 − u)(1 − v)
] 1

γ ,

is a copula for 0 ≤ α < 1, 0 ≤ β ≤ 1, −1 ≤ θ ≤ 0, γ ≤ − 2
1−α

or 0 ≤ θ ≤ 1,

γ ≥ 2
1−α

.

Example 3.3. The bivariate function

C(u, v; θ, δ, γ ) = uv
[
1 + δ(1 − u)2(1 − v)2][

1 + θ(1 − u)(1 − v)
] 1

γ , (3.6)

is a copula for u, v ∈ I , 0 ≤ θ ≤ 1, 0 ≤ δ ≤ 1.5 and γ ≤ −3 because it satisfies the
conditions of Theorem 2.1(ii).

Clearly, since φ(u) = 1 − u, boundary condition and Assumption 3 hold. Fur-
thermore, similar to Example 3.1, we have

∂2

∂v ∂u
lnK(u, v; θ, δ, γ ) ≥ 0, δ ∈ [0,1.5].

Now, we define

t (u, v; δ, γ ) = −φ′(u)√|γ | ∂
∂u

lnK(u, v)

= u[1 + δ(1 − u)2(1 − v)2]√|γ |[1 + δ(1 − u)2(1 − v)2 − 2δu(1 − u)(1 − v)2] ,
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Figure 3 Illustrations of t (u,0; δ,−3).

which is obviously nonnegative. Thus, it is sufficient to show that t (u, v; δ, γ ) ≤
1. Obviously t (u, v; δ, γ ) is a decreasing function in v and γ . So, we need to
investigate the values of t (u,0; δ,−3). As Figure 3 illustrates we can show that
t (u,0; δ,−3) ≤ 1 for 0 ≤ u ≤ 1 and 0 ≤ δ ≤ 1.5.

Example 3.4. The bivariate function

C(u, v; θ,α) = uv
[
1 + α(1 − u)(1 − v)(1 + uv)

]
eθ(e−1−e−u)(e−1−e−v), (3.7)

is a copula for 0 ≤ θ ≤ 1 and 0 ≤ α ≤ 1 − e−1, because it satisfies the conditions
of Theorem 2.2(i). Clearly, since φ(u) = e−1 − e−u, the boundary condition holds.
Furthermore, by using Table 1, we have that

K(u, v;α) = uv
[
1 + α(1 − u)(1 − v)(1 + uv)

]
,

is a copula for −0.5 ≤ α ≤ 1 and

∂2

∂v ∂u
lnK(u, v;α) = α[1 + α(1 − u)2(1 − v)2 + (1 − 2u)(1 − 2v)]

[1 + α(1 − u)(1 − v)(1 + uv)]2 ≥ 0,

for α ∈ [0,1], because (1 − 2u)(1 − 2v) ≥ −1. Now, we define

q(u, v;α) = ∂

∂u
lnK(u, v;α) − φ′(u)

= 1

u
+ α(1 − v)(v − 2uv − 1)

1 + α(1 − u)(1 − v)(1 + uv)
− e−u

= g(u) + f1(u, v;α),

where, obviously

g(u) = 1

u
− e−u ≥ 0, f1(u, v;α) = α(1 − v)(v − 2uv − 1)

1 + α(1 − u)(1 − v)(1 + uv)
≤ 0.
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Figure 4 Illustration of q(u, v,α).

Both functions g and f1 are decreasing in u, because

g′(u) = e−u − 1

u2 ≤ e−u − 1 ≤ 0,

∂

∂u
f1(u, v;α) = 1

[1 + α(1 − u)(1 − v)(1 + uv)]2

[−α2(1 − v)2(v − 2uv − 1)2

− 2αv(1 − v)
(
1 + α(1 − u)(1 − v)(1 + uv)

)] ≤ 0.

g decreases very faster than f1, so to find values α such that q(u, v;α) ≥ 0 for
u, v ∈ [0,1], it is sufficient to investigate the sign of q(1, v;α) for v ∈ [0,1]. But,
clearly, we have

q(1, v;α) = 1 − e−1 − α
(
1 − v2) ≥ 0, 0 ≤ α ≤ 1 − e−1.

Figure 4 also confirms the validity of Assumption 4 for α = 0.3 and 0.6.

Example 3.5. By Theorem 2.2(i), the bivariate function

C(u, v;α,β, θ) = uv
[
1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]

(3.8)
× eθ(e−1−e−u)(e−1−e−v)

is a copula for 0 ≤ θ ≤ 1, 0 ≤ β ≤ 0.5 and 0 ≤ α ≤ 1 − e−1. Similar to Exam-
ple 3.3, φ(u) = e−1 − e−u and the boundary condition holds and

K(u, v;α,β) = uv
[
1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]

is a copula for |α| ≤ 1, α + β ≥ −1 and β ≤ 3−α+
√

9−6α−3α2

2 with

∂2

∂v ∂u
lnK(u, v;α,β) = α + 4β(1 − u)(1 − v) + αβ(1 − u)2(1 − v)2

[1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]2 ≥ 0,
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for 0 ≤ α ≤ 1 and 0 ≤ β ≤ 3−α+
√

9−6α−3α2

2 . Now, we define

s(u, v;α,β) = ∂

∂u
lnK(u, v;α,β) − e−u

= 1

u
− α(1 − v) + 2β(1 − u)(1 − v)2

1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2 − e−u

= g(u) − f2(u, v;α,β),

where g(u) = 1
u

− e−u > 0 and

f2(u, v;α,β) = α(1 − v) + 2β(1 − u)(1 − v)2

1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2 ≥ 0,

for 0 ≤ α ≤ 1 and 0 ≤ β ≤ 3−α+
√

9−6α−3α2

2 . f2 is a decreasing function in v for
0 ≤ α ≤ 1 and 0 ≤ β ≤ 1, because

∂

∂v
f2(u, v;α,β)

= −α + 4β(1 − u)(1 − v)

A
+ (1 − u)(1 − v)(α + 2β(1 − u)(1 − v))

A2

≤ −α + 2β(1 − u)(1 − v)

A
+ (1 − u)(1 − v)(α + 2β(1 − u)(1 − v))

A2

= α + 2β(1 − u)(1 − v)

A

[
−1 + β(1 − u)2(1 − v)2

A

]
≤ 0,

where A = 1+α(1−u)(1−v)+β(1−u)2(1−v)2 > 0. So, it is sufficient to inves-
tigate the behavior of f2(u,0;α,β). This function will be increasing, decreasing
or upsidedown U-shaped in u, depending on different values of α and β . Thus, we
consider two cases: (i) f2(u,0;α,β) is an increasing or decreasing function and
(ii) f2(u,0;α,β) is upsidedown U-shaped function in u.

For case (i), since g is decreasing very fast, we just investigate the sign of
s(u,0;α,β) for u = 0 and u = 1 and conclude that s(u,0;α,β) ≥ 0 for u, v ∈
[0,1], 0 ≤ α ≤ 1 − e−1.

In case (ii), we note that f2 is an increasing function in α and β . So, we define

h(u) = f2
(
u,0;1 − e−1,0.5

) = 2 − u − e−1

1 + (1 − e−1)(1 − u) + 0.5(1 − u)2 .

h(u) has a maximum at u0 = 0.3670 and

h(u) ≥ α + 2β(1 − u)

1 + α(1 − u) + β(1 − u)2 , α ∈ [
0,1 − e−1]

, β ∈ [0,0.5].
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Figure 5 Illustrations of s(u, v;α,β).

Thus, since g(u) is decreasing very fast compared to h(u), we just plot g(u) and
h(u) for u ∈ [0.5,1], in Figure 5(a). Then, we have

g(u) − h(u) ≥ 0, ∀u ∈ [0,1].
Hence, we conclude that s(u, v;α,β) ≥ 0 for α ∈ [0,1 − e−1] and β ∈ [0,0.5].
Moreover, Figure 5(b)–(c) confirms the validity of Assumption 4 of Theo-
rem 2.2(a) for certain values of the parameters.

Example 3.6. The bivariate function

C(u, v; θ,α,β) = uv
[
1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]

(3.9)
× eθ(1−u)(1−v),

is a copula for θ ∈ [−1,0], α ∈ [0,1] and β ∈ [−1,1]. In this example, φ(u) =
1 − u and clearly the boundary condition and Assumption 3 of Theorem 2.2(ii)
hold and

K(u, v;α,β) = uv
[
1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]

is a copula for |α| ≤ 1, α + β ≥ −1 and β ≤ 3−α+
√

9−6α−3α2

2 . Now, to check the
validity of Assumption 5, we define

g(u, v;α,β) = k(u, v;α,β)

K(u, v;α,β)
− 1

= k(u, v;α,β) − K(u, v;α,β)

K(u, v;α,β)

= 1

K(u, v;α,β)

{
1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2
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− (u + v − 2uv)
[
α + 2β(1 − u)(1 − v)

]
+ uv

[
α + 4β(1 − u)(1 − v)

]
− uv

[
1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]}

.

First, let 0 ≤ β ≤ 1, we have

g(u, v;α,β) = f1(u, v;α,β) − f2(u, v;α,β)

K(u, v;α,β)
= F(u, v;α,β)

K(u, v;α,β)
,

where

f1(u, v;α,β) = 1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2

+ uv
[
α + 4β(1 − u)(1 − v)

] ≥ 0,

f2(u, v;α,β) = uv
[
1 + α(1 − u)(1 − v) + β(1 − u)2(1 − v)2]

+ (u + v − 2uv)
[
α + 2β(1 − u)(1 − v)

] ≥ 0

and

F(u, v;α,β) = f1(u, v;α,β) − f2(u, v;α,β).

f1 and f2 are increasing functions in α and β . Moreover, f1 and f2 are linear
functions of α and β . So, to find the signs of g, it is sufficient to investigate the
signs of F(u, v;0,0) and F(u, v;1,1). Hence, we have

F(u, v;0,0) = 1 − uv ≥ 0, u, v ∈ [0,1]
F(u, v;1,1) = [

1 + (1 − u)(1 − v) + (1 − u)2(1 − v)2]
(1 − uv) + 4uv

× (1 − u)(1 − v) − [
1 + 2(1 − u)(1 − v)

]
(u + v − 2uv) + uv

≥ 0, u, v ∈ [0,1].
Figure 6(a) illustrates F(u, v;1,1) ≥ 0 for u, v ∈ [0,1]. Thus, g ≥ 0 and hence
Assumption 5 holds for 0 ≤ β ≤ 1.

Now, we let −1 ≤ β ≤ 0 and

g(u, v;α,β) = f3(u, v;α,β) − f4(u, v;α,β)

K(u, v;α,β)
= G(u,v;α,β)

K(u, v;α,β)
,

where

f3(u, v;α,β) = 1 + α(1 − u)(1 − v) + αuv − 2β(1 − u)(1 − v)

× (u + v − 2uv) − βuv(1 − u)2(1 − v)2 ≥ 0,

f4(u, v;α,β) = α(u + v − 2uv) + uv
[
1 + α(1 − u)(1 − v)

]
− β(1 − u)2(1 − v)2 − 4βuv(1 − u)(1 − v) ≥ 0
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Figure 6 Illustrations of F(u, v;1,1) and G(u,v;1,−1).

and

G(u,v;α,β) = f3(u, v;α,β) − f4(u, v;α,β).

f3 and f4 are increasing functions in α and decreasing functions in β . Moreover,
these functions are linear with respect to α and β . So, similar to the previous case,
it is sufficient to investigate the signs of G(u,v;0,0) and G(u,v;1,−1). Here, we
have

G(u,v;0,0) = 1 − uv ≥ 0, u, v ∈ [0,1],
G(u, v;1,−1)

= 1 + (1 − u)(1 − v) − (1 − u)2(1 − v)2 + uv
[
1 − 4(1 − u)

× (1 − v)
] − (u + v − 2uv)

[
1 − 2(1 − u)(1 − v)

] − uv

− uv(1 − u)(1 − v) + uv(1 − u)2(1 − v)2 ≥ 0, u, v ∈ [0,1].
This is illustrated by Figure 6(b). Then, we conclude that g(u, v;α,β) ≥ 0, for α ∈
[0,1] and β ∈ [−1,1]. Moreover, Figure 7 also illustrates that G(u,v;α,β) ≥ 0
for certain values of α and β .

It is also noted that, based on Theorem 2.2(ii), the bivariate functions

C(u, v;α, θ) = uv
[
1 + α

(
u2 − 1

)(
v2 − 1

)]
eθ(1−u)(1−v),

(3.10)
0 ≤ α ≤ 0.45,−1 ≤ θ ≤ 0

and

C(u, v; δ, θ) = uv
[
1 + δ

(
1 − u0.5)(

1 − v0.5)]
eθ(1−u)(1−v),

(3.11)
0 ≤ δ ≤ 2,−1 ≤ θ ≤ 0

are copulas.
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Figure 7 Illustrations of G(u,v;α,β).

Remark 3.1. An important feature of the family introduced here is that it is very
large so that it contains many copulas, several but not all Archimedean copulas
included. For instance, by our Theorems 2.1 and 2.2 it follows that

C(u, v; δ, θ, γ ) = uv
[
1 + δ(1 − u)2(1 − v)2][

1 + θ(1 − u)(1 − v)
] 1

γ

0 ≤ δ ≤ 1, 0 ≤ θ ≤ 1, γ ≥ 1, γ ≤ −1,
(3.12)

0 ≤ δ ≤ 1, −1 ≤ θ ≤ 1, γ = 1,

δ = 0, −1 ≤ θ ≤ 1, γ ≤ −1,

is a bivariate copula which is not Archimrdean. However, in the special case when
δ = 0 and γ = 1 it reduces to FGM (the first order approximation to the Frank
copula, which is Archimedean) and when δ = 0 and γ = −1 it reduces to the
Archimedean copula AMH. Also, by Theorem 2.2, the bivariate function

C(u, v; δ, θ) = uve[(− ln(u))−δ+(− ln(v))−δ] −1
δ

eθ ln(u) ln(v),
(3.13)

0 < δ ≤ 1, 0 ≤ θ ≤ 1

is a bivariate copula but it is not Archimrdean in general. In the special case when
θ = 0, it reduces to Galambos copula and when δ → 0 reduces to BG copula
which is an Archimedean copula.
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Remark 3.2. Note that when φ is unbounded, such as ln(u), for any values of γ

R(u, v;γ ) = φ(u) + φ′(u)

γ ∂
∂u

lnK(u, v)
∀u, v ∈ I

does not lie between [−1,1] and thus G is empty. Even if φ is bounded, φ′ may
be unbounded such as

φ(u) = (1 − u)k, 0 < k < 1

in which case again G is empty. As another instance, let φ and φ′ be bounded, e.g.,
φ = 1 − u, but K be the Clayton copula

K(u, v; θ) = (
u−θ + v−θ )−1

θ .

Here, we have

R(u, v; θ, γ ) = 1 − u − uθ+1(u−θ + v−θ )

γ
,

which can be unbounded for v = 0 and thus G is empty.
Similarly, for Q0, Q1 and Q2 to be empty, one can consider φ(u) = 1 − u and

K as the Galambos copula.

4 Dependence properties

In this section, we shall investigate dependence properties of our new class of cop-
ulas. We shall show that, under certain conditions, dependent properties of C(u, v)

are the same as those of K(u, v). First, we need to recall some known concepts of
dependencies.

Definition 4.1. Let r.v.’s X and Y be related by a copula C(u, v). Then,

1. X and Y are Positively Quadrant Dependent (PQD) (Negatively Quadrant De-
pendent (NQD)), if

∀(x, y) ∈ �2, P (X ≤ x,Y ≤ y) ≥ (≤)P (X ≤ x)P (Y ≤ y) (4.1)

or, equivalently,

∀(u, v) ∈ I 2, C(u, v) ≥ (≤)uv. (4.2)

2. Y is Left Tail Decreasing (LTD) in X if P(Y ≤ y|X ≤ x) is nonincreasing in x

for all y.
3. X and Y are Left Corner Set Decreasing (LCSD) if P(X ≤ x,Y ≤ y|X ≤

x′, Y ≤ y′) is nonincreasing in x′ and y′ for all x and y.
4. Y is Stochastically Increasing (SI) in X if P(Y > y|X = x) is nondecreasing in

x for all y.
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Theorem 4.1. Let either ∀u ∈ I,φ(u) ≥ 0 or ∀u ∈ I,φ(u) ≤ 0.

(i) If θγ ≥ 0 (θγ ≤ 0), then PQD (NQD) property of K(u, v) is preserved by

C(u, v; θ, γ ) = K(u, v)[1 + θφ(u)φ(v)] 1
γ .

(ii) If θ ∈ [0,1] (θ ∈ [−1,0]), then PQD (NQD) property of K(u, v) is pre-
served by C(u, v; θ) = K(u, v)eθφ(u)φ(v).

Proof. (i) Suppose that γ > 0 and 0 ≤ θ ≤ 1, then

1 + θφ(u)φ(v) ≥ 1 ∀u, v ∈ I,

and, thus,
[
1 + θφ(u)φ(v)

] 1
γ ≥ 1 ∀u, v ∈ I.

Hence, if K(u, v) is PQD, it follows that

C(u, v; θ, γ ) = K(u, v)
[
1 + θφ(u)φ(v)

] 1
γ ≥ uv ∀u, v ∈ I,

as required. For γ < 0 and −1 ≤ θ ≤ 0, we have

0 ≤ 1 + θφ(u)φ(v) ≤ 1,

or, equivalently,
[
1 + θφ(u)φ(v)

] 1
γ ≥ 1.

Thus, if K(u, v) is PQD, it follows that

K(u, v)
[
1 + θφ(u)φ(v)

] 1
γ ≥ uv ∀u, v ∈ I,

as required. For γ < 0 and 0 ≤ θ ≤ 1, we have

1 + θφ(u)φ(v) ≥ 1,

or, equivalently,
[
1 + θφ(u)φ(v)

] 1
γ ≤ 1.

If K(u, v) is NQD, it follows that

K(u, v)
[
1 + θφ(u)φ(v)

] 1
γ ≤ uv ∀u, v ∈ I,

as required. For γ > 0 and −1 ≤ θ ≤ 0, we have

0 ≤ 1 + θφ(u)φ(v) ≤ 1.

Thus, if K(u, v) is NQD, we have

K(u, v)
[
1 + θφ(u)φ(v)

] 1
γ ≤ uv ∀u, v ∈ I.

i.e. C(u, v; θ, γ ) is NQD.
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(ii) For θ ∈ [0,1] (θ ∈ [−1,0]), eθφ(u)φ(v) ≥ 1(≤ 1). Thus, if K(u, v) is
PQD (NQD), C(u, v; θ) is also PQD (NQD). �

First, in what follow assume that X and Y are related according to copula

C(u, v; θ, γ ) = K(u, v)[1 + θφ(u)φ(v)] 1
γ and X′ and Y ′ are related according

to the corresponding base copula K .

Theorem 4.2. Let φ : [0,1] → [−1,1] be a differentiable function and θγ > 0.
Then

(i) Y is LTD X if Y ′ is LTD in X′ and φ is positive and nonincreasing or
negative and nondecreasing.

(ii) X and Y are LCSD if X′ and Y ′ are LCSD and φ is positive and nonin-
creasing or negative and nondecreasing.

(iii) Y is SI in X if Y ′ is SI in X′ and φ is positive, nonincreasing and concave
or negative, nondecreasing and convex for 0 ≤ θ ≤ 1 and γ ≥ 1.

Proof. (i) By Theorem 5.2.5 in Nelsen (2006), it is sufficient to prove that
C(u,v;θ,γ )

u
is nonincreasing in u for all v ∈ I . Since

C(u, v; θ, γ )

u
= K(u, v)

u

[
1 + θφ(u)φ(v)

] 1
γ ,

according to the condition of the theorem, K(u,v)
u

is nonincreasing in u. Obviously

[1 + θφ(u)φ(v)] 1
γ is also nonincreasing in u, because

d

du

[
1 + θφ(u)φ(v)

] 1
γ = θ

γ
φ′(u)φ(v)

[
1 + θφ(u)φ(v)

] 1
γ
−1 ≤ 0.

(ii) By Corollary 5.2.17 in Nelsen (2006), we should show that for all 0 ≤ u1 ≤
u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1,

C(u1, v1; θ, γ )C(u2, v2; θ, γ ) − C(u1, v2; θ, γ )C(u2, v1; θ, γ ) ≥ 0, (4.3)

or equivalently,

K(u1, v1)K(u2, v2)
{[

1 + θφ(u1)φ(v1)
][

1 + θφ(u2)φ(v2)
]} 1

γ

(4.4)
− K(u1, v2)K(u2, v1)

{[
1 + θφ(u1)φ(v2)

][
1 + θφ(u1)φ(v2)

]} 1
γ ≥ 0.

First, suppose that 0 ≤ θ ≤ 1 and γ ≥ 0. Since X′ and Y ′ are LCSD, it is sufficient
to show that

{[
1 + θφ(u1)φ(v1)

][
1 + θφ(u2)φ(v2)

]} 1
γ ≥ {[

1 + θφ(u1)φ(v2)
]

× [
1 + θφ(u2)φ(v1)

]} 1
γ ,
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or, equivalently,
[
φ(v2) − φ(v1)

][
φ(u2) − φ(u1)

] ≥ 0. (4.5)

But, by monotonicity of φ, (4.5) obviously holds and, thus, we have the result. By
the same argument, (4.4) holds for −1 ≤ θ ≤ 0 and γ ≤ 0.

(iii) By Corollary 5.2.11 in Nelsen (2006) we should show that ∂C(u,v)
∂u

is non-
increasing in u. But, we have

∂C(u, v; θ, γ )

∂u
= ∂

∂u

{
K(u, v)

[
1 + θφ(u)φ(v)

] 1
γ
}

= ∂K(u, v)

∂u

[
1 + θφ(u)φ(v)

] 1
γ︸ ︷︷ ︸

I

(4.6)

+ K(u, v)

u

{
θ

γ
uφ(v)φ′(u)

[
1 + θφ(u)φ(v)

] 1
γ
−1

}
︸ ︷︷ ︸

II

. (4.7)

Since Y ′ is SI in X′ and SI implies LTD (Corollary 5.2.17 in Nelsen, 2006),
∂K(u,v)

∂u
and K(u,v)

u
are nonincreasing. Expressions I and II are also nonincreas-

ing because

∂

∂u

[
1 + θφ(u)φ(v)

] 1
γ = θ

γ
φ′(u)φ(v)

[
1 + θφ(u)φ(v)

] 1
γ
−1 ≤ 0 (4.8)

and

∂

∂u

{
θ

γ
uφ′(u)φ(v)

[
1 + θφ(u)φ(v)

] 1
γ
−1

}

= θ

γ
φ′(u)φ(v)

[
1 + θφ(u)φ(v)

] 1
γ
−1 (4.9)

+ θ

γ
φ′′(u)uφ(v)

[
1 + θφ(u)φ(v)

] 1
γ
−1 + θ2

γ 2 (1 − γ )
(
φ′(u)

)2(
φ(v)

)2
u

× [
1 + θφ(u)φ(v)

] 1
γ
−2 ≤ 0.

Consequently, by (4.8) and (4.9), the Expressions (4.6) and (4.7) are nonincreasing
in u. This completes the proof. �

Now, in what follows, we assume that X and Y are related according to copula
C(u, v; θ) = K(u, v)eθφ(u)φ(v) and X′ and Y ′ are related according to the corre-
sponding base copula K .

Theorem 4.3. Let φ be a differentiable function and 0 ≤ θ ≤ 1. Then
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(i) Y is LTD in X if Y ′ is LTD in X′ and φ is positive and nonincreasing or
negative and nondecreasing.

(ii) Y is LCSD in X if Y ′ is LCSD in X′ and φ is positive and nonincreasing or
negative and nondecreasing.

Proof. (i) It is sufficient to prove that C(u,v;θ)
u

is nonincreasing in u. According to

the condition of the theorem, K(u,v)
u

is nonincreasing in u and obviously eθφ(u)φ(v)

is nonincreasing in u too, because we have

∂

∂u
eθφ(u)φ(v) = θφ′(u)φ(v)eθφ(u)φ(v) ≤ 0.

Hence,

C(u, v; θ)

u
= K(u, v)

u
eθφ(u)φ(v)

is nonincreasing.
(ii) Similar to the proof of Theorem 4.2(ii). �

5 Tail dependence

In this section, we consider two concepts of dependencies that measure the amount
of dependency in the upper-right quadrant and lower-right quadrant on I 2 and
show that upper tail dependence coefficient of (X,Y ) equals to that of (X′, Y ′).

Definition 5.1. Let X and Y be continuous random variables with d.f.’s F and G,
respectively. The upper tail dependence λU is defined by

λU = lim
u→1− P

[
Y > G−1(u)|X > F−1(u)

] = 2 − lim
u→1−

1 − C(u,u)

1 − u
.

Similarly, lower tail dependence λL is defined by

λL = lim
u→0+ P

[
Y ≤ G−1(u)|X ≤ F−1(u)

] = lim
u→0+

C(u,u)

u
.

In the following theorem, we assume that λU,K and λL,K are upper and lower
tail dependencies of copula K(u, v), and λU,C and λL,C are those of copula
C(u, v; θ, γ )(or C(u, v; θ)).

Theorem 5.1.

(i) If C(u, v; θ, γ ) = K(u, v)[1 + θφ(u)φ(v)] 1
γ for γ 	= 0, then

λU,C = λU,K, λL,C = λL,K

[
1 + θφ(0)

] 1
γ .
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(ii) if C(u, v; θ) = K(u, v)eθφ(u)φ(v), then

λU,C = λU,K, λL,C = λL,Keθφ2(0).

Proof. (i) We have

λU,C = 2 − lim
u→1−

1 − C(u,u)

1 − u

= 2 − lim
u→1−

1 − K(u,u)[1 + θφ2(u)] 1
γ

1 − u

= 2 − lim
u→1−

{
∂

∂u
K(u,u)

[
1 + θφ2(u)

] 1
γ + 2θ

γ
K(u,u)φ(u)φ′(u)

× [
1 + θφ2(u)

] 1
γ

−1
}

= 2 − lim
u→1−

∂

∂u
K(u,u) = λU,K

and

λL,C = lim
u→0+

C(u,u)

u

= lim
u→0+

∂

∂u
C(u,u)

= lim
u→0+

{
∂

∂u
K(u,u)

[
1 + θφ2(u)

] 1
γ + 2θ

γ
K(u,u)φ(u)φ′(v)

× [
1 + θφ2(u)

] 1
γ

−1
}

=
(

lim
u→0+

∂

∂u
K(u,u)

)[
1 + θφ2(0)

] 1
γ

= λL,K

[
1 + θφ2(0)

] 1
γ .

As required. The prove of part (ii) is similar. �

6 Measures of association

In this section, we obtain Spearman’s ρs for our new copulas for certain values of
their parameters. As theoretical calculations are not feasible here, we shall use a
Maple software to compute ρs numerically. Our new copulas prove to improve the
range of correlation coefficient of the FGM family. Recall that Spearman’s ρs is
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Table 2 Spearman’s ρs for various values of k, δ, θ and γ for copula (3.1)

k δ θ γ ρs k δ θ γ ρs

1 1 1 1 0.4467 1.5 1 −1 −4 0.2972
3 2 1 3 0.5116 2 1 −1 −6 0.2945
3 0.5 0.75 4 0.2241 0 1 −1 −2 0.0833
2.4 2 1 3 0.4588 1 1 −1 −2 0.3230
1 2 0 3 0.1667 1 1 −1 −4 0.1969
0.5 1 1 1 0.2160 2 1 −1 −4 0.4143
3 1 −1 −6 0.4597 2.5 1 −1 −6 0.4847

Table 3 The Spearman’s ρs for various values of k, α, θ and γ for copula (3.2)

k δ θ γ ρs k δ θ γ ρs

0.1 0.4 1 0.5 0.3167 0.2 0.001 1 1 0.0256
0.5 0.4 1 2.5 0.3561 1 0.4 −1 −5 0.3981
1 0.4 1 5 0.3728 2 0.4 −1 −10 0.4339
1 0.4 1 6 0.3604 3 0.4 −1 −15 0.4516
3 0.4 1 15 0.3677 3 0.4 0 −10 0.3000
1 0.01 1 5 0.0689 5 0.4 −1 −25 0.4681
1 0.25 1 5 0.2559 1 0.4 −1 −8 0.3604
0.75 0.4 1 3.75 0.3671 1 0.4 −1 −7 0.3693
6 0.4 −1 −30 0.4723 4 0.4 −1 −20 0.4618

defined by

ρs = 12
∫ 1

0

∫ 1

0
C(u, v) dudv − 3.

Example 6.1.

• 6.1.1. Consider the copula in (3.1). The Spearman’s ρs calculated for various
values of k, δ, θ and γ appear in Table 2. Here, ρs is an increasing function in δ

and k, increasing (decreasing) function in θ when γ ≥ 0 γ ≤ 0) and increasing
(decreasing) function in γ when θ ≤ 0 (θ ≥ 0). Furthermore, by Theorem 4.1,
C(u, v;k, δ, θ, γ ) is PQD. So, ρs ∈ [0,0.5116].

• 6.1.2. Consider the copula in (3.2). ρs is increasing in α and k, increasing (de-
creasing) function in θ if γ ≥ 0 (γ ≤ 0), increasing (decreasing) function in γ if
θ ≤ 0 (θ ≥ 0). The Spearman’s ρs calculated for various values of its parameters
appear in Table 3. The value of ρs equals 0.4723 for k = 6, α = 0.4, θ = −1 and
γ = −30 which is greater than the upper bound of the correlation coefficient of
an FGM copula.

• 6.1.3. Consider the copula in (3.3). The Spearman’s ρs calculated for various
values of δ, θ , γ and p appear in Table 4. Here, ρs is increasing function in p
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Table 4 The Spearman’s ρs for various values of δ, θ , γ and p for copula (3.3)

δ θ γ p ρs δ θ γ p ρs

5 1 2 0.1 0.1964 0.1 −1 −2 5 0.3857
0.5 1 2 1 0.3437 0.5 −1 −2 1 0.4122
0.25 1 2 2 0.3643 0.25 −1 −2 2 0.4311
0.1 1 2 5 0.3233 5 −1 −2 0.1 0.2571
1.67 1 2 0.3 0.2542 0.5 −1 −3 1 0.3248
0.25 1 2 2 0.3643 0.05 −0.5 −3 6 0.1480
0.17 0.5 2 3 0.2733 5 0 −2 0.1 0.0340
0 1 3 1 0.1033 0.5 0 3 1 0.1667

Table 5 The Spearman’s ρs for various values of α, θ , β and γ for copula (3.4)

α θ β γ ρs α θ β γ ρs

0.1 −0.35 0.5 −3 0.0849 0 1 1 1.5 0.1397
0.2 −0.75 0.5 −1 0.1769 0.2 0.5 0.9 1 0.1862
0.2 −1 1 −1 0.2484 0.5 1 1 1.5 0.3134
0.3 −0.95 0.8 −2 0.2124 0.5 1 1 2 0.2973
0.45 −0.5 1 −1.5 0.2663 0.6 0.85 0.8 1.23 0.3332
0.65 −1 1 −2.5 0.3425 0.8 1 1 4 0.3750
0.8 −1 0 −4 0.2916 0.95 1 0.7 14.72 0.3818
0.99 −1 1 −75 0.4148 0.99 0 1 −75 0.4133
0.99 −1 1 −73.58 0.4149 0.99 1 1 73.58 0.4147

and δ, increasing (decreasing) function in θ when γ ≥ 0 (γ ≤ 0) and increasing
(decreasing) function in γ when θ ≤ 0 (θ ≥ 0). The value of ρs equals 0.4311
for δ = 0.25, θ = −1, γ = −2 and p = 2 which is greater than the upper bound
of the correlation coefficient of an FGM copula.

• 6.1.4. Consider the copula in (3.4). ρs is an increasing function in α and β ,
increasing (decreasing) function in θ when γ ≥ 0 (γ ≤ 0) and increasing (de-
creasing) function in γ if θ ≥ 0 (θ ≤ 0). The Spearman’s ρs calculated for var-
ious values of its parameters appear in Table 5. The value of ρs equals 0.4149
for α = 0.99, θ = −1, β = 1 and γ = −73.58 which is greater than the upper
bound of the correlation coefficient of an FGM copula.

• 6.1.5. Consider the copula in (3.8). Table 6 shows Spearman’s ρs values calcu-
lated for various values of α, β and θ . ρs is an increasing function in α, β and
θ . Furthermore, C(u, v;α,β, θ) is PQD, so ρs ∈ [0,0.3515].

• 6.1.6. Consider the copula in (3.9). ρs is increasing in α, β and θ . As seen in
Table 7, the maximum of ρs equals 0.4167 which is greater than the upper bound
of an FGM copula and the minimum of ρs equals −0.3552 which is less than
the lower bound of an FGM copula.
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Table 6 The Spearman’s ρs for various values of parameters of copula (3.8)

α β θ ρs α β θ ρs

0 0 0.1 0.0078 0.45 0.3 0.6 0.2300
0.1 0.1 0.2 0.0579 0.5 0.35 0.7 0.2614
0.2 0.15 0.3 0.1043 0.55 0.4 0.8 0.2931
0.3 0.2 0.4 0.1514 0.6 0.45 0.9 0.3253
0.4 0.25 0.5 0.1991 1 − e−1 0.5 1 0.3515

Table 7 The Spearman’s ρs for various values of parameters of copulas (3.9) and (3.10)

(3.9) (3.10)

α β θ ρs δ θ ρs

0.1 −0.45 −0.5 −0.1588 0 −1 −0.2962
0.4 −.65 −0.8 −0.1733 0.1 −0.9 −0.2073
0.8 −0.95 −1 −0.1418 0.15 −0.8 −0.1471
0.8 −0.95 0 0.1875 0.2 −0.7 −0.0850
1 −1 −1 −0.0920 0.25 −0.6 −0.0208
0 −1 −1 −0.3552 0.3 −0.5 0.0455
0.6 0.2 −0.35 0.0865 0.35 −0.4 0.1141
0.9 0.8 −0.7 0.0911 0.4 −0.3 0.1849
1 1 −1 0.0258 0.45 −0.2 0.2582
1 1 0 0.4167 0.45 0 0.3375

• 6.1.7. Consider the copula in (3.10). ρs is an increasing in δ and θ . Hence, as
we see in Table 7, ρs ∈ [−0.2962,0.3375].

Remark 6.1. For copula (3.12) which contains FGM and AMH, ρs ∈ [−0.28,

0.4784].

Conclusion

In this study, we started with a rather arbitrary base bivariate copula and found
sufficient and necessary conditions under which two new classes of bivariate func-
tions would be copulas. In particular, they include various already known copu-
las previously studied in the literature such as FGM, AMH and BG. Dependence
properties of variables involved were investigated and revealed that the dependent
properties of the base copula are preserved by the generated copula under certain
conditions. Furthermore, we have provided several examples and computed the
values of Spearman’s ρs as measures of association. It is shown that the proposed
copulas improve this range of ρs comparing to FGM copula.



524 Z. Sharifonnasabi, M. H. Alamatsaz and I. Kazemi

Acknowledgments

Authors are grateful to two anonymous reviewers for their constructive comments.
The first author is also grateful to the Graduate Office of the University of Isfahan
for their support.

References

Amblard, C. and Girard, S. (2002). Symmetry and dependence properties within a semiparametric
family of bivariate copulas. Nonparametric Statistics 14, 715–727. MR1941711

Amblard, C. and Girard, S. (2009). A new extension of bivariate FGM copulas. Metrika 70, 1–17.
MR2506497

Amini, M., Jabbari, H. and Mohtashami Borzadaran, G. R. (2011). Aspects of dependence in gen-
eralized Farlie–Gumbel–Morgenstern distribution. Communications in Statistics-Simulation and
Computation 40, 1192–1205. MR2818099

Bairamov, I. and Kotz, S. (2002). Dependence structure and symmetry of Huang–Kotz FGM distri-
butions and their extensions. Metrika 56, 55–72.

Cook, R. D. and Johnson, M. E. (1986). Generalized Burr–Pareto-logistic distributions with applica-
tions to a uranium exploration data set. Technometrics 28, 123–131. MR0841485

Delahorra, J. and Fernandez, C. (1995). Sensitivity to prior independence via Farlie–Gumbel–
Morgenstern model. Communications in Statistics-Theory Methods 24, 987–996. MR1323259

Grane, G. J. (2009). Copulas for credit derviative pricing and other application. Ph.D. thesis.
Huang, J. S. and Kotz, S. (1999). Modifications of the Farlie–Gumbel–Morgenstern distribution.

A tough hill to climb. Metrika 49, 135–145.
Klein, I. and Christa, F. (2011). Families of copulas closed under the construction of generalized

linear means. IWQW discussion paper series, No. 04/2011.
Lin, G. D. (1987). Relationships between two extensions of Farlie–Gumbel–Morgenstern distribu-

tion. Annals of the Institute of Statistical Mathematics 39, 129–140. MR0886511
Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer. MR2197664
Sklar, A. (1959). Functions de repartition a n dimensions et leurs marges. Publication de Institut

Statistique de Universite de Paris 8, 229–231. MR0125600
Tolley, H. D. and Norman, J. E. (1979). Time on trial estimates with bivariate risks. Biometrika 66,

285–291. MR0548195

Department of Statistics
University of Isfahan
Isfahan 81744
Iran
E-mail: zahra.sharif@sci.ui.ac.ir

alamatho@sci.ui.ac.ir
i.kazemi@stat.ui.ac.ir

http://www.ams.org/mathscinet-getitem?mr=1941711
http://www.ams.org/mathscinet-getitem?mr=2506497
http://www.ams.org/mathscinet-getitem?mr=2818099
http://www.ams.org/mathscinet-getitem?mr=0841485
http://www.ams.org/mathscinet-getitem?mr=1323259
http://www.ams.org/mathscinet-getitem?mr=0886511
http://www.ams.org/mathscinet-getitem?mr=2197664
http://www.ams.org/mathscinet-getitem?mr=0125600
http://www.ams.org/mathscinet-getitem?mr=0548195
mailto:zahra.sharif@sci.ui.ac.ir
mailto:alamatho@sci.ui.ac.ir
mailto:i.kazemi@stat.ui.ac.ir

	Introduction
	A new class of bivariate copulas
	Some examples
	Dependence properties
	Tail dependence
	Measures of association
	Conclusion
	Acknowledgments
	References
	Author's Addresses

