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CHAINING, INTERPOLATION AND CONVEXITY II:
THE CONTRACTION PRINCIPLE1

BY RAMON VAN HANDEL

Princeton University

The generic chaining method provides a sharp description of the suprema
of many random processes in terms of the geometry of their index sets. The
chaining functionals that arise in this theory are however notoriously difficult
to control in any given situation. In the first paper in this series, we introduced
a particularly simple method for producing the requisite multiscale geometry
by means of real interpolation. This method is easy to use, but does not always
yield sharp bounds on chaining functionals. In the present paper, we show that
a refinement of the interpolation method provides a canonical mechanism for
controlling chaining functionals. The key innovation is a simple but powerful
contraction principle that makes it possible to efficiently exploit interpolation.
We illustrate the utility of this approach by developing new dimension-free
bounds on the norms of random matrices and on chaining functionals in Ba-
nach lattices. As another application, we give a remarkably short interpola-
tion proof of the majorizing measure theorem that entirely avoids the greedy
construction that lies at the heart of earlier proofs.

1. Introduction. The development of sharp bounds on the suprema of ran-
dom processes is of fundamental importance in diverse areas of pure and applied
mathematics. Such problems arise routinely, for example, in probability theory,
functional analysis, convex geometry, mathematical statistics and theoretical com-
puter science.

It has long been understood that the behavior of suprema of random processes
is intimately connected with the geometry of their index sets. This idea has culmi-
nated in a remarkably general theory due to M. Talagrand that captures the precise
connection between the underlying probabilistic and geometric structures for many
interesting types of random processes. For example, the classic result in this the-
ory, known (for historical reasons) as the majorizing measure theorem, provides a
sharp geometric characterization of the suprema of Gaussian processes.
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THEOREM 1.1 ([11]). Let (Xx)x∈T be a centered Gaussian process and let
d(x, y) = (E|Xx − Xy |2)1/2 be the associated natural metric on T . Then

E
[

sup
x∈T

Xx

]
� γ ∗

2 (T ) := inf sup
x∈T

∑
n≥0

2n/2d(x,Tn),

where inf is taken over all sequences of sets Tn of cardinality |Tn| < 22n
.

The method behind the proof of Theorem 1.1 is called the generic chaining.
It is by no means restricted to the setting of Gaussian processes, and analogues
of Theorem 1.1 exist in various settings. We refer to the monograph [11] for a
comprehensive treatment of this theory and its applications.

The majorizing measure theorem provides in principle a complete geometric
understanding (up to universal constants) of the suprema of Gaussian processes.
The chaining functional γ ∗

2 (T ) captures the relevant geometric structure: it quan-
tifies how well the index set T can be approximated, in a multiscale fashion, by
increasingly fine discrete nets Tn. The apparently definitive nature of Theorem 1.1
belies the fact that this result is often very difficult to use in any concrete situa-
tion. The problem is that while Theorem 1.1 guarantees that there must exist some
optimal sequence of nets Tn that yields a sharp bound on the supremum of any
given Gaussian process, the theorem does not explain how to find such nets. In
many cases, straightforward discretization of the index set (Dudley’s inequality)
gives rise to suboptimal bounds, and it is not clear how such bounds can be im-
proved.

Even without going beyond the setting of Gaussian processes, there are plenty
of challenging problems, for example, in random matrix theory [9, 13, 14], that
remain unsolved due to the lack of understanding of how to control the supremum
of some concrete Gaussian process; in fact, even in cases where the supremum of a
Gaussian process can be trivially bounded by probabilistic means, the underlying
geometry often remains a mystery; cf. [11], page 50. From this perspective, the
generic chaining theory remains very far from being well understood. It is therefore
of considerable interest to develop new mechanisms for the control of chaining
functionals such as γ ∗

2 (T ). The aim of this paper is to introduce some new ideas
in this direction.

The main (nontrivial) technique that has been used to date to control chain-
ing functionals is contained in the proof of Theorem 1.1. To show that γ ∗

2 (T ) is
bounded above by the expected supremum of a Gaussian process, a sequence of
nets Tn is constructed by repeatedly partitioning the set T in a greedy fashion,
using the functional G(A) := E[supx∈A Xx] to quantify the size of each partition
element. It is necessary to carefully select the partition elements at each stage of
the construction in order to control future iterations, which requires fairly delicate
arguments (cf. [11], Section 2.6). It turns out, however, that the proof does not rely
heavily on special properties of Gaussian processes: the only property of the func-
tional G(A) that is used is that a certain “growth condition” is satisfied. If one can
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design another functional F(A) that mimics this property of Gaussian processes,
then the same proof yields an upper bound on γ ∗

2 (T ) in terms of F(T ).
In principle, this partitioning scheme provides a canonical method for bounding

chaining functionals such as γ ∗
2 (T ): it is always possible to choose a functional

satisfying the requisite growth condition that gives a sharp bound on γ ∗
2 (T ). This

observation has little practical relevance, as this conclusion follows from the fact
that the chaining functional itself satisfies the growth condition (cf. [11], pages 38–
40) which does not help to obtain explicit bounds on these functionals. Nonethe-
less, this observation shows that no loss is incurred in the partitioning scheme
per se, so that its application is only limited by our ability to design good growth
functionals that admit explicit bounds. Unfortunately, the latter requires consid-
erable ingenuity, and has been carried out successfully in a limited number of
cases.

In the first paper in this series [12], the author introduced a new method to bound
chaining functionals that is inspired by real interpolation of Banach spaces. The
technique developed in [12] is completely elementary and is readily amenable to
explicit computations, unlike the growth functional method. This approach consid-
erably simplifies and clarifies some of the most basic ideas in the generic chaining
theory, such as the construction of chaining functionals on uniformly convex bod-
ies. On the other hand, this basic method is not always guaranteed to give sharp
bounds on γ ∗

2 (T ), as can be seen in simple examples (cf. [12], Section 3.3). It
is therefore natural to expect that the utility of the interpolation method may be
restricted to certain special situations whose geometry is well captured by this
construction.

The key insight of the present paper is that this is not the case: interpolation
provides a canonical method for bounding chaining functionals. The problem with
the basic method of [12] does not lie with the interpolation method itself, but is
rather due to the fact that this method was inefficiently exploited in its simplest
form. What is missing is a simple but apparently fundamental ingredient, a con-
traction principle, that will be developed and systematically exploited in this pa-
per. Roughly speaking, the contraction principle states that one can control chain-
ing functionals such as γ ∗

2 (T ) whenever one has suitable control on the entropy
numbers of all subsets A ⊆ T . A precise statement of this principle will be given
in Section 3 below, and its utility will be illustrated throughout the rest of pa-
per.

The combination of the interpolation method and the contraction principle pro-
vides a foundation for the generic chaining theory that yields significantly simpler
proofs and appears to be easier to use (at least in this author’s opinion) than the
classical approach through growth functionals. This approach will be illustrated in
a number of old and new applications. For example, we will fully recover the ma-
jorizing measure theorem with a remarkably short proof that does not involve any
greedy partitioning scheme. The latter is surprising in its own right, as a greedy
construction lies very much at the core of earlier proofs of Theorem 1.1.
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This paper is organized as follows. In Section 2, we set up the basic definitions
and notation that will be used throughout the paper. Section 3 develops the main
idea of this paper, the contraction principle. This principle is first illustrated by
means of some elementary examples in Section 4, which includes a brief review
of the basic interpolation method developed in [12]. In Section 5, we develop a
geometric principle that resolves a question posed in [12], Remark 4.4. We then
use this principle to develop new results on the behavior of chaining functionals
on Banach lattices, as well as to recover classical results on uniformly convex
bodies. In Section 6, we develop a very simple proof of Theorem 1.1 using the
machinery of this paper. We also show that the growth functional machinery that
lies at the heart of [11] can be recovered as a special case of our approach. Finally,
in Section 7 we exploit the methods of this paper to develop new dimension-free
bounds on the operator norms of structured random matrices.

2. Basic definitions and notation. The aim of this section is to set up the
basic definitions and notation that will be used throughout the paper. We introduce
a general setting that will be specialized to different problems as needed in the
sequel.

Let (X,d) be a metric space. We begin by defining entropy numbers.

DEFINITION 2.1. For every A ⊆ X and n ≥ 0, define the entropy number

en(A) := inf
|S|<22n

sup
x∈A

d(x,S).

(In this definition, the net S ⊆ X is not required to be a subset of A.)

Another way to interpret en(A) is by noting that A can be covered by less than
22n

balls of radius en(A). It is useful to recall a classical observation (the duality
between covering and packing) that will be needed below.

LEMMA 2.2. Let n ≥ 0 and N = 22n
. Then for every 0 < δ < en(A), there

exist points x1, . . . , xN ∈ A such that d(xi, xj ) > δ for all i �= j .

PROOF. Select points x1, x2, . . . as follows: choose x1 ∈ A arbitrarily, and
choose xi ∈ A so that d(xi, xj ) > δ for all j < i. Suppose this construction ter-
minates in round M , that is, there does not exist x ∈ A so that d(x, xj ) > δ for all
j ≤ M . Then setting S = {x1, . . . , xM}, we have supx∈A d(x,S) ≤ δ. Thus M ≥ N ,
as otherwise en(A) ≤ δ which contradicts our assumption. �

We now turn to the definition of chaining functionals. For the purposes of the
present paper, it will be convenient to use a slightly different definition than in
Theorem 1.1 that uses partitions rather than nets. We also formulate a more general
class of chaining functionals that are useful in the general generic chaining theory
(beyond the setting of Gaussian processes); cf. [11].
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DEFINITION 2.3. Let T ⊆ X. An admissible sequence of T is an increasing
sequence (An) of partitions of T such that |An| < 22n

for all n ≥ 0. For every
x ∈ T , we denote by An(x) the unique element of An that contains x.

DEFINITION 2.4. Let T ⊆ X. For α > 0 and p ≥ 1, define

γα,p(T ) :=
[

inf sup
x∈T

∑
n≥0

(
2n/α diam

(
An(x)

))p]1/p

,

where the infimum is taken over all admissible sequences of T . The most important
case p = 1 is denoted as γα(T ) := γα,1(T ).

It is an easy fact that the chaining functional γ ∗
2 (T ) that appears in Theorem 1.1

satisfies γ ∗
2 (T ) ≤ γ2(T ): given an admissible sequence (An) of T , we may simply

select a net Tn by choosing one point arbitrarily in every element of the parti-
tion An. As our interest in this paper is to obtain upper bounds on γ2(T ), these
trivially give upper bounds on γ ∗

2 (T ) as well. It is not difficult to show that these
quantities are actually always of the same order; cf. [11], Section 2.3. This will
also follow as a trivial application of the main result of this paper; see Section 4.1
below.

Let us emphasize that the definitions of en(A) and γα,p(T ) depend on the metric
of the underlying metric space (X,d). In some situations, we will be working with
multiple metrics; in this case, the metric d that is used to define the above quantities
will be denoted explicitly by writing en(A,d), γα,p(T , d) and diam(A,d).

We will write a � b if a ≤ Cb for a universal constant C, and we write a � b if
a � b and b � a. In cases where the universal constant depends on some parameter
of the problem, this will be indicated explicitly.

3. The contraction principle. At the heart of this paper lies a simple but
apparently fundamental principle that will be developed in this section. The basic
idea is that we can control the chaining functionals γα,p(T ) when we have suitable
control on the entropy numbers en(A) of all subsets A ⊆ T .

THEOREM 3.1 (Contraction principle). Let sn(x) ≥ 0 and a ≥ 0 satisfy

en(A) ≤ a diam(A) + sup
x∈A

sn(x)

for every n ≥ 0 and A ⊆ T . Then

γα,p(T ) � aγα,p(T ) +
[

sup
x∈T

∑
n≥0

(
2n/αsn(x)

)p]1/p

,

where the universal constant depends only on α.
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Of course, this result is of interest only when a can be chosen sufficiently small,
in which case it immediately yields an upper bound on γα,p(T ).

It should be emphasized that the only nontrivial aspect of Theorem 3.1 is to dis-
cover the correct formulation of this principle; no difficulties are encountered in
the proof. What may be far from obvious at present is that this is in fact a powerful
or even useful principle. This will become increasingly clear in the following sec-
tions, where we will see that the interpolation method of [12] provides a canonical
mechanism for generating controls sn(x).

As Theorem 3.1 lies at the core of this paper, we give two slightly different
proofs. The first proof explains the term “contraction principle.” The second proof
is instructive for contrasting our approach with that of [11].

3.1. First proof. The idea of the proof is that the assumption of Theorem 3.1
allows us to construct from any admissible sequence a new admissible sequence
that provides more control on the value of the chaining functional.

FIRST PROOF OF THEOREM 3.1. As en(A) ≤ diam(T ) for every A ⊆ T , we
can assume without loss of generality that sn(x) ≤ diam(T ) for all n, x.

Let (An) be an admissible sequence of T . For every n ≥ 1 and partition element
An ∈ An, we construct sets A

ij
n as follows. We first partition An into n segments

(here 1 ≤ i < n):

Ai
n := {

x ∈ An : 2−2i/α diam(T ) < sn(x) ≤ 2−2(i−1)/α diam(T )
}
,

An
n := {

x ∈ An : sn(x) ≤ 2−2(n−1)/α diam(T )
}
.

The point of this step is to ensure that for all x ∈ Ai
n and i ≤ n, we have

sup
y∈Ai

n

sn(y) ≤ 22/αsn(x) + 2−2(n−1)/α diam(T ),

that is, sn(x) is nearly constant on Ai
n. Using the assumption of the theorem, we

can further partition each Ai
n into less than 22n

pieces A
ij
n such that

diam
(
Aij

n

) ≤ 2a diam(An) + 21+2/αsn(x) + 21−2(n−1)/α diam(T )

for all x ∈ A
ij
n . Let Cn+3 be the partition generated by all sets A

ij
k , k ≤ n, i, j

thus constructed. Then |Cn+3| < ∏n
k=1 k(22k

)2 < 22n+3
. Defining Ck = {T } for 0 ≤

k ≤ 3, we readily obtain

γα,p(T ) ≤
[

sup
x∈T

∑
n≥0

(
2n/α diam

(
Cn(x)

))p]1/p

� a

[
sup
x∈T

∑
n≥0

(
2n/α diam

(
An(x)

))p]1/p

+
[

sup
x∈T

∑
n≥0

(
2n/αsn(x)

)p]1/p

+ diam(T ),
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where the universal constant depends only on α. The last term on the right can be
absorbed in the first two as diam(T ) ≤ 2e0(T ) ≤ 2a diam(A0(x))+2 supx∈T s0(x).
It remains to note that the admissible sequence (An) was arbitrary, so we can take
the infimum over (An) on the right-hand side. �

One way to interpret this proof is as follows. We used the assumption of Theo-
rem 3.1 to define a mapping � : A 	→ C that assigns to every admissible sequence
A = (An) a new admissible sequence C = (Cn). This mapping can be thought of
as inducing a form of dynamics on the space of admissible sequences. If we define
the value of A and the target upper bound as

val(A) =
[

sup
x∈T

∑
n≥0

(
2n/α diam

(
An(x)

))p]1/p

,

S =
[

sup
x∈T

∑
n≥0

(
2n/αsn(x)

)p]1/p

,

then we have shown in the proof that

val
(
�(A)

) ≤ Ca val(A) + CS

for a universal constant C. If a can be chosen so that Ca < 1, then � defines a sort
of contraction on the space of admissible sequences. This ensures that there exists
an admissible sequence with value val(A) � S, which is the conclusion we seek.
This procedure is reminiscent of the contraction mapping principle, which is why
we call Theorem 3.1 the contraction principle.

3.2. Second proof. The above proof ensures the existence of a good admissi-
ble partition without directly constructing this partition. This is in contrast to the
partitioning scheme of [11], where a good admissible partition is explicitly con-
structed in the proof. We presently show that by organizing the proof in a slightly
different way, we also obtain an explicit construction.

SECOND PROOF OF THEOREM 3.1. We construct an increasing sequence of
partitions (Bn) of T by induction. First, set B0 = {T }. Now suppose partitions
B0, . . . ,Bn−1 have already been constructed. We first split every set Bn−1 ∈ Bn−1
into n segments (here 1 ≤ i < n):

Bi
n := {

x ∈ Bn−1 : 2−2i/α diam(T ) < sn(x) ≤ 2−2(i−1)/α diam(T )
}
,

Bn
n := {

x ∈ Bn−1 : sn(x) ≤ 2−2(n−1)/α diam(T )
}
,

and then further subdivide each Bi
n into less than 22n

pieces B
ij
n so that

diam
(
Bij

n

) ≤ 2a diam(Bn−1) + 21+2/αsn(x) + 21−2(n−1)/α diam(T )
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for all x ∈ B
ij
n . Now let Bn = {Bij

n : Bn−1 ∈ Bn−1, i ≤ n, j < 22n}. As |Bn| <

n22n |Bn−1| <
∏n

k=1 k22k
< 22n+2

, (Bn) is not itself an admissible sequence. We
can however easily convert it to an admissible sequence (An) by defining A0 =
A1 = {T } and An+2 = Bn.

Now note that by construction, we have

diam
(
An(x)

) ≤ 2a diam
(
An−1(x)

)+ 21+2/αsn−2(x) + 21−2(n−3)/α diam(T )

whenever n ≥ 3. Therefore, in the notation of the previous subsection,

val(A) ≤ Ca val(A) + CS

for a universal constant C depending only on α, where we used the same argument
as in the first proof of Theorem 3.1 to absorb the diam(T ) term. If Ca ≤ 1

2 , say,
then we obtain the desired bound γα,p(T ) ≤ val(A) ≤ 2CS (this is the interesting
case). On the other hand, if Ca > 1

2 , we trivially have γα,p(T ) ≤ 2Caγα,p(T ).
Thus the conclusion of Theorem 3.1 follows. �

The second proof of Theorem 3.1 is reminiscent of the partitioning scheme of
[11] to the extent that an admissible sequence is constructed by repeatedly parti-
tioning the index set T . In contrast to the method of [11], however, the present
approach is completely devoid of subtlety: the partitioning at each stage is per-
formed in the most naive possible way by breaking up each set arbitrarily into
pieces of the smallest possible diameter. We will nonetheless see in Section 6 that
the growth functional machinery of [11] can be recovered from Theorem 3.1 with a
remarkably simple proof. In our approach, the growth functional will play no role
in the partitioning process itself, but will only be used to produce controls sn(x)

that yield good a priori bounds on the entropy numbers en(A) for A ⊆ T .

REMARK 3.2. The chaining functionals γα,p(T , d) that we consider in this
paper use a single distance d to control the diameter of the admissible sequence at
every scale. Applications of the generic chaining theory to canonical or infinitely
divisible processes require a more general form of the chaining functionals that
allows one to use a different distance dn for each scale n ([11], Chapter 10). The
contraction principle, as well as the interpolation machinery developed in the fol-
lowing sections (particularly Section 6.2), extend readily to this setting. However,
as such functionals will not be used in any of the applications of this paper, we
have chosen to formulate our results in the more basic setting for notational and
conceptual simplicity.

4. Simple illustrations. Before we can apply Theorem 3.1 in a nontrivial
manner, we should develop some insight into the meaning of the numbers sn(x)

and basic ways in which they can be constructed. To this end, we aim in this sec-
tion to illustrate Theorem 3.1 in the simplest cases. All results developed here
admit more direct proofs, but the present treatment is intended to help understand
the meaning of Theorem 3.1.
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4.1. Admissible sequences and nets. When the abstract statement of Theo-
rem 3.1 is first encountered, it may be far from obvious why

en(A) ≤ a diam(A) + sup
x∈A

sn(x)

is a natural assumption. The relevance of the numbers sn(x) can be immediately
clarified by observing that a canonical choice is already built into the definition of
the chaining functional γα,p(T ).

LEMMA 4.1. Let (An) be any admissible sequence of T . Then the choice
sn(x) = diam(An(x)) satisfies the assumption of Theorem 3.1 with a = 0.

PROOF. Any A ⊆ T is covered by less than 22n
sets {An(x) : x ∈ A} of diam-

eter at most supx∈A diam(An(x)), so en(A) ≤ supx∈A diam(An(x)). �

Of course, with this choice, Theorem 3.1 yields γα,p(T ) � γα,p(T ) which is not
very interesting. Nonetheless, Lemma 4.1 explains why bounding entropy num-
bers en(A) in terms of controls sn(x) is entirely natural. Moreover, we see that
Theorem 3.1 can in principle always give a sharp bound on γα,p(T ).

As an only slightly less trivial example, let us show that the functional γ ∗
2 (T )

defined in the Introduction is always of the same order as γ2(T ).

LEMMA 4.2. γ ∗
2 (T ) � γ2(T ).

PROOF. As was noted in Section 2, the inequality γ ∗
2 (T ) ≤ γ2(T ) is trivial.

To prove the converse inequality, let Tn be arbitrary sets of cardinality |Tn| < 22n
,

and define sn(x) = d(x,Tn). The definition of entropy numbers instantly yields
en(A) ≤ supx∈A sn(x). Applying Theorem 3.1 with a = 0 yields

γ2(T ) � sup
x∈T

∑
n≥0

2n/2d(x,Tn).

Taking the infimum over all choices of Tn yields γ2(T ) ≤ γ ∗
2 (T ). �

So far, we only used Theorem 3.1 with a = 0 and did not exploit the “contrac-
tion” part of the contraction principle. We now provide a first illustration of an
improvement that can be achieved by exploiting contraction.

4.2. A local form of Dudley’s inequality. The most naive bound on γ ∗
2 (T ) is

obtained by moving the supremum in its definition inside the sum. This yields the
following result, which is known as Dudley’s inequality:

γ ∗
2 (T ) ≤ ∑

n≥0

2n/2en(T ).
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Dudley’s inequality represents the simplest possible construction where each net
Tn in the definition of γ ∗

2 (T ) is distributed as uniformly as possible over the in-
dex set T . Unfortunately, such a simple construction proves to be suboptimal al-
ready in some of the simplest examples (cf. [11, 12]). To attain the sharp bound
that is guaranteed by Theorem 1.1, it is essential to allow for the nets Tn to be
constructed in a genuinely multiscale fashion. Nonetheless, Dudley’s inequality
is widely used in practice due to the ease with which it lends itself to explicit
computations. It is no surprise that Dudley’s inequality is trivially recovered by
Theorem 3.1.

LEMMA 4.3. For a universal constant C depending only on α, we have

γα,p(T ) ≤ C

[∑
n≥0

(
2n/αen(T )

)p]1/p

.

As en(A) ≤ en(T ), this follows using sn(x) = en(T ) and a = 0 in Theorem 3.1.
However, without much additional effort, we can do slightly better using a simple
application of the “contraction” part of the contraction principle.

To exploit contraction, we note that if en(A) ≤ a diam(A) = r , then the assump-
tion of Theorem 3.1 is automatically satisfied; thus the numbers sn(x) only need
to control the situation where this condition fails. As A is contained in a ball of
radius diam(A), this condition essentially means that a certain ball of radius r/a

can be covered by less than 22n
balls of proportional radius r , which is a sort

of doubling condition on the metric space (T , d). Let us consider the largest ra-
dius of a ball that is centered at a given point x for which this doubling condition
fails:

ea,x
n (T ) := sup

{
r : en

(
T ∩ B(x, r/a)

)
> r

}
,

where B(x, r) := {y ∈ X : d(x, y) ≤ r}. Clearly, ea,x
n (T ) ≤ en(T ), so this

quantity can be viewed as a local improvement on the notion of entropy
numbers. We can now use Theorem 3.1 to show that Dudley’s inequality re-
mains valid if we replace the (global) entropy numbers by their local counter-
parts.

LEMMA 4.4. For universal constants C, a depending only on α, we have

γα,p(T ) ≤ C

[
sup
x∈T

∑
n≥0

(
2n/αea,x

n (T )
)p]1/p

.

PROOF. Let a > 0, n ≥ 0 and x ∈ A ⊆ T . If diam(A) > ea,x
n (T )/a, then

en(A) ≤ en

(
T ∩ B

(
x,diam(A)

))≤ a diam(A)
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by definition. On the other hand, if diam(A) ≤ ea,x
n (T )/a, then trivially

en(A) ≤ diam(A) ≤ ea,x
n (T )

a
.

Thus the assumption of Theorem 3.1 holds with sn(x) = ea,x
n (T )/a. The proof is

readily concluded by choosing a to be a small universal constant. �

An almost identical proof yields a variant of Lemma 4.4 given in [10], equation
(1.9), that uses a regularized form of the local entropy numbers ea,x

n (T ).2 While
these bounds can improve on Dudley’s inequality in some esoteric (ultrametric)
examples, they are not particularly useful in practice. The reason that Lemma 4.4
is included here is to help provide some initial intuition for how one might use the
“contraction” part of the contraction principle. The real power of the contraction
principle will however arise when it is combined with the interpolation method of
[12].

4.3. The simplest interpolation estimate. As the interpolation method will
play a crucial role in the remainder of this paper, we must begin by recalling the
main idea behind this method. The aim of this section is to provide a first illustra-
tion of how interpolation can be used to generate the controls sn(x) in Theorem 3.1
by recovering the main result of [12].

The interpolation method is based on the following construction. Given a
penalty function f : X →R+ ∪ {+∞}, define the interpolation functional

K(t, x) := inf
y∈X

{
f (y) + td(x, y)

}
.

We will assume for simplicity that the infimum in this definition is attained for
each t ≥ 0 and x ∈ T , and denote by πt(x) an arbitrary choice of minimizer (if
the infimum is not attained we can easily modify our results to work with near-
minimizers). We now define the interpolation sets

Kt := {
πt(x) : x ∈ T

}
.

The idea of the interpolation method is that the sets Kt provide a multiscale ap-
proximation of T precisely of the form suggested by Theorem 1.1.

LEMMA 4.5. For every a > 0, we have

sup
x∈T

∑
n≥0

2n/αd
(
x,πa2n/α (x)

)
� 1

a
sup
x∈T

f (x),

where the universal constant depends only on α.

2Use ẽ
a,x
n (T ) := inf{ak diam(T ) : ∏k

i=0 N(T ∩ B(x, ai−2 diam(T )), ai diam(T )) < 22n }, where
N(A,ε) is the covering number of A by balls of radius ε. Details are left to the reader.
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PROOF. As 0 ≤ K(t, x) ≤ f (x) and

K(t, x) − K(s, x) ≥ (t − s)d
(
x,πt (x)

)
for every t , s, x, we have∑

n≥0

a2n/αd
(
x,πa2n/α (x)

)
�

∑
n≥0

{
K
(
a2n/α, x

)− K
(
a2(n−1)/α, x

)} ≤ f (x)

for every x ∈ T and a > 0. �

Lemma 4.5 provides a natural mechanism to create multiscale approximations.
However, the approximating sets Ka2n/α are still continuous, and must therefore be
discretized in order to bound the chaining functional that appears in Theorem 1.1.
The simplest possible way to do this is to distribute each net Tn in Theorem 1.1 uni-
formly over the interpolation set Ka2n/α . This yields the basic interpolation bound
of [12].

THEOREM 4.6. For every a > 0, we have

γα(T ) � 1

a
sup
x∈T

f (x) + ∑
n≥0

2n/αen(Ka2n/α ),

where the universal constant depends only on α.

PROOF. By definition of entropy numbers, we can choose a set Tn with |Tn| <
22n

such that d(x,Tn) ≤ 2en(Ka2n/α ) for every x ∈ Ka2n/α . Then

en(A) ≤ sup
x∈A

d(x,Tn) ≤ sup
x∈A

d(x,Ka2n/α ) + 2en(Ka2n/α )

for every A ⊆ T . We can therefore invoke Theorem 3.1 with a = 0 and sn(x) =
d(x,Ka2n/α ) + 2en(Ka2n/α ). Lemma 4.5 completes the proof. �

The utility of Theorem 4.6 stems from the fact that the sets Kt are often much
smaller than the index set T , so that this result provides a major improvement
over Dudley’s bound. This phenomenon is illustrated in various examples in [12].
Nonetheless, there is no reason to expect that the particular multiscale construction
used here should always attain the sharp bound that is guaranteed by Theorem 1.1.
Indeed, it is shown in [12], Section 3.3, that this is not necessarily the case.

There are two potential ways in which Theorem 4.6 can result in a suboptimal
bound. First, the ability of this method to produce sufficiently “thin” sets Kt relies
on a good choice of the penalty function f . While certain natural choices are
considered in [12], the best choice is not always obvious, and a poor choice of
penalty will certainly give rise to suboptimal bounds. This is, however, not an
intrinsic deficiency of the interpolation method.
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The fundamental inefficiency of Theorem 4.6 lies in the discretization of the
sets Kt . The interpolation method cannot itself produce discrete nets: it only re-
veals a multiscale structure inside the index set T . To obtain the above result, we
naively discretized this structure by distributing nets Tn as uniformly as possible
over the sets Ka2n/α . While this provides an improvement over Dudley’s bound,
such a uniform discretization can incur a significant loss. In general, we should
allow once again for a multiscale discretization of the sets Ka2n/α . It is easy to
modify the above argument to formalize this idea; for example, one can easily
show that

γα(T ) � 1

a
sup
x∈T

f (x) + inf sup
x∈T

∑
n≥0

2n/αd
(
πa2n/α (x), Tn

)
,

where inf is taken over all nets Tn with |Tn| < 22n
. This bound appears to be rather

useless, however, as the quantity on the right-hand side is just as intractable as the
quantity γα(T ) that we wish to control in the first place.

The basic insight that gave rise to the results in this paper is that it is not ac-
tually necessary to construct explicit nets Tn to bound the right-hand side of this
inequality: it suffices to show that the quantity on the right-hand side is signifi-
cantly smaller than γα(T ). For example, if we could show that

inf sup
x∈T

∑
n≥0

2n/αd
(
πa2n/α (x), Tn

)
� aγα(T ),

then the resulting bound γα(T ) � aγα(T )+ 1
a

supx∈T f (x) would yield an explicit
bound on γα(T ) by choosing a to be sufficiently small. Such a bound captures
quantitatively the idea that the sets Kt are much smaller than the index set T .
The author initially implemented this idea in a special case (Section 5.1) using
the formulation described above. It turns out, however, that the same scheme of
proof is applicable far beyond this specific setting and is in some sense canon-
ical. The contraction principle of Theorem 3.1 is nothing other than an abstract
formulation of this idea that will enable us to efficiently exploit the interpolation
method.

For future reference, we conclude this section by recording a convenient obser-
vation: the mapping x 	→ πt(x) can often be chosen to be a (nonlinear) projection.
This was established in [12] in a more restrictive setting.

LEMMA 4.7. Suppose T = {x ∈ X : f (x) ≤ u}. Then Kt ⊆ T for all t ≥ 0,
and the minimizers πt(x) may be chosen to satisfy πt(πt (x)) = πt(x).

PROOF. As f (πt (x)) ≤ K(t, x) ≤ f (x), we clearly have πt(x) ∈ T whenever
x ∈ T . This shows that Kt ⊆ T . Now consider the set

K ′
t := {

x ∈ T : K(t, x) = f (x)
}
.
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By construction, if x ∈ K ′
t , we may choose πt(x) = x. If x /∈ K ′

t , we choose πt(x)

to be an arbitrary minimizer. We claim that πt(x) ∈ K ′
t for all x ∈ T .

Indeed, suppose πt(x) /∈ K ′
t . Then there exists z ∈ X such that

f (z) + td
(
πt(x), z

)
< f

(
πt(x)

)
.

But then we have

K(t, x) = f
(
πt(x)

)+ td
(
x,πt (x)

)
> f (z) + td

(
πt(x), z

)+ td
(
x,πt (x)

)
≥ f (z) + td(x, z)

by the triangle inequality. This contradicts the definition of K(t, x).
As πt(x) ∈ K ′

t for all x ∈ T , we have Kt ⊆ K ′
t . On the other hand, as x = πt(x)

for all x ∈ K ′
t , it follows that Kt = K ′

t and πt(πt (x)) = πt(x). �

5. Banach lattices and uniform convexity. In this section, we encounter our
first nontrivial application of the contraction principle. We begin by developing in
Section 5.1 a sharper version of a geometric principle that was obtained in [12],
resolving a question posed in [12], Remark 4.4. We will use this principle in Sec-
tion 5.2 to obtain a rather general geometric understanding of the behavior of the
chaining functionals γα on Banach lattices. In Section 5.3, we discuss an analogous
result for uniformly convex bodies.

5.1. A geometric principle. Throughout this section, we specialize our general
setting to the case that (X,‖ · ‖) is a Banach space and T ⊂ X is a symmetric
compact convex set. We let d(x, y) := ‖x − y‖, and denote the gauge of T as
‖x‖T := inf{s ≥ 0 : x ∈ sT }. It is natural in the present setting to use a power
of the gauge as a penalty function in the interpolation method: that is, we define
throughout this section

K(t, x) := inf
y∈X

{‖y‖r
T + t‖x − y‖}

for some r > 0. The existence of minimizers πt(x) for x ∈ T is easily established,3

and we define as in Section 4.3 the interpolation sets

Kt := {
πt(x) : x ∈ T

}
.

We would like to impose geometric assumptions on the sets Kt that will allow us
to obtain tractable bounds on γα(T ). To this end, we will prove a sharper form of
a useful geometric principle identified in [12], Theorem 4.1.

3As K(t, x) ≤ ‖x‖r
T ≤ 1, we may restrict the inf to be taken over the compact set y ∈ T . But

‖y‖T = supz∈T ◦ 〈z, y〉, so the gauge is lower-semicontinuous and inf is attained.
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THEOREM 5.1. Let q ≥ 1 and L > 0 be given constants, and suppose

‖y − z‖q
T ≤ Lt‖y − z‖ for all y, z ∈ Kt, t ≥ 0.

Then

γα(T ) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L1/q

[∑
n≥0

(
2n/αen(T )

)q/(q−1)

](q−1)/q

(q > 1),

L sup
n≥0

2n/αen(T ) (q = 1),

where the universal constant depends only on α.

The message of this result is that one can improve substantially on Dudley’s
inequality (which is the case q = ∞) if the geometric condition of Theorem 5.1
is satisfied. This condition is one manifestation of the idea that the sets Kt are
much smaller than T : under this condition, every small ball in Kt is contained in
a proportionally scaled-down copy of T . Of course, it is not at all obvious how to
realize this condition, but we will see below that it arises very naturally from the
interpolation method under suitable geometric assumptions on T .

For fixed q > 1, it was shown in [12], Theorem 4.1, that the conclusion of
Theorem 5.1 can be deduced from Theorem 4.6. However, this approach has a
crucial drawback: the constant diverges as q ↓ 1. The key improvement provided
by Theorem 5.1 is that the constant does not depend on q , which allows us in
particular to attain the limiting case q = 1. The latter is particularly interesting, as
the so-called Sudakov lower bound

γα(T ) ≥ sup
n≥0

2n/αen(T )

holds trivially for any T . Thus the case q = 1 of Theorem 5.1 gives a geometric
condition for the Sudakov lower bound to be sharp, as conjectured in [12], Re-
mark 4.4. We will encounter an important example in Section 5.2.

PROOF OF THEOREM 5.1. Let n ≥ 0 and A ⊆ T . We denote by

At := {
πt(x) : x ∈ A

}
,

s(t,A) := sup
x∈A

∥∥x − πt(x)
∥∥

the projection of A on Kt and the associated projection error.
We first note that the assumption of the theorem implies that

At ⊆ z + (
Lt diam(At )

)1/q
T

for some z ∈ X. That is, the projection At is contained in a “shrunk” copy of T .
On the other hand, replacing At by A only costs the projection error:

en(A) ≤ en(At ) + s(t,A),

diam(At ) ≤ diam(A) + 2s(t,A).
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We can therefore estimate

en(A) ≤ (Lt)1/q(diam(A) + 2s(t,A)
)1/q

en(T ) + s(t,A).

We apply this bound with t = a2n/α . The idea is now that the interpolation lemma
will take care of the projection error, while the “contraction” part of the contraction
principle allows us to exploit the shrinkage created by the geometric assumption.

Case q = 1. In this case, we can estimate

en(A) ≤ LSa diam(A) + (2LSa + 1)s
(
a2n/α,A

)
,

S := sup
n≥0

2n/αen(T ).

Applying the contraction principle of Theorem 3.1 gives

γα(T ) � LSaγα(T ) + (2LSa + 1) sup
x∈T

∑
n≥0

2n/α
∥∥x − πa2n/α (x)

∥∥.
We can now use the interpolation Lemma 4.5 to bound the second term as

γα(T ) � LSaγα(T ) + LS + 1

a
.

We conclude by setting a = C/LS for a sufficiently small universal constant C.
Case q > 1. The proof is very similar, but now we use Young’s inequality uv ≤

up/Cp/q + Cvq with p = q/(q − 1) to estimate

en(A) ≤ C diam(A) + (2C + 1)s
(
a2n/α,A

)+
(

La

C

)p/q

2np/αqen(T )p.

If C is chosen to be a sufficiently small universal constant, then the contraction
principle and interpolation lemma give, respectively,

γα(T ) � sup
x∈T

∑
n≥0

2n/α
∥∥x − πa2n/α (x)

∥∥+ (La)p/q
∑
n≥0

(
2n/αen(T )

)p

� 1

a
+ (La)p/q

∑
n≥0

(
2n/αen(T )

)p

(here we used in the first line that 2n/α2np/αq = 2np/α because 1 + p/q = p). The
proof is completed by optimizing over a > 0. �

Let us note that the choice of r > 0 in the definition of K(t, x) appears nowhere
in the statement of proof of Theorem 5.1. The flexibility to choose r in a conve-
nient manner will be useful, however, when we try to verify that the assumption of
Theorem 5.1 is satisfied in specific situations.
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5.2. Banach lattices. The aim of this section is to show that Theorem 5.1 pro-
vides a rather general understanding of the behavior of γα(T ) on Banach lattices
(all the relevant background on Banach lattices and their geometry can be found in
[5]). To this end, we specialize the setting of the previous section to the case where
(X,‖ · ‖) is a Banach lattice and where the compact convex set T ⊂ X is solid, that
is, x ∈ T and |y| ≤ |x| implies y ∈ T . Solidity of T is simply the requirement that
the gauge ‖ · ‖T is also a lattice norm (on its domain). We now introduce a fun-
damental property that plays an important role in the geometry of Banach lattices;
cf. [5], Section 1.f.

DEFINITION 5.2. Let q ≥ 1. T is said to satisfy a lower q-estimate with con-
stant M if for all n ≥ 1 and vectors x1, . . . , xn ∈ X[

n∑
i=1

‖xi‖q
T

]1/q

≤ M

∥∥∥∥∥
n∑

i=1

|xi |
∥∥∥∥∥
T

.

We have the following result.

THEOREM 5.3. If T satisfies a lower q-estimate with constant M , then

γα(T ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M

[∑
n≥0

(
2n/αen(T )

)q/(q−1)

](q−1)/q

(q > 1),

M sup
n≥0

2n/αen(T ) (q = 1),

where the universal constant depends only on α.

We will prove this theorem by showing that the condition of Theorem 5.1 is
satisfied if we choose r = q in the previous section. There is a somewhat sub-
tle point, however, that we must take care of first. The computations used in our
proof rely crucially on the fact that a lower q-estimate is satisfied with constant
M = 1. However, we did not require this special situation to hold in Theorem 5.3.
We will therefore make essential use of the observation that any Banach lattice
that satisfies a lower q-estimate admits an equivalent renorming whose lower q-
estimate constant is identically one ([5], Lemma 1.f.11). Concretely, define the
new norm

‖x‖
T̃

:= sup

[
n∑

i=1

‖xi‖q
T

]1/q

,

where the supremum is taken over all possible decompositions of x as a sum of
n ≥ 1 pairwise disjoint elements x1, . . . , xn, and define T̃ := {x ∈ X : ‖x‖

T̃
≤ 1}.

It is readily verified using [5], Proposition 1.f.6, that if T satisfies a lower q-
estimate with constant M , then T̃ satisfies a lower q-estimate with constant 1
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and T̃ ⊆ T ⊆ MT̃ . This implies in particular that γα(T ) ≤ Mγα(T̃ ) and en(T̃ ) ≤
en(T ), so that we may assume without loss of generality in the proof of Theo-
rem 5.3 that M = 1.

PROOF OF THEOREM 5.3. We will assume without loss of generality that
M = 1, and we apply the setting of the previous section with r = q . Fix t ≥ 0 and
y, z ∈ Kt , and define

u := (y ∧ z) ∨ 0 + (y ∨ z) ∧ 0.

The point of this definition is that

|y| − |u| = |y − u| ≤ |y − z|,
as well as the analogous property where the roles of y and z are exchanged.

Using that T satisfies a lower q-estimate with constant one, we obtain

‖y − u‖q
T ≤ ‖y‖q

T − ‖u‖q
T .

On the other hand, Lemma 4.7 gives

‖y‖q
T = K(t, y) ≤ ‖u‖q

T + t‖y − u‖.
All the above properties hold if we exchange y and z. Therefore,

‖y − z‖q
T ≤ 2q−1(‖y − u‖q

T + ‖z − u‖q
T

)
≤ 2q−1t

(‖y − u‖ + ‖z − u‖)
≤ 2q t‖y − z‖,

where we used the triangle inequality, (a + b)q ≤ 2q−1(aq + bq), and that ‖ · ‖ is
a lattice norm. The proof is concluded by applying Theorem 5.1. �

An interesting example of Theorem 5.3 is the the following. Let X = R
d , let ‖·‖

be any 1-unconditional norm (with respect to the standard basis), and let T = Bd
1

be the unit �1-ball. It is immediate that the �1-norm satisfies a lower 1-estimate
with constant one. Theorem 5.3 therefore yields

γα

(
Bd

1
) � sup

n≥0
2n/αen

(
Bd

1
)
,

that is, Sudakov’s lower bound is sharp for the �1-ball. In the special case where
α = 2 and ‖ · ‖ is the Euclidean norm, this can be verified by an explicit compu-
tation using Theorem 1.1 (or Theorem 4.6, cf. [12], Section 3.2) and estimates on
the entropy numbers; however, such a computation does not explain why Sudakov
turns out to be sharp in this setting. Theorem 5.3 provides a geometric explanation
of this phenomenon, and extends it to the much more general situation where ‖ · ‖
is an arbitrary unconditional norm.

We conclude this section with a few remarks.
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REMARK 5.4. We have shown that Sudakov’s inequality is sharp for Bd
1 if

‖ · ‖ is a lattice norm (i.e., unconditional with respect to the standard basis). It is
worth noting that the lattice property is really essential for this phenomenon to
occur: the analogous result for general norms is absolutely false. To see why this
must be the case, note that if T is the symmetric convex hull of d points in X, then
we always have T = ABd

1 for some linear operator A :Rd → X. We can therefore
write γα(T ,‖ · ‖) = γα(Bd

1 ,‖ · ‖′) with ‖x‖′ := ‖Ax‖. Thus if Sudakov’s lower
bound were sharp for Bd

1 when endowed with a general norm, then Sudakov’s
lower bound would be sharp for any symmetric polytope and, therefore, (by ap-
proximation) for every symmetric compact convex set. This conclusion is clearly
false.

REMARK 5.5. The case q = 1 of Theorem 5.3 proves to be somewhat restric-
tive. Suppose that ‖ · ‖T satisfies a lower 1-estimate with constant one (as may
always be assumed after equivalent renorming). Because of the triangle inequal-
ity, we must then have the rather strong condition ‖x‖T + ‖y‖T = ‖(|x| + |y|)‖T .
A Banach lattice satisfying this condition is called an AL-space. It was shown by
Kakutani that such a space is always order-isometric to L1(μ) for some measure
(μ [5], Theorem 1.b.2). Thus L1-balls are essentially the only examples for which
Theorem 5.3 applies with q = 1. The case q > 1 is much richer, however, and
Theorem 5.3 provides a very general tool to understand chaining functionals in
this setting.

REMARK 5.6. Theorem 5.3 shows that Dudley’s inequality can be substan-
tially improved for solid sets T that satisfy a nontrivial lower q-estimate. On the
other hand, a solid set T that fails to satisfy any nontrivial lower q-estimate must
contain �d∞-balls of arbitrarily large dimension; cf. [5], Theorem 1.f.12. For cubes,
the majorizing measure theorem and the results of [2] can be used to show that
Dudley’s inequality is sharp, and that no improvement as in Theorem 5.3 can hold
in general. Thus Theorem 5.3 is essentially the best result of its kind.

5.3. Uniformly convex bodies. The lower q-estimate property of a Banach lat-
tice is closely related to the notion of uniform convexity in general Banach spaces,
as is explained in [5], Section 1.f. It is therefore not surprising that an analogue of
Theorem 5.3 holds in a general Banach space when T is a uniformly convex body.
Unlike the results of the previous section, however, this case has already been well
understood ([11], Section 4.1). It will nonetheless be useful to revisit this setting in
the light of the present paper, as the method that appears in the proof will play an
essential role in the random matrix problems that will be discussed in Section 7.

To this end, we return to the setting where (X,‖ · ‖) is a general Banach space
and T ⊂ X is a symmetric compact convex set.
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DEFINITION 5.7. Let q ≥ 2. T is said to be q-convex with constant η if∥∥∥∥x + y

2

∥∥∥∥
T

≤ 1 − η‖x − y‖q
T

for all vectors x, y ∈ T .

It was shown in [12], Lemma 4.7, that the assumption of Theorem 5.1 holds in
the present setting with L = 1/2η; the proof of this fact is not unlike the one we
used in the lattice case. Thus the conclusion in the case q-convex bodies matches
verbatim the one obtained for lattices in the previous section. However, in this
setting we are never near the boundary case of Theorem 5.1, as the q-convexity
property can only hold for q ≥ 2 (no body is more strongly convex than a Eu-
clidean ball). This means that the machinery of this paper is not really needed to
establish this result; it was shown in [12] that the same conclusion already follows
from Theorem 4.6.

However, the boundary case reappears if we consider the more general chaining
functionals γα,p(T ) rather than γα(T ). For example, the following result of [11],
Theorem 4.1.4, cannot be recovered by the methods of [12].

THEOREM 5.8. Let q ≥ 2. If T is q-convex with constant η, then

γα,q(T ) � η−1/q sup
n≥0

2n/αen(T ),

where the universal constant depends only on α.

We will presently give a short proof of this result using the methods of this pa-
per. Of course, one can obtain extensions of both Theorems 5.3 and 5.8 that bound
γα,p(T ) with general α > 0 and 1 ≤ p ≤ q (not just p = q as in Theorem 5.8); as
no new ideas arise in this setting, we omit the details.

To bound γα,q , we require in principle only a minor adaptation of the interpola-
tion method: we modify the definition of K(t, x) in Section 5.1 to

K(t, x) := inf
y∈X

{‖y‖r
T + tq‖x − y‖q}.

Denote once again by πt(x) the minimizer in this expression, and by Kt the set of
minimizers for x ∈ T . The analogue of the interpolation lemma in this setting is
obtained by repeating verbatim the proof of Lemma 4.5.

LEMMA 5.9. For every a > 0, we have

sup
x∈T

∑
n≥0

(
2n/α

∥∥x − πa2n/α (x)
∥∥)q � 1

aq
,

where the universal constant depends only on α.
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With these simple modifications, we can now essentially follow the same
scheme of proof as for Theorem 5.3, replacing the use of the lower q-estimate by
the q-convexity property. There is, however, one minor issue that requires some
care. In the proof of Theorem 5.3 (as in the proof of [12], Lemma 4.7, where the
assumption of Theorem 5.1 is verified for q-convex sets), we used the fact that
πt(x) possesses the projection property of Lemma 4.7. This property is however
quite special to interpolation functionals of the form inf{f (y) + td(x, y)}, as it
relies crucially on the triangle property of the distance. When the distance is raised
to a power as in the present setting, the projection property no longer holds and we
must take care to proceed without it. Fortunately, it turns out to that the projection
property was not really used in an essential way in Theorem 5.3 and can easily be
avoided.

PROOF OF THEOREM 5.8. Applying Definition 5.7 to x/γ , y/γ with γ =
max(‖x‖T ,‖y‖T ) ≤ 1, the q-convexity property can be formulated as∥∥∥∥x + y

2

∥∥∥∥
T

≤ max
(‖x‖T ,‖y‖T

)− η‖x − y‖q
T

for every x, y ∈ T . To exploit this formulation of q-convexity, we will choose
r = 1 in the definition of K(t, x).

Let n ≥ 0 and A ⊆ T . As in the proof of Theorem 5.1, we write

At := {
πt(x) : x ∈ A

}
,

s(t,A) := sup
x∈A

∥∥x − πt(x)
∥∥.

Note that At ⊆ T . If y = πt(x) for x ∈ A, we can estimate

‖y‖T ≤ ‖y‖T + tq‖x − y‖q = K(t, x)

≤ ‖u‖T + tq‖x − u‖q

≤ ‖u‖T + 2q−1tq‖y − u‖q + 2q−1tq‖x − y‖q

≤ ‖u‖T + 2q−1tq‖y − u‖q + 2q−1tqs(t,A)q

for any u ∈ X, where we used the triangle inequality and (a+b)q ≤ 2q−1(aq +bq).
Thus for any y, z ∈ At , choosing u := (y + z)/2 yields

max
(‖y‖T ,‖z‖T

) ≤
∥∥∥∥y + z

2

∥∥∥∥
T

+ 2q−1tq
∥∥∥∥y − z

2

∥∥∥∥q

+ 2q−1tqs(t,A)q.

Applying the q-convexity property yields

η‖y − z‖q
T ≤ 2−1tq‖y − z‖q + 2q−1tqs(t,A)q

for every y, z ∈ At . Note that this condition is almost identical to the assumption
of Theorem 5.1, except that an additional projection error term appears. The latter
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is the price we pay for avoiding the projection property, which does not hold in the
present setting. However, this additional term introduces no further complications
in the proof, and we can simply proceed as before. The above inequality shows
that

At ⊆ z + η−1/q t
(
diam(At ) + 2s(t,A)

)
T

for some z ∈ X. Proceeding as in the proof of Theorem 5.1, we obtain

en(A) ≤ Sa diam(A) + (4Sa + 1)s
(
a2n/α,A

)
,

S := η−1/q sup
n≥0

2n/αen(T ).

Applying Theorem 3.1 and Lemma 5.9 yields

γα,q(T ) � Saγα,q(T ) + (4Sa + 1)

[
sup
x∈T

∑
n≥0

(
2n/α

∥∥x − πa2n/α (x)
∥∥)q]1/q

� Saγα,q(T ) + S + 1

a
.

We now choose a = C/S for a sufficiently small universal constant C. �

It is also possible to give a proof more in the spirit of Theorem 5.3 where we
choose r = q in the definition of K(t, x). In this case, one should replace Defini-
tion 5.7 by the following homogeneous form of q-convexity:∥∥∥∥x + y

2

∥∥∥∥q

T

≤ ‖x‖q
T + ‖y‖q

T

2
− η̃‖x − y‖q

T

for all x, y ∈ X. It can be shown that this alternative formulation is equivalent
to that of Definition 5.7 [1], Proposition 7, and a more careful accounting of the
constants (as in [6], Lemma 2.2) shows that η̃ ≥ cqη.

REMARK 5.10. As was mentioned above, the analogue of Theorem 5.3 for q-
convex sets was already proved in [12] using only Theorem 4.6: one can show in
this case that the entropy numbers of the interpolation sets en(Kt) can be controlled
efficiently by the entropy numbers en(T ). It was even shown in [12] by explicit
computation that Theorem 4.6 yields a sharp bound for the �1-ball in the special
case that ‖·‖ is the Euclidean norm, which is a boundary case of Theorem 5.3. This
is simpler conceptually than the present approach, which relies on the contraction
principle. One might therefore wonder whether the contraction principle is truly
needed in this setting, or whether results such as Theorems 5.3 and 5.8 could be
recovered from Theorem 4.6 using a more efficient argument. We will presently
argue that this is not the case: the entropy numbers en(Kt) are generally too large,
so the contraction principle is essential to attain sharp bounds.
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To this end, consider the following example. Consider X = R
d with the Eu-

clidean distance ‖ · ‖, and let T ⊂ X be the ellipsoid defined by

‖x‖2
T =

d∑
k=1

kx2
k .

T is 2-convex by the parallelogram identity, and Theorem 5.8 gives

γ2,2(T ) � sup
n≥0

2n/2en(T ) � 1

as en(T ) � 2−n/2 by the estimates in [11], Section 2.5.
It is trivial to adapt Theorem 4.6 the present setting, which yields

γ2,2(T ) � 1

a
+
[∑

n≥0

(
2n/2en(Ka2n/2)

)2

]1/2

=: S(a).

We claim that this bound cannot recover the correct behavior of γ2,2(T ). To see
this, we must compute the interpolation sets Kt . It is particularly convenient in
this setting to choose r = 2 in the definition of K(t, x), which is appropriate as
explained after the proof of Theorem 5.8. The advantage of this choice is that
K(t, x) := infy{‖y‖2

T + t2‖x −y‖2} involves minimizing a quadratic function. We
readily compute that Kt is another ellipsoid:

(
πt(x)

)
k = t2

t2 + k
xk,

‖x‖Kt =
d∑

k=1

(
t2 + k

t2

)2
kx2

k .

Using the entropy estimate of [11], Lemma 2.5.4, we find that

en(Ka2n/2) � a2

a2 + 1
2−n/2

for 2n � d . It follows that

S(a) = 1

a
+
[∑

n≥0

(
2n/2en(Ka2n/2)

)2

]1/2

� 1

a
+ a2

a2 + 1

√
logd

� (logd)1/6.

We have therefore shown that a sharp bound on γ2,2(T ) cannot be attained by
choosing nets that are distributed uniformly on the interpolation sets Kt , as is done
in Theorem 4.6. On the other hand, precisely the same interpolation scheme yields
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a sharp bound when combined with the contraction principle in Theorem 5.8. This
example provides an explicit illustration of the assertion made in the Introduction
that the deficiency of Theorem 4.6 is not due to the interpolation method, but rather
due to the fact that the interpolation method is being used inefficiently.

6. The majorizing measure theorem. In the previous sections we introduced
the contraction principle and illustrated its utility in combination with the interpo-
lation method in several situations. We will presently use the same machinery to
give a surprisingly simple proof of the majorizing measure theorem (Theorem 1.1).
With some small modifications, this will also allow us to recover the main growth
functional estimate of [11]. Beside providing simple new proofs of these results,
the fact that they can be attained at all shows that the methods of this paper are not
restricted to some special situations, but can in fact recover the core of the generic
chaining theory.

6.1. Gaussian processes. Let (Xx)x∈T be a centered Gaussian process, and
let d(x, y) := (E|Xx − Xy |2)1/2 be the associated natural metric on T . To avoid
being distracted by minor measurability issues, we will assume for simplicity that
the index set T is finite. It is well understood in the theory of Gaussian processes
that this entails no loss of generality.

Let us define for any subset A ⊆ T the Gaussian width

G(A) := E
[

sup
x∈A

Xx

]
.

The statement of the majorizing measure theorem is that G(T ) � γ2(T ). The upper
bound G(T ) � γ2(T ) is however completely elementary; see [11], Section 2.2, for
this classical and very simple chaining argument. It is the lower bound γ2(T ) �
G(T ) in the majorizing measure theorem that is a deep result. In this section, we
will give a very simple proof of the latter bound using the machinery of this paper.

In its simplest form, the idea that allows us to bound γ2(T ) by G(T ) is clear:
we should use G(T ) to define the penalty function in the interpolation method,
and then use Sudakov’s inequality for Gaussian processes [which gives an upper
bound on en(A) in terms of G(A)] to verify the assumption of the contraction
principle. To implement this idea, it will be convenient to define the interpolation
functional K(t, x) in a somewhat different manner than we did previously: we
define throughout this section

K(t, x) := inf
s≥0

{
ts + G(T ) − G

(
B(x, s)

)}
,

where

B(x, s) := {
y ∈ T : d(x, y) ≤ s

}
is the ball in T with radius s centered at x. As s 	→ G(B(x, s)) is upper-
semicontinuous, the infimum in the definition of K(t, x) is attained. Denoting the
minimizer as s(t, x) ≥ 0, we obtain the following interpolation lemma.
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LEMMA 6.1. For every a > 0,

sup
x∈T

∑
n≥0

2n/2s
(
a2n/2, x

)
� G(T )

a
.

PROOF. The proof is identical to that of Lemma 4.5, but we include it for
completeness. Note that, by definition of K(t, x),

K(t, x) − K(u,x) = ts(t, x) − G
(
B
(
x, s(t, x)

))− inf
s≥0

{
us − G

(
B(x, s)

)}
≥ (t − u)s(t, x)

[choose s = s(t, x) in the infimum on the right], and that 0 ≤ K(t, x) ≤ G(T )

[choose s = 0 in the definition of K(t, x)]. Therefore,∑
n≥0

a2n/2s
(
a2n/2, x

)
�

∑
n≥0

{
K
(
a2n/2, x

)− K
(
a2(n−1)/2, x

)}≤ G(T ),

and the proof is complete. �

REMARK 6.2. It may not be obvious that the present definition of K(t, x)

is an interpolation functional in the sense of Section 4.3, except in some gener-
alized sense. This is nonetheless the case. To see why, let X := L∞(
;T ) be
the space of T -valued bounded random variables. We identify T ⊂ X with the
set of constant functions, and extend the natural metric on T to X according to
d(σ, τ ) := supω∈
 d(σ(ω), τ (ω)). Then we have for any x ∈ T

G
(
B(x, s)

)= E
[

sup
y∈T :d(x,y)≤s

Xy

]
= sup

τ∈X:d(x,τ )≤s

E[Xτ ].

Substituting this expression in the definition of K(t, x) and exchanging the order
of the two infima shows that we can in fact write

K(t, x) = inf
τ∈X

{
G(T ) − E[Xτ ] + td(x, τ )

}
.

Thus K(t, x) is an interpolation functional, on the space (X,d) with penalty func-
tion f (τ) = G(T ) − E[Xτ ], of precisely the form given in Section 4.3. While this
formulation guides our intuition, it is more convenient computationally to work
with the definition in terms of G(B(x, s)) as this will allow us to directly apply
inequalities for the suprema of Gaussian processes.

To prove the majorizing measure theorem, we will verify that the condition of
Theorem 3.1 is satisfied with sn(x) � s(a2n/2, x). To this end, we must bound the
entropy numbers en(A) of all subsets A ⊆ T . As our interpolation functional in-
volves the supremum of a Gaussian process, this should surely involve Sudakov’s
inequality. The appropriate form for our purposes, which is a straightforward com-
bination of Sudakov’s inequality and Gaussian concentration, can be found in [11],
Proposition 2.4.9.
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LEMMA 6.3. For σ, b > 0, x1, . . . , xn ∈ T so that d(xi, xj ) ≥ b for i �= j

min
i≤n

G
(
B(xi, σ )

)+ C1b
√

logn

≤ G

(⋃
i≤n

B(xi, σ )

)
+ C2σ

√
logn,

where C1, C2 are universal constants.

This is in fact a form of the “growth condition” that forms the central ingredi-
ent in the generic chaining theory as developed in [11]. One of the advantages of
the approach developed in this paper is that it makes it possible to bound chain-
ing functionals without engineering such a condition, which does not always arise
naturally in a geometric setting. However, in the case of Gaussian processes, the
growth condition arises in a completely natural manner and is essentially the rea-
son why the majorizing measure theorem is true. It therefore seems likely that any
proof of the majorizing measure theorem must exploit a form of Lemma 6.3 at
the crucial point in the argument. We will presently show that Lemma 6.3 pro-
vides a very simple method for verifying the assumption of the contraction princi-
ple.

LEMMA 6.4. For every n ≥ 0, A ⊆ T , and a > 0, we have

en(A) � a diam(A) + (a + 1) sup
x∈A

s
(
a2n/2, x

)
.

PROOF. Assume en(A) > 0, else the result is trivial. By Lemma 2.2, find N =
22n

points x1, . . . , xN ∈ A so that d(xi, xj ) > en(A)/2 for i �= j . Let

σ = sup
x∈A

s
(
a2n/2, x

)
,

r = diam(A) + σ.

Then
⋃

i≤N B(xi, σ ) ⊆ B(xk, r) for every k ≤ N . We can now estimate

G(T ) − G
(
B(xk, σ )

) ≤ G(T ) − G
(
B
(
xk, s

(
a2n/2, xk

)))
≤ K

(
a2n/2, xk

)
≤ a2n/2r + G(T ) − G

(
B(xk, r)

)
≤ a2n/2r + G(T ) − G

(⋃
i≤N

B(xi, σ )

)

for every k ≤ N . Applying Lemma 6.3 gives

2n/2en(A) � a2n/2r + 2n/2σ,

which readily yields the conclusion. �
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With this lemma in hand, the proof of the lower bound in the majorizing measure
theorem follows immediately from the contraction principle.

THEOREM 6.5. γ2(T ) � G(T ).

PROOF. The condition of Theorem 3.1 is verified by Lemma 6.4. It remains
to apply Lemma 6.1 and choose a > 0 sufficiently small. �

6.2. Growth functionals. Now that we have proved the majorizing measure
theorem using the approach of this paper, it will come as no surprise that the gen-
eral growth functional machinery that forms the foundation of the generic chaining
theory as developed in [11] can also be recovered by the interpolation method. This
shows that applicability of the interpolation method is not restricted to some spe-
cial situations, but that it is in principle canonical: the generic chaining theory can
be fully recovered in this manner. In our approach, growth functionals provide one
possible method for creating the condition of the contraction principle.

In this section, we will modify the proof of the majorizing measure theorem
to utilize one of the generalized growth functional conditions considered in [11].
While the basic idea of the proof is already contained in the previous section,
this generalization is instructive in its own right: it will help clarify the relevance
of the ingredients in the definition of a growth functional from the present per-
spective, and will also illustrate the use of different interpolation functionals for
different scales. Of course, the same method of proof admits numerous general-
izations, including several considered in [11] that can be analogously recovered by
our methods.

We will work on a general metric space (T , d). Let us first state some defini-
tions. The first is a notion of well-separated sets ([11], Definition 2.3.8).

DEFINITION 6.6. A collection of sets H1, . . . ,Hm ⊆ T is said to be (b, c)-
separated if there exist x1, . . . , xm, y ∈ T such that d(xi, xj ) ≥ b for all i �= j , and
d(xi, y) ≤ cb and Hi ⊆ B(xi, b/c) for all i.

We also need the basic notion of a functional.

DEFINITION 6.7. A functional on T is a map F that assigns to every set H ⊆
T a number F(H) ≥ 0 and that is increasing, that is, F(H) ≤ F(H ′) if H ⊆ H ′.
A sequence of functionals (Fn)n≥0 is said to be decreasing if Fn+1(H) ≤ Fn(H)

for every set H .

We now state the growth condition of [11], Definition 2.3.10.
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DEFINITION 6.8. A decreasing sequence of functionals (Fn)n≥0 satisfies the
growth condition with parameters c,L > 0 if for every b > 0, n ≥ 1 and collection
H1, . . . ,HN ⊆ T of N = 22n

sets that is (b, c)-separated, we have

Fn−1

(⋃
i≤N

Hi

)
≥ L2n/2b + min

i≤N
Fn(Hi).

A minor variation on Lemma 6.3 shows that the choice Fn(H) = G(H) satis-
fies the growth condition provided the parameter c is chosen sufficiently large: that
is, the Gaussian width G(H) is a growth functional. However, the growth condi-
tion allows more flexibility in the design of functionals. Our aim is to prove the
following result of [11], Theorem 2.3.16.

THEOREM 6.9. Suppose the decreasing sequence of functionals (Fn)n≥0 sat-
isfies the growth condition with parameters c,L > 0. Then

γ2(T ) � c

L
F0(T ) + diam(T )

provided that c ≥ c0, where c0 is a universal constant.

In the sequel, we fix parameters c,L > 0 and a decreasing sequence of func-
tionals (Fn)n≥0 that satisfies the growth condition of Definition 6.2.

There are two additional ideas in the proof of Theorem 6.9 as compared to
that of the majorizing measure theorem. First, we have not one growth functional
G, but rather a separate functional Fn for every scale. This flexibility introduces
makes the growth condition easier to satisfy. The complication that arises is that
we have to work with multiple interpolation functionals

Kn(t, x) := inf
s≥0

{
ts + F0(T ) − Fn

(
B(x, s)

)}
.

However, as Fn is a decreasing sequence of functionals, we readily recover a vari-
ant of the usual interpolation lemma. In the sequel, we will choose sa

n(x) ≥ 0 for
every n ≥ 1, a > 0 and x ∈ T such that

Kn

(
La2n/2, x

)≤ La2n/2sa
n(x) + F0(T ) − Fn

(
B
(
x, sa

n(x)
))

≤ Kn

(
La2n/2, x

)+ 2−nF0(T ).

That is, sa
n(x) is a near-minimizer in the definition of Kn(t, x). (As we assumed no

regularity on Fn, we cannot guarantee that a true minimizer exists; but this makes
no difference whatsoever in the proofs.)

LEMMA 6.10. For every a > 0,

sup
x∈T

∑
n≥1

2n/2sa
n(x) � F0(T )

La
.
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PROOF. By definition of Kn−1 and as Fn is a decreasing sequence,

2−nF0(T ) + Kn

(
La2n/2, x

)− Kn−1
(
La2(n−1)/2, x

)
≥ (

1 − 2−1/2)La2n/2sa
n(x) + Fn−1

(
B
(
x, sa

n(x)
))− Fn

(
B
(
x, sa

n(x)
))

≥ (
1 − 2−1/2)La2n/2sa

n(x).

We conclude by summing over n ≥ 1 and using Kn(t, x) ≤ F0(T ). �

The second new feature in the proof of Theorem 6.9 is that the separation con-
dition of Definition 6.6 is rather restrictive: it requires the sets Hi to have small
diameter and all the points xi to be close together. This provides, once again, more
room in the growth condition of Definition 6.8 (as the growth condition must only
hold for separated sets satisfying these restrictive assumptions). However, we will
see in the proof of Lemma 6.11 below that these additional restrictions arise es-
sentially for free: if either of these restrictions is violated, the condition of the
contraction principle is automatically satisfied and there is nothing to prove.

LEMMA 6.11. Fix a > 0. Let s0(x) := diam(T ) and for n ≥ 1

sn(x) := (a + c)sa
n(x) + 1

L2n/2

{
�n(x) + 2−nF0(T )

}
,

where

�n(x) := Kn

(
La2n/2, x

)− Kn−1
(
La2(n−1)/2, x

)
.

Then we have for every n ≥ 0 and A ⊆ T

en(A) �
(
a + 1

c

)
diam(A) + sup

x∈A

sn(x).

PROOF. Let n ≥ 1 and b = en(A)/2 > 0, else the result is trivial. Lemma 2.2
yields N = 22n

points x1, . . . , xN ∈ A with d(xi, xj ) > b for i �= j . Let

σ = sup
x∈A

sa
n(x), r = diam(A) + σ.

Case 1. If σ > b/c, then the conclusion is automatically satisfied as

en(A) < 2c sup
x∈A

sa
n(x) � sup

x∈A

sn(x).

Case 2. If diam(A) > cb, then the conclusion is automatically satisfied as

en(A) <
2

c
diam(A).

Case 3. If σ ≤ b/c and diam(A) ≤ cb, then the sets Hi = B(xi, s
a
n(xi)),

i = 1, . . . ,N are (b, c)-separated, so the growth condition can be applied. We
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now repeat the proof of Lemma 6.4, except that we must pay the price �n(x)

for switching between two interpolation functionals [notice that �n(x) ≥ 0 as Fn

is a decreasing sequence of functionals]. To be precise, we estimate

F0(T ) − Fn(Hi)

≤ Kn

(
La2n/2, xi

)+ 2−nF0(T )

= Kn−1
(
La2(n−1)/2, xi

)+ �n(xi) + 2−nF0(T )

≤ La2(n−1)/2r + F0(T ) − Fn−1
(
B(xi, r)

)+ �n(xi) + 2−nF0(T )

≤ La2(n−1)/2r + F0(T ) − Fn−1

(⋃
k≤N

Hk

)
+ �n(xi) + 2−nF0(T )

for every i ≤ N . Rearranging and applying the growth condition gives

L2n/2b ≤ Fn−1

(⋃
i≤N

Hi

)
− min

i≤N
Fn(Hi)

≤ La2(n−1)/2r + sup
x∈A

�n(x) + 2−nF0(T ).

Using the definitions of b, r , �n concludes the proof. �

Note that the quantity sn(x) in Lemma 6.11 has an extra term as compared to
Lemma 6.4. This is the price we pay for switching between different interpolation
functionals. However, the additional term is innocuous: it gives rise to a telescop-
ing sum when we apply the contraction principle.

PROOF OF THEOREM 6.9. Applying Lemma 6.11 and Theorem 3.1 yields

γ2(T ) �
(
a + 1

c

)
γ2(T ) + diam(T ) + (a + c) sup

x∈T

∑
n≥1

2n/2sa
n(x) + F0(T )

L
,

where we used that Kn(La2n/2, x) ≤ F0(T ) for every n ≥ 1 and x ∈ T . Thus

γ2(T ) �
(
a + 1

c

)
γ2(T ) + 1 + c/a

L
F0(T ) + diam(T )

by Lemma 6.10. We can evidently choose a universal constant c0 such that the
conclusion of the theorem holds if c ≥ c0 and a = 1/c0. �

7. Dimension-free bounds on random matrices. As was stated in the In-
troduction, there are numerous challenging probabilistic problems that remain un-
solved due to the lack of understanding of how to control the supremum of some
concrete Gaussian process. Such problems arise, for example, in the study of struc-
tured random matrices [9, 13, 14], whose fine properties fall outside the reach
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of classical methods of random matrix theory. Problems of this kind constitute a
particularly interesting case study for the control of inhomogeneous random pro-
cesses, and provide concrete motivation for the development of new methods to
control chaining functionals.

Of particular interest in the setting of structured random matrices are dimension-
free bounds on matrix norms. Such bounds cannot be obtained by classical meth-
ods of random matrix theory such as the moment method, which are inherently
dimension-dependent. This is explained in detail [13, 14] in the context of a tan-
talizing conjecture on Gaussian random matrices due to R. Latała. In this section,
we make further progress in this direction by developing a closely related result:
a dimension-free analogue of a well-known random matrix bound of M. Rudel-
son [7]. The proof provides another illustration of the utility of the contraction
principle.

7.1. Statement of results. Let A1, . . . ,Am ∈ R
d×d be nonrandom symmetric

matrices, and let g1, . . . , gm be independent standard Gaussian variables. We are
interested in bounding matrix norms of the random matrix

X =
m∑

k=1

gkAk

in terms of the coefficients Ak . A well-known result of M. Rudelson [7] (see also
[11], Section 16.7, for a modern presentation) states that

E‖X‖ �
∥∥∥∥∥

m∑
k=1

A2
k

∥∥∥∥∥
1/2√

log(m + 1)

in the important special case where each Ak = xkx
∗
k has rank one (here and below

‖ · ‖ denotes the spectral norm of a matrix). Due to the rank-one assumption, the
matrices Ak act nontrivially only on the m-dimensional subspace of Rd spanned
by the vectors x1, . . . , xm, so that the above bound is overtly dimension-dependent.
This dimension-dependence is not expected to be sharp when different vectors xk

possess substantially different scales. Unfortunately, the dependence on dimension
arises in an apparently essential manner in the approach of [7]. We will see in the
sequel that the contraction principle makes it possible to avoid this inefficiency. For
example, we can obtain the following dimension-free form of Rudelson’s bound.

THEOREM 7.1. Suppose that each Ak = xkx
∗
k has rank one. Then

E‖X‖ �
∥∥∥∥∥

m∑
k=1

A2
k log(k + 1)

∥∥∥∥∥
1/2

.
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REMARK 7.2. Rudelson’s bound was originally proved using a generic
chaining construction. However, the generic chaining approach to Rudelson’s
dimension-dependent bound is essentially made obsolete by a much simpler and
more general approach using the noncommutative Khintchine inequality of Lust-
Piquard and Pisier [8]. The latter shows that an analogue of Rudelson’s bound
actually holds without any assumption on the matrices Ak (i.e., the rank-one as-
sumption is not needed); see [14] for an elementary proof. However, it does not
appear that such an approach could ever produce a dimension-free bound as in
Theorem 7.1, as it relies crucially on the moment method of random matrix theory
which is inherently dimension-dependent in nature [13]. In addition, the moment
method is useless for bounding operator norms other than the spectral norm, which
are important for applications in functional analysis [3, 4, 9]. Chaining methods
appear to be essential for addressing problems of this kind that are out of reach of
classical random matrix theory.

Theorem 7.1 arises as a special case of a much more general result that is of
broader interest, and that clarifies the geometric structure behind the results of this
section. In the remainder of this section, we will fix a symmetric compact convex
set B ⊂ R

d that is 2-convex with constant η in the sense of Definition 5.7. We will
be interested in controlling supv∈T 〈v,Xv〉 for T ⊆ B . When T = B = Bd

2 is the
Euclidean ball, this is simply the largest eigenvalue of X which is readily related
to the spectral norm. However, we allow in general to consider any subset T ⊆ B .
In addition, following [3, 4] we can consider any 2-convex ball B instead of the
Euclidean ball, which will present no additional complications in the proofs.

As X is a Gaussian random matrix, clearly v 	→ 〈v,Xv〉 is a centered Gaussian
process. It therefore suffices by Theorem 1.1 to bound

E
[

sup
v∈T

〈v,Xv〉
]

� γ2(T , d),

where the natural distance d(v,w) is given by

d(v,w) := [
E|〈v,Xv〉 − 〈w,Xw〉|2]1/2

=
[

m∑
k=1

〈
v + w,Ak(v − w)

〉2]1/2

.

We will also define for v, z ∈R
d

‖v‖z :=
[

m∑
k=1

〈z,Akv〉2

]1/2

,

|||v||| :=
[

m∑
k=1

〈v,Akv〉2

]1/4

.
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The main result of this section is the following, which could be viewed as a Gordon
embedding theorem [11], Theorem 16.9.1, for structured matrices.

THEOREM 7.3. Let A1, . . . ,Am be positive semidefinite. For any T ⊆ B ,

E
[

sup
v∈T

〈v,Xv〉
]

� 1√
η

[
sup
v∈T

∑
n≥0

(
2n/2en

(
B,‖ · ‖v

))2

]1/2

+ γ4,2(T , ||| · |||)2.

When Theorem 7.3 is specialized to the case T = B = Bd
2 , we obtain a bound

on the spectral norm of X from which Theorem 7.1 follows easily.

COROLLARY 7.4. Let A1, . . . ,Am be positive semidefinite. Then

E‖X‖ �
∥∥∥∥∥

m∑
k=1

A2
k

∥∥∥∥∥
1/2

+ sup
n≥0

2n/2en

(
Bd

2 , ||| · |||)2
.

The assumption that the matrices Ak are positive semidefinite is a natural re-
laxation of the rank-one assumption in Rudelson’s approach [7]. This assumption
ensures that ||| · ||| is a norm. Whether the positive semidefinite assumption can be
weakened in Theorem 7.3 and Corollary 7.4 is a tantalizing question. Indeed, the
above-mentioned conjecture of Latała [13] would follow if Corollary 7.4 were to
hold for matrices Ak that are not positive semidefinite. While one can partially
adapt the proof of Theorem 7.3 to general Ak , significant loss is incurred in the
resulting bounds. These issues will be further discussed in Section 7.4 below.

7.2. Proof of Theorem 7.3. We will assume throughout this section that the
matrices A1, . . . ,Am are positive semidefinite. This implies, in particular, that ||| · |||
is a norm and that ‖v‖z ≤ |||v||||||z||| by Cauchy–Schwarz.

Let us begin by explaining the basic geometric idea behind the proof through a
back-of-the-envelope computation. Note that

d(y, z) = ‖y − z‖y+z ≤ 2‖y − z‖x + |||y − z|||(|||y − x||| + |||z − x|||)
by the triangle inequality and Cauchy–Schwarz. Thus

diam(A,d) ≤ 2 diam
(
A,‖ · ‖x

)+ 2 diam
(
A, ||| · |||)2

for any A ⊆ T and x ∈ A. This suggests we might try to bound γ2(T , d) by the
sum of two terms, one of the form supx∈T γ2(T ,‖ · ‖x) and another of the form
γ2(T , ||| · |||2) = γ4,2(T , ||| · |||)2. If that were possible, we would obtain a result far
better than Theorem 7.3. The problem, however, lies with the first term: a direct
application of the contraction principle would yield not supx∈T γ2(T ,‖ · ‖x), but
rather the quantity

inf
(An)

sup
x∈T

∑
n≥0

2n/2 diam
(
An(x),‖ · ‖x

)
.
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The latter could be much larger than supx∈T γ2(T ,‖ · ‖x): here, a single admis-
sible sequence (An) must control simultaneously every norm ‖ · ‖x , while in the
definition of supx∈T γ2(T ,‖ · ‖x) each norm is controlled by its own admissible
sequence. The remarkable aspect of Theorem 7.3 is that by exploiting the con-
traction theorem and 2-convexity of B ⊇ T , we will nonetheless achieve the same
upper bound as would be obtained if we were to control supx∈T γ2(B,‖ · ‖x) using
Theorem 5.1.

We now proceed with the details of the proof. To exploit 2-convexity, it will be
useful to replace the natural metric d by a regularized form:

d̃(v,w) := d(v,w) + |||v − w|||2.
While d̃ is not a metric, it is a quasi-metric (the triangle inequality holds up to a
multiplicative constant). This will suffice for all our purposes; in particular, it is
readily verified that the proof of the contraction Theorem 3.1 holds verbatim in
a quasi-metric space. We will use this observation in the sequel without further
comment. The advantage of d̃ , as opposed to the natural metric, is that it behaves
in some sense like a norm.

LEMMA 7.5. For every v,w, z ∈ R
d , we have:

(a) d̃(v,w) ≤ 2(d̃(v, z) + d̃(z,w)).
(b) d̃(v, 1

2(v + w)) ≤ 1
2 d̃(v,w).

PROOF. The first claim follows from the triangle inequality and (a + b)2 ≤
2(a2 + b2). To prove the second claim, note that we can write

v − 1

2
(v + w) = 1

2
(v − w),

v + 1

2
(v + w) = 1

2
(v − w) + (v + w).

Therefore,

d̃

(
v,

1

2
(v + w)

)
= 1

2

∥∥∥∥1

2
(v − w) + (v + w)

∥∥∥∥
v−w

+ 1

4
|||v − w|||2

≤ 1

2

(‖v + w‖v−w + |||v − w|||2)

= 1

2
d̃(v,w),

where we used the triangle inequality. �

We now define the interpolation functional

K(t, x) := inf
y∈Rd

{‖y‖B + t d̃(x, y)
}
,
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and as usual we let πt(x) be a minimizer in this expression. Due to the second
property of Lemma 7.5 (which was engineered precisely for this purpose), we can
control the shrinkage of interpolation sets as in Theorem 5.8.

LEMMA 7.6. Let t ≥ 0 and A ⊆ T . Then At := {πt(x) : x ∈ A} satisfies

At ⊆ z + L
√

t√
η

{
diam(A, d̃) + sup

x∈A

d̃
(
x,πt (x)

)}1/2
B

for some point in z ∈ R
d , where L is a universal constant.

PROOF. Let x ∈ A and y = πt(x). Then

‖y‖B ≤ K(t, x) ≤ ‖u‖B + 2t
(
d̃(x, y) + d̃(y, u)

)
for any u ∈ R

d by the definition of the interpolation functional and the first prop-
erty of Lemma 7.5. Therefore, we have for every y, z ∈ At and u ∈ R

d

max
(‖y‖B,‖z‖B

) ≤ ‖u‖B + 2t max
(
d̃(y, u), d̃(z, u)

)+ 2t sup
x∈A

d̃
(
x,πt (x)

)
.

If we choose u = 1
2(y + z), then we obtain

max
(‖y‖B,‖z‖B

)≤
∥∥∥∥y + z

2

∥∥∥∥
B

+ t d̃(y, z) + 2t sup
x∈A

d̃
(
x,πt (x)

)
using the second property of Lemma 7.5. In particular,

η‖y − z‖2
B ≤ t d̃(y, z) + 2t sup

x∈A

d̃
(
x,πt (x)

)
for all y, z ∈ At by 2-convexity of B . It follows that

diam
(
At,‖ · ‖B

) ≤
√

t√
η

{
diam(At , d̃) + 2 sup

x∈A

d̃
(
x,πt (x)

)}1/2
.

It remains to note that diam(At , d̃) ≤ 4 diam(A, d̃) + 8 supx∈A d̃(x,πt (x)). �

We now arrive at the main step in the proof of Theorem 7.3: we must verify the
assumption of the contraction principle.

LEMMA 7.7. Let (Cn) be an admissible sequence of T and a, b > 0. Then

en(A, d̃) � b diam(A, d̃) + sup
x∈A

sn(x)

for every n ≥ 1 and A ⊆ T , where

sn(x) := (b + 1)d̃
(
x,πa2n/2(x)

)+ a2n/2

bη
en−1

(
B,‖ · ‖x

)2

+ diam
(
Cn−1(x), ||| · |||)2

.
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PROOF. Fix n ≥ 1 and A ⊆ T . For every set C ∈ Cn−1, define

AC
a2n/2 := {

πa2n/2(x) : x ∈ A ∩ C
}

and choose an arbitrary point xC ∈ A ∩ C. Now choose, for every C ∈ Cn−1, a net
T C

n−1 ⊆ AC
a2n/2 of cardinality less than 22n−1

such that

inf
z∈T C

n−1

‖y − z‖xC
≤ 4en−1

(
AC

a2n/2,‖ · ‖xC

)
for all y ∈ AC

a2n/2 .

Then Tn := ⋃
C∈Cn−1

T C
n−1 satisfies |Tn| < 22n

. It remains to show that

sup
x∈A

d̃(x, Tn) � b diam(A, d̃) + sup
x∈A

sn(x),

which concludes the proof.
To this end, fix C ∈ Cn−1 and x ∈ A ∩ C, and choose z ∈ T C

n−1 such that

∥∥πa2n/2(x) − z
∥∥
xC

≤ 4en−1
(
AC

a2n/2,‖ · ‖xC

)
.

We can estimate

d̃(x, Tn) ≤ 2d̃
(
x,πa2n/2(x)

)+ 2d̃
(
πa2n/2(x), Tn

)
≤ 2d̃

(
x,πa2n/2(x)

)+ 2d̃
(
πa2n/2(x), z

)
≤ 2d̃

(
x,πa2n/2(x)

)+ 4
∥∥πa2n/2(x) − z

∥∥
xC

+ 2
∣∣∣∣∣∣πa2n/2(x) − z

∣∣∣∣∣∣(∣∣∣∣∣∣πa2n/2(x) − xC

∣∣∣∣∣∣+ ∣∣∣∣∣∣z − xC

∣∣∣∣∣∣)
+ ∣∣∣∣∣∣πa2n/2(x) − z

∣∣∣∣∣∣2.
As z ∈ AC

a2n/2 by construction, there is a point x′ ∈ A ∩ C such that z = πa2n/2(x′).
We therefore obtain, using that |||v − w|||2 ≤ d̃(v,w),∣∣∣∣∣∣πa2n/2(x) − z

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣x − πa2n/2(x)
∣∣∣∣∣∣+ ∣∣∣∣∣∣x − x′∣∣∣∣∣∣+ ∣∣∣∣∣∣x′ − πa2n/2

(
x′)∣∣∣∣∣∣

≤ 2 sup
v∈A

d̃
(
v,πa2n/2(v)

)1/2 + diam
(
C, ||| · |||).

Similarly, we can estimate

∣∣∣∣∣∣πa2n/2(x) − xC

∣∣∣∣∣∣+ ∣∣∣∣∣∣z − xC

∣∣∣∣∣∣ ≤ 2 sup
v∈A

d̃
(
v,πa2n/2(v)

)1/2 + 2 diam
(
C, ||| · |||).

Putting together the above estimates, we obtain

d̃(x, Tn) � sup
v∈A

d̃
(
v,πa2n/2(v)

)+ en−1
(
AC

a2n/2,‖ · ‖xC

)+ diam
(
C, ||| · |||)2
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for every x ∈ A ∩ C. We now note that by Lemma 7.6,

en−1
(
AC

a2n/2,‖ · ‖xC

)

�
√

a2n/2

√
η

{
diam(A, d̃) + sup

v∈A

d̃
(
v,πa2n/2(v)

)}1/2
en−1

(
B,‖ · ‖xC

)

� a2n/2

bη
sup
v∈A

en−1
(
B,‖ · ‖v

)2 + b diam(A, d̃) + b sup
v∈A

d̃
(
v,πa2n/2(v)

)
.

As x ∈ A ∩ Cn−1(x) for every x ∈ A, we have shown that

sup
x∈A

d̃(x, Tn) � b diam(A, d̃) + (b + 1) sup
v∈A

d̃
(
v,πa2n/2(v)

)

+ a2n/2

bη
sup
v∈A

en−1
(
B,‖ · ‖v

)2 + sup
v∈A

diam
(
Cn−1(v), ||| · |||)2.

It remains to note that supv a1(v) + supv a2(v) + supv a3(v) ≤ 3 supv(a1(v) +
a2(v) + a3(v)) for any nonnegative functions a1(v), a2(v), a3(v) ≥ 0. �

REMARK 7.8. We used above the standard fact that for any metric space
(X,d) and T ⊆ X, there is a net Tn ⊆ T with |Tn| < 22n

so that supx∈T d(x,Tn) ≤
4en(T , d). We recall the proof for completeness. The definition of entropy numbers
guarantees the existence of a net Sn ⊆ X with |Sn| < 22n

so that supx∈T d(x, Sn) ≤
2en(T , d), but Sn need not be a subset of T . For every point z ∈ Sn, choose z′ ∈ T

such that d(z, z′) ≤ 2en(T , d), and let Tn ⊆ T be the collection of points thus con-
structed. Then d(x,Tn) ≤ d(x,Sn) + d(Sn, Tn) ≤ 4en(T , d) for every x ∈ T as
desired. The fact that one can choose the net Tn to be a subset of T rather than of
X was essential in the above proof in order to ensure that T C

n−1 ⊆ AC
a2n/2 .

We can now complete the proof of Theorem 7.3.

PROOF OF THEOREM 7.3. By Theorem 1.1, we have

E
[

sup
v∈T

〈v,Xv〉
]

� γ2(T , d) ≤ γ2(T , d̃).

Fix a, b > 0 and an admissible sequence (Cn) of T . Then

γ2(T , d̃) � bγ2(T , d̃) + diam(T , d̃) + (b + 1) sup
x∈T

∑
n≥1

2n/2d̃
(
x,πa2n/2(x)

)

+ a

bη
sup
x∈T

∑
n≥1

(
2n/2en−1

(
B,‖ · ‖x

))2

+ sup
x∈T

∑
n≥1

2n/2 diam
(
Cn−1(x), ||| · |||)2
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by Theorem 3.1, where we used Lemma 7.7 to define sn(x) for n ≥ 1 and the
trivial choice s0(x) = diam(T , d̃). Choosing b to be a sufficiently small universal
constant and applying the interpolation Lemma 4.5 gives

γ2(T , d̃) � diam(T , d̃) + 1

a
+ a

η
sup
x∈T

∑
n≥0

(
2n/2en

(
B,‖ · ‖x

))2

+ sup
x∈T

∑
n≥0

2n/2 diam
(
Cn(x), ||| · |||)2

.

Optimizing over a and over admissible sequences (Cn) of T yields

γ2(T , d̃) � diam(T , d̃) + 1√
η

[
sup
x∈T

∑
n≥0

(
2n/2en

(
B,‖ · ‖x

))2

]1/2

+ γ4,2
(
T , ||| · |||)2

.

It remains to note that as diam(T , d̃) ≤ 2 diam(B,‖ · ‖x) + 2 diam(T , ||| · |||)2 for
any x ∈ T , the first term can be absorbed in the remaining two. �

7.3. Proofs of Corollary 7.4 and Theorem 7.1. Using Theorem 7.3, the proof
of Corollary 7.4 follows from classical entropy estimates for ellipsoids.

PROOF OF COROLLARY 7.4. Note that for any v ∈ R
d , the norm ‖ · ‖v is

a Euclidean norm defined by the inner product 〈x, y〉v := 〈x,�vy〉 with �v :=∑m
k=1 Akvv∗Ak . Thus en(B

d
2 ,‖ · ‖v) are entropy numbers of ellipsoids in Hilbert

space, which are well understood. Using the entropy estimates in [11], Section 2.5,
we readily obtain

∑
n≥0

(
2n/2en

(
Bd

2 ,‖ · ‖v

))2 � Tr[�v] =
〈
v,

(
m∑

k=1

A2
k

)
v

〉
.

In particular, we obtain[
sup
v∈Bd

2

∑
n≥0

(
2n/2en

(
Bd

2 ,‖ · ‖v

))2

]1/2

�
∥∥∥∥∥

m∑
k=1

A2
k

∥∥∥∥∥
1/2

.

On the other hand, by Theorem 5.8, we have

γ4,2
(
Bd

2 , ||| · |||)� sup
n≥0

2n/4en

(
Bd

2 , ||| · |||).
Thus Theorem 7.3 implies

E
[

sup
v∈Bd

2

〈v,Xv〉
]

�
∥∥∥∥∥

m∑
k=1

A2
k

∥∥∥∥∥
1/2

+ sup
n≥0

2n/2en

(
Bd

2 , ||| · |||)2
.
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It remains to note that

‖X‖ = sup
v∈Bd

2

∣∣〈v,Xv〉∣∣ ≤ sup
v∈Bd

2

〈v,Xv〉 + sup
v∈Bd

2

〈
v, (−X)v

〉

and that X and −X have the same distribution. �

To deduce Theorem 7.1 from Corollary 7.4, we need to estimate the entropy
numbers en(B

d
2 , ||| · |||). We will accomplish this using a classical result, the dual

Sudakov inequality of N. Tomczak-Jaegermann ([11], Lemma 8.3.6).

PROOF OF THEOREM 7.1. We use the trivial estimate for v ∈ Bd
2

|||v|||2 ≤ ‖v‖∼ := sup
z∈Bd

2

‖v‖z.

This implies, using Remark 7.8 and the dual Sudakov inequality, that

en

(
Bd

2 , ||| · |||)2 � en

(
Bd

2 ,‖ · ‖∼
)
� 2−n/2E‖g‖∼,

where g is a standard Gaussian vector in R
d . Corollary 7.4 yields

E‖X‖ �
∥∥∥∥∥

m∑
k=1

A2
k

∥∥∥∥∥
1/2

+ E‖g‖∼.

Now suppose Ak = xkx
∗
k have rank one. Then

E‖g‖∼ = E

[
sup
z∈Bd

2

m∑
k=1

〈z, xk〉2〈xk, g〉2

]1/2

≤
[

sup
z∈Bd

2

m∑
k=1

〈z, xk〉2‖xk‖2 log(k + 1)

]1/2

E
[
max
k≤m

|〈xk, g〉|
‖xk‖√log(k + 1)

]

�
∥∥∥∥∥

m∑
k=1

A2
k log(k + 1)

∥∥∥∥∥
1/2

,

using A2
k = xkx

∗
k ‖xk‖2 and E[maxk |Gk|/√log(k + 1)] � 1 when Gk are (possibly

dependent) standard Gaussians ([11], Proposition 2.4.16). �

7.4. Discussion. The aim of this section is to briefly discuss the connection
between Corollary 7.4 and a conjecture of Latała. Let us briefly recall this conjec-
ture, which is discussed in detail in [13]. Let X be a symmetric d ×d matrix whose
entries {Xij : i ≥ j} are independent centered Gaussians with arbitrary variances
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Xij ∼ N(0, b2
ij ). Latała’s conjecture states that the spectral norm of such a matrix

is always of the same order as the maximum of the Euclidean norm of its rows,

E‖X‖ ?� E
[
max

i

√∑
j

X2
ij

]
.

The lower bound is trivial, as the spectral norm of any matrix is bounded below
(deterministically) by the maximal Euclidean norm of its rows. It is far from obvi-
ous, however, why the upper bound should be true.

The independent entry model can be equivalently written as

X =∑
i≥j

gijAij , Aij = bij

(
eie

∗
j + ej e

∗
i

)
,

where {ei} denotes the standard basis in R
d and {gij } are independent standard

Gaussian variables. This model is therefore a special case of the general model
considered in this section. Unfortunately, the matrices Aij are not positive semidef-
inite. If the conclusion of Corollary 7.4 were to hold nonetheless for these matrices,
then Latała’s conjecture would follow readily. Indeed, arguing precisely as in the
proof of Theorem 7.1, we would obtain

E‖X‖ ?
�
∥∥∥∥∑
i≥j

A2
ij

∥∥∥∥1/2
+ E

[
sup
z∈Bd

2

‖g‖z

]

� max
i

√∑
j

b2
ij + E

[
max

i

√∑
j

b2
ij g

2
j

]

� E
[
max

i

√∑
j

X2
ij

]
,

where the last inequality was established in [13]. In view of these observations,
it is of significant interest to understand to what extent the positive semidefinite
assumption made in this section could be weakened.

An inspection of the proof of Theorem 7.3 shows that the positive semidefinite
assumption was used only to ensure that ||| · ||| is a norm and that ‖v‖z ≤ |||v||||||z|||.
All results in this section therefore continue to hold verbatim if we were to replace
||| · ||| in the statement and proof of Theorem 7.3 and Corollary 7.4 by an arbitrary
(quasi)norm ||| · |||′ such that ‖v‖z � |||v|||′|||z|||′. This makes it possible, in principle,
to prove much more general versions of these results. For example, the norm

|||v|||′ =
[

m∑
k=1

〈v, |Ak|v〉2

]1/4

satisfies the requisite condition for arbitrary A1, . . . ,Am, so that we obtain a gen-
eral variant of Theorem 7.3 and Corollary 7.4 without any assumption on the co-
efficient matrices. However, significant loss is typically incurred when we naively
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replace Ak by |Ak|. For example, in the independent entry model this yields a
bound of the form

E‖X‖ � max
i

√
log i

√∑
j

b2
ij ,

which is far larger than the bound suggested by Latała’s conjecture.
Other choices of ||| · |||′ are possible in specific situations. For example, in the

independent entry model, consider the choice

|||v|||′ =
[

d∑
i,j=1

v2
i b

2
ij v

2
j

]1/4

.

This defines a norm if we assume that the matrix of entry variances (b2
ij ) is posi-

tive semidefinite, in which case ‖v‖z � |||v|||′|||z|||′. This choice suffices to establish
Latała’s conjecture under the highly restrictive assumption that (b2

ij ) � 0, recover-
ing a result proved in [13] by different means.

In more general situations, it is not clear that it is possible to introduce a suit-
able (quasi)norm ||| · |||′ without incurring significant loss, and the resolution of
Latała’s conjecture will likely require additional geometric insight. Nonetheless,
beside their independent interest, the results of this section provide a further step
toward better understanding of the multiscale geometry of random matrices, and
suggest that further development of the methods of this paper could yield new
insights on various problems in this area.

REMARK 7.9. It is worth noting that even when A1, . . . ,Am are positive def-
inite, the geometric approach developed here is not necessarily efficient. Consider
the trivial case where m = 1 and A1 = I is the identity matrix. Then obviously
E‖X‖ � 1, but Corollary 7.4 gives the terrible bound

E‖X‖ � 1 + sup
n≥0

2n/2en

(
Bd

2 ,‖ · ‖2
)2 � √

d.

Thus the geometric principle behind this section cannot fully explain the noncom-
mutative Khintchine inequality discussed in Remark 7.2, though it actually im-
proves on this inequality when the coefficient matrices have low rank. Discovering
the correct geometric explanation of the noncommutative Khintchine inequality
is closely related to another fundamental problem in the generic chaining theory,
the convex hull problem ([11], pages 50–51), whose resolution may also shed new
light on other random matrix problems (such as, e.g., the problem of obtaining
sharp bounds in [9]).
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