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DIMENSIONS OF RANDOM COVERING SETS IN RIEMANN
MANIFOLDS
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Let M, N and K be d-dimensional Riemann manifolds. Assume that A :=
(An)n∈N is a sequence of Lebesgue measurable subsets of M satisfying a
necessary density condition and x := (xn)n∈N is a sequence of independent
random variables, which are distributed on K according to a measure, which
is not purely singular with respect to the Riemann volume. We give a formula
for the almost sure value of the Hausdorff dimension of random covering
sets E(x,A) := lim supn→∞ An(xn) ⊂ N. Here, An(xn) is a diffeomorphic
image of An depending on xn. We also verify that the packing dimensions of
E(x,A) equal d almost surely.
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1. Introduction and main theorem. Limsup sets, defined as upper limits of
various sequences of sets, play an important role in different areas of mathematics.
One of their earliest occurrences originates from the study of random placement
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of circular arcs in the unit circle by Borel [7] in the late 1890s. He stated that a
given point belongs to infinitely many arcs provided that the placement of arcs
is random and the sum of their lengths is infinite. This statement is the origin of
what is nowadays known as the Borel–Cantelli lemma. We refer to [37] for more
details and references on the historical development. Related to geometric measure
theory and fractals, limsup sets appear implicitly already in the investigation of the
Besicovitch–Eggleston sets concerning the k-adic expansions of real numbers [5,
16]. They play also a central role in Diophantine approximation. For instance,
the classical theorems of Khintchine and Jarnik provide size estimates in terms of
Lebesgue and Hausdorff measure for limsup sets consisting of well-approximable
numbers (cf. [26]).

In the modern language, random covering sets are a class of limsup sets de-
fined by means of a family of randomly distributed subsets of the d-dimensional
torus T

d := R
d/Zd . Supposing that A := (An)n∈N is a deterministic sequence of

nonempty subsets of Td and x := (xn)n∈N is a sequence of independent random
variables which are uniformly distributed on T

d , define a random covering set
E(x,A) by

E(x,A) := lim sup
n→∞

(xn + An) =
∞⋂

n=1

∞⋃
k=n

(xk + Ak),

where x + A := {x + y : y ∈ A}. We denote the Lebesgue measure on T
d by L.

It is easy to see that L(E(x,A)) = 0 for all x if the series
∑∞

k=1 L(Ak) converges.
On the other hand, it follows from the Borel–Cantelli lemma and Fubini’s theorem
that L(E(x,A)) = 1 almost surely provided the sets An are Lebesgue measurable
and the series

∑∞
k=1 L(Ak) diverges. Note that this result is essentially the higher

dimensional analogue of Borel’s original idea concerning the covering of the circle
by random arcs, which we discussed in the beginning of this section.

The case of full Lebesgue measure has been extensively studied. In 1956,
Dvoretzky [15] posed a problem of finding conditions which guarantee that the
whole torus T

d is covered almost surely. Even in the simplest case when d = 1
and the generating sets are intervals of length (ln)n∈N, this problem, known in lit-
erature as the Dvoretzky covering problem, turned out to be rather long-standing.
After substantial contributions of many authors, including Billard [6], Erdős [19],
Kahane [34] and Mandelbrot [44], the full answer was given in this context by
Shepp [50] in 1972. He verified that E(x,A) = T

1 almost surely if and only if
∞∑

n=1

1

n2 exp(l1 + · · · + ln) = ∞,

where the lengths (ln)n∈N are in decreasing order. In full generality, the Dvoretzky
covering problem is still unsolved. The higher dimensional case has been studied
by El Hélou [18] and Kahane [36] among others. In [36], a complete solution is
provided in the case when generating sets are similar simplexes.
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For various other aspects of random covering sets, we refer to [1, 18, 22, 23, 27,
29, 30, 35–37, 41, 43, 51]. Recent contributions to the topic include various types
of dynamical models (see [24, 33, 42]) and projectional properties [11].

Further motivation to study limsup sets stems from Diophantine approximation.
Recall that, for φ : N →]0,∞[, the set of φ well-approximable numbers consists
of those x ∈ R for which there exist infinitely many q ∈ N such that∣∣∣∣x − p

q

∣∣∣∣< φ(q)

for some p ∈ Z. Given φ, the determination of the size of these limsup sets and
various variants is an important theme in Diophantine approximation and there is
a vastly growing literature on this branch of metric number theory; see [2, 3] and
the references therein.

In the circle T
1, the study of φ well-approximable numbers may be regarded as

a variant of the shrinking target problem or dynamical Diophantine approximation
formulated in the following manner: assuming that X is a metric space, T : X → X

is a dynamical system, (rn)n∈N is a sequence of positive real numbers and x0 ∈ X,
determine the size of the set

lim sup
n→∞

T −n(B(x0, rn)
)= {x ∈ X : T n(x) ∈ B(x0, rn) for infinitely many n ∈ N

}
,

where B(x, r) is the open ball with radius r centred at x ∈ X. Indeed, letting x0 =
0, rq = qφ(q) and Tx : T1 → T

1 be the rotation by an angle x, we recover that the
set of φ well-approximable numbers consists of those x such that T

q
x (0) ∈ B(0, rq)

for infinitely many q ∈ N. Another variant of this question, called the moving target
problem, is concerned with the investigation of the limsup set{

x ∈ X : x ∈ B
(
T n(x0), rn

)
for infinitely many n ∈ N

};
see [4, 8]. A recent account on this line of research is provided in [24]. Observe
that, by replacing the map T with the random walk on T

d driven by the Lebesgue
measure, the random covering set E(x,A) may be viewed as a moving target prob-
lem limsup set provided An = B(0, rn) for all n ∈ N. For an interesting application
of limsup sets to the study of Brownian motion, we refer to [39].

In this paper, we focus on the natural problem of determining almost sure val-
ues of Hausdorff and packing dimensions of random covering sets in the case when
they have zero Lebesgue measure. We denote the Hausdorff and packing dimen-
sions by dimH and dimP, respectively. For d = 1 and for an arbitrary decreasing
sequence A = (An)n∈N of intervals of lengths (ln)n∈N, the almost sure Hausdorff
dimension of the random covering set is given by

(1.1) dimH E(x,A) = inf

{
0 < t ≤ 1 :

∞∑
n=1

(ln)
t < ∞

}
= lim sup

n→∞
logn

− log ln
.
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For ln = n−α , α > 1, this is proved by Fan and Wu [25] and, as explained in their
paper, the method works also for more general decreasing sequences (ln)n∈N. Us-
ing an approach different from that of [25], Durand [14] generalised the result of
[25] and obtained a dichotomy result for the Hausdorff measure of E(x,A) for
general gauge functions. The dimension result (1.1), as well as its analogy in T

d

for random coverings with balls, can also be derived from the mass transference
principle proved by Beresnevich and Velani in [3] (see [31] for details). In addition
to random covering sets, the mass transference technique has proved to be a useful
tool in studying the limsup sets in the context of Diophantine approximation and
shrinking target problems; see, for example, [2, 3, 24, 28]. However, its applica-
bility is essentially limited to the case when the sequence A consists of balls and,
therefore, it cannot be utilised in the general setting of this paper.

Notice that the methods used in [14, 25] rely essentially on the ambient space
being a torus and generating sets being balls. One needs to employ new ideas in
investigating random covering sets generated by more general sets. The case when
the generating sets are rectangle-like was first studied in [31]. More precisely, as-
sume that the generating sets in A are of the form An = �(Ln(R)) for all n ∈ N,
where � : Rd → T

d is a natural covering map, R is a subset of the closed unit
cube [0,1]d with nonempty interior and, for all n ∈N, the map Ln : Rd →R

d is a
contracting linear injection such that the sequences of singular values of (Ln)n∈N
decrease to 0 as n tends to infinity. Note that the singular values of Ln are the
lengths of the semi-axes of Ln(B(0,1)). Under this assumption, according to [31],
almost surely the Hausdorff dimension of E(x,A) is given in terms of singular
value functions �t(Ln) (for the definition see [31]), that is, almost surely

(1.2) dimH E(x,A) = inf

{
0 < t ≤ d :

∞∑
n=1

�t(Ln) < ∞
}

with the interpretation inf∅= d .
In [47], Persson proved that (1.2) remains valid when dropping off the mono-

tonicity assumption on the singular values of (Ln)n∈N in [31]. Indeed, he showed
that, for a sequence A of open subsets of Td , almost surely

(1.3) dimH E(x,A) ≥ inf

{
0 < t ≤ d :

∞∑
n=1

gt (An) < ∞
}
,

where

(1.4) gt (F ) := L(F )2

It (F )

for all Lebesgue measurable sets F ⊂ T
d with L(F ) > 0, and

(1.5) It (F ) :=
∫∫

F×F
|x − y|−t dL(x) dL(y)
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is the t-energy of F . For simplicity, we use the notation |x − y| for both the Eu-
clidean distance and the natural distance in T

d . When the generating sets of A
are open rectangles, the lower bound in (1.3) equals the right-hand side of (1.2).
Hence, the monotonicity assumption on (Ln)n∈N is not needed.

Inspired by the results of [31, 47], we aim at an exact dimension formula for the
random covering sets constructed from an arbitrary sequence A of open sets or,
more generally, Lebesgue measurable sets satisfying a mild density condition. To
this end, we introduce the following notation. For 0 ≤ t < ∞, the t-dimensional
Hausdorff content of a set F ⊂ R

d is denoted by

(1.6) Ht∞(F ) := inf

{ ∞∑
n=1

(diamFn)
t : F ⊂

∞⋃
n=1

Fn

}
,

where diam is the diameter of a subset of R
d . For a sequence A = (An)n∈N of

subsets of Rd , we define

(1.7) t0(A) := inf

{
0 < t ≤ d :

∞∑
n=1

Ht∞(An) < ∞
}

with the interpretation inf∅ = d . If A is a sequence of Lebesgue measurable sub-
sets of Rd , we set

(1.8) s0(A) := inf

{
0 < s ≤ d :

∞∑
n=1

Gs(An) < ∞
}

with the interpretation inf∅= d , where

(1.9) Gs(E) := sup
{
gs(F ) : F ⊂ E,F is Lebesgue measurable and L(F ) > 0

}
with the interpretation sup∅= 0. Finally, given F ⊂ R

d , we say that a point x ∈ F

has positive Lebesgue density with respect to F if

lim inf
r→0

L(F ∩ B(x, r))

L(B(x, r))
> 0

and, moreover, the set F has positive Lebesgue density if all of its points have
positive Lebesgue density with respect to F .

As a consequence of our main theorem (see Theorem 1.1), we will prove that
almost surely

(1.10) dimH E(x,A) = s0(A) = t0(A)

provided that A = (An)n∈N is a sequence of Lebesgue measurable subsets of Td

having positive Lebesgue density. It is worth noting that s0(A) could be strictly
larger than Persson’s lower bound [i.e., the right-hand side of (1.3)] even when A
consists of open sets (see Example 7.1).

Let us first give some remarks and briefly illustrate our main strategy in the
proof of (1.10). The whole proof consists of three parts: dimH E(x,A) ≤ t0(A),
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s0(A) = t0(A) and dimH E(x,A) ≥ s0(A) almost surely. The assumption of pos-
itive Lebesgue density is only used in the proof of the equality s0(A) = t0(A).
Without this assumption, the equality may fail and, furthermore, it may happen
that almost surely dimH E(x,A) < t0(A) and dimH E(x,A) > s0(A) (see Exam-
ples 7.2 and 7.4).

The proof of the upper bound [i.e., dimH E(x,A) ≤ t0(A)] is direct and sim-
ple. To prove the equality s0(A) = t0(A), we manage to establish certain relations
between the quantities Ht∞(·) and Gt(·) (see Lemmas 3.2 and 3.10). The proof
of these relations employs some potential theoretic arguments, and is rather long.
A key ingredient is a subtle and technical result (Proposition 3.8), which allows
us to approximate a given measure μ and its s-energy simultaneously by a certain
sequence of normalised Lebesgue measures. As for the lower bound, we note that
if U is open, then a straightforward approximation argument implies that

Gs(U) = sup
{
gs(V ) : V ⊂ U,V is open and L(V ) > 0

}
.

With Persson’s result, this characterisation can be employed to give a more direct
proof of the fact that s0(A) is a lower bound for dimH E(x,A) in the case when
A is a sequence of open sets. However, this method does not work if the sets
in the sequence A fail to be open.3 For this reason, we need to make use of a
completely different approach to deal with a more general generating sequence A.
For that purpose, we introduce the notion of minimal regular energy, which allows
us to give a lower bound of the Hausdorff dimension of random covering sets
under certain energy condition (see Section 4). A rather sophisticated random mass
distribution argument is then carried out in Section 5 to verify this condition.

Regarding the packing dimension of random covering sets, we show that if the
sets in A are Lebesgue measurable and L(An) > 0 for infinitely many n ∈ N, then
almost surely

(1.11) dimP E(x,A) = d.

For open generating sets, this result is immediate since E(x,A) is a Gδ-set,
which is almost surely dense. As in the case of Hausdorff dimension, replacing
open generating sets by Lebesgue measurable ones (of positive measure) turns
out to be a subtle task. The strategy in the proof of (1.11) is somewhat anal-
ogous to that of (1.10). However, instead of the minimal regular energy and a
mass distribution argument, we apply a result that allows us to conclude that
dimP E(x,A) = d by estimating, for compact sets F , the number of dyadic cubes
intersecting F ∩⋃∞

i=n(xn +An) in a set of positive Lebesgue measure (see Propo-
sition 6.4). Observe that since E(x,A) is almost surely dense, the box counting
dimension of E(x,A) exists and is equal to d almost surely.

3When A consists of open sets, it is also unclear whether Persson’s method could be used to prove
this lower bound in our more general setting, where the translations x = (xn)n∈N are independent
with a law not singular with respect to L.
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To summarise, the equation (1.10) gives a characterisation of the almost sure
value of the Hausdorff dimension of random covering sets in T

d for rather gen-
eral generating sequences A when the translations x = (xn)n∈N are independent
and uniformly distributed. As illustrated by Example 7.2 (see also Example 7.4),
the assumption on positive Lebesgue density cannot be replaced by the weaker as-
sumption that L(An ∩ B(x, r)) > 0 for all r > 0, x ∈ An and n ∈ N. In our main
result, Theorem 1.1, we will further generalise (1.10) and (1.11) in several differ-
ent directions. First, we will replace the uniform distribution by an arbitrary Radon
probability measure which is not purely singular with respect to the Lebesgue mea-
sure. Second, we will be able to replace the torus Td by any open subset of Rd , in
particular, by R

d itself. These generalisations allow us to deduce (1.10) and (1.11)
for many natural unbounded models, including the case when (xn)n∈N are inde-
pendent Gaussian random variables on R

d and (An)n∈N are Lebesgue measurable
subsets with positive Lebesgue density supported on a fixed compact subset of Rd .
Finally, we extend (1.10) and (1.11) to Lie groups and, more generally, to smooth
Riemann manifolds. To achieve this, note that when the ambient space is T

d , the
structure is linear in the sense that the random covering set is of the form

(1.12) E(x,A) = lim sup
n→∞

f (xn,An),

where the function f : Td ×T
d → T

d is defined as f (x, y) = x + y. Thus, a natu-
ral attempt to extend (1.10) and (1.11) to Lie groups or, more generally, to smooth
manifolds is to study a nonlinear structure where f is a smooth mapping.

Before presenting our main result in full generality, we will set up some further
notation. Let U,V ⊂ R

d be open sets and let f : U × V → R
d be a C1-map such

that the maps f (·, y) : U → f (U,y) and f (x, ·) : V → f (x,V ) are diffeomor-
phisms for all (x, y) ∈ U × V . Denote by D1f and D2f the derivatives of f (·, y)

and f (x, ·), respectively. We assume that there exists a constant Cu > 0 such that

(1.13)
∥∥Dif (x, y)

∥∥,∥∥(Dif (x, y)
)−1∥∥≤ Cu

for all (x, y) ∈ U × V and i = 1,2.
Let σ be a Radon probability measure on U which is not purely singular with

respect to the Lebesgue measure L. We consider the probability space (UN,F,P)

which is the completion of the infinite product of (U,B(U), σ ), where B(U) is the
Borel σ -algebra on U . Assuming that A = (An)n∈N is a sequence of subsets of V ,
define for all x ∈ UN a random covering set E(x,A) by

E(x,A) := lim sup
n→∞

f (xn,An) =
∞⋂

n=1

∞⋃
k=n

f (xk,Ak).

Now we can finally present our main theorem.

THEOREM 1.1. Let f : U ×V →R
d be as above and let � ⊂ V be compact.

Assume that A = (An)n∈N is a sequence of nonempty subsets of �. Then:
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(a) dimH E(x,A) ≤ t0(A) for all x ∈ UN.
(b) dimH E(x,A) ≥ s0(A) for P-almost all x ∈ UN provided that A is a se-

quence of Lebesgue measurable sets.
(c) s0(A) = t0(A) provided that A is a sequence of Lebesgue measurable sets

with positive Lebesgue density.
(d) dimP E(x,A) = d for P-almost all x ∈ UN provided that An are Lebesgue

measurable and L(An) > 0 for infinitely many n ∈ N.

It follows immediately from Theorem 1.1(d) that the upper box counting dimen-
sion of E(x,A) equals d almost surely. From the proof of Theorem 1.1(d), we see
that E(x,A) is almost surely dense in a set of positive Lebesgue measure. There-
fore, also the lower box counting dimension equals d almost surely. As a corollary
of Theorem 1.1, we obtain the following dimension result for random covering
sets in Riemann manifolds. Note that in Corollary 1.2 the quantities s0(A) and
t0(A) are defined as in (1.7) and (1.8) by using the distance function induced by
the Riemann metric and by replacing L by the Riemann volume.

COROLLARY 1.2. Let K, M and N be d-dimensional Riemann manifolds.
Assume that f : K × M → N is a C1-map such that f (x, ·) and f (·, y) are local
diffeomorphisms satisfying (1.13). Let � ⊂ M be compact and let A = (An)n∈N be
a sequence of subsets of �. Suppose that σ is a Radon probability measure on K
such that it is not purely singular with respect to the Riemann volume on K. Then
the statements (a)–(d) of Theorem 1.1 are valid.

As mentioned earlier, choosing K = M = N = T
d , f (x, y) = x + y and σ = L,

we recover the previously mentioned setting in T
d . The assumption that the gen-

erating sets are subsets of a compact set � is needed, for example, to guarantee
that E(x,A) is nonempty. A natural class of generating sets A which satisfy the as-
sumptions of Theorem 1.1 and to which the earlier known results are not applica-
ble are regular Cantor sets having positive Lebesgue measure. For the role of other
assumptions in Theorem 1.1, we refer to Section 7 where, among other things,
sharpness of our results will be discussed. Theorem 1.1 has a refinement concern-
ing the Hausdorff measures of E(x,A) with respect to doubling gauge functions.
The exact statement of this result is given in Section 8.

The paper is organised as follows: We begin with technical auxiliary results in
Section 2. In Section 3, we prove items (a) and (c) of Theorem 1.1. In Section 4,
we introduce a new concept called minimal regular energy and show how it can
be used to estimate Hausdorff dimensions of random covering sets. Section 5 is
dedicated to the proof of Theorem 1.1(b) whereas the statement (d) is handled in
Section 6. In Section 7, we explain how Corollary 1.2 follows from Theorem 1.1
and illustrate by examples the role of the assumptions and the sharpness of The-
orem 1.1. In the last section, we give further generalisations of Theorem 1.1 and
some remarks. For example, we present some results concerning Hausdorff mea-
sures of random covering sets with respect to general gauge functions.
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2. Auxiliary results. In this section, we prove technical lemmas which will
be needed in Sections 3–6. When studying random covering sets in the torus, one
often utilises the simple fact that u ∈ x + E if and only if x ∈ u − E for every
E ⊂ T

d . In the nonlinear setting, given a parameterised family of diffeomorphisms
Wx , we attempt to find a parameterised family of diffeomorphisms Xu such that
u ∈ Wx(E) if and only if x ∈ Xu(E). It is easy to see that the linearised local
version of this problem has a solution and, therefore, this should be the case for
the original nonlinear problem as well. In order to state this result formally, we
need the following notation.

DEFINITION 2.1. Let U ⊂ R
d be open. A C1-map W : U × R

d → R
d is

said to be a uniform local bidiffeomorphism, if there exist r0 > 0, y0 ∈ R
d

and a constant C > 0 such that, for all x ∈ U and y ∈ B(y0, r0), the maps
W(x, ·) : B(y0, r0) → W(x,B(y0, r0)) and W(·, y) : U → W(U,y) are uniform
diffeomorphisms, that is, diffeomorphisms satisfying

(2.1)
∥∥DiW(x, y)

∥∥,∥∥(DiW(x, y)
)−1∥∥≤ C

for all x ∈ U , y ∈ B(y0, r0) and i = 1,2, where D1W and D2W denote the deriva-
tives of W(·, y) and W(x, ·), respectively. A uniform local bidiffeomorphism W

generates a parameterised family of uniform diffeomorphisms Wx : B(y0, r0) →
Wx(B(y0, r0)), x ∈ U , by the formula Wx(y) := W(x,y).

LEMMA 2.2. Let Wx : B(y0, r0) → Wx(B(y0, r0)), x ∈ U , be a parameterised
family of uniform diffeomorphisms generated by a uniform local bidiffeomorphism
W : U ×R

d →R
d . Then there exists a parameterised family of uniform diffeomor-

phisms Xz : Vz → Xz(Vz) where z ∈ W(U,B(y0, r0)) and Vz ⊂ B(y0, r0) is open
such that, for all A ⊂ B(y0, r0), we have

z ∈ Wx(A) if and only if x ∈ Xz(A ∩ Vz).

Furthermore,

(2.2)
∥∥DXz(y)

∥∥,∥∥(DXz(y)
)−1∥∥≤ C2

for all z ∈ W(U,B(y0, r0)) and y ∈ Vz. Here, C is as in Definition 2.1.

PROOF. Since, for all z ∈ W(U,B(y0, r0)), the set Uz := {x ∈ U : z ∈
W(x,B(y0, r0))} is open and nonempty, we may define a map Rz : Uz → B(y0, r0)

by Rz(x) := Tx(z), where Tx := W(x, ·)−1. That is,

W
(
x,Rz(x)

)= W
(
x,Tx(z)

)= z.

Consider z ∈ W(U,B(y0, r0)). We show that Rz : Uz → Rz(Uz) is a uniform
diffeomorphism. If x,u ∈ Uz satisfy Rz(x) = Rz(u), then Tx(z) = Tu(z) = y

for some y ∈ B(y0, r0) and, therefore, W(x,y) = z = W(u,y). Thus x = u,
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implying that Rz is injective. Since W(x,Tx(z)) = z for all x ∈ Uz, we have
D1W(x,Tx(z)) + D2W(x,Tx(z)) ◦ DxTx(z) = 0, giving

DRz(x) = DxTx(z) = −(D2W
(
x,Tx(z)

))−1 ◦ D1W
(
x,Tx(z)

)
.

This implies

(2.3)
∥∥DRz(x)

∥∥,∥∥(DRz(x)
)−1∥∥≤ C2

for all z ∈ W(U,B(y0, r0)) and x ∈ Uz. Observing that, for all A ⊂ B(y0, r0) and
x ∈ U ,

z ∈ W(x,A) ⇐⇒ Tx(z) ∈ A ⇐⇒ Rz(x) ∈ A

⇐⇒ x ∈ (Rz)−1
(A),

we may define Vz := Rz(Uz) and Xz := (Rz)−1. The claim (2.2) follows
from (2.3). �

For every A ⊂ R
d and δ > 0, let

(2.4) V δ(A) := {x ∈ R
d : dist(x,A) ≤ δ

}
be the closed δ-neighbourhood of A. Here, dist(x,A) := inf{|x − a| : a ∈ A} is
the distance between x and A. According to the next lemma, using the notation of
Lemma 2.2, for each Lebesgue measurable set F ⊂ R

d , the Lebesgue measure of
F ∩ Wx(A) is close to that of Wx(A) for most points x ∈ F provided that A is a
subset of a sufficiently small ball.

LEMMA 2.3. Let U ⊂ R
d , r0 > 0, y0 ∈ R

d and W : U × R
d → R

d be as in
Definition 2.1. Assume that Wx(y0) = x for all x ∈ U and F ⊂ U is Lebesgue
measurable. Then, for every ε > 0, there is δ = δ(F, ε) > 0 such that, for all
Lebesgue measurable sets A ⊂ B(y0, δ), we have

(2.5) L
({

x ∈ F : L(F ∩ Wx(A)
)≥ (1 − ε)L

(
Wx(A)

)})≥ (1 − ε)L(F ).

PROOF. We start by proving that x 
→ L(F ∩Wx(A)) is a Borel map. Assume
first that F and A are compact. Since L is a Radon measure, we have L(E) =
limδ→0 L(V δ(E)) for all compact sets E. This, in turn, implies that the function
E 
→ L(E), defined for compact sets, is upper semicontinuous. Moreover, the fact
that the map E 
→ E ∩ A is upper semicontinuous for compact sets A ⊂ R

d (for
the definition of upper semicontinuity in this context see [38], page 200) implies
that the map x 
→ L(F ∩ Wx(A)) is upper semicontinuous and, therefore, a Borel
map.

Assume now that F and A are Lebesgue measurable. Since L is inner regular,
that is, L(E) = sup{L(C) : C ⊂ E,C is compact} for all Lebesgue measurable sets
E ⊂ R

d , we may choose increasing sequences (Fi)i∈N and (Aj )j∈N of compact
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sets such that Fi ⊂ F , Aj ⊂ A, limi→∞L(Fi) = L(F ) and limj→∞L(Wx(Aj )) =
L(Wx(A)) for all x ∈ U . In particular,

lim
j→∞ lim

i→∞L
(
Fi ∩ Wx(Aj )

)= L
(
F ∩ Wx(A)

)
for all x ∈ U and, therefore, the map x 
→ L(F ∩ Wx(A)) is Borel measurable. It
follows that all the sets we encounter in the proof below are Lebesgue measurable.

First, we prove (2.5) for compact sets F . Clearly, we may assume that L(F ) > 0.
Note that (2.5) is equivalent to

(2.6) L
({

x ∈ F : L(Fc ∩ Wx(A)
)
> εL
(
Wx(A)

)})
< εL(F ),

where the complement of a set E is denoted by Ec. Now suppose that (2.6) is
not true. Then there exists ε > 0 such that, for all δ > 0, there is a measurable set
A ⊂ B(y0, δ) with L(A) > 0 satisfying L(
) ≥ εL(F ), where


 := {x ∈ F : L(Fc ∩ Wx(A)
)
> εL
(
Wx(A)

)}
.

Suppose that z ∈ Wx(A). Since Wx(y0) = x for all x ∈ U , we have |z − x| ≤
C2δ =: δ̃. Denoting the characteristic function of a set E by χE , we obtain by
Fubini’s theorem that∫



L
(
Fc ∩ Wx(A)

)
dL(x)

≤
∫
F
L
(
Fc ∩ Wx(A)

)
dL(x)

=
∫∫

χF (x)χWx(A)(z)χFc(z) dL(z) dL(x)

=
∫∫

χF (x)χWx(A)(z)χV
δ̃
(F )\F (z) dL(z) dL(x)

=
∫
V

δ̃
(F )\F

∫
F

χWx(A)(z) dL(x) dL(z).

(2.7)

From Lemma 2.2, we deduce that z ∈ Wx(A) if and only if x ∈ Xz(A ∩ Vz). Fur-
thermore, L(Xz(A ∩ Vz)) ≤ C2dL(A) by (2.2). Thus

(2.8)
∫


L
(
Fc ∩ Wx(A)

)
dL(x) ≤ C2dL(A)L

(
V δ̃(F ) \ F

)
.

On the other hand, since Wx is a uniform diffeomorphism, L(Wx(A)) ≥
C−dL(A) for all x ∈ U . Combining this with the definition of 
, inequality (2.8)
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and the fact that L(
) ≥ εL(F ), we obtain∫


L
(
Fc ∩ Wx(A)

)
dL(x)

≥ ε

∫


L
(
Wx(A)

)
dL(x)

= ε

∫



∫
χWx(A)(z) dL(z) dL(x)

≥ ε

∫



∫
χWx(A)(z)χF (z) dL(z) dL(x)

= ε

∫



∫
χWx(A)(z) dL(z) dL(x)

− ε

∫



∫
χWx(A)(z)χFc(z) dL(z) dL(x)

≥ C−dεL(A)L(
) − ε

∫



∫
χWx(A)(z)χFc(z) dL(z) dL(x)

≥ εL(A)
(
C−dεL(F ) − C2dL

(
V δ̃(F ) \ F

))
.

(2.9)

Since F is compact, L(F ) = limi→∞L(V 1
i
(F )) and, therefore, for every ε̃ > 0,

there is δ > 0 such that L(V δ̃(F ) \ F) < ε̃L(F ). Hence, (2.9) contradicts (2.8),
completing the proof of (2.5) for compact sets F .

For a Lebesgue measurable set F , choose a compact set K ⊂ F satisfying
L(K) ≥ (1 − ε)L(F ). Then

L
({

x ∈ F : L(F ∩ Wx(A)
)≥ (1 − ε)2L

(
Wx(A)

)})
≥ L
({

x ∈ K : L(K ∩ Wx(A)
)≥ (1 − ε)L

(
Wx(A)

)})
≥ (1 − ε)L(K) ≥ (1 − ε)2L(F ),

completing the proof of (2.5). �

The last lemma of this section is a counterpart of Lemma 2.3 for energies of
sets.

LEMMA 2.4. Let U ⊂ R
d , r0 > 0, y0 ∈ R

d and W : U × R
d → R

d be as in
Definition 2.1. Assume that Wx(y0) = x for all x ∈ U . Let F1,F2 ⊂ U be bounded
Lebesgue measurable sets and let 0 ≤ t < d . Then, for every ε > 0, there exists
δ1 = δ1(F1,F2, ε) > 0 such that∫∫

F1×F2

∫∫
Wx1 (A1)×Wx2 (A2)

|u1 − u2|−t dL(u1) dL(u2) dL(x1) dL(x2)

≤ (1 + ε)

∫∫
F1×F2

L
(
Wx1(A1)

)
L
(
Wx2(A2)

)|x1 − x2|−t dL(x1) dL(x2),

provided that A1,A2 ⊂ B(y0, δ1) are Lebesgue measurable.
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PROOF. Clearly, we may assume that L(F1) > 0 and L(F2) > 0. Let R > 1 be
such that F1,F2 ⊂ B(0,R − 1). Then

0 <

∫∫
F1×F2

|u1 − u2|−t dL(u1) dL(u2)

≤
∫∫

B(0,R)×B(0,R)
|u1 − u2|−t dL(u1) dL(u2) < ∞.

It follows that, for every ε̃ > 0, there exists δ ∈ R with 0 < δ < 1 such that

∫∫
D(δ)

|u1 − u2|−t dL(u1) dL(u2)

≤ ε̃

∫∫
F1×F2

|u1 − u2|−t dL(u1) dL(u2),

(2.10)

where D(δ) := {(u1, u2) ∈ B(0,R) × B(0,R) : |u1 − u2| ≤ δ}. Consider 0 <

ε̃ < 1
2 and let δ > 0 be such that (2.10) is valid. Defining δ1 := 1

4C−1ε̃δ, gives
diamWx(B(y0, δ1)) < 1

2 ε̃δ for all x ∈ U .

Let A1 and A2 be Lebesgue measurable subsets of B(y0, δ1). Recall that
Wx(y0) = x for all x ∈ U . Thus, if ui ∈ Wxi

(Ai) for i = 1,2 and |x1 − x2| > 1
2δ,

we have |u1 − u2| > (1 − 2ε̃)|x1 − x2| and, therefore,

∫
{(x1,x2)∈F1×F2:|x1−x2|> 1

2 δ}∫∫
Wx1 (A1)×Wx2 (A2)

|u1 − u2|−t dL(u1) dL(u2) dL(x1) dL(x2)

≤ (1 − 2ε̃)−t
∫
{(x1,x2)∈F1×F2:|x1−x2|> 1

2 δ}
|x1 − x2|−t

×L
(
Wx1(A1)

)
L
(
Wx2(A2)

)
dL(x1) dL(x2)

≤ (1 − 2ε̃)−t

×
∫∫

F1×F2

L
(
Wx1(A1)

)
L
(
Wx2(A2)

)|x1 − x2|−t dL(x1) dL(x2).

(2.11)

To estimate the remaining part of the integral, we make the change of variables

ui = Wxi
(ũi) = W(xi, ũi) for i = 1,2. The Jacobians of these coordinate transfor-
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mations are bounded from above by Cd . By Fubini’s theorem,∫
{(x1,x2)∈F1×F2:|x1−x2|≤ 1

2 δ}∫∫
Wx1 (A1)×Wx2 (A2)

|u1 − u2|−t dL(u1) dL(u2) dL(x1) dL(x2)

≤ C2d
∫∫

A1×A2

∫
{(x1,x2)∈F1×F2:|x1−x2|≤ 1

2 δ}
∣∣W(x1, ũ1) − W(x2, ũ2)

∣∣−t

× dL(x1) dL(x2) dL(ũ1) dL(ũ2) =: L.

Recall that, by the choice of δ1, we have |W(x1, ũ1) − W(x2, ũ2)| ≤ δ provided
that |x1 − x2| ≤ 1

2δ. The fact that, for i = 1,2, we have |W(xi, ũi) − W(xi, y0)| ≤
Cδ1 < 1 for all xi ∈ Fi and ũi ∈ Ai gives W(xi, ũi) ∈ B(0,R). Making the change
of variables x̃i = W(xi, ũi) for i = 1,2 and using the fact that the Jacobians are
bounded by Cd , inequality (2.10) gives

L ≤ C4d
∫∫

A1×A2

∫∫
D(δ)

|x̃1 − x̃2|−t dL(x̃1) dL(x̃2) dL(ũ1) dL(ũ2)

≤ C4d ε̃L(A1)L(A2)

∫∫
F1×F2

|x̃1 − x̃2|−t dL(x̃1) dL(x̃2)

≤ C6d ε̃

∫∫
F1×F2

L
(
Wx1(A1)

)
L
(
Wx2(A2)

)|x̃1 − x̃2|−t dL(x̃1) dL(x̃2).

(2.12)

Combining (2.11) and (2.12) gives the claim. �

3. Upper bound for Hausdorff dimension. In this section, we prove claims
(a) and (c) in Theorem 1.1. We begin with the following observation.

LEMMA 3.1. Let (En)n∈N be a sequence of subsets of Rd . Then

dimH

(
lim sup
n→∞

En

)
≤ inf

{
t ≥ 0 :

∞∑
n=1

Ht∞(En) < ∞
}
.

PROOF. For 0 ≤ s < ∞ and 0 < δ < ∞, we denote by Hs and Hs
δ the

s-dimensional Hausdorff measure and δ-measure, respectively. Let t > 0 with∑∞
n=1 Ht∞(En) < ∞. For the purpose of proving the claim, it suffices to show

that dimH(lim supn→∞ En) ≤ t . In what follows, we prove a slightly stronger re-
sult that Ht (lim supn→∞ En) = 0.

Let ε > 0 and let N ∈ N so that
∑∞

n=N Ht∞(En) < εt

2 . For every n ≥ N

and k ∈ N, we choose Un,k ⊂ R
d such that

⋃∞
k=1 Un,k ⊃ En for all n ≥ N and∑∞

n=N

∑∞
k=1(diamUn,k)

t ≤ εt . Clearly, diamUn,k ≤ ε and, therefore,

Ht
ε

(
lim sup
n→∞

En

)
≤ Ht

ε

( ∞⋃
n=N

En

)
≤

∞∑
n=N

∞∑
k=1

(diamUn,k)
t ≤ εt .
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As ε can be arbitrarily small, we have Ht (lim supn→∞ En) = 0, which completes
the proof. �

PROOF OF THEOREM 1.1(A). The inequality dimH E(x,A) ≤ t0(A) fol-
lows directly from Lemma 3.1, using a simple observation that Ht∞(f (x,E)) ≤
(Cu)

tHt∞(E) for all x ∈ U and E ⊂ V , where Cu is the constant appearing in
(1.13). �

The rest of this section is devoted to proving that s0(A) = t0(A) under the as-
sumptions of Theorem 1.1(c), where s0(A) and t0(A) are as in (1.8) and (1.7),
respectively. We start by proving that s0(A) ≤ t0(A).

LEMMA 3.2. Let E ⊂ R
d be a Lebesgue measurable set. For all t ≥ 0,

we have Ht∞(E) ≥ Gt(E). In particular, for every sequence A := (An)n∈N of
Lebesgue measurable subsets of Rd , we have s0(A) ≤ t0(A).

PROOF. We may assume that L(E) > 0 and Ht∞(E) < ∞. Let ε > 0. We
choose disjoint Borel sets En, n ∈ N, such that

⋃∞
n=1 En ⊃ E and∑∞

n=1(diamEn)
t < Ht∞(E) + ε. Notice that, for all n ∈ N,

It (E ∩En) =
∫∫

(E∩En)×(E∩En)
|x −y|−t dL(x) dL(y) ≥ (diamEn)

−tL(E ∩En)
2.

It follows that

(3.1) It (E) ≥
∞∑

n=1

It (E ∩ En) ≥
∞∑

n=1

(diamEn)
−tL(E ∩ En)

2.

From (3.1) and the Cauchy–Schwarz inequality, we obtain( ∞∑
n=1

(diamEn)
t

)
It (E) ≥

( ∞∑
n=1

(diamEn)
t

)( ∞∑
n=1

(diamEn)
−tL(E ∩ En)

2

)

≥
( ∞∑

n=1

L(E ∩ En)

)2

= L(E)2,

which implies that
∑∞

n=1(diamEn)
t ≥ gt (E) [see (1.4)]. Hence, Ht∞(E) + ε >

gt(E). Letting ε tend to zero, gives Ht∞(E) ≥ gt (E). As Ht∞(·) is a monotone in-
creasing function, we conclude that Ht∞(E) ≥ Gt(E). According to this inequal-
ity, we have s0(A) ≤ t0(A) for every sequence A of Lebesgue measurable subsets
of Rd . �

REMARK 3.3. The following extension of Lemma 3.2 can be proven with the
same argument: if μ is a finite Borel measure supported on E and t ≥ 0, we have

Ht∞(E) ≥ μ(E)2∫∫
E×E |x − y|−t dμ(x) dμ(y)

.
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We proceed by estimating Ht∞(E) from above by means of Gt(E). Our es-
timate is based on a technical result stated in Proposition 3.8. In what follows,
the restriction of a measure μ to a set E ⊂ R

d is denoted by μ|E , that is,
μ|E(F ) := μ(E∩F) for all F ⊂ R

d . For a Radon measure μ on R
d and 0 < s < d ,

let

Is(μ) :=
∫∫

|x − y|−s dμ(x) dμ(y)

be the s-energy of μ. Given a Borel set E ⊂ R
d , let P(E) be the space of Borel

probability measures supported on E, and let E+ be the set of points in E having
positive Lebesgue density, that is,

E+ :=
{
x ∈ E : lim inf

r→0

L(E ∩ B(x, r))

L(B(x, r))
> 0
}
.

We denote by E the closure of a set E ⊂ R
d , by B(0,1) ⊂ R

d the closed unit
ball centred at the origin and by C(B(0,1)) the family of continuous maps from
B(0,1) to R.

We continue by verifying several elementary lemmas.

LEMMA 3.4. Letting s > 0, the mapping η 
→ Is(η) is lower semicontinuous
on P(B(0,1)), when P(B(0,1)) is equipped with the weak-star topology.

PROOF. The result is well known (see, e.g., [40], (1.4.5)) and follows from the
fact that the mapping (x, y) 
→ |x −y|−s is nonnegative and lower semicontinuous
on R

d ×R
d . �

LEMMA 3.5. Let η ∈ P(B(0,1)). Suppose that (Fn)n∈N is a sequence of
Borel subsets of B(0,1) satisfying limn→∞ η(Fn) = 1. Then ηn := η(Fn)

−1η|Fn

converges to η in the weak-star topology as n tends to infinity. Moreover,
limn→∞ Is(ηn) = Is(η) for all s > 0.

PROOF. Letting g ∈ C(B(0,1)), we have that

0 ≤
∫

|g − gχFn |dη ≤ (1 − η(Fn)
)

max
x∈B(0,1)

∣∣g(x)
∣∣.

From this, it follows that

lim
n→∞

∫
g dηn = lim

n→∞η(Fn)
−1
∫

gχFn dη =
∫

g dη

and, therefore, ηn converges to η in the weak-star topology.
Let s > 0. By Lemma 3.4, we have lim infn→∞ Is(ηn) ≥ Is(η). Notice that, for

all n ∈ N,

Is(ηn) = η(Fn)
−2
∫∫

Fn×Fn

|x − y|−s dη(x) dη(y) ≤ η(Fn)
−2Is(η),
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which implies that lim supn→∞ Is(ηn) ≤ Is(η). Hence, limn→∞ Is(ηn) = Is(η), as
desired. �

For a Borel set F ⊂ B(0,1) and s > 0, we recall the notation Is(F ) = Is(L|F )

from (1.5). For every k ∈ N, define

(3.2) Qk := {[0,2−k)d + α : α ∈ 2−k
Z

d}.
LEMMA 3.6. Let F ⊂ B(0,1) be a Borel set, and let 0 < s < d . Then, for

every p ∈ R with 0 < p ≤ 1, there exists a Borel set F1 ⊂ F so that L(F1) =
pL(F ) and Is(F1) ≤ 2p2Is(F ).

PROOF. Let 0 < p ≤ 1. Write μ := L|F and choose a large integer 
 ∈ N so
that

(3.3)
(

1 + 2
√

d




)s

<
3

2
.

Since Is(μ) < ∞, there is n ∈ N such that

(3.4)
∑

Q,Q′∈Qn

dist(Q,Q′)<2−n


∫∫
Q×Q′

|x − y|−s dμ(x) dμ(y) <
1

2
p2Is(μ).

Here, dist(Q,Q′) = inf{|x − y| : x ∈ Q and y ∈ Q′}. For each Q ∈ Qn, con-
struct a Borel subset Q̃ of Q ∩ F such that L(Q̃) = pL(Q ∩ F). Defining
F1 :=⋃Q∈Qn

Q̃, we have F1 ⊂ F and L(F1) = pL(F ).
We proceed by showing that Is(F1) ≤ 2p2Is(F ). Set η := L|F1 . Since F1 ⊂ F ,

inequality (3.4) gives∑
Q,Q′∈Qn

dist(Q,Q′)<2−n


∫∫
Q×Q′

|x − y|−s dη(x) dη(y) <
1

2
p2Is(μ).

The proof will be complete, once we show that

(3.5)
∑

Q,Q′∈Qn

dist(Q,Q′)≥2−n


∫∫
Q×Q′

|x − y|−s dη(x) dη(y) ≤ 3

2
p2Is(μ).

Note that if Q,Q′ ∈ Qn with dist(Q,Q′) ≥ 2−n
, x ∈ Q and y ∈ Q′, we obtain

dist
(
Q,Q′)≤ |x − y| ≤ dist

(
Q,Q′)+ 2

√
d2−n

and, therefore, by (3.3),

2

3
dist
(
Q,Q′)−s ≤ |x − y|−s ≤ dist

(
Q,Q′)−s

.
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This, in turn, implies that∫∫
Q×Q′

|x − y|−s dη(x) dη(y)

≤ dist
(
Q,Q′)−s

η(Q)η
(
Q′)

= p2 dist
(
Q,Q′)−s

μ(Q)μ
(
Q′)≤ 3

2
p2
∫∫

Q×Q′
|x − y|−s dμ(x) dμ(y).

Summing over Q,Q′ ∈ Qn with d(Q,Q′) ≥ 2−n
, we obtain (3.5) as desired. �

The following lemma is a special case of Proposition 3.8.

LEMMA 3.7. Let E ⊂ B(0,1) be a Borel set with L(E) > 0, and let k,m ∈ N.
Assume that E0 ⊂ E is a nonempty Borel set such that

(3.6)
L(E ∩ B(x, r))

L(B(x, r))
>

1

k

for all x ∈ E0 and 0 < r ≤ 2−m. Let 0 < s < d and μ ∈ P(E0) with Is(μ) < ∞.
Then there is a sequence (Fn)n∈N of Borel subsets of E with positive Lebesgue
measure such that the sequence μn := L(Fn)

−1L|Fn , n ∈ N, converges to μ in the
weak-star topology as n tends to infinity, and limn→∞ Is(μn) = Is(μ).

PROOF. We divide the proof into three steps.
Step 1. Construction of (μn)n∈N. For all n ∈N, let{

xn,1, . . . , xn,pn : |xn,i − xn,j | ≥ 2−n for all i �= j
}

be a subset of E0 with maximal cardinality. Then

E0 ⊂
pn⋃
i=1

B
(
xn,i,2−n).

For i = 1, . . . , pn, we denote by Qn,i the set of points y ∈ B(xn,i,2−n) for which
i is the smallest index such that |y − xn,i | = minj=1,...,pn |y − xn,j |. Then the sets
Qn,i , i = 1, . . . , pn, are pairwise disjoint Borel sets satisfying

E0 ⊂
pn⋃
i=1

Qn,i =
pn⋃
i=1

B
(
xn,i,2−n) and(3.7)

B
(
xn,i,2−n−1)⊂ Qn,i ⊂ B

(
xn,i,2−n) for all i = 1, . . . , pn.(3.8)

For all i = 1, . . . , pn, define

(3.9) ci := μ(Qn,i)

L(E ∩ B(xn,i,2−n−2))
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and set c := maxi=1,...,pn ci . Lemma 3.6 implies that, for every i = 1, . . . , pn, we
can construct a Borel set Fn,i such that

Fn,i ⊂ E ∩ B
(
xn,i,2−n−2),(3.10)

L(Fn,i) = ci

c
L
(
E ∩ B

(
xn,i,2−n−2)) and(3.11)

Is(Fn,i) ≤ 2c2
i

c2 Is

(
E ∩ B

(
xn,i,2−n−2)).(3.12)

By (3.10), the sets Fn,i , i = 1, . . . , pn, are pairwise disjoint and, moreover,

(3.13) dist(Fn,i,Fn,j ) ≥ 2−n−1 for i �= j.

We complete the construction in step 1 by setting

Fn :=
pn⋃
i=1

Fn,i and μn := L(Fn)
−1L|Fn.

Observe that L(Fn) > 0 since L(B(x, r) ∩ E) > 0 for all x ∈ E0 and r > 0.
Step 2. Convergence of (μn)n∈N. By (3.9) and (3.11), we have L(Fn,i) =

c−1μ(Qn,i) for all i = 1, . . . , pn. It follows that

L(Fn) = c−1 and(3.14)

μn(Qn,i) = μn(Fn,i) = μ(Qn,i)(3.15)

for all i = 1, . . . , pn. Let F ⊂ R
d be a compact set. From (3.15) and the fact that

diam(Qn,i) ≤ 2 · 2−n [see (3.8)], we conclude that, for all ε > 0 [recall (2.4)],

lim sup
n→∞

μn(F ) ≤ lim sup
n→∞

∑
1≤i≤pn

Qn,i⊂Fε

μn(Qn,i) ≤ μ
(
V ε(F )

)
.

Combining this with the fact that μ(F) = limε→0 μ(V ε(F )), leads to the conclu-
sion lim supn→∞ μn(F ) ≤ μ(F). The weak-star convergence now follows from
the Portmanteau theorem [38], Theorem 17.20.

Step 3. Convergence of (Is(μn))n∈N. Since the sequence (μn)n∈N converges to
μ in the weak-star topology, Lemma 3.4 gives lim infn→∞ Is(μn) ≥ Is(μ). Hence,
for the purpose of proving that limn→∞ Is(μn) = Is(μ), it suffices to show that,
for every ε > 0, there exists N ∈ N such that

(3.16) Is(μn) ≤ (1 + ε)Is(μ)

for all n ≥ N . Let ε > 0 and select 
 ∈N such that

(3.17)
(

1 + 4




)s

< 1 + ε

2
.



DIMENSIONS OF RANDOM COVERING SETS 1561

Moreover, choose a large integer N ≥ m such that, for all n ≥ N ,

(3.18)
∫∫

{(x,y):|x−y|≤2−n(
+8)}
|x − y|−s dμ(x) dμ(y) <

ε

4L
Is(μ),

where

L := max
{
2s(
 + 8)s,2k2Is

(
B(0,1)

)
L
(
B(0,1)

)−28s}.
Let n ≥ N and set Dn := {Qn,i : i = 1, . . . , pn}. Notice that if Q,Q′ ∈ Dn with
dist(Q,Q′) ≥ 2−n
, x ∈ Q and y ∈ Q′, we have, by (3.8), that

dist
(
Q,Q′)≤ |x − y| ≤ dist

(
Q,Q′)+ 4 · 2−n

and, therefore, by (3.17),(
1 + ε

2

)−1
dist
(
Q,Q′)−s ≤ |x − y|−s ≤ dist

(
Q,Q′)−s

.

Combining this with (3.15), we conclude that∫∫
Q×Q′

|x − y|−s dμn(x) dμn(y)

≤ dist
(
Q,Q′)−s

μn(Q)μn

(
Q′)

= dist
(
Q,Q′)−s

μ(Q)μ
(
Q′)

≤
(

1 + ε

2

)∫∫
Q×Q′

|x − y|−s dμ(x) dμ(y).

Summing over Q,Q′ ∈ Dn with dist(Q,Q′) ≥ 2−n
, we obtain that∑
Q,Q′∈Dn

dist(Q,Q′)≥2−n


∫∫
Q×Q′

|x − y|−s dμn(x) dμn(y) ≤
(

1 + ε

2

)
Is(μ).

To complete the proof of (3.16), it is sufficient to verify that

(3.19)
∑

Q,Q′∈Dn

dist(Q,Q′)<2−n


∫∫
Q×Q′

|x − y|−s dμn(x) dμn(y) ≤ ε

2
Is(μ).

Since μn is supported on Fn =⋃pn

i=1 Fn,i , the left-hand side of (3.19) is bounded
above by ∑

1≤i,j≤pn

dist(Fn,i ,Fn,j )<2−n(
+4)

∫∫
Fn,i×Fn,j

|x − y|−s dμn(x) dμn(y) =: (I ) + (II),
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where

(I ) := ∑
1≤i,j≤pn:i �=j

dist(Fn,i ,Fn,j )<2−n(
+4)

∫∫
Fn,i×Fn,j

|x − y|−s dμn(x) dμn(y) and

(II) := ∑
1≤i≤pn

∫∫
Fn,i×Fn,i

|x − y|−s dμn(x) dμn(y).

We proceed by estimating (I ) and (II) separately. First, we obtain

(I ) ≤ ∑
1≤i,j≤pn:i �=j

dist(Fn,i ,Fn,j )<2−n(
+4)

2(n+1)sμn(Fn,i)μn(Fn,j )
[
by (3.13)

]

= ∑
1≤i,j≤pn:i �=j

dist(Fn,i ,Fn,j )<2−n(
+4)

2(n+1)sμ(Qn,i)μ(Qn,j )
[
by (3.15)

]

≤ ∑
Q,Q′∈Dn

dist(Q,Q′)<2−n(
+4)

2(n+1)sμ(Q)μ
(
Q′)

≤ ∑
Q,Q′∈Dn

dist(Q,Q′)<2−n(
+4)

2s(
 + 8)s
∫∫

Q×Q′
|x − y|−s dμ(x) dμ(y)

[
by (3.8)

]

≤ 2s(
 + 8)s
∫∫

{(x,y):|x−y|≤2−n(
+8)}
|x − y|−s dμ(x) dμ(y)

≤ ε

4
Is(μ)

[
by (3.18)

]
.

Set α := L(B(0,1)) and β := Is(B(0,1)). Using the change of variables x̃ = rx,
it is straightforward to see that

(3.20) Is

(
B(x, r)

)= L
(
B(x, r)

)2
α−2r−sβ

for all x ∈ R
d and all r > 0. Therefore,

(II) = ∑
1≤i≤pn

c2Is(Fn,i)
[
by (3.14)

]
≤ ∑

1≤i≤pn

2c2
i Is

(
E ∩ B

(
xn,i,2−n−2)) [

by (3.12)
]

= ∑
1≤i≤pn

2μ(Qn,i)
2Is(E ∩ B(xn,i,2−n−2))

L(E ∩ B(xn,i,2−n−2))2

[
by (3.9)

]
≤ ∑

1≤i≤pn

(
2k2α−2β8s)μ(Qn,i)

22(n−1)s [
by (3.20) and (3.6)

]
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≤ (2k2α−2β8s) ∑
1≤i≤pn

∫∫
Qn,i×Qn,i

|x − y|−s dμ(x) dμ(y)
[
by (3.8)

]
≤ (2k2α−2β8s) ∫∫

{(x,y):|x−y|≤2·2−n}
|x − y|−s dμ(x) dμ(y)

≤ ε

4
Is(μ)

[
by (3.18)

]
.

We conclude that (I ) + (II) ≤ ε
2Is(μ), from which (3.19) follows. This completes

the proof of Lemma 3.7. �

Now we are ready to state the main technical result of this section.

PROPOSITION 3.8. Let E ⊂ R
d be a bounded Borel set with L(E) > 0, and

let 0 < s < d . Assume that μ ∈ P(E+) with Is(μ) < ∞. Then there is a sequence
(Fn)n∈N of Borel subsets of E+ with positive Lebesgue measure such that the se-
quence μn := L(Fn)

−1L|Fn , n ∈ N, converges to μ in the weak-star topology as n

tends to infinity, and limn→∞ Is(μn) = Is(μ).

PROOF. Without loss of generality, we may assume that E ⊂ B(0,1). For ev-
ery k,m ∈ N, define

Ek,m :=
{
x ∈ E : L(E ∩ B(x, r))

L(B(x, r))
>

1

k
for all 0 < r ≤ 2−m

}
,

and set Ek :=⋃∞
m=1 Ek,m. Then Ek,m ↑ Ek as m tends to infinity and, moreover,

Ek ↑ E+ as k tends to infinity. Choose sufficiently large k0 ∈ N such that μ(Ek0) >

0. For every integer k ≥ k0, pick mk ∈ N such that

μ(Ek,mk
) ≥
(

1 − 1

k

)
μ(Ek).

Since Ek ↑ E+ as k tends to infinity and μ is supported on E+, we have

lim
k→∞μ(Ek,mk

) = 1.

Set ηk := μ(Ek,mk
)−1μ|Ek,mk

for all k ≥ k0. From Lemma 3.5, we obtain

(3.21) lim
k→∞ηk = μ and lim

k→∞ Is(ηk) = Is(μ).

Let k ≥ k0. Replacing in Lemma 3.7 the sets E and E0 by E+ and Ek,mk
,

respectively, implies the existence of a sequence (Fk,i)i∈N of Borel subsets of E+
such that

lim
i→∞L(Fk,i)

−1L|Fk,i
= ηk and lim

i→∞ Is

(
L(Fk,i)

−1L|Fk,i

)= Is(ηk).
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Combining this with (3.21), we see that there exists a sequence (ik)k∈N of natural
numbers such that

lim
k→∞L(Fk,ik )

−1L|Fk,ik
= μ and lim

k→∞ Is

(
L(Fk,ik )

−1L|Fk,ik

)= Is(μ).

This completes the proof of Proposition 3.8. �

The next lemma states that every Lebesgue measurable set with positive
Lebesgue density is contained in a Borel set with positive Lebesgue density having
the same Hausdorff content as the original set.

LEMMA 3.9. Let R > 0 and s > 0. Assume that E ⊂ B(0,R) is a Lebesgue
measurable subset of Rd . Then there exists a Borel set X ⊂ B(0,R) such that
E ⊂ X, L(X \ E) = 0 and Hs∞(E) = Hs∞(X). Furthermore, under the additional
assumption E+ = E, we may choose X so that X+ = X.

PROOF. The definition of Hs∞(·) implies that, for every n ∈ N, there exists a
sequence (Fn,i)i∈N of Borel sets satisfying E ⊂⋃∞

i=1 Fn,i and
∑∞

i=1(diamFn,i)
s <

Hs∞(E)+ 1
n

. Defining F :=⋂∞
n=1
⋃∞

i=1 Fn,i , it is clear that F is Borel measurable,
E ⊂ F and Hs∞(F ) = Hs∞(E). Moreover, there exists a Borel set A ⊂ B(0,R)

such that E ⊂ A and L(A) = L(E). Setting X := F ∩ A, it is easy to see that X

fulfils all the desired properties.
If E+ = E, the above construction may lead to the situation where X+ �= X.

However, we have E ⊂ X+ ⊂ X and, therefore, Hs∞(X+) = Hs∞(E) = Hs∞(X)

and L(X+) = L(E) = L(X). Note that (X+)+ = X+. [Indeed, (A+)+ = A+ for
all Lebesgue measurable sets A ⊂ R

d since L(A+) = L(A).] Since X is a Borel
set, so is X+. We complete the proof by deducing that the set Y := X+ has the
following properties: Y ⊂ B(0,R) is a Borel set, Y+ = Y , E ⊂ Y , L(Y \ E) = 0
and Hs∞(Y ) = Hs∞(E). �

The next lemma may be regarded as a complementary result to Lemma 3.2.

LEMMA 3.10. Let 0 < t < s < d and R > 0. Then there exists a positive con-
stant C = C(s, t, d,R) such that, for all Lebesgue measurable sets E ⊂ B(0,R)

with E+ = E, we have

Hs∞(E) ≤ CGt(E).

PROOF. We may assume that E �= ∅. Since E+ = E �= ∅, we have L(E) > 0
and, therefore, Hs∞(E) > 0.

We first assume that E is Borel measurable. By Frostman’s lemma [45], Theo-
rem 8.8, there exists a Radon measure μ supported on E such that μ(B(x, r)) ≤ rs

for all x ∈ R
d and r > 0 and, moreover, μ(E) = cHs∞(E), where c is a constant
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depending only on d . Next, we make a standard calculation in a slightly compli-
cated looking fashion since that will be useful for later purposes (see Section 8).

Let h(r) := rt and h̃(r) := rs for all r ≥ 0. Set δ := s
t
− 1 and a := μ(E)−

1
1+δ .

Then h̃(r) ≤ h(r)1+δ for all r > 0. By [45], Theorem 1.15, we have for some con-
stant c1 depending on t and s that

0 < It(μ) =
∫∫

μ

({
y ∈R

d : 1

h(|x − y|) ≥ u

})
dudμ(x)

≤
∫∫

min
{
μ(E),μ

(
B
(
x,h−1(u−1)))}dudμ(x)

≤
∫ (∫ a

0
μ(E)du +

∫ ∞
a

h̃
(
h−1(u−1))du

)
dμ(x)

≤
∫ (

μ(E)1− 1
1+δ +

∫ ∞
a

u−1−δ du

)
dμ(x)

≤ c1μ(E)1+ δ
1+δ ≤ c1

(
cHs∞
(
B(0,R)

))1− t
s μ(E).

Thus 0 < It(μ) ≤ c̃μ(E) < ∞, where c̃ is a constant depending only on t , s and R.
Applying Proposition 3.8 to E, we find a sequence (μk)k∈N of measures such

that μk = μ(E)L(Ek)
−1L|Ek

and limk→∞ It (μk) = It (μ). Here, each Ek is a
Borel measurable subset of E with 0 < L(Ek) < ∞. For all sufficiently large
k ∈N, we obtain

μ(E)2

L(Ek)2 It (Ek) = It (μk) ≤ 2It (μ) ≤ 2c̃μ(E),

giving

Hs∞(E) = c−1μ(E) ≤ 2c̃c−1L(Ek)
2

It (Ek)
≤ 2c̃c−1Gt(E)

by (1.9). Choosing C := 2c̃c−1 completes the proof for Borel sets E.
The general case of E being Lebesgue measurable may be reduced to the

above setting in the following manner. By Lemma 3.9, there exists a Borel set
X ⊂ B(0,R) so that X+ = X, E ⊂ X, Hs∞(X) = Hs∞(E) and L(X \ E) = 0.
Since E ⊂ X and L(X \ E) = 0, we have Gt(X) = Gt(E). The above established
inequality Hs∞(X) ≤ CGt(X) implies that Hs∞(E) ≤ CGt(E). �

Now we are ready to prove Theorem 1.1(c).

PROOF OF THEOREM 1.1(C). Choose R > 0 such that � ⊂ B(0,R). Recall-
ing (1.7) and (1.8), the statement follows directly from Lemmas 3.2 and 3.10. �
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4. Minimal regular energy. In this section, we introduce a new concept of
minimal regular energy and study basic properties of it. We also explain how it
can be used to estimate dimensions of random covering sets. The main results are
Proposition 4.5 and Lemma 4.7, which are needed in our proof of Theorem 1.1(b).

For E ⊂ R
d , set

P0(E) :=
{
μ ∈ P(E) : μ =

k∑
i=1

ciL|Ei
, k ∈ N, ci > 0 and Ei ⊂ E are Borel sets

}
.

Recall from Section 3 that P(E) is the space of Borel probability measures sup-
ported on E. For E ⊂R

d and 0 < s < d , define

�s(E) :=
{

inf
{
Is(μ) : μ ∈ P0(E)

}
if L(E) > 0,

∞ if L(E) = 0.

The quantity �s(E) is called the minimal regular s-energy of E.

LEMMA 4.1. Let E ∈ B(Rd) and 0 < s < d . Then the following properties
hold:

(i) If F ⊂ E is a Borel set, then �s(E) ≤ �s(F ).
(ii) If L(E) > 0, then �s(E) < ∞.

(iii) If E is bounded, then �s(E) > 0.
(iv) For every ε > 0, there exists δ = δ(E, ε) > 0 such that

�s(F ) ≤ �s(E) + ε

provided that F ∈ B(Rd) and L(E \ F) < δ.
(v) Let (En)n∈N be a sequence of Borel subsets of E. Supposing that L(E) <

∞, we have

�s

( ∞⋃
i=1

Ei

)
= lim

n→∞�s

(
n⋃

i=1

Ei

)
= inf

n∈N�s

(
n⋃

i=1

Ei

)
.

PROOF. Statement (i) is obvious. To verify (ii), choose a compact set F ⊂ E

with L(F ) > 0 (recall that L is inner regular), and set μ := L(F )−1L|F . Clearly,
μ ∈ P0(E). Since 0 < s < d , we have

Is(μ) = L(F )−2
∫∫

F×F
|x − y|−s dL(x) dL(y)

≤ L(F )−2
∫∫

B(0,R)×B(0,R)
|x − y|−s dL(x) dL(y) < ∞,

where R > 0 is sufficiently large so that F ⊂ B(0,R). Hence �s(E) < ∞.
For the purpose of proving (iii), suppose on the contrary that �s(E) = 0. Then

there exists a sequence (μn)n∈N such that μn ∈ P0(E) and limn→∞ Is(μn) = 0.
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Since E is bounded, the sequence (μn)n∈N has at least one accumulation point,
say μ, in the weak-star topology. By Lemma 3.4, Is(·) is lower semicontinuous
and, therefore, Is(μ) = 0, leading to a contradiction since μ is a Borel probability
measure. This completes the proof of (iii).

Next, we verify (iv). We may assume that L(E) > 0. Then �s(E) < ∞ by (ii).
Let ε > 0. By the definition of �s(·), there exists μ =∑k

i=1 ciL|Ei
∈ P0(E) such

that Is(μ) ≤ �s(E) + ε
2 , where Ei ⊂ E and L(Ei) > 0 for all i = 1, . . . , k. Define

δ1 := min{L(Ei) : i = 1, . . . , k},

γ :=
√

�s(E) + ε
2

�s(E) + ε
and δ := (1 − γ )δ1.

Let F ∈ B(Rd) with L(E \F) < δ. We proceed by showing that �s(F ) ≤ �s(E)+
ε. First, notice that, for all i = 1, . . . , k,

L(Ei ∩ F) ≥ L(Ei ∩ E) −L(E \ F) = L(Ei) −L(E \ F)

≥ L(Ei) − δ ≥ γL(Ei).

Letting 0 < � < 1, by the inner regularity of L, there is a compact set Ẽi ⊂ Ei ∩F

such that L(Ẽi) ≥ �L(Ei ∩ F) for all i = 1, . . . , k. Setting

μF := 1

cF

k∑
i=1

ciL|Ẽi
,

where cF :=∑k
i=1 ciL(Ẽi) > 0, the measure μF is supported on F and, therefore,

μF ∈ P0(F ). Using the fact that Ei ⊂ E for all i = 1, . . . , k, we deduce that

L(Ẽi) ≥ �L(Ei ∩ F) > �γL(Ei).

Thus cF ≥∑k
i=1 ci�γL(Ei) = �γ and

Is(μF ) ≤ (cF )−2Is(μ) ≤ ρ−2γ −2
(
�s(E) + ε

2

)
= �−2(�s(E) + ε

)
.

Hence �s(F ) ≤ �−2(�s(E) + ε). Letting � tend to 1, gives �s(F ) ≤ �s(E) + ε.
This completes the proof of (iv).

Finally, (v) follows from (i), (iv) and the fact that

lim
n→∞L

( ∞⋃
i=1

Ei

∖( n⋃
j=1

Ej

))
= 0.

�

We proceed by giving an equivalent definition of �s(A) although we will not
apply it in this paper. We use the notation μ � ν to indicate that the measure μ is
absolutely continuous with respect to the measure ν.
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LEMMA 4.2. Let E ⊂R
d . With convention inf∅ = ∞, we have

�s(E) = inf
{
Is(μ) : μ ∈P(E) with μ � L

}
.

PROOF. It is sufficient to show that, for every μ ∈ P(E) with μ � L and for
every ε > 0, there exists η ∈ P0(E) such that

Is(η) ≤ Is(μ) + ε.

To prove the above fact, we denote by h = dμ
dL the Radon–Nikodym derivative of μ

with respect to L. Approximating h by step functions, we see that, for every δ > 0,
there exists a step function g =∑k

i=1 aiχEi
, where ai > 0, Ei is a Borel set and

Ei ⊂ E for all i = 1, . . . , k, so that

(4.1)
∣∣∣∣Is(μ) −

∫∫
|x − y|−sg(x)g(y) dL(x) dL(y)

∣∣∣∣< ε

2

and

(4.2)
∣∣∣∣∫ h(x) dL(x) −

∫
g(x) dL(x)

∣∣∣∣< δ.

Let u :=∑k
i=1 aiL(Ei). Then u > 1 − δ by (4.2). Defining η := 1

u

∑k
i=1 aiL|Ei

implies that η ∈ P0(E). Using (4.1), we get for a small enough δ that

Is(η) = u−2
∫∫

|x − y|−sg(x)g(y) dL(x) dL(y)

≤ (1 − δ)−2
(
Is(μ) + ε

2

)
≤ Is(μ) + ε.

This completes the proof of the lemma. �

LEMMA 4.3. Let (En)n∈N be a decreasing sequence of compact subsets of
R

d , and let 0 < s < d . Assume that there exists c > 0 such that �s(En) < c for all
n ∈ N. Then Hs∞(

⋂∞
n=1 En) ≥ c−1. In particular, dimH(

⋂∞
n=1 En) ≥ s.

PROOF. According to the definition of �s(·), for every n ∈ N, there exists
μn ∈ P0(En) so that Is(μn) < c. Let μ be an accumulation point of the sequence
(μn)n∈N in the weak-star topology. Then μ is supported on

⋂∞
n=1 En and, further-

more, Is(μ) ≤ c by lower semicontinuity of Is(·) (see Lemma 3.4). The conclusion
follows from Remark 3.3. �

In the remaining part of this section, we assume that U ⊂ R
d is open and

(An(x))n∈N is a sequence of B(Rd)-valued functions defined on U such that:

(C-1) L(An(x)) < ∞ for all x ∈ U and n ∈ N, and
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(C-2) limy→x L((An(x) \ An(y)) ∪ (An(y) \ An(x))) = 0 for all x ∈ U and
n ∈N.

Let UN := ∏∞
n=1 U be endowed with the product topology. Consider η ∈ P(U)

and set P :=∏∞
i=1 η.

LEMMA 4.4. Let E ∈ B(Rd) with L(E) < ∞. Then, for all n ∈ N, the map-
ping

(xi)
n
i=1 
→ �s

(
E ∩

n⋃
i=1

Ai(xi)

)

is upper semicontinuous on Un :=∏n
i=1 U . Moreover, the mapping

x := (xi)
∞
i=1 
→ �s

(
E ∩

∞⋃
i=1

Ai(xi)

)

is Borel measurable on UN.

PROOF. Let x ∈ UN and n ∈ N. By (C-2), L(
⋃n

i=1 Ai(xi) \ ⋃n
j=1 Aj(yj ))

is close to 0 when (yi)
n
i=1 ∈ Un is close to (xi)

n
i=1. Applying Lemma 4.1(iv),

we obtain upper semicontinuity (and hence Borel measurability) of the map-
ping (xi)

n
i=1 
→ �s(E ∩ ⋃n

i=1 Ai(xi)) defined on Un and that of the mapping
x 
→ �s(E ∩⋃n

i=1 Ai(xi)) defined on UN. It follows from Lemma 4.1(v) that

lim
n→∞�s

(
E ∩

n⋃
i=1

Ai(xi)

)
= �s

(
E ∩

∞⋃
i=1

Ai(xi)

)
,

which, in turn, implies Borel measurability of the map x 
→ �s(E ∩⋃∞
i=1 Ai(xi))

on UN. �

The next proposition provides a sufficient condition for determining a lower
bound for Hausdorff dimensions of typical random covering sets.

PROPOSITION 4.5. Let E ⊂ R
d be compact with L(E) > 0. In addition to

(C-1) and (C-2), assume that An(x) is compact for all x ∈ U and n ∈ N. Let
0 < s < d . Suppose that, for all compact sets F ⊂ E, we have for P-almost all
x ∈ UN that

(4.3) �s

(
F ∩
( ∞⋃

i=n

Ai(xi)

))
= �s(F ) for all n ∈N.

Then

Hs∞
(
lim sup
n→∞

An(xn)
)

≥ �s(E)−1 and dimH

(
lim sup
n→∞

An(xn)
)

≥ s

for P-almost all x ∈ UN.
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PROOF. From (4.3), we obtain

�s

(
E ∩
( ∞⋃

i=1

Ai(xi)

))
= �s(E)

for P-almost all x ∈ UN. Note that 0 < �s(E) < ∞ by Lemma 4.1 claims (ii) and
(iii). Letting 
 > 2, Lemma 4.1(v) and Lemma 4.4 imply the existence of a Borel
measurable function n1 : UN →N such that

�s

(
E ∩
(

n1(x)⋃
i=1

Ai(xi)

))
<
(
1 + 
−1)�s(E)

for P-almost all x ∈ UN. By Lemma 4.1(i), we find N1 ∈ N and a Borel set 
1 ⊂
UN1 so that

(4.4) ηN1(
1) > 1 − 
−1 and �s

(
E ∩
(

N1⋃
i=1

Ai(xi)

))
<
(
1 + 
−1)�s(E)

for all (x1, . . . , xN1) ∈ 
1, where ηN1 := ∏N1
i=1 η. Applying (4.3) with F = E ∩

(
⋃N1

i=1 Ai(xi)), gives for all (x1, . . . , xN1) ∈ 
1 that

(4.5) �s

(
E ∩
(

N1⋃
i=1

Ai(xi)

)
∩
( ∞⋃

j=N1+1

Aj(xj )

))
<
(
1 + 
−1)�s(E)

for (
∏∞

i=N1+1 η)-almost all (xN1+1, xN1+2, . . .) ∈ ∏∞
i=N1+1 U . Moreover, by Fu-

bini’s theorem, inequality (4.5) holds for P-almost all x ∈ 
1 ×∏∞
i=N1+1 U . As

above, it follows from Lemma 4.1(i) that there exist a natural number N2 > N1
and a Borel set 
2 ⊂ 
1 ×∏N2

i=N1+1 U ⊂ UN2 with ηN2(
2) ≥ ηN1(
1) − 
−2

such that

�s

(
E ∩
(

N1⋃
i=1

Ai(xi)

)
∩
(

N2⋃
j=N1+1

Aj(xj )

))
<
(
1 + 
−1)(1 + 
−2)�s(E)

for all (x1, . . . , xN2) ∈ 
2.
By induction, we deduce that there exist a strictly increasing sequence (Nn)n∈N

of positive integers and a sequence (
n)n∈N of Borel sets such that 
n ⊂ UNn ,

n+1 ⊂ 
n ×∏Nn+1

i=Nn+1 U ,

(4.6) ηNn+1(
n+1) ≥ ηNn(
n) − 
−n−1

and

(4.7) �s

(
E ∩

n⋂
k=1

(
Nk⋃

i=Nk−1+1

Ai(xi)

))
<

(
n∏

i=1

(
1 + 
−i))�s(E)



DIMENSIONS OF RANDOM COVERING SETS 1571

for all (x1, . . . , xNn) ∈ 
n. Here N0 := 0. Defining � :=⋂∞
n=1(
n ×∏∞

i=N1+1 U)

and using (4.6), implies that

(4.8) P(�) ≥ 1 −
∞∑

n=1


−n = 
 − 2


 − 1
.

Moreover, by (4.7) and Lemma 4.3, we have

Hs∞

( ∞⋂
n=1

Nn⋃
i=Nn−1+1

Ai(xi)

)
≥
(( ∞∏

i=1

(
1 + 
−i))�s(E)

)−1

and

dimH

( ∞⋂
n=1

Nn⋃
i=Nn−1+1

Ai(xi)

)
≥ s

(4.9)

for all x ∈ �. This gives dimH(lim supn→∞ An(xn)) ≥ s for all x ∈ �. Since 
 can
be taken arbitrarily large, it follows from (4.8) that

Hs∞
(
lim sup
n→∞

An(xn)
)

≥ �s(E)−1 and dimH

(
lim sup
n→∞

An(xn)
)

≥ s

for P-almost all x ∈ UN. �

The above proof readily leads to the following deterministic version of Propo-
sition 4.5, which may be of independent interest.

PROPOSITION 4.6. Let E ⊂ R
d be compact with L(E) > 0, and let (An)n∈N

be a sequence of compact subsets of Rd . Let 0 < s < d . Suppose that, for all
compact sets F ⊂ E, we have that

�s

(
F ∩
( ∞⋃

i=n

Ai

))
= �s(F ) for all n ∈ N.

Then

Hs∞
(
lim sup
n→∞

An

)
≥ �s(E)−1 and dimH

(
lim sup
n→∞

An

)
≥ s.

In the last result of this section, we give a sufficient condition for the validity
of (4.3). Recall that, by the definition of �s(·), the inequality (4.3) is valid for all
F ∈ B(Rd) with L(F ) = 0.

LEMMA 4.7. Let F ∈ B(Rd) with L(F ) > 0, and let 0 < s < d . Assume that,
for every ε > 0 and δ > 0 and for every n ∈ N, there exist an integer N > n and a
Borel measurable set � ⊂ UN with P(�) > 1 − δ such that

(4.10)
∫
�

�s

(
F ∩

N⋃
i=n

Ai(xi)

)
dP(x) < �s(F ) + ε.
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Then, for P-almost all x ∈ UN,

�s

(
F ∩

∞⋃
i=n

Ai(xi)

)
= �s(F )

for all n ∈ N.

PROOF. Let n ∈ N and γ > 0. By Lemma 4.1(i),

�s

(
F ∩

N⋃
i=n

Ai(xi)

)
≥ �s

(
F ∩

∞⋃
i=n

Ai(xi)

)
≥ �s(F )

for all x ∈ UN and N ∈ N. Let

�′ :=
{
x ∈ UN : �s

(
F ∩
( ∞⋃

i=n

Ai(xi)

))
≥ �s(F ) + γ

}
.

It follows from Lemma 4.4 that �′ is a Borel set. We show that P(�′) = 0. Suppose
on the contrary that P(�′) > 0 and choose

(4.11) ε := P(�′)γ
2

and δ := P(�′)γ
2(γ + 2�s(F ))

.

Recall that �s(F ) < ∞ by Lemma 4.1(ii). Then, for all integers N > n and for all
Borel measurable sets � ⊂ UN with P(�) > 1 − δ, we have∫

�
�s

(
F ∩

N⋃
i=n

Ai(xi)

)
dP(x)

≥
∫
�\�′

�s(F )dP(x) +
∫
�∩�′

�s(F ) + γ dP(x)

= P
(
� \ �′)�s(F ) + P

(
� ∩ �′)(�s(F ) + γ

)
≥ (P(�) − P

(
�′))�s(F ) + (P(�′)+ P(�) − 1

)(
�s(F ) + γ

)
= (2P(�) − 1

)
�s(F ) + (P(�′)+ P(�) − 1

)
γ

≥ (1 − 2δ)�s(F ) + (P(�′)− δ
)
γ

[
by (4.11)

]
= �s(F ) + ε.

This contradicts (4.10) and completes the proof. �

5. Lower bound for Hausdorff dimension. The main purpose of this section
is to verify Theorem 1.1(b). This is achieved by showing first that, under certain as-
sumptions on the measure η ∈P(U) and the sequence (An(x))n∈N, the assumption
(4.10) of Lemma 4.7 holds. Theorem 1.1(b) then follows by applying Lemma 4.7
and Proposition 4.5.

We start with a simple observation on independent random variables.
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LEMMA 5.1. Let (an)n∈N be a sequence of positive numbers such that∑∞
n=1 an = ∞, and let 0 < c < 1. Suppose that (ωn)n∈N is a sequence of inde-

pendent random variables with ωn ∈ {0} ∪ [an,∞[ and the probability P satisfies

(5.1) P(ωn �= 0) ≥ c.

Then, for all N ∈ N and C ≥ 0, we have

lim
M→∞P

(
M∑

n=N

ωn ≥ C

)
= 1.

PROOF. Observe that the claim is equivalent to the statement

∞∑
n=1

ωn = ∞ P-almost surely.

Assuming to the contrary that this is not true, Kolmogorov’s zero-one law implies
that

(5.2)
∞∑

n=1

ωn < ∞ P-almost surely.

Define bn := min{1, an} for n ∈ N. Then either bn = 1 for infinitely many n ∈
N, or bn = an for all sufficiently large n ∈ N. In both of these cases, we have∑∞

n=1 bn = ∞. Defining

ω̃n :=
{

0 if ωn = 0,

1 if ωn �= 0,

gives

(5.3) ωn ≥ ω̃nbn

for all n ∈ N. In particular,
∑∞

n=1 ω̃nbn < ∞ P-almost surely by (5.2). By Kol-
mogorov’s three series theorem, there exists α > 0 such that:

(i)
∑∞

n=1 P(ω̃nbn ≥ α) converges and
(ii)
∑∞

n=1 E(ω̃nbnχ{ω̃nbn≤α}) converges.

Assume first that lim supn→∞ bn = b > 0. By inequality (5.1), the sum in (i) di-
verges for all α < b and also for α = b provided that bn > b for infinitely many
n ∈N, while the sum in (ii) diverges for all α > b and also for α = b provided that
bn ≤ b for all large enough n ∈ N, since E(ω̃nbnχ{ω̃nbn≤α}) ≥ cbn. This leads to a
contradiction. Supposing that limn→∞ bn = 0, inequality (5.1) implies the diver-
gence of the sum in (ii) for all α > 0, which is a contradiction. This completes the
proof. �
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In the remaining part of this section, let U ⊂ R
d be open and let E ⊂ U be a

compact set with L(E) > 0. Assume that η ∈ P(U) satisfies η(E) > 0, η|E � L|E
and

(5.4) sup
x,y∈E

h(x)

h(y)
< ∞,

where h := dη|E
dL is the Radon–Nikodym derivative of η|E with respect to L. Set

P :=∏∞
i=1 η. Let 0 < s < d . Next, we define a special sequence (An(x))n∈N.

DEFINITION 5.2. Let y0 ∈ R
d . Assume that (Kn)n∈N is a sequence of com-

pact sets in R
d satisfying:

(i) L(Kn) > 0,
(ii) limn→∞ diamKn = 0,

(iii) limn→∞ dist(y0,Kn) = 0 and
(iv)
∑∞

n=1 gs(Kn) = ∞ [recall (1.4)].

Choose r0 > 0 such that Kn ⊂ B(y0, r0) for all n ∈ N. Assume that W : U ×
B(y0, r0) → R

d is a uniform bidiffeomorphism (recall Definition 2.1) satisfying
W(x,y0) = x for all x ∈ U . Define An(x) := W(x,Kn) for all x ∈ U and n ∈ N.

The sequence (An(x))n∈N has the following properties.

LEMMA 5.3. Let (An(x))n∈N be as in Definition 5.2. Then the properties
(C-1) and (C-2) from Section 4 are satisfied. Furthermore,

(C-3) for every ε > 0 and for every Borel set F ⊂ E with L(F ) > 0, there exists
N ∈N so that

L
({

x ∈ F : L(F ∩ An(x))

L(An(x))
≥ 1 − ε

})
≥ (1 − ε)L(F )

for all n ≥ N , and
(C-4) for all Borel sets F1,F2 ⊂ E with positive Lebesgue measure and for

every ε > 0, there exists N ∈ N such that∫∫
F1×F2

∫∫
An(x)×Am(y)

|u − v|−s dL(u) dL(v) dL(x) dL(y)

≤ (1 + ε)

∫∫
F1×F2

L
(
An(x)

)
L
(
Am(y)

)|x − y|−s dL(x) dL(y)

for all n,m ≥ N .

PROOF. Property (C-1) is clearly valid. Note that L(F ) = limδ→0 L(V δ(F ))

for all compact sets F ⊂ R
d [recall (2.4)]. Let n ∈ N. Since W is a uniform

bidiffeomorphism, we have, for every δ > 0, that An(y) ⊂ V δ(An(x)) provided
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y is close enough to x. Thus limy→x L(An(x) \ An(y)) = 0 by the continu-
ity of x 
→ L(An(x)). Furthermore, for every ε > 0 and x ∈ U , there exist
δ1, δ2 > 0 such that L(V δ1(An(y)) \ An(y)) < ε for all y ∈ B(x, δ2). This, in turn,
gives limy→x L(An(y) \ An(x)) = 0, implying (C-2). Property (C-3) follows from
Lemma 2.3 and properties (ii) and (iii) of Definition 5.2. Finally, (C-4) is given by
Lemma 2.4 and items (ii) and (iii) of Definition 5.2. �

Now we are ready to prove that the assumption (4.10) of Lemma 4.7 is satisfied
for compact sets.

PROPOSITION 5.4. Let F ⊂ E be a compact set with L(F ) > 0. Then, for
every ε > 0, δ > 0 and n ∈ N, there exist an integer N > n and a Borel measurable
set � ⊂ UN with P(�) > 1 − δ such that

(5.5)
∫
�

�s

(
F ∩

N⋃
i=n

Ai(xi)

)
dP(x) < �s(F ) + ε.

PROOF. Let ε > 0, δ > 0 and n ∈ N. Choose μ =∑k
i=1 ciL|Fi

∈ P0(F ) satis-
fying

Is(μ) < �s(F ) + ε

2
.

Let 0 < γ < 1 be sufficiently small (which will be determined later). By partition-
ing Fi into smaller Borel sets, if necessary, such that each new Fi is an approxi-
mate level set of the density h with small diameter and with η(Fi) > 0 [recall that
L(F ) > 0 implies η(F ) > 0 by (5.4)], we may assume that, for all i = 1, . . . , k and
m ≥ n,

(5.6) sup
x,y∈Fi

max
{
h(x)

h(y)
,
L(Am(x))

L(Am(y))
,
Is(Am(x))

Is(Am(y))

}
≤ 1 + γ.

For every i = 1, . . . , k, fix zi ∈ Fi . Define, for all m ≥ n,

Fi,m :=
{
x ∈ Fi : L(Fi ∩ Am(x))

L(Am(x))
> 1 − γ

}
.

Using the fact that the map x 
→ L(F ∩ An(x)) is Borel measurable (see the proof
of Lemma 2.3), we deduce that Fi,m is a Borel set. By (C-3) and (C-4), there exists
an integer M > n such that

(5.7) L(Fi,m) ≥ (1 − γ )L(Fi)

for all i = 1, . . . , k and m ≥ M and, moreover,∫∫
Fi×Fj

∫∫
Am(x)×Ap(y)

|u − v|−s dL(u) dL(v) dL(x) dL(y)

≤ (1 + γ )3L
(
Am(zi)

)
L
(
Ap(zj )

) ∫∫
Fi×Fj

|x − y|−s dL(x) dL(y)

(5.8)
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for all i = 1, . . . , k and m,p ≥ M .
Applying Lemma 5.1 with am = gs(Am(zi)) and ωm = χFi,m

gs(Am(zi)) [recall
(1.4)], Definition 5.2(iv) together with inequalities (2.1) and (5.7) imply that we
may choose integers M1 := M < M2 < · · · < Mk+1 recursively such that

P

({
x ∈ UN :

Mi+1−1∑
m=Mi

χFi,m
(xm)gs

(
Am(zi)

)≥ γ −1

})
≥ 1 − γ

k

for all i = 1, . . . , k. Let N := Mk+1. Define

(5.9) �i :=
{

x ∈ UN :
Mi+1−1∑
m=Mi

χFi,m
(xm)gs

(
Am(zi)

)≥ γ −1

}

for all i = 1, . . . , k and set

(5.10) � :=
k⋂

i=1

�i.

Then � is a Borel set with P(�) ≥ 1 − γ .
For all x ∈ �, we define a finite Borel measure μx as

μx :=
k∑

i=1

∑
m∈Si(x)

ci,m(x)L|Fi∩Am(xm),

where

Si(x) := {m ∈ N : Mi ≤ m < Mi+1, xm ∈ Fi,m} and

ci,m(x) := ciL(Fi)
L(Am(zi))

Is(Am(zi))

( ∑
p∈Si(x)

gs

(
Ap(zi)

))−1
.

Since F and Ai(xi) are compact the measure μx is supported on F ∩⋃N
i=n Ai(xi).

Notice that, if xm ∈ Fi,m, inequality (5.6) results in

L
(
Fi ∩ Am(xm)

)≥ (1 − γ )L
(
Am(xm)

)≥ (1 − γ )(1 + γ )−1L
(
Am(zi)

)
,

which, in turn, yields

∥∥μx∥∥= k∑
i=1

ciL(Fi)
∑

m∈Si(x)

L(Am(zi))L(Fi ∩ Am(xm))

Is(Am(zi))

( ∑
p∈Si(x)

gs

(
Ap(zi)

))−1

≥ (1 − γ )(1 + γ )−1
k∑

i=1

ciL(Fi)
∑

m∈Si(x)

L(Am(zi))
2

Is(Am(zi))

( ∑
p∈Si(x)

gs

(
Ap(zi)

))−1

= (1 − γ )(1 + γ )−1,
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where ‖μx‖ represents the total mass of μx. Since ‖μx‖−1μx ∈ P0(F ∩⋃N
i=n Ai(xi)), we have

�s

(
F ∩

N⋃
i=n

Ai(xi)

)
≤ Is

(∥∥μx∥∥−1
μx)= Is(μ

x)

‖μx‖2 ≤ (1 + γ )2

(1 − γ )2 Is

(
μx).

In what follows, we estimate
∫
� Is(μ

x) dP(x). Set

S� :=
{

S = (Si)
k
i=1 : Si ⊂ {Mi,Mi + 1, . . . ,Mi+1 − 1} and

∑
p∈Si

gs

(
Ap(zi)

)≥ γ −1
}
.

For S ∈ S�, define

π−1(S) :=
k⋂

i=1

{
x ∈ UN : xm ∈ Fi,m if m ∈ Si, and xm ∈ (Fi,m)c

if m ∈ {Mi,Mi + 1, . . . ,Mi+1 − 1} \ Si

}
.

(5.11)

Clearly, π−1(S) is a Borel set. Observe that � =⋃S∈S�
π−1(S), where the union

is disjoint. Let

Js(A,B) :=
∫∫

A×B
|x − y|−s dL(x) dL(y)

for all Lebesgue measurable sets A,B ⊂ R
d . Consider S ∈ S� and define

QSi
:= ∑

m∈Si

gs

(
Am(zi)

)
for all i = 1, . . . , k. Then∫

π−1(S)
Is

(
μx)dP(x)

≤
k∑

i=1

k∑
j=1

∑
m∈Si

∑
p∈Sj

cicjL(Fi)L(Fj )L(Am(zi))L(Ap(zj ))

QSi
QSj

Is(Am(zi))Is(Ap(zj ))

×
∫
π−1(S)

Js

(
Am(xm),Ap(xp)

)
dP(x).

(5.12)

In order to complete the proof of Proposition 5.4, we need two more lemmas.

LEMMA 5.5. Let (Y,F, ν) be a probability space, and let u : Y × Y → R

and ũ : Y → R be nonnegative measurable functions. Let E1, . . . ,EN ∈ F with
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ν(Ei) > 0 for all i = 1, . . . ,N . Then we have∫ ( N∏
i=1

χEi
(yi)

)
u(y1, y2)

N∏
j=1

dν(yj )

=
∏N

i=1 ν(Ei)

ν(E1)ν(E2)

∫
E1×E2

u(y1, y2) dν(y1) dν(y2)

and ∫ ( N∏
i=1

χEi
(yi)

)
ũ(y1)

N∏
j=1

dν(yj ) =
∏N

i=1 ν(Ei)

ν(E1)

∫
E1

ũ(y1) dν(y1).

PROOF. The equalities follow from simple calculations. �

We will use the Landau big O notation in the sense that, given positive func-
tions g1, g2 : R → R, the notation g1(γ ) ≤ (1 + O(γ ))g2(γ ) means that there
exist C,δ > 0 such that g1(γ ) ≤ (1 + Cγ )g2(γ ) when 0 < γ < δ.

LEMMA 5.6. Let S ∈ S�. For all i, j = 1, . . . , k, m ∈ Si and p ∈ Sj , the fol-
lowing properties hold:

(i) If m �= p, then∫
π−1(S)

Js

(
Am(xm),Ap(xp)

)
dP(x)

≤ (1 + O(γ )
) P(π−1(S))

L(Fi)L(Fj )
L
(
Am(zi)

)
L
(
Ap(zj )

)
Js(Fi,Fj ).

(ii) If m = p (which implies that i = j ), then∫
π−1(S)

Js

(
Am(xm),Ap(xp)

)
dP(x) ≤ (1 + O(γ )

)
P
(
π−1(S)

)
Is

(
Am(zi)

)
.

PROOF. We begin by verifying (i). Recall that, by (5.11),

χπ−1(S)(x) =
k∏

i=1

( ∏
m∈Si

χFi,m
(xm)

)
·
( ∏

n∈S∗
i

χ(Fi,n)c (xn)

)
,

where S∗
i := {Mi,Mi + 1, . . . ,Mi+1 − 1} \ Si . Notice also that η(Fi,m), η(Fj,p) >

0 by (5.7) and (5.4). Applying Lemma 5.5, we deduce∫
π−1(S)

Js

(
Am(xm),Ap(xp)

)
dP(x)

= P(π−1(S))

η(Fi,m)η(Fj,p)

∫∫
Fi,m×Fj,p

Js

(
Am(x),Ap(y)

)
dη(x) dη(y)
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≤ (1 + γ )2

(1 − γ )2

P(π−1(S))

L(Fi)L(Fj )

×
∫∫

Fi,m×Fj,p

∫∫
Am(x)×Ap(y)

|u − v|−s dL(u) dL(v) dL(x) dL(y)

[
by (5.6) and (5.7)

]
≤ (1 + γ )5

(1 − γ )2

P(π−1(S))

L(Fi)L(Fj )
L
(
Am(zi)

)
L
(
Ap(zj )

)
Js(Fi,Fj )

[
by (5.8)

]
.

To prove (ii), we apply (5.6) and Lemma 5.5 to obtain∫
π−1(S)

Js

(
Am(xm),Ap(xp)

)
dP(x)

= P(π−1(S))

η(Fi,m)

∫
Fi,m

Is

(
Am(x)

)
dη(x)

≤ (1 + γ )2P(π−1(S))

L(Fi,m)

∫
Fi,m

Is

(
Am(zi)

)
dL(x)

= (1 + γ )2
P
(
π−1(S)

)
Is

(
Am(zi)

)
. �

Now we continue the proof of Proposition 5.4. Recalling (5.12) and (5.9), and
applying Lemma 5.6, yields∫

π−1(S)
Is

(
μx)dP(x)

≤ P
(
π−1(S)

)(
1 + O(γ )

)( k∑
i=1

k∑
j=1

cicjJs(Fi,Fj ) +
k∑

i=1

c2
i L(Fi)

2(QSi
)−1

)

≤ P
(
π−1(S)

)(
1 + O(γ )

)(
Is(μ) + γ

(
k∑

i=1

ciL(Fi)

)2)

≤ P
(
π−1(S)

)(
1 + O(γ )

)(
Is(μ) + γ

)
.

Thus, by the choice of μ, we have∫
�

Is

(
μx)dP(x) = ∑

S∈S�

∫
π−1(S)

Is

(
μx)dP(x) ≤ P(�)

(
1 + O(γ )

)(
Is(μ) + γ

)
≤ (1 + O(γ )

)(
�s(F ) + ε

2
+ γ

)
.

The claim follows by choosing sufficiently small γ . �

We complete this section by proving Theorem 1.1(b).
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PROOF OF THEOREM 1.1(B). We start by reducing the claim to the setting
of Proposition 5.4. We may assume that s0(A) > 0. Consider s < s0(A). Since
Gs(E) = 0 for all E ⊂ R

d with L(E) = 0, we may assume that L(An) > 0 for all
n ∈ N by removing sets with L(An) = 0 from the original sequence A = (An)n∈N
if necessary. Since Is(E) ≤ Is(F ) for E ⊂ F and since L is inner regular, replacing
An by a suitable subset, we may assume that An is compact for all n ∈ N and

(5.13)
∞∑

n=1

gs(An) = ∞.

We proceed by constructing a sequence (Kn)n∈N of compact sets satisfying
Definition 5.2(i)–(iv) such that Kn ⊂ An for all n ∈ N. Indeed, let (Qi)

m1
i=1 be the

closed dyadic cubes with side length 2−1 intersecting �. Notice that, for any Borel
set E ⊂ �, we have E =⋃m1

i=1 E ∩ Qi and, moreover, there exists i ∈ {1, . . . ,m1}
with L(E ∩ Qi) ≥ 1

m1
L(E). Thus

m1∑
i=1

gs(E ∩ Qi) =
m1∑
i=1

L(E ∩ Qi)
2

Is(E ∩ Qi)
≥

m1∑
i=1

L(E ∩ Qi)
2

Is(E)

≥ L(E)2

(m1)2Is(E)
= 1

(m1)2 gs(E).

It follows that
m1∑
i=1

∞∑
j=1

gs(Aj ∩ Qi) =
∞∑

j=1

m1∑
i=1

gs(Aj ∩ Qi) ≥ 1

(m1)2

∞∑
j=1

gs(Aj ) = ∞.

Therefore, there exists k0 ∈ {1, . . . ,m1} such that
∑∞

j=1 gs(Aj ∩Qk0) = ∞. Define
Q̃1 := Qk0 . We pick integers n1 < n2 < · · · < nN1 so that

L(Ani
∩ Q̃1) > 0 for all i = 1, . . . ,N1 and

N1∑
i=1

gs(Ani
∩ Q̃1) ≥ 1.

Since
∑∞

j=N1+1 gs(Aj ∩ Q̃1) = ∞, a similar argument shows that there exist a

dyadic cube Q̃2 ⊂ Q̃1 with side length 2−2, and positive integers nN1+1 < · · · <

nN2 such that

L(Ani
∩Q̃2) > 0 for all i = N1 +1, . . . ,N2 and

N2∑
i=N1+1

gs(Ani
∩Q̃2) ≥ 1.

Repeat this process inductively. As a result, we find a decreasing sequence (Q̃l)l∈N
of dyadic cubes, an increasing sequence (Nl)l∈N of integers and an increasing
sequence (nl)l∈N of indices such that, for every k = 0,1 . . . ,

L(Ani
∩ Q̃k+1) > 0 for all i = Nk + 1, . . . ,Nk+1 and



DIMENSIONS OF RANDOM COVERING SETS 1581

Nk+1∑
j=Nk+1

gs(Anj
∩ Q̃k+1) ≥ 1.

Defining Kj := Anj
∩Q̃k+1 for every j = Nk +1, . . . ,Nk+1, gives

∑∞
j=1 gs(Kj ) =

∞ and limn→∞ diamKn = 0. Finally, setting {y0} :=⋂∞
k=1 Q̃k , leads to

lim
n→∞ dist(y0,Kn) = 0.

Hence the sequence (Kn)n∈N satisfies items (i)–(iv) in Definition 5.2.
Since the measure σ determining the probability P (recall Section 1) is not sin-

gular with respect to L, there exists a compact set E ⊂ U such that σ(E) > 0,
σ |E � L and (5.4) is satisfied with h := dσ |E

dL . Let f : U × V → R
d be as in the

Introduction. For all (x, y) ∈ U × V , let Tx := f (x, ·)−1 and T y := f (·, y)−1.
Then, for all x ∈ U , the set f (U,y0) ∩ f (x,V ) is nonempty [it always con-
tains the point f (x, y0)] and open, y0 ∈ Vx := Tx(f (U,y0) ∩ f (x,V )) and
x ∈ Ux := T y0(f (U,y0) ∩ f (x,V )). Thus the map Wx : Vx → Ux defined by
Wx(v) := T y0(f (x, v)) is a diffeomorphism with Wx(y0) = x and

‖DWx‖,
∥∥(DWx)

−1∥∥≤ (Cu)
2,

where Cu is as in inequality (1.13). Clearly, the derivative of the map x 
→ Wx(v)

has the same bounds. Let O be an open and bounded set such that E ⊂ O ⊂ O ⊂
U . Consider 0 < r0 < min{dist(y0,V

c), (Cu)
−2 dist(O,Uc)}. Then B(y0, r0) ⊂

Vx for all x ∈ O . Thus, W : O × B(y0, r0) → R
d , defined by W(x,y) = Wx(y),

is a uniform bidiffeomorphism satisfying W(x,y0) = x for all x ∈ O (recall Defi-
nition 5.2). Ignoring a finite number of sets Kn, if necessary, we may assume that
Kn ⊂ B(y0, r0) for all n ∈N. We conclude that all the conditions in Definition 5.2
are fulfilled.

As a result of the fact that T y0 is a diffeomorphism, we conclude that

dimH

(
lim sup
n→∞

f (xn,Kn)
)

≥ dimH

(
lim sup
n→∞

W(xn,Kn)
)

for all x ∈ UN. Here, we have an inequality instead of an equality since for xn ∈
U \ O it may happen that Kn �⊂ Vxn . Finally, the claim follows by combining
Proposition 5.4, Lemma 4.7 and Proposition 4.5. �

6. Packing dimension of random covering sets. In this section, we prove
Theorem 1.1(d). For the purpose of studying packing dimensions of random cov-
ering sets, we set

N∗

 (E) := #

{
Q ∈ Q
 : L(Q ∩ E) > 0

}
for all E ⊂R

d and 
 ∈N. Here, the symbol # stands for the cardinality and Q
 is as
in (3.2). We begin with a result concerning a lower bound for packing dimensions
of intersections of decreasing sequences of compact sets.
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LEMMA 6.1. Let (En)n∈N be a decreasing sequence of compact subsets of
R

d with positive Lebesgue measure. Let s > 0. Assume that there exists a sequence
(
n)n∈N of natural numbers such that

(6.1) N∗

n+1

(Q ∩ En+1) ≥ 2
n+1s

for all n ∈ N and for all Q ∈Q
n with L(Q ∩ En) > 0. Then dimP(
⋂∞

n=1 En) ≥ s.

PROOF. For n ∈ N, set

Fn := En ∩
( ⋃

Q∈Q
n

L(Q∩En)>0

Q

)
,

and let F∞ :=⋂∞
n=1 Fn. Clearly, Fn ⊂ En is compact and L(Fn) = L(En). Hence

N∗

n

(Q ∩ Fn) = N∗

n

(Q ∩ En) for all n ∈ N and Q ∈ ⋃∞
k=1 Qk . In particular, we

have

(6.2) N∗

n+1

(Q ∩ Fn+1) ≥ 2
n+1s

for all n ∈ N and Q ∈ Q
n with L(Q ∩ Fn) > 0. Denoting by dimB the upper box
counting dimension, we will show that

(6.3) dimB(V ∩ F∞) ≥ s

for all open sets V with V ∩ F∞ �= ∅. By the Baire category theorem, (6.3) im-
plies that dimP(F∞) ≥ s (see, e.g., [21], Proposition 3.6 and Corollary 3.9) and,
therefore, dimP(

⋂∞
n=1 En) ≥ s, as desired.

To prove (6.3), let V be an open set so that V ∩F∞ �= ∅. Then there exist n ∈N

and Q ∈ Q
n such that 3Q ⊂ V and Q∩Fn �=∅, where 3Q stands for the union of
all elements Q′ ∈ Q
n with Q′ ∩Q �= ∅. By the definition of Fn, there is Q∗ ∈ Q
n

such that Q∗ ∩ Q �= ∅ and L(Q∗ ∩ Fn) > 0. Since Q∗ ⊂ 3Q ⊂ V , replacing Q

by Q∗, if necessary, we may assume that L(Q ∩ Fn) > 0. Using (6.2) recursively,
leads to

(6.4) N∗

m

(Q ∩ Fm) ≥ 2
ms

for all m > n. Furthermore, we claim that, for every m > n,

(6.5) #
{
Q′ ∈ Q
m : Q′ ∩ Q ∩ F∞

}≥ N∗

m

(Q ∩ Fm) ≥ 2
ms,

from which we conclude that dimB(Q∩F∞) ≥ s and, therefore, dimB(V ∩F∞) ≥
s. To prove (6.5), it follows from (6.4) that it is enough to show that Q′ ∩ F∞ �=
∅ for all Q′ ∈ Q
m with L(Q′ ∩ Fm) > 0. For this purpose, consider Q′ ∈ Q
m

with L(Q′ ∩ Fm) > 0. By (6.2), there exists Q′
1 ∈ Q
m+1 such that Q′

1 ⊂ Q′ and
L(Q′

1 ∩ Fm+1) > 0. Using this fact recursively, we see that, for every p ∈ N, there
exists Q′

p ∈Q
m+p such that Q′
p ⊂ Q′

p−1 and L(Q′
p ∩Fm+p) > 0. Hence, we have
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L(Q′ ∩Fm+p) > 0 for all p ∈ N, which implies that Q′ ∩F∞ �=∅. This completes
the proof of the lemma. �

Before applying the above result to estimate packing dimensions of random
covering sets, we prove several lemmas.

LEMMA 6.2. For all A ∈ B(Rd) and 
 ∈ Z, we have N∗

 (A) ≥ 2
dL(A).

PROOF. The claim follows directly from a simple volume argument. �

Let U ⊂ R
d be open, and let (An(x))n∈N be a sequence of compact-set-valued

functions defined on U satisfying the conditions (C-1) and (C-2) from Section 4.
Let η ∈ P(U) and set P :=∏∞

i=1 η.

LEMMA 6.3. Let E ∈ B(Rd) with 0 < L(E) < ∞, and let 
 ∈ Z. Then the
mapping

(xi)
n
i=1 
→ N∗




(
E ∩

n⋃
i=1

Ai(xi)

)

is lower semicontinuous on Un for all n ∈ N. Moreover, the mapping

x 
→ N∗



(
E ∩

∞⋃
i=1

Ai(xi)

)

is Borel measurable on UN.

PROOF. It suffices to prove the first part of the lemma; the second part follows
directly from the first one and the following easily-checked identity:

(6.6) N∗



(
E ∩

∞⋃
i=1

Ai(xi)

)
= lim

n→∞N∗



(
E ∩

n⋃
i=1

Ai(xi)

)
.

Let (xi)
n
i=1 ∈ Un and write k := N∗


 (E ∩⋃n
i=1 Ai(xi)) for short. Then there are

k different elements in Q
, say Q1, . . . ,Qk , such that L(Qj ∩⋃n
i=1 Ai(xi)) > 0 for

all j = 1, . . . , k. It follows from (C-2) that L(
⋃n

i=1 Ai(xi) \⋃n
j=1 Aj(yj )) is close

to 0 when (yi)
n
i=1 ∈ Un is close to (xi)

n
i=1 and, therefore, when (yi)

n
i=1 is in a small

neighbourhood of (xi)
n
i=1, we have L(Qj ∩⋃n

i=1 Ai(yi)) > 0 for all j = 1, . . . , k.
Hence N∗


 (E ∩⋃n
i=1 Ai(yi)) ≥ k, concluding the proof of lower semicontinuity.

�

The following result may be regarded as an analogy of Proposition 4.5.
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PROPOSITION 6.4. Let E ⊂ U be compact with η(E) > 0. Suppose that
η|E � L. Moreover, assume that, for every 
,n ∈ N and for every compact set
F ⊂ E with η(F ) > 0,

(6.7) N∗



(
F ∩

∞⋃
i=n

Ai(xi)

)
= N∗


 (F )

for P-almost all x ∈ UN. Then

dimP

(
lim sup
n→∞

An(xn)
)

= d

for P-almost all x ∈ UN.

PROOF. Replacing E by a compact subset, if necessary, we may assume that
0 <

dη|E
dL (x) < ∞ for all x ∈ E. Thus, for all F ⊂ E, we have

(6.8) L(F ) > 0 if and only if η(F ) > 0.

Let ε, δ > 0. It suffices to verify that

(6.9) P

({
x ∈ UN : dimP

(
lim sup
n→∞

An(xn)
)

≥ d − δ
})

≥ 1 − ε.

For this purpose, we are going to construct a Borel set � ⊂ UN with P(�) > 1−ε,
and two sequences (
k)k∈N and (mk)k∈N of natural numbers such that, for all x ∈
�, k ∈N and Q ∈ Q
k

, we have

(6.10) N∗

k+1

(
Q ∩ E ∩

k+1⋂
j=1

mj+1⋃
i=mj+1

Ai(xi)

)
≥ 2
k+1(d−δ)

provided that L(Q ∩ E ∩⋂k
j=1
⋃mj+1

i=mj+1 Ai(xi)) > 0. By Lemma 6.1, this implies
that

dimP

(
lim sup
n→∞

An(xn)
)

≥ d − δ

for all x ∈ �, from which (6.9) follows.
Now we present our construction. Set 
1 := 1 and m1 := 1. Notice that

γ1 := min
{
L(Q ∩ E) : Q ∈ Q
1 and L(Q ∩ E) > 0

}
> 0.

Choosing a large integer 
2 > 
1 so that 2−
2δ < γ1, it follows from Lemma 6.2
that

(6.11) N∗

2

(Q ∩ E) ≥ 2
2dγ1 > 2
2(d−δ)

for all Q ∈ Q
1 with L(Q ∩ E) > 0. Hence, by (6.7), for P-almost all x ∈ UN and
for all Q ∈ Q
1 with L(Q ∩ E) > 0, we have

N∗

2

(
Q ∩ E ∩

∞⋃
i=m1+1

Ai(xi)

)
= N∗


2
(Q ∩ E) > 2
2(d−δ),
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where we used (6.8) and the fact that N∗

 (Q ∩ A) = N∗


 (Q ∩ A) for all 
 ∈ N,
Q ∈ Q
 and A ⊂R

d . By (6.6) and Lemma 6.3, we find a large integer m2 > m1 and
a Borel set 
2 ⊂ Um2 with ηm2(
2) > 1 − ε

2 such that, for all (x1, . . . , xm2) ∈ 
2,

N∗

2

(
Q ∩ E ∩

m2⋃
i=m1+1

Ai(xi)

)
> 2
2(d−δ)

for all Q ∈ Q
1 with L(Q ∩ E) > 0. Define a mapping τ2 : 
2 → (0,∞) by

τ2(x1, . . . , xm2) := min

{
L
(
Q ∩ E ∩

(
m2⋃

i=m1+1

Ai(xi)

))
: Q ∈ Q
2

with L
(
Q ∩ E ∩

(
m2⋃

i=m1+1

Ai(xi)

))
> 0

}
.

By (C-2), the function τ2 is continuous, and hence, Borel measurable on 
2. Since
τ2(x1, . . . , xm2) > 0 for all (x1, . . . , xm2) ∈ 
2, there exist γ2 > 0 and a Borel set

′

2 ⊂ 
2 such that

ηm2
(

′

2
)
> ηm2(
2) − ε

6
> 1 − 2ε

3

and

τ2(x1, . . . , xm2) ≥ γ2

for all (x1, . . . , xm2) ∈ 
′
2. Choose 
3 > 
2 so that 2−
3δ < γ2. Lemma 6.2 implies

that, for all (x1, . . . , xm2) ∈ 
′
2 and Q ∈ Q
3 ,

N∗

3

(
Q ∩ E ∩

(
m2⋃

i=m1+1

Ai(xi)

))
≥ 2
3dγ2 > 2
3(d−δ)

provided that L(Q∩E∩(
⋃m2

i=m1+1 Ai(xi))) > 0. Again, by (6.7), we find m3 > m2

and a Borel set 
3 ⊂ 
′
2 ×∏m3

i=m2+1 U ⊂ 
2 ×∏m3
i=m2+1 U ⊂ Um3 such that

ηm3(
3) > ηm2
(

′

2
)− ε

12
> 1 − 3ε

4

and, moreover, for all (x1, . . . , xm3) ∈ 
m3 and Q ∈ Q
3 ,

N∗

3

(
Q ∩ E ∩

2⋂
j=1

( mj+1⋃
i=mj+1

Ai(xi)

))
> 2
3(d−δ)

provided that L(Q ∩ E ∩ (
⋃m2

i=m1
Ai(xi))) > 0.

Continuing the above process, we construct recursively two increasing se-
quences (
k)k∈N and (mk)k∈N of integers and a sequence (
k)k∈N of Borel sets
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such that 
k ⊂ Umk , 
k+1 ⊂ 
k ×∏mk+1
i=mk+1 U , ηmk(
k) > 1 − (2k−1)ε

2k
and in-

equality (6.10) holds for all (x1, . . . , xmk+1) ∈ 
k+1. Setting � := ⋂∞
k=1(
k ×∏∞

i=mk+1 U), gives P(�) = limk→∞ ηmk(
k) ≥ 1 − ε and, moreover, (6.10) holds
for all x ∈ �. This completes the proof. �

Now we are ready to prove our main result on the packing dimension of random
covering sets.

THEOREM 6.5. Let E ⊂ R
d be compact with η(E) > 0. Suppose that η|E is

equivalent with L|E . Let (An(x))n∈N be a sequence of compact-set-valued func-
tions defined on U satisfying the conditions (C-1) and (C-2) from Section 4. In
addition, suppose that, for all compact sets F ⊂ E with L(F ) > 0,

(6.12)
∞∑

n=1

η
({

x ∈ F : L(F ∩ An(x)
)
> 0
})= ∞.

Then, for P-almost all x ∈ UN,

dimP

(
lim sup
n→∞

An(xn)
)

= d.

PROOF. Let 
 ∈ N, and let F ⊂ E be compact with L(F ) > 0. By Proposi-
tion 6.4, it is sufficient to prove that, for all n ∈ N,

(6.13) N∗



(
F ∩

∞⋃
i=n

Ai(xi)

)
= N∗


 (F )

for P-almost all x ∈ UN. Note that (6.13) is equivalent to the statement that, for all
Q ∈ Q
 with L(Q ∩ F) > 0,

(6.14) L
(
Q ∩ F ∩

∞⋃
i=n

Ai(xi)

)
> 0 for P-almost all x ∈ UN.

Fix Q ∈ Q
 with L(Q∩F) > 0. For all k ∈N, we consider the independent events

Ek := {xk ∈ Q ∩ F : L(Q ∩ F ∩ Ak(xk)
)
> 0
}
.

Replacing F by Q ∩ F in (6.12), we have
∑∞

k=1 η(Ek) = ∞. Applying the second
Borel–Cantelli lemma, yields (6.14). �

We complete this section by proving Theorem 1.1(d).

PROOF OF THEOREM 1.1(D). Recall from the Introduction that An(xn) =
f (xn,An). Since L is inner regular, we may assume that the sets An are compact
with L(An) > 0 and properties (C-1) and (C-2) are satisfied. Let F ⊂ U be a
compact set with L(F ) > 0 such that σ |E is equivalent with L|F . As in the proof
of Theorem 1.1(b), we may replace f (xn,An) by W(xn,An). Then (6.12) follows
from Lemma 2.3. Hence Theorem 6.5 implies the claim. �
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7. Proof of Corollary 1.2 and examples. The aim of this section is to verify
Corollary 1.2 and to discuss the sharpness of our results. We begin by proving
Corollary 1.2 as a consequence of Theorem 1.1.

PROOF OF COROLLARY 1.2. Observe that, for all sequences (En)n∈N and
(Fn)n∈N of subsets of N, we have lim supn→∞(En ∪ Fn) = (lim supn→∞ En) ∪
(lim supn→∞ Fn). Therefore, covering M and N by a finite number of coordinate
charts, we may assume that f : K × V → R

d satisfies the assumptions in Theo-
rem 1.1 with the exception that f (·, y) is not necessarily injective. Recall that as
long as (1.13) is valid, the dependence of f on the first coordinate plays no role
when proving that t0(A) is an upper bound for the dimension and s0(A) = t0(A)

(see Section 3). In Sections 4–6, where the lower bounds are proven, we restrict
our considerations into a bounded set where σ is absolutely continuous with re-
spect to the Lebesgue measure. We deduce that, covering K by a finite number of
coordinate charts, we may assume that f : U ×V →R

d is as in Theorem 1.1 and,
therefore, Corollary 1.2 follows from Theorem 1.1. �

We continue by constructing examples that demonstrate the sharpness of our
results. We begin with showing that the lower bound proven by Persson [see (1.3)]
is not always sharp.

EXAMPLE 7.1. Let Q1,Q2 ⊂ R
d be disjoint open cubes with side lengths

r1 and r2, respectively. Let 0 < ρ < 1. Divide Q2 into 2nd subcubes Q
j
2 and

set FQ2 := ⋃2nd

j=1 ρQ
j
2, where ρQ is the concentric cube with Q having side

length ρ times that of Q. Define A := Q1 ∪ FQ2 . Using the change of vari-
ables x′ = rix for i = 1,2, one easily sees that It (Q1) = C1r

−t
1 L(Q1)

2 and
It (FQ2) ≤ C2r

−t
2 L(FQ2)

2, where C1 and C2 are constants depending only on d

and t . Choosing sufficiently small ρ > 0, guarantees that L(A) < 2L(Q1) which,
in turn, implies that

gt (A)

gt (FQ2)
≤ 4L(Q1)

2

It (Q1)

It (FQ2)

L(FQ2)
2 ≤ C

(
r1

r2

)t

,

where C is a constant. Hence, Gt(A) ≥ gt (FQ2) ≥ C−1( r2
r1

)tgt (A). Since the ratio
r2
r1

can be chosen arbitrarily large, we conclude that even for open sets and for
σ := L, the lower bound given for dimH E(x,A) in [47] by means of gt may be
strictly smaller than the quantity s0(A) in Theorem 1.1 [see (1.8)].

Next, we give an example which shows that if we replace the assumption that
every An has positive Lebesgue density by a weaker assumption that L(An ∩
B(x, r)) > 0 for all n ∈ N, x ∈ An and r > 0, Theorem 1.1(c) is not valid and
dimH E(x,A) can be almost surely strictly smaller than t0(A).
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EXAMPLE 7.2. Let σ := L on T
2 and set P :=∏∞

i=1 σ . Define f (x, y) : T2 ×
T

2 → T
2 by f (x, y) = x + y for all (x, y) ∈ T

2 × T
2. For every n ∈ N, let

En := [0,1] × {0} ⊂ T
2 and Fn :=⋃∞

i=1 B(yi,2−n−i ) ⊂ T
2 where the centres yi

are dense in En. Set An := En ∪ Fn and write A := (An)n∈N, E := (En)n∈N and
F := (Fn)n∈N. We deduce that L(An ∩ B(y, r)) > 0 for all r > 0 and y ∈ An but

lim inf
r→0

L(An ∩ B(y, r))

L(B(y, r))
= 0

for H1-almost all y ∈ En \ Fn, which follows by applying the Lebesgue density
theorem for H1|En and noting that L(An ∩ B(y, r)) ≤ 2rH1(B(y, r) ∩ En ∩ Fn).
Recall that

lim sup
n→∞

(xn + An) = lim sup
n→∞

(xn + En) ∪ lim sup
n→∞

(xn + Fn).

Now
∑∞

n=1 H1∞(En) = ∞ and
∑∞

n=1 Ht∞(Fn) < ∞ for all t > 0. Thus t0(A) = 1
and t0(F) = 0. By Corollary 1.2, we have dimH(lim supn→∞(xn +Fn)) = 0 for all
x ∈ (T2)N. Furthermore, lim supn→∞(xn + En) = ∅ P-almost surely, since

P
(
(xn + En) ∩ (xm + Em) �= ∅ for some n,m ∈ N with n �= m

)= 0.

We conclude that dimH(lim supn→∞(xn + An)) = 0 < 1 = t0(A) P-almost surely.
Observe that s0(A) = s0(F) = 0.

Next, we construct an example illustrating that if the generating sets An do not
have positive Lebesgue density it is possible that dimH E(x,A) > s0(A) almost
surely. For this purpose, we recall the following notation from [20].

DEFINITION 7.3. For all 0 < s ≤ d , let

Gs(
R

d) := {F ⊂ R
d : F is a Gδ-set such that dimH

( ∞⋂
i=1

fi(F )

)
≥ s for all

similarities fi : Rd →R
d, i ∈N

}
.

We say that the sets in the class Gs(Rd) have large intersection property.

In [20], Theorem A, Falconer showed that Gs(Rd) is the maximal class of Gδ-
sets of Hausdorff dimension at least s which is closed under countable intersections
and similarities. Moreover, in [20], Theorem B, he gave several equivalent ways to
define the class Gs(Rd), one of them being

F ∈ Gs(
R

d) ⇐⇒ Ms∞(F ∩ Q) = Ms∞(Q)

for all dyadic cubes Q,
(7.1)
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where Ms∞ is the s-dimensional net content defined as in (1.6) with covering sets
being dyadic cubes. Definition (7.1) was extended by Bugeaud [9] and Durand
[13] for general gauge functions and open subsets of Rd .

EXAMPLE 7.4. Let σ := L on T
d , P :=∏∞

i=1 σ and define f : Td ×T
d → T

d

by f (x, y) = x + y for all (x, y) ∈ T
d × T

d . Consider 0 < s < t < d and choose
a sequence (B̃i)i∈N of open balls such that dimH E(x, (B̃i)i∈N) = t for P-almost
all x ∈ (Td)N. Fix such a typical covering set and denote it by F . Assume that
(Bi)i∈N is a sequence of open balls such that dimH E(x, (Bi)i∈N) = s for P-almost
all x ∈ (Td)N. Let (ri)i∈N be a decreasing sequence of positive real numbers which
tends to 0 so slowly that E(x, (B(0, ri

2 )i∈N)) = T
d for P-almost all x ∈ (Td)N (for

the existence of such (ri)i∈N, see [36]). Viewing T
d = [−1

2 , 1
2 [d⊂ R

d , we define
Ai := riF ∪ Bi for all i ∈ N and set A := (Ai)i∈N.

The fact that dimH F < d implies that L(F ) = 0, and hence, Gt(Ai) = Gt(Bi)

for all i ∈ N, giving s0(A) = s [recall (1.8)]. By [14], Theorem 2, we have F ∈
Gt (]−1

2 , 1
2 [d). Let F̃ be the lift of F to R

d by a covering map. We claim that
F̃ ∈ Gt (Rd). Indeed, to prove this claim, by [13], Lemma 10, it is enough to show
that the equality in (7.1) (in which F is replaced by F̃ ) holds for all dyadic cubes
Q with small diameter. This is the case, since F ∈ Gt (]−1

2 , 1
2 [d) and F̃ is the lift of

F . Since Gt (Rd) is closed under countable intersections and similarities by [20],
Theorem A, we obtain H̃ (x) :=⋂∞

i=n(xi + riF̃ ) ∈ Gt (Rd) for all x ∈ T
d , and thus,

H(x) := H̃ (x) ∩ ]−1
2 , 1

2 [d∈ Gt (]−1
2 , 1

2 [d) by [13], Proposition 1.
Since E(x, (B(0, ri

2 )i∈N)) = T
d for P-almost all x ∈ T

d , every point of Td be-
longs to B(xi,

ri
2 ) for infinitely many i ∈ N. Using the fact that the sequence (ri)i∈N

tends to zero, we conclude that ]−1
2 , 1

2 [d⊂⋃∞
i=n B(xi,

ri
2 )∩]−1

2 , 1
2 [d for all n ∈ N.

Combining this with the fact H̃ (x) ∩ B(xi,
ri
2 ) ∩ ]−1

2 , 1
2 [d⊂ xi + riF for all i ≥ n,

leads to H(x) ⊂⋃∞
i=n(xi + riF ) for P-almost all x ∈ T

d . By [13], Proposition 1,
every Gδ-set containing a subset in Gt (]−1

2 , 1
2 [d) belongs to Gt (]−1

2 , 1
2 [d). Thus,

P-almost surely, dimH(
⋂∞

n=1
⋃∞

i=n(xi + riF )) ≥ t , giving

dimH E(x,A) ≥ dimH E
(
x, (riF )i∈N

)≥ t > s = s0(A)

for P-almost all x ∈ (Td)N.

Finally, we give examples which show that Theorem 1.1 fails if the distribution
σ is singular with respect to the Lebesgue measure.

EXAMPLE 7.5. (a) Let f (x, y) be as in Example 7.4 and let σ := δx0 for

some x0 ∈ T
d . Set P := ∏∞

i=1 σ . Defining An := B(0, n− 1
d ) \ {0}, we obtain

s0(A) = t0(A) = d . However, lim supn→∞(xn + An) = ∅ P-almost surely. Thus
Theorem 1.1 is not valid.
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(b) Let s < d and let C be the regular 2d -corner Cantor set on T
d with dimH C =

dimP C = s. Set σ := Hs |C and assume that everything else is as in example (a).
Then E(x,A) ⊂ C almost surely. In particular,

dimH E(x,A) ≤ dimP E(x,A) ≤ s < s0(A) = t0(A) = d

P-almost surely. Hence, for every s < d there exists a measure σ with dimH σ = s

for which Theorem 1.1 fails.

REMARK 7.6. Seuret [49] and Ekström and Persson [17] have recently ob-
tained results for dimensions of random covering sets generated by balls which
are distributed according to singular measures. These results give further exam-
ples demonstrating that the assumption of nonsingularity of σ is necessary for the
validity of Theorem 1.1.

8. Further generalisations and remarks.

8.1. A weak large intersection property of random covering sets. In [14, 47],
it is proved that, when A = (An)n∈N is a sequence of open balls or general open
sets on T

d so that
∑∞

n=1 gs(An) = ∞ for some 0 < s ≤ d , then almost surely the
random covering set E(x,A) has the large intersection property in the sense that
E(x,A) ∈ Gs (cf. Definition 7.3). We remark that this result also holds under a
weaker condition that

∑∞
n=1 Gs(An) = ∞, because one may find open subsets Bn

of An so that
∑∞

n=1 gs(Bn) = ∞, according to the following easily checked fact:

Gs(A) = sup
{
gs(B) : B ⊂ A,B is open

}
whenever A is open. We emphasise that, in the above investigation, the assumption
of An being open is essential and cannot be dropped, for otherwise E(x,A) may
not be a Gδ-set.

Nevertheless, in the general setting that the sets in A are Lebesgue measurable,
we obtain the following weak large intersection property of random covering sets.

THEOREM 8.1. Assuming that A is a sequence of Lebesgue measurable sets,
we have under the conditions of Theorem 1.1 that

dimH

( ∞⋂
j=1

E
(
xj ,A
))≥ s0(A)

for (
∏∞

j=1 P)-almost all (xj )j∈N ∈∏∞
j=1 UN.

PROOF. This can be verified by modifying the proof of Proposition 4.5 in the
following manner: Let ϕ : N → N × N be a bijection obtained using the diagonal
method. Repeat the construction of Proposition 4.5 such that the nth construction
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step is done using the variable xϕ(n)1 , where ϕ(n)1 is the first coordinate of ϕ(n).
This leads to the conclusion

dimH

( ∞⋂
n=1

Nn⋃
i=Nn−1+1

Ai

(
x

ϕ(n)1
i

))≥ s

[cf. (4.9)], which implies the desired result. �

8.2. Hausdorff measure of random covering sets. Let d ∈ N. Denote by G the
collection of functions h : [0,∞[ → [0,∞[ such that h is increasing, positive near
0, limr→0 h(r) = h(0) = 0 and h(r)r−d is decreasing. Any element of G is called
a gauge function. For F ⊂ R

d and h ∈ G, we use Hh(F ) and Hh∞(F ) to denote
the Hausdorff measure and Hausdorff content of F with respect to the gauge func-
tion h (cf. [10, 48]). For instance, Hh∞(F ) is defined by replacing (diamFn)

s by
h(diamFn) in the definition (1.6).

In [14], Durand studied the Hausdorff measures of random covering sets on
T

d when A is a sequence of balls of the form An = B(0, rn). Using the mass
transference principle established in [3], he showed that, for any h ∈ G with
limr→0 h(r)r−d = ∞, almost surely

Hh(E(x,A)
)=
⎧⎪⎪⎨⎪⎪⎩

∞ if
∞∑

n=1

h(rn) = ∞,

0 otherwise.

However, this approach does not extend to the general case when the sets in A are
not ball-like, since the mass transference principle may fail in such situation.

To deal with the general case, let us introduce some notation. For a Lebesgue
measurable set F ⊂ R

d with L(F ) > 0 and h ∈ G, we define the h-energy of F by

Ih(F ) :=
∫∫

F×F
h
(|x − y|)−1

dL(x) dL(y).

Set gh(F ) := L(F )2Ih(F )−1 and use gh to define Gh(F) as in (1.9). Following
the argument in the proof of Lemma 3.2 with routine changes, we can show that

(8.1) Hh∞(F ) ≥ Gh(F).

As a generalisation of Theorem 1.1, we have the following result on the Haus-
dorff measures of general random covering sets.

THEOREM 8.2. Let h ∈ G. Under the assumptions of Theorem 1.1, we have:

(i)
∑∞

n=1 Hh∞(An) < ∞ =⇒Hh(E(x,A)) = 0.
(ii)
∑∞

n=1 Gh(An) = ∞ =⇒ Hh(E(x,A)) = ∞ for P-almost all x ∈ UN, pro-
vided that Ih(B(0,R)) < ∞ for all R > 0 and An are Lebesgue measurable.
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(iii) Assume that r 
→ h(r)r−d+ε is decreasing for some ε > 0 and, moreover,
assume that h̃ ∈ G is such that the inequality h̃(r) ≤ h(r)1+δ is valid for some
δ > 0 and all r > 0. Then

∞∑
n=1

Gh(An) < ∞ =⇒
∞∑

n=1

Hh̃∞(An) < ∞,

provided that An are Lebesgue measurable with positive Lebesgue density.

PROOF. Statement (i) follows from a routine modification of the proof of
Lemma 3.1. Statement (ii) follows from the proof of Theorem 1.1(b) with slight
modifications. Indeed, in the proof of Theorem 1.1(b), the only place where the fact
that the kernel is |x|−s is needed is inequality (2.11) (see the proof of Lemma 2.4).
To extend that inequality associated to h, it is enough to have that

(8.2) h(r) ≤ (1 + O(ε)
)
h
(
(1 − ε)r

)
for all 0 < r < 2R.

Note that h is doubling in the sense that h(2r) < ch(r) for some constant c > 1,
which follows from the fact that h(r)r−d is decreasing. Hence, the gauge function
h̃ obtained from h as the linear interpolation of h at points 2−n, n ∈ N, is equiva-
lent with h and satisfies (8.2). Now Proposition 4.5 implies that Hh(E(x,A)) > 0
P-almost surely. It is not difficult to see that if

∑∞
n=1 Gh(An) = ∞ there exists

a gauge function h′ such that limr→0 h′(r)h(r)−1 = 0 and
∑∞

n=1 Gh′(An) = ∞.
Therefore, Hh′

(E(x,A)) > 0 which implies Hh(E(x,A)) = ∞.
The proof of (iii) is essentially identical to that of Lemma 3.10. Observe that

one may assume that Hh̃(B(0,R)) > 0 for some R > 0 since otherwise the claim
is trivial. The assumption that h(r)r−d+ε is decreasing is needed at the end of the
proof of Lemma 3.7 when the term (II) is estimated. (Recall that Lemma 3.7 is
needed in the proof of Proposition 3.8.) Observe that heuristically Hh̃(B(0,R)) >

0 means that h̃(r) should be larger than rd for small r > 0 and, therefore, h(r)

should be larger than r
d

1+δ for small r > 0. �

REMARK 8.3. One may expect that, for some R > 0, there exists a constant
C > 0 such that, for all Lebesgue measurable sets F ⊂ B(0,R),

(8.3) Hh∞(F ) ≤ CGh(F ).

If so, the condition
∑∞

n=1 Gh(An) = ∞ in Theorem 8.2(ii) can be replaced by

∞∑
n=1

Hh∞(An) = ∞.

However, (8.3) does not hold for general doubling gauge functions even in the case
where F is a ball. Indeed, let h(r) = rd(log r)2 for all 0 < r < r0, where r0 is cho-
sen such that h is increasing. A straightforward calculation implies that Ih(B(x, r))
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is comparable to (rd | log r|)−1. Applying [45], Theorem 1.15, to product measures,
making a discrete approximation and using the fact that the sum

∑n
i=1 a2

i is min-
imised for the uniform probability vector (a1, . . . , an), it is not difficult to see that
gh(B(x, r)) is comparable to Gh(B(x, r)). Therefore, Gh(B(x, r)) is comparable
to h(r)| log r|−1 while Hh∞(B(x, r)) is comparable to h(r).

REMARK 8.4. Here, we indicate how Gh(F) can be calculated for some con-
crete examples. Assume that F = B(x, r). It follows immediately from the def-
inition that Gh(F) ≤ h(2r). If h(r)r−d+ε is decreasing for some ε > 0 (thus h

is doubling), one easily sees that Ih(F ) ≤ Cr2dh(r)−1 for some constant C > 0.
Therefore, Gh(F) is comparable to h(r). Another easily calculable example is
when F is a rectangle (or parallelepiped in higher dimensions) with side lengths
a ≥ b. Then Gs(F ) is comparable to as for 0 < s < 1 and to abs−1 for 1 < s < 2.

REMARK 8.5. Basing on the above remark, one can verify that (8.3) holds
in the following particular cases: (i) F is a ball and h is a gauge function so that
r 
→ h(r)r−d+ε is decreasing for some ε > 0; (ii) F is a rectangle, and h(r) = rs

for some noninteger s ∈ (0,2).

8.3. A question on the measurability of level sets of random covering sets. It
is a natural question whether dim E(x,A) takes a constant value almost surely
in the general setting that A is a sequence of Lebesgue measurable sets, where
dim is either the Hausdorff, packing or box counting dimension. It is obvious that
dim E(x,A) does not depend on a finite number of coordinates xi . Therefore,

Fs := {x ∈ UN : dim E(x,A) = s
}

is a tail event for every 0 ≤ s ≤ d , provided that Fs is measurable. In this case, the
Kolmogorov’s zero-one law would imply that x 
→ dim E(x,A) is almost surely a
constant. Theorem 1.1 gives the value of this constant under further assumptions
on A.

Using the results of Dellacherie [12] and Mattila and Mauldin [46], it is easy
to see that Fs is measurable with respect to the σ -algebra generated by analytic
sets provided that the sets An are analytic for all n ∈ N (for details see [32]). For
Lebesgue measurable generating sets (An)n∈N, we do not know whether the sets
Fs are measurable or not.
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