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STRONG SOLUTIONS TO STOCHASTIC DIFFERENTIAL
EQUATIONS WITH ROUGH COEFFICIENTS

BY NICOLAS CHAMPAGNAT∗,† AND PIERRE-EMMANUEL JABIN‡,1

Université de Lorraine∗, INRIA Nancy-Grand Est† and University of Maryland‡

We study strong existence and pathwise uniqueness for stochastic differ-
ential equations in R

d with rough coefficients, and without assuming uniform
ellipticity for the diffusion matrix. Our approach relies on direct quantitative
estimates on solutions to the SDE, assuming Sobolev bounds on the drift and
diffusion coefficients, and Lp bounds for the solution of the corresponding
Fokker–Planck PDE, which can be proved separately. This allows a great flex-
ibility regarding the method employed to obtain these last bounds. Hence we
are able to obtain general criteria in various cases, including the uniformly
elliptic case in any dimension, the one-dimensional case and the Langevin
(kinetic) case.

1. Introduction. We investigate the well-posedness of the stochastic differ-
ential equation (SDE) in R

d , d ≥ 1,

(1.1) dXt = F(t,Xt) dt + σ(t,Xt) dWt, X0 = ξ,

where F : R+ ×R
d → R

d and σ : R+ ×R
d → R

d×r are Borel measurable func-
tion, (Wt , t ≥ 0) is a r-dimensional standard Brownian motion on some given com-
plete filtered probability space (�, (Ft )t≥0,P), and ξ is a F0-measurable random
variable.

When σ and F are bounded, the law u(t, dx) of Xt belongs to the set M1
of functions from R+ with value in the set P1 of probability measures on R

d

such that, for all Borel subset � of Rd , t �→ u(t,�) is measurable. It is standard
to deduce from Itô’s formula that u(t, dx) is a (weak, measure) solution to the
Fokker–Planck PDE on R+ ×R

d

(1.2) ∂tu + ∇x · (Fu) = ∇2
x : (au) = ∑

1≤i,j≤d

∂2(aiju)

∂xi ∂xj

, u(t = 0, dx) = u0,

where a = 1
2σσ ∗ and u0 is the law of the initial r.v. ξ .
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We first recall some classical terminology: weak existence holds for (1.1) if one
can construct a filtered probability space (�, (Ft )t≥0,P), an adapted Brownian
motion W and an adapted process X on this space solution to (1.1). Uniqueness
in law holds if every solution X to (1.1), possibly on different probability space,
has the same law. Strong existence means that one can find a solution to (1.1) on
any given filtered probability space equipped with any given adapted Brownian
motion. Finally, pathwise uniqueness means that, on any given filtered probability
space equipped with any given Brownian motion, any two solutions to (1.1) with
the same given F0-measurable initial condition ξ coincide. Our goal is to study
strong existence and pathwise uniqueness for rough σ and F , through quantitative
estimates on the difference between solutions and a priori bounds on the solutions
to (1.2).

This question has been the object of many works aiming to improve the orig-
inal result of Itô [15]. Veretennikov [32] proved strong existence and pathwise
uniqueness for bounded measurable drifts F and certain nondegenerate diffusion
matrices like a = Id. The case of unbounded drifts was then studied by Krylov and
Röckner [21] under the assumption that F ∈ L

q
t,loc(L

p
x ) with d/p + 2/q < 1, and

the case where σ(t, x) is uniformly continuous with respect to x and ∇σ also be-
longs to L

q
t,loc(L

p
x ) by Zhang [36, 38]. All these works assume that the matrix a is

uniformly elliptic, that is, that a(x)−cId is positive definite for all x for some con-
stant c > 0. The time-independent one-dimensional case was also deeply studied
by Engelbert and Schmidt [8–10] (see also [26, 34, 35]).

The main tools used in all the previous works are Krylov’s inequality [17] and its
extensions (see, e.g., [7, 21, 22, 38]), Zvonkin’s transformation [40] to remove the
drift, and a priori estimates on solutions of the backward Kolmogorov equation or
Fokker–Planck PDE (1.2) [20, 21, 33, 36]. Of great importance is also the result of
Yamada and Watanabe [34, 35], which proves that strong existence holds as soon
as pathwise uniqueness and weak existence hold for all initial condition. Since
general conditions for weak existence are well known (see [7, 13, 18, 22, 25, 29,
31]), one only has to prove pathwise uniqueness to obtain strong existence. In
dimension one, a key tool to prove pathwise uniqueness is the local time.

Most of these works also use estimates on functionals of the difference between
two solutions of (possibly regularizations of) (1.1). Recently, a particular form
of functional, inspired by the method of Crippa and De Lellis [5] to obtain an
alternative proof of the results of Di Perna and Lions [6] on well-posedness for
ODEs, has been used in [28, 37, 39]. The functional of [5] was originally used and
adapted to obtain several extensions [4, 16] of the result of DiPerna and Lions for
deterministic systems.

Other approaches also exist, like the one of Le Bris and Lions in [23–25], based
on well-posedness and stability properties for the backward Kolmogorov equation
and the Kolmogorov equation obtained from a doubling of variable technique. This
approach gives different criteria for strong existence and pathwise uniqueness, in-
volving boundedness conditions on divσ and (Dσ)2. Several works also studied
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the existence of a stochastic flow for the SDE [11, 12, 14, 27] (e.g., [11, 12, 27]
prove regularity properties of the flow in the settings of [21, 32, 36], resp.), or a
(weaker) almost-everywhere stochastic flow [24, 37].

In this work, we make use of simple quantitative estimates on functionals of so-
lutions to (1.1) following the estimates for the deterministic ODEs in Crippa and
DeLellis [5], which already inspired the works in [28, 37, 39] for the uniformly
elliptic cases. A main difference with our current work is in the way we use the
Crippa–DeLellis ideas. We show how those estimates can be used to prove di-
rectly strong existence and pathwise uniqueness (without making use of Yamada–
Watanabe classical results). This lets the method be used in more general settings,
such as cases where pathwise uniqueness can be proved only for particular ini-
tial conditions (e.g., with bounded density) or with hypoelliptic diffusions, where
weak existence has been less studied (note that the two probabilistic notions of
strong and weak existence coincide when σ = 0).

The originality of the method we develop here is that it allows to decouple the
various questions involved in well-posedness. We do not prove any bounds on the
solution u of the PDE (1.2). Instead assuming that such bounds have already been
obtained through other means, we show how to use the Crippa–DeLellis estimates
to directly prove strong existence and pathwise uniqueness for (1.1) without using
any other probabilistic ideas or methods.

This leads to very explicit and constructive proofs, based on quantitative stabil-
ity estimates. The first advantage is to offer a simple and unifying framework to
formulate our assumptions. We are able to identify explicit norms, whose defini-
tion depends on u; s.t. one has well-posedness if the drift F and diffusion σ are
bounded in those norms. This does not require any ellipticity assumptions on σ

and is compatible with degenerate diffusion or even with the deterministic theory
for σ = 0.

As a good illustration of this unified framework, we want to emphasize also
the results that we obtain in dimension 1. By using suitable and new, modified
estimates, we are able to obtain the currently optimal 1d result (with σ ∈ H 1/2 for
instance) through essentially the same procedure.

The second main advantage is the flexibility that one then enjoys as it is possible
to choose the best method to deal with (1.2) according to any additional structure.
If σ satisfies an ellipticity condition, we can then recover now classical results.
But depending on the precise structure of equation (1.2), one can have much better
results. A very good example is second-order equations with degenerate diffusion,
as shown in Corollary 1.4.

The final advantage of the method is its simplicity as it relies on some direct
and self-contained quantitative estimates on the solutions.

To give a better idea, let us present a typical result that we obtain. For existence,
we consider sequence of approximations to (1.1)

(1.3) dXn
t = Fn

(
t,Xn

t

)
dt + σn

(
t,Xn

t

)
dWt, Xn

0 = ξ,
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with the same Brownian motion Wt for any n. And we introduce the corresponding
approximation for (1.2)

∂tun + ∇x · (Fnun)

= ∑
1≤i,j≤d

∂2

∂xi ∂xj

(
an
ij (t, x)un(t, x)

)
, un(t = 0, dx) = u0,

(1.4)

with an = 1
2σnσ

∗
n and un ∈ M1.

The next result is not the most general we obtain, but it does not require any
additional definition and illustrates the type of assumptions we need. We use the
classical notation for Lp and Sobolev spaces with different exponents for space
and time. For example, L

q
t,loc(W

1,p
x ) for 1 ≤ p,q ≤ ∞ is the set of measurable

functions f of the variables (t, x) ∈ R+ × R
d , such that, for almost all t ≥ 0,

f (t, ·) ∈ W 1,p(Rd) and t �→ ‖f (t, ·)‖W 1,p(Rd ) ∈ Lq([0, T ]) for all T > 0. We also
call weak topology on the set M1 of measurable functions of time with values in the
set P1 of probability measures on R

d , the topology of weak-* convergence in time
for the tight topology of probability measures on R

d . In other words, un → u for
the weak topology of M1 iff 〈un,f 〉 → 〈u,f 〉 for all bounded continuous function
f on R+ ×R

d with support included in [0, T ] ×R
d for some T > 0.

THEOREM 1.1. Assume d ≥ 2. One has:

(i) Existence: Assume that there exists a sequence of smooth Fn,σn ∈ L∞ con-
verging in the sense of distributions to F and σ , respectively, such that the solution
un ∈ M1 to (1.4) satisfies for 1 ≤ p,q ≤ ∞, with 1/p′ + 1/p = 1, 1/q + 1/q ′ = 1

σn − σ → 0 in L
q
t,loc

(
Lp

x

)
and Fn − F → 0 in L

q
t,loc

(
Lp

x

)
,

sup
n

(‖σn‖L
2q
t,loc(W

1,2p
x )

+ ‖Fn‖L
q
t,loc(W

1,p
x )

+ ‖Fn‖L∞ + ‖σn‖L∞
)
< ∞,

sup
n

‖un‖
L

q′
t,loc(L

p′
x )

< ∞, un → u in the weak topology of M1.

Then there exists a strong solution Xt to (1.1) and (Xn
t − ξ, t ∈ [0, T ])n converges

in Lp(�,L∞([0, T ])) for all p > 1 and T > 0 to (Xt − ξ, t ∈ [0, T ]), with Xn
t the

solutions to (1.3). In addition, u(t, dx) is the law of Xt for almost all t ≥ 0.
(ii) Uniqueness: Let X and Y be two solutions to (1.1) with one-dimensional

time marginals uX(t, x) dx and uY (t, x) dx both in L
q ′
t,loc(L

p′
x ). Assume that

F,σ ∈ L∞, X0 = Y0 a.s. and that

‖F‖
L

q
t,loc(W

1,p
x )

+ ‖σ‖
L

2q
t,loc(W

1,2p
x )

< ∞

with 1/p + 1/p′ = 1 and 1/q + 1/q ′ = 1. Then one has pathwise uniqueness:
supt≥0 |Xt − Yt | = 0 a.s.
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We obtain better results in the one-dimensional case.

THEOREM 1.2. Assume d = 1.

(i) The existence result of Theorem 1.1(i) holds under the same assumptions
on Fn,σn,un, except that the assumption supn ‖σn‖L

2q
t,loc(W

1,2p
x )

< ∞ can be re-

placed by

sup
n

‖σn‖L
2q
t,loc(W

1/2,2p
x )

< ∞

and in the case p = 1, the assumption supn ‖Fn‖L
q
t,loc(W

1,p
x )

< ∞ must be replaced

by

sup
n

‖Fn‖L
q
t,loc(W

1,1+ε
x )

< ∞

for some ε > 0.
(ii) The uniqueness result of Theorem 1.1(ii) holds true under the same as-

sumptions on F,σ,uX,uY , except that ‖σ‖
L

2q
t,loc(W

1,2p
x )

< ∞ can be replaced by

‖σ‖
L

2q
t,loc(W

1/2,2p
x )

< ∞
and in the case p = 1, the assumption ‖F‖

L
q
t,loc(W

1,p
x )

< ∞ must be replaced by

‖F‖
L

q
t,loc(W

1,1+ε
x )

< ∞
for some ε > 0.

Note that no assumption of uniform ellipticity is needed in Theorems 1.1
and 1.2, provided one can prove a priori estimates on the various solutions
un,uX,uY to (1.4) and (1.2). Note also that pathwise uniqueness is proved only
for particular solutions to (1.1), so we cannot use directly the result of Yamada and
Watanabe to deduce strong existence. Hence our method proves separately strong
existence and pathwise uniqueness.

Of course, as they are laws, un, uX and uY all have bounded mass so Theo-
rems 1.1 and 1.2 really depend on whether it is possible to obtain higher inte-
grability for a solution of (1.2). From Theorem 1.1, we may for instance simply
deduce the following.

COROLLARY 1.3. Assume that d ≥ 2, u0 ∈ L1 ∩ L∞, F,σ ∈ L∞, F ∈
L1

t,loc(W
1,1
x ) and ∇σ ∈ L

q
t,loc(L

p
x ), where 2/q + d/p = 1 with p > d . Assume

as well that σ is uniformly elliptic. Then one has existence of a strong solution
to (1.1) with marginal distributions u(t, dx) in L∞

t,loc(L
∞
x ). In addition, pathwise

uniqueness holds among all solutions with marginal distributions in L∞
t,loc(L

∞
x ).
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Hence we recover similar (actually, slightly better) assumptions on σ as
in [36], but different assumptions on F [neither stronger nor weaker since the
sets L1

t,loc(W
1,1
x ) and L

p
t,loc(L

q
x) are not included in one another]. This difference

comes from the fact that our general method does not assume a priori that σ is
uniformly elliptic. Hence the minimal conditions on F we can expect are those
under which existence and uniqueness hold in the case σ = 0, that is, those of
DiPerna and Lions [6]: F ∈ L1

t,loc(W
1,1
x ) and some bounds on divF . (Actually,

F ∈ L1
t,loc(BVx) was shown to be sufficient by Ambrosio [2], but we do not con-

sider this case.)
However, in many physical cases, uniform ellipticity is not necessary. For in-

stance, in the phase space problem,

dXt = Vt dt, dVt = F(t,Xt) dt + σ(t,Xt) dWt, (X0,V0) = ξ,

one obtains an even better result.

COROLLARY 1.4. Assume that σ ∈ L∞ ∩ L2
t,loc(H

1
x ) and F ∈ L1

t,loc(W
1,1
x ).

Assume also that the law u0 ∈ L∞. Then one has both existence of a strong solution
to (2.25) and pathwise uniqueness among all solutions with marginal distributions
in L∞

t,loc(L
∞
x ).

The goal of Section 2 is to give the statement of all our results. We start in Sec-
tion 2.1 by defining the norms and Banach spaces needed to state our most general
results in Section 2.2. Theorems 1.1 and 1.2 are then obtained as corollaries of
these general results. In Section 2.3, several corollaries of Theorems 1.1 and 1.2 are
stated in various situations, including the uniformly elliptic case (Corollary 1.3),
the nondegenerate one-dimensional case and the kinetic (Langevin) case (Corol-
lary 1.4). The rest of the paper is devoted to the proofs of all the results stated
in Section 2, and the organization of the rest of the paper is given in the end of
Section 2.

2. Statement of the results. As usual, one needs regularity assumptions on
F and σ to ensure strong existence and pathwise uniqueness for (1.1). In our case,
these are Sobolev norms with respect to some u ∈ M1, defined in Section 2.1. Our
general results are then stated in Section 2.2, and several consequences of these
results are discussed in Section 2.3.

2.1. Norms and Banach spaces. The conditions we shall impose on F and σ

can be roughly described as follows. We need σ to be L2 in time and H 1 in space
(in dimension d ≥ 2) or H 1/2 in space (in dimension d = 1) w.r.t. the measure u

solution to (1.2), and F to be L1 in time and W 1,1 in space w.r.t. the measure u.
Weighted Sobolev spaces have been extensively used and studied, but the key dif-
ference here is that no regularity is known on the weight u. It could very well be a
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sum of Dirac masses. This is why one must be careful and why maximal functions
are required.

The goal of the next subsections is to give the precise definitions and basic
properties of our spaces.

2.1.1. The space H 1
T (u). Fix first v ∈ P1. We start with the following defini-

tion.

DEFINITION 2.1. The space H 1(v) is defined as the subspace of functions
f ∈ BVloc(R

d), the space of functions on R
d with locally bounded variations,

such that

(2.1) ‖f ‖2
H 1(v)

:=
∫
Rd

((
M|f |(x)

)2 + (
M|∇xf |(x)

)2)
v(dx) < ∞,

where M is the usual maximal operator.

First of all, observe that the definition makes perfect sense. If f ∈ BVloc(R
d),

then |∇f | is a locally finite measure. This allows to define M|∇f | per

M|∇f |(x) = sup
r>0

1

|B(0, r)|
∫
B(0,r)

|∇f |(x + dz) ∀x ∈ R
d .

In that case, it is well known (see [30]) that M|∇f | is a Borel function with value
in R+ ∪ {+∞}. It locally belongs in fact to the weak L1 space, that is, for any
R > 0, there exists CR s.t.∣∣{x ∈ B(0,R),M|∇f |(t, x) > L

}∣∣ ≤ CR

L
.

Therefore, the integral of (M|∇f |)2 against the Borelian measure v is well defined
with value in R+ ∪ {+∞}, thus justifying the definition.

The main point of the definition is that we have a well-behaved space indepen-
dently of any regularity on v.

THEOREM 2.2. Assume that v belongs to P1. Then H 1(v) is a Banach space
with norm (2.1). Moreover, the norm is lower semicontinuous with respect to con-
vergence in the sense of distribution: If fn → f in the sense of distribution, then

(2.2) ‖f ‖H 1(v) ≤ lim inf
n

‖fn‖H 1(v).

And if for a given f ∈ BVloc(R
d), vn converges to v in the tight topology of prob-

ability measures then

‖f ‖H 1(v) ≤ lim inf
n

‖f ‖H 1(vn).



STRONG SOLUTIONS TO SDE WITH ROUGH COEFFICIENTS 1505

This result is proved in Section 3.
There are several technical reasons why we use M|∇f | in the definition of the

norm. Note however that the intuitive definition with just ∇f would most certainly
be too weak as v could for instance vanish just at the points where ∇f is very large.
In particular, without the maximal function in the definition of the norm (2.1), it
would be very easy to find counterexamples to (2.2).

Now, given any u ∈ M1, we give a second definition.

DEFINITION 2.3. For all T > 0, the space H 1
T (u) is defined as the subspace of

the set of measurable functions on [0, T ] ×R
d such that, for almost all t ∈ [0, T ],

f (t, ·) ∈ H 1(u(t, ·)) and

(2.3) ‖f ‖2
H 1

T (u)
=

∫ T

0

∥∥f (t, ·)∥∥2
H 1(u(t,·)) dt < ∞.

In particular, if u(t, ·) is the distribution of Xt solution to (1.1), then, for all
T > 0 and σ ∈ H 1

T (u),

(2.4) ‖σ‖2
H 1

T (u)
= E

(∫ T

0
M|σ |2(t,Xt) dt

)
+E

(∫ T

0

(
M|∇σ |(t,Xt)

)2
dt

)
.

We then have the following immediate consequence of Theorem 2.2.

COROLLARY 2.4. Fix T > 0. Assume u belongs to M1. Then H 1
T (u) is a Ba-

nach space with norm (2.3). Moreover, the norm is lower semicontinuous with
respect to convergence in the sense of distribution: If fn → f in the sense of dis-
tribution, then

(2.5) ‖f ‖H 1
T (u) ≤ lim inf

n
‖fn‖H 1

T (u).

And if for a given f measurable on R+ ×R
d with f (t, ·) ∈ BVloc(R

d) for almost
all t ≥ 0, un converges to u for the weak topology in M1, then

‖f ‖H 1
T (u) ≤ lim inf

n
‖f ‖H 1

T (un).

2.1.2. The space H
1/2
T (u). In the one-dimensional case, we can prove strong

existence and pathwise uniqueness using H 1/2 type of assumptions on σ . The
definitions and properties of the spaces H

1/2
T (u) follow exactly the same steps as

before. We first fix v ∈ P1.

DEFINITION 2.5. For any function f ∈ L1
loc(R

d), one defines

∂1/2
x f = F−1|ξ |1/2Ff,
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with F the Fourier transform in R
d . The space H 1/2(v) is defined as the subspace

of functions f ∈ L1
loc(R

d) s.t. ∂
1/2
x f is a locally finite Radon measure and

‖f ‖2
H 1/2(v)

=
∫
Rd

((
M|f |(x)

)2 + (
M

∣∣∂1/2
x f

∣∣(x)
)2)

v(dx) < ∞.

As for H 1(v), the maximal function can be extended to measures by

M
∣∣∂1/2

x f
∣∣(x) = sup

r>0

1

|B(0, r)|
∫
B(0,r)

∣∣∂1/2
x f

∣∣(x + dz) ∀x ∈ R
d .

One has again that M|∂1/2
x f | is a Borel function with value in R+ ∪ {+∞} be-

longing to the local weak L1 space. The integral against the Borelian measure v is
hence well defined in R+ ∪ {+∞}, independently of the regularity of v.

The next result is proved in Section 3.

THEOREM 2.6. Assume that v belongs to P1. Then H 1/2(v) is a Banach space
with norm (2.8). Moreover, the norm is lower semicontinuous with respect to con-
vergence in the sense of distribution: If fn → f in the sense of distribution, then

(2.6) ‖f ‖H 1/2(v) ≤ lim inf
n

‖fn‖H 1/2(v).

And if, for a given f ∈ L1
loc(R

d) s.t. ∂
1/2
x f is a locally finite Radon measure, vn

converges to v in the tight topology of probability measures on R
d , then

‖f ‖H 1/2(v) ≤ lim inf
n

‖f ‖H 1/2(vn).

Given any u ∈ M1, we give a second definition.

DEFINITION 2.7. For all T > 0, the space H
1/2
T (u) is defined as the subspace

of the set of measurable functions on [0, T ] × R
d such that, for almost all t ∈

[0, T ], f (t, ·) ∈ H 1/2(u(t, ·)) and

(2.7) ‖f ‖2
H

1/2
T (u)

=
∫ T

0

∥∥f (t, ·)∥∥2
H 1/2(u(t,·)) dt < ∞.

In particular, if u(t, ·) is the distribution of Xt solution to (1.1), then, for all
T > 0 and σ ∈ H

1/2
T (u),

(2.8) ‖σ‖2
H

1/2
T (u)

= E

(∫ T

0
M|σ |2(t,Xt) dt

)
+E

(∫ T

0

(
M

∣∣∂1/2
x σ

∣∣(t,Xt)
)2

dt

)
.

Again, one has the following immediate consequence of Theorem 2.6.
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COROLLARY 2.8. Fix T > 0. Assume u belongs to M1. Then H
1/2
T (u) is a

Banach space with norm (2.7). Moreover, the norm is lower semicontinuous with
respect to convergence in the sense of distribution: If fn → f in the sense of dis-
tribution, then

(2.9) ‖f ‖
H

1/2
T (u)

≤ lim inf
n

‖fn‖H
1/2
T (u)

.

And if for a given f ∈ L1(R+ ×R
d) s.t. ∂

1/2
x f (t, ·) is a locally finite Radon mea-

sure for almost all t ∈ [0, T ], un converges to u for the weak topology in M1, then

‖f ‖
H

1/2
T (u)

≤ lim inf
n

‖f ‖
H

1/2
T (un)

.

Let us emphasize here that, as it may already be clear from the definition and
as it will be seen in the proof, the space H

1/2
T (u) is much more intricate than

the previous space H 1
T (u). Using this space is key to our improved 1-dimensional

result. However, it does require the development of new techniques to make the
estimates compatible with this weaker norm.

2.1.3. The space W
φ,weak
T (u). We also need some similar W 1,1 assumptions

on F . Following the definition of H 1(u), a first attempt would be

(2.10) ‖F‖
W

1,1
T (u)

=
∫ T

0

∫
Rd

(
M|F |(t, x) + M|∇F |(t, x)

)
u(t, dx) dt.

Unfortunately, while this definition would work, it is too strong in some cases. This
is due to the fact that the maximal operator M is bounded on Lp , p > 1, but not
on L1. In particular, if u ∈ L∞ then the norm defined in (2.4) would automatically
be finite if σ is in the usual H 1 space but the norm defined in (2.10) would not be
finite if F ∈ W 1,1 in general.

Therefore, in order to obtain better assumptions we have to work with a more
complicated space. We proceed as before and fix v ∈ P1. We also introduce a super-
linear function φ, that is, a function φ on [1,∞) such that φ(ξ)/ξ is nondecreasing
and converges to ∞ as ξ → ∞.

DEFINITION 2.9. For any locally finite Radon measure μ, decomposing μ

into a part absolutely continuous with respect to the Lebesgue measure μa and the
singular part μs , one defines

MLμ =
√

logL +
∫
Rd

|μa|(z)1|μa(z)|≥√
logL dz + |μs |(dz)

(L−1 + |x − z|)|x − z|d−1 .

For any function f ∈ BVloc(R
d), the decomposition of ∇f , into a part absolutely

continuous with respect to the Lebesgue measure ∇af and the singular part ∇sf ,
makes ML∇f well defined.
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The space Wφ,weak(v) is hence defined as the subspace of functions f ∈
BVloc(R

d) s.t.

‖f ‖Wφ,weak(v) =
∫
Rd

M|f |(x)v(dx) + sup
L≥1

φ(L)

L logL

∫
Rd

ML∇f v(dx) < ∞.

In this definition, the maximal function is regularized so that ML∇f is locally
integrable for any fixed L. The supremum is then taken outside.

Obviously, the space heavily depends on the choice of φ. Note that ML∇f ≥√
logL so that

‖f ‖Wφ,weak(v) ≥ sup
L≥1

φ(L)

L
√

logL
.

In particular, ‖f ‖Wφ,weak(v) = +∞ for all f if φ(L) � L
√

logL asymptotically
as L → +∞. On the other hand, we want to choose φ superlinear as we need to
control the integrability of |∇f |. This leads to the assumptions:

(2.11)
φ(L)

L
→ +∞,

φ(L)

L
√

logL
→ 0 as L → +∞.

Even with this assumption, Wφ,weak(v) is not a Banach space and in particular
‖ · ‖Wφ,weak(v) is not a norm. Of course, ‖0‖Wφ,weak(v) �= 0 but this could easily be
remedied by considering ‖ · ‖Wφ,weak(v) − αφ instead, for the right constant αφ .

The main problem is that ‖λf ‖Wφ,weak(v) �= |λ|‖f ‖Wφ,weak(v) and this cannot eas-
ily be corrected. It is in fact the same kind of issue that one has with the definition
of so-called Orlicz spaces such as L logL. The solution is similar and would con-
sist in constructing the right norm by duality.

We did not feel that it was appropriate in this article however. Such a construc-
tion in the present case would be considerably more complex than for classical
Orlicz space. It would also distract from our main goal while bringing very little
to our results. It is worth recalling the main reason why we introduce the space
Wφ,weak. It is a compromise between two requirements:

• The estimates that we perform later in the text would not work for instance with
the simple requirement that∫ (|f | + |∇f |)v(dx) < ∞,

so the maximal operator is needed.
• We want to recover the classical assumption if v is bounded from below and

above. That means that if 1/C ≤ v ≤ C, then any f ∈ W 1,1 must be included in
Wφ,weak(v) for some well chosen φ (depending on f ). This is in particular why
we do not use the direct extension W 1,1(v) of the space H 1(v), given by (2.10).

The above definition of Wφ,weak(v) fulfills those two goals and, therefore, we
study further this space.
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THEOREM 2.10. Assume that v belongs to P 1, that φ is superlinear and con-
tinuous and that (2.11) holds. Then Wφ,weak(v) is well defined and ‖ · ‖Wφ,weak(v)

is lower semicontinuous with respect to convergence in the sense of distribution: If
fn → f in the sense of distribution then

(2.12) ‖f ‖Wφ,weak(v) ≤ lim inf
n

‖fn‖Wφ,weak(v).

And if for a given f ∈ BVloc(R
d), vn converges to v in the tight topology of prob-

ability measures then

‖f ‖Wφ,weak(v) ≤ lim inf
n

‖f ‖Wφ,weak(vn).

Moreover if v ≥ 1/C over a smooth open set � and f ∈ Wφ,weak(v) then f ∈
W 1,1(K) for any compact set K ⊂ �. Reciprocally, if v ≤ C over � and f ∈
W 1,1(�) with compact support in �, then there exists a superlinear φ satisfying
(2.11) s.t. f ∈ Wφ,weak(v).

Now, given u ∈ M1 and a superlinear function φ, we define the following.

DEFINITION 2.11. For all T > 0, the space W
φ,weak
T (u) is defined as the set

of measurable f on [0, T ] ×R
d such that f (t, ·) ∈ W

φ,weak
T (u(t, ·)) for almost all

t ∈ [0, T ] and

‖f ‖
W

φ,weak
T (u)

=
∫ T

0

∥∥f (t, ·)∥∥Wφ,weak(u(t,·)) dt < ∞.

In particular, if u(t, ·) is the distribution of Xt solution to (1.1), then, for all
T > 0 and F ∈ W

φ,weak
T (u),

(2.13) ‖F‖2
W

φ,weak
T (u)

= sup
L≥1

φ(L)

L logL
E

(∫ T

0

(
M|F |(t,Xt) + ML|∇F |(t,Xt)

)
dt

)
.

Then we have the following.

COROLLARY 2.12. Fix T > 0, assume u belongs to M1 and that φ is su-
perlinear, continuous and satisfies (2.11). Then W

φ,weak
T (u) is well defined and

‖ · ‖
W

φ,weak
T (u)

is lower semicontinuous with respect to convergence in the sense of

distribution: If fn → f in the sense of distribution, then

(2.14) ‖f ‖
W

φ,weak
T (u)

≤ lim inf
n

‖fn‖W
φ,weak
T (u)

.

And if for a given f measurable on R+ ×R
d with f (t, ·) ∈ BVloc(R

d) for almost
all t ∈ [0, T ], un converges to u for the weak topology in M1, then

‖f ‖
W

φ,weak
T (u)

≤ lim inf
n

‖f ‖
W

φ,weak
T (un)

.
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Moreover, if u ≥ 1/C over [0, T ] × � where � ⊂ R
d is a smooth open set and

f ∈ W
φ,weak
T (u) then f ∈ L1

t ([0, T ],W 1,1(K)) for any compact set K ⊂ �. Re-
ciprocally, if u ≤ C over [0, T ] × � and f ∈ L1

t ([0, T ],W 1,1(�)) with com-
pact support in [0, T ] × �, then there exists a superlinear φ satisfying (2.11) s.t.
f ∈ W

φ,weak
T (u).

The first two points of Corollary 2.12 are direct consequences of Theorem 2.10,
and the last statements about the cases where u is bounded from above or below
can be proved exactly as the similar statement of Theorem 2.10 is proved in Sec-
tion 3.

Theorem 2.10 and Corollary 2.12 support the introduction of the seminorm and
the space W

φ,weak
T . We point out in particular the conclusion of both results (in the

time independent and time dependent case) that if the law u is bounded, then any
W 1,1 function belongs to some W

φ,weak
T .

This will allow us to obtain the critical W 1,1 assumption for the drift. However,
it leads to difficulties in the proof. Typically, Crippa–DeLellis estimates naturally
work if the drift satisfies an estimate like

(2.15)
∣∣F(x) − F(y)

∣∣ ≤ C
(
h(x) + h(y)

)|x − y|,
with h in L1(u). Such an estimate is essentially equivalent to an L1 control on the
maximal function as in (2.10) and, therefore, not compatible with F only in W 1,1.

In the purely deterministic case where σ = 0, well-posedness can be obtained
for F ∈ W 1,1 by interpolation but this seems to be more complicated if some
stochasticity is involved.

Because we work in a weaker space, a direct pointwise bound like (2.15) is
not available to us (see Lemma 3.2 in Section 3) and this forces us to work the
estimates in a different manner.

Let us finally note that the pointwise bound (2.15) is very close to the assump-
tion found in [28] for uniqueness, which reads

(2.16)
(
F(x) − F(y)

) · (x − y) ≤ C
(
h(x) + h(y)

)|x − y|2,
again for h in L1(u). Just as for (2.15), (2.16) is in general not satisfied for F ∈
W 1,1 even if u is bounded. But obviously, and contrary to our space W

φ,weak
T ,

(2.16) is only a one-sided bound.
Just as for ODEs, only a one-sided bound is needed for pathwise uniqueness.

However, to obtain strong existence as well without any ellipticity assumption,
the other one-sided bound is required as well. This is quite similar to the usual
well-posedness conditions on ODEs, which is rather natural: If no ellipticity as-
sumptions are made, then the proofs have to be compatible with the deterministic
case.
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2.2. General results on strong solutions to (1.1). In the multidimensional case,
our most general result is the following one, proved in Section 4.

THEOREM 2.13. Assume that d ≥ 2. One has:

(i) Existence: Fix T > 0 and assume that there exists a sequence of smooth
Fn,σn ∈ L∞ converging in the sense of distribution to F and σ respectively, such
that the solution un ∈ M1 to (1.4) satisfies for some superlinear φ∫ T

0

∫
Rd

(|σn − σ | + |Fn − F |)dun dt → 0,(2.17)

sup
n

(‖F‖
W

φ,weak
T (un)

+ ‖σ‖H 1
T (un) + ‖Fn‖L∞ + ‖σn‖L∞

)
< ∞,(2.18)

un → u for the weak topology of M1.(2.19)

Then there exists a strong solution Xt to (1.1) s.t. (Xn
t − ξ, t ∈ [0, T ])n converges

in Lp(�,L∞([0, T ])) for all p > 1 to (Xt − ξ, t ∈ [0, T ]), with Xn
t the solutions

to (1.3). In addition, u(t, dx) is the law of Xt for almost all t ∈ [0, T ].
(ii) Uniqueness: Let X and Y be two solutions to (1.1) with one-dimensional

time marginals uX(t, ·) and uY (t, ·) on [0, T ]. Assume that F,σ ∈ L∞, X0 = Y0
a.s. and that

(2.20) ‖F‖
W

φ,weak
T (uX)

+ ‖F‖
W

φ,weak
T (uY )

+ ‖σ‖H 1
T (uX) + ‖σ‖H 1

T (uY ) < ∞
for some superlinear function φ. Then one has pathwise uniqueness on [0, T ], that
is, supt∈[0,T ] |Xt − Yt | = 0 a.s.

Note that we do not require any ellipticity on σ for this result. In that sense,
we cannot hope to have any smoothing effect from the Wiener process and the
assumption on F must be enough to provide well-posedness in the purely deter-
ministic setting (σ = 0). In this case, taking any u0 ∈ L∞, our result gives that
there exists a unique solution of Ẋt = F(t,Xt) with X0 = ξ and with law u ∈ L∞
provided that there exists a sequence of regularized Fn s.t. un → u for the weak-∗
topology with u ∈ L∞ and a superlinear φ s.t.

sup
L≥1

φ(L)

L logL
‖F + ML∇F‖L1([0,T ]×Rd ) < ∞.

The first point is, for example, implied by the assumption divF ∈ L∞ and the sec-
ond one can be proved to hold if F ∈ L1

t,loc(W
1,1
x ) as in the proof of Corollary 1.1

in the Appendix. Hence, we recover the classical results of DiPerna and Lions [6]
but not the optimal BV assumption from Ambrosio [2].

REMARK 2.14. In the last result, the law of the diffusion u needs not be ab-
solutely continuous with respect to Lebesgue’s measure, so the value of the coef-
ficients F and σ on sets of Lebesgue’s measure zero may have some importance.
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Our assumptions in fact ensures that all points where u is concentrated are auto-
matically Lebesgue points for F and σ . For this reason, it is straightforward to
choose the right representative for the almost everywhere defined functions F and
σ (see Remark 3.3 in Section 3.1).

In dimension 1, the result is even better: we recover the H 1/2 type of assumption
from [8–10, 26, 34, 35], but we lose a little bit on F [we have to use (2.10) instead
of (2.13)].

THEOREM 2.15. Assume that d = 1. One has:

(i) Existence: Fix T > 0 and assume that there exists a sequence of smooth
Fn,σn ∈ L∞ converging in the sense of distribution to F and σ , respectively, such
that the solution un to (1.4) satisfies∫ T

0

∫
R

(|σn − σ | + |Fn − F |)dun dt → 0,

sup
n

(‖F‖
W

1,1
T (un)

+ ‖σ‖
H

1/2
T (un)

+ ‖Fn‖L∞ + ‖σn‖L∞
)
< ∞,

un → u for the weak topology of M1.

Then there exists a strong solution Xt to (1.1) s.t. (Xn
t − ξ, t ∈ [0, T ])n converges

in Lp(�,L∞([0, T ])) for all p > 1 to (Xt − ξ, t ∈ [0, T ]), with Xn
t the solutions

to (1.3). In addition, u(t, dx) is the law of Xt for almost all t ∈ [0, T ].
(ii) Uniqueness: Let X and Y be two solutions to (1.1) with one-dimensional

time marginals uX(t, ·) and uY (t, ·) on [0, T ]. Assume that F,σ ∈ L∞, X0 = Y0
a.s. and that

‖F‖
W

1,1
T (uX)

+ ‖F‖
W

1,1
T (uY )

+ ‖σ‖
H

1/2
T (uX)

+ ‖σ‖
H

1/2
T (uY )

< ∞.

Then pathwise uniqueness holds on [0, T ], that is, supt∈[0,T ] |Xt − Yt | = 0 a.s.

Of course, while precise, the norms given by (2.4)–(2.13) or (2.8)–(2.10) are
not so simple to use. However, it is quite easy to deduce more intuitive results with
the more usual W 1,p norms. We recall that M is continuous onto every Lp space
for 1 < p ≤ ∞, and hence the norms ‖ · ‖H 1

T (u) and ‖ · ‖
W

1,1
T (u)

are controlled by

appropriate Sobolev norms if some Lq estimate is available on the law u.
One complication occurs when uX ∈ L∞ and one wants to obtain the close to

optimal W 1,1 assumption on F (instead of W 1,p for some p > 1) as the maximal
function is not bounded onto L1. This is the reason why we defined (2.13), which
can be used following [16] (we recall the main steps in the Appendix).

Therefore, Theorems 1.1 and 1.2 are simple corollaries of Theorems 2.13
and 2.15, respectively, except for the previous complication for Theorem 1.1.

In order to apply Theorems 1.1 and 1.2, we need to consider cases where it is
possible to obtain better integrability than L1 bounds for a solution to (1.2). This
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occurs in various situations, some of which will be studied in the next subsection.
One difficulty to apply Theorems 1.1(ii) and 1.2(ii) is to obtain pathwise unique-
ness without restriction on the set of solutions considered. This will of course be
ensured if uniqueness in law is known for (1.1). More precisely, if the conclusion
of Theorem 1.1(i) or Theorem 1.2(i) holds, then either ‖F‖

W
φ,weak
T (u)

+‖σ‖H 1
T (u) <

∞ (if d ≥ 2) or ‖F‖
W

1,1
T (u)

+ ‖σ‖
H

1/2
T (u)

< ∞ (if d = 1) by Corollaries 2.4, 2.8

and 2.12. Since there is uniqueness in law for (1.1), then uX = uY = u for all
solutions X and Y to (1.1) as in Theorem 1.1(ii) or Theorem 1.2(ii), and hence
pathwise uniqueness holds. This argument will be used repeatedly in the next sub-
section. Note however that condition (2.20) may impose restrictions on the initial
distribution. This issue will be studied in Proposition 2.24.

2.3. Consequences. Let us first consider the case where σ is uniformly ellip-
tic: for all t, x,

(2.21)
1

2
σσ ∗(t, x) = a(t, x) ≥ cI

for some c > 0. For example, if F = 0 and σ does not depend on time, then
there exists a corresponding stationary measure ū > 0 in Ld/(d−1) as per Alek-
sandrov [1]. In that case, when u0 ≤ Cū, then the unique solution u of (1.2) in
L2

t,loc(H
1
x ) satisfies u(t, dx) ≤ Cū(x) dx for all t ≥ 0 by the maximum principle.

COROLLARY 2.16. Assume that F = 0 and σ(x) satisfies (2.21) and belongs
to L∞ ∩ W 1,2d

x (or L∞ ∩ H 1/2 if d = 1). Assume also that u0 ≤ Cū for some
constant C > 0. Then one has both existence of a strong solution to (1.1) and
pathwise uniqueness.

Note that pathwise uniqueness holds without additional assumption since σ ∈
W 1,2d implies that σ is continuous, and uniqueness in law holds in this case since
σ is bounded and uniformly elliptic [31], Theorem 7.2.1.

Those results were later extended by Krylov in the parabolic, time dependent
case [17, 19]. We may, for example, use the following version found in [38].

THEOREM 2.17. Assume that F and σ are bounded and σ satisfies (2.21).
Then, for all solution X of (1.1) with any initial distribution, for all T > 0 and
p,q > 1 such that

d

p
+ 2

q
< 2,

there exists a constant C such that for all f ∈ L
q
t (L

p
x )

E

[∫ T

0
f (t,Xt) dt

]
≤ C‖f ‖L

q
t (L

p
x ).
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This result means that

u ∈ L
q ′
t

(
Lp′

x

)
,

where 1/p + 1/p′ = 1 and 1/q + 1/q ′ = 1, and we obtain the following corollary.

COROLLARY 2.18. (i) Assume that d ≥ 2, F,σ ∈ L∞, σ satisfies (2.21),
F ∈ L

q/2
t,loc(W

1,p/2
x ) and σ ∈ L

q
t,loc(W

1,p
x ) with 2/q + d/p < 1. Then one has both

existence of a strong solution to (1.1) and pathwise uniqueness for any initial con-
dition ξ .

(ii) Assume that d = 1, F,σ ∈ L∞, σ satisfies (2.21), σ ∈ L
q
t,loc(W

1/2,p
x ) with

2/q + 1/p < 1 and F ∈ L
q/2
t,loc(W

1,p/2
x ) if p > 2, F ∈ L

q/2
t,loc(W

1,1+ε) for some
ε > 0 if p ≤ 2. Then one has both existence of a strong solution to (1.1) and
pathwise uniqueness for any initial condition ξ .

Note that in this case, pathwise uniqueness holds without additional assumption

since Krylov’s inequality implies that u ∈ L
q ′
t (L

p′
x ) for all solutions to (1.1).

In our setting, since we need additional regularity on σ , it is easy to obtain better
a priori estimates for u than those given by Krylov’s inequality. For instance, we
have the following.

PROPOSITION 2.19. For any d ≥ 1, assume u0 ∈ L1 ∩ L∞, F,σ ∈ L∞, σ

satisfies (2.21) and ∇σ ∈ L
q
t,loc(L

p
x ) satisfying 2/q + d/p = 1 with p > d . Then

any u solution to (1.2), limit for the weak topology in M1 of smooth solutions,
belongs to L∞

t (Lr
x) for any 1 ≤ r ≤ ∞.

This proposition is based on classical energy estimates, and hence we just give a
very short proof of it in Section 6. Combined with Theorem 1.1 this gives slightly
better conditions for σ and much better conditions for F , assuming additional
conditions on the initial distribution. We obtain Corollary 1.3, restated here

COROLLARY 2.20. Assume that d ≥ 2, u0 ∈ L1 ∩ L∞, F,σ ∈ L∞, F ∈
L1

t,loc(W
1,1
x ) and ∇σ ∈ L

q
t,loc(L

p
x ), where 2/q + d/p = 1 with p > d . Assume

as well that σ satisfies (2.21). Then one has existence of a strong solution to (1.1)
with marginal distributions u(t, dx) in L∞

t,loc(L
∞
x ). In addition, pathwise unique-

ness holds among all solutions with marginal distributions in L∞
t,loc(L

∞
x ).

As above, the pathwise uniqueness property could be improved if we could
prove uniqueness in law. If d = 2, uniqueness in law holds when σ and F are
bounded and σ is uniformly elliptic [18]. When d ≥ 3, by Sobolev embedding,
the assumption ∇σ ∈ L

q
t,loc(L

p
x ) implies that x �→ σ(t, x) is continuous for almost

all t ≥ 0. This condition is not exactly sufficient to use the result of Stroock and
Varadhan [31], Theorem 7.2.1, which assumes that supt∈[0,T ] |σ(t, x)−σ(t, y)| →
0 when y → x. This is true, for example, if ∇σ ∈ L∞

t,loc(L
p
x ) for p > d . Hence we

obtain the following.
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COROLLARY 2.21. Assume that d ≥ 2, u0 ∈ L1 ∩ L∞, F,σ ∈ L∞, F ∈
L1

t,loc(W
1,1
x ) and ∇σ ∈ L

q
t,loc(L

p
x ) where 2/q + d/p = 1 with p > d . Assume as

well that σ satisfies (2.21), and if d ≥ 3 that for all x,

sup
t∈[0,T ]

∣∣σ(t, x) − σ(t, y)
∣∣ → 0 when y → x.

Then one has both existence of a strong solution to (1.1) and pathwise uniqueness.

This result can be compared with previous works dealing with the uniformly
elliptic case. The best result in this case seem to be the one of [38], where
strong existence and pathwise uniqueness are proved under the assumptions ∇σ ∈
L

q
t,loc(L

p
x ), σ(t, x) uniformly continuous with respect to x and F ∈ L

q
t,loc(L

p
x )

with d/p + 2/q < 1, so we obtain a slightly better condition on σ (we can han-
dle the limit case d/p + 2/q = 1 and no uniform continuity is needed for strong
existence), and a condition on F which is neither stronger nor weaker, since
L1

t,loc(W
1,1
x ) neither contains nor is contained in L

q
t,loc(L

p
x ) with d/p + 2/q < 1.

In dimension 1 in the stationary case, even if (2.21) is not satisfied but instead
only

(2.22)
1

2
σ 2(x) = a(x) > 0,

then one has the a priori bound

u(t, x) ≤ C

a(x)
e

∫ x
0

F(y)
a(y)

dy ∀x ∈ R,

for solutions to (1.2) again provided that u0 satisfies the same bound. Therefore,
we obtain the following.

COROLLARY 2.22. Assume d = 1, σ,F ∈ L∞, σ satisfies (2.22), F/a ∈ L1,

u0(x) ≤ C

a(x)
e

∫ x
0

F(y)
a(y)

dy ∀x ∈ R

and

(2.23)
∫
R

(M|∂1/2σ |(x))2

a(x)
dx < ∞ and

∫
R

M|∇F |
a(x)

dx < ∞.

Then one has both existence of a strong solution to (1.1) and pathwise uniqueness.

Note that the assumptions (2.23) imply that a−1 ∈ L1
loc, which is a necessary

and sufficient condition for uniqueness in law when F is bounded [8–10].
We will prove in Lemma 3.5 of Section 3 that for all x, y,

(2.24)
∣∣σ(x) − σ(y)

∣∣ ≤ (
M

∣∣∂1/2
x σ

∣∣(x) + M
∣∣∂1/2

x σ
∣∣(y)

)|x − y|1/2.
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This inequality allows us to compare our result with similar results of the litera-
ture [8–10, 26, 34, 35, 40]. The best conditions in the time homogeneous case seem
to be those of [8–10], Theorem 4.41, where pathwise uniqueness is proved to hold
if F/a ∈ L1

loc, |σ(x) − σ(y)|2 ≤ f (x)h(|y − x|) for all x, y with f/a ∈ L1
loc and∫

0+ h−1(u) du = +∞. Our result gives worse conditions on F , and our condition
on σ is slightly worse, since we need to take h(u) = u in (2.24). However, we
improve the conditions on σ of all the other references.

We point out that, in higher dimension as well, ellipticity is not always required
for bounds on the law. We give the classical example of SDEs in the phase space
R

2d

(2.25) dXt = Vt dt, dVt = F(t,Xt) dt + σ(t,Xt) dWt, (X0,V0) = ξ.

The joint law u(t, x, v) of the process (Xt ,Vt )t≥0 solves the kinetic equation

∂tu(t, x, v) + v · ∇xu(t, x, v) + F(t, x) · ∇vu(t, x, v)

= ∑
1≤i,j≤d

aij (t, x)
∂2u(t, x, v)

∂vi ∂vj

.
(2.26)

Equation (2.26) is in fact better behaved than (1.2) for rough coefficients as its
symplectic structure for instance guarantees that it satisfies a maximum princi-
ple for all measure-valued solutions that are limit of smooth solutions. In partic-
ular, for any initial data u0 ∈ L∞(R2d), there exists a measure-valued solution
u ∈ L∞(R+ ×R

2d) for σ and F as in the next result. This is true even though the
diffusion in (2.25) is degenerate (there is no diffusion in the x direction, and σ can
also be degenerate).

Hence in this situation, one may deduce as claimed Corollary 1.4 or the follow-
ing.

COROLLARY 2.23. Assume that σ ∈ L∞ ∩ L2
t,loc(H

1
x ) and F ∈ L1

t,loc(W
1,1
x ).

Assume also that u0 ∈ L∞. Then one has both existence of a strong solution to
(2.25) and pathwise uniqueness among all solutions with marginal distributions in
L∞

t,loc(L
∞
x ).

Note that other hypoelliptic situations or even subelliptic situations may lead
to a better integrability of the solution u to (1.2) than L1. Several examples are
given in [25], Section 4.5, each of which imply a corollary of our result in various
situations were σ is degenerate.

To conclude, let us observe that most of the previous results give strong ex-
istence for nondeterministic initial distributions. However, one can use the next
result to obtain strong existence and pathwise uniqueness for almost all determin-
istic initial conditions.
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PROPOSITION 2.24. Under the assumptions of either Corollary 2.16, Corol-
lary 2.21 or Corollary 2.22, for any complete filtered probability space
(�, (Ft )t≥0,P) equipped with a r-dimensional standard Brownian motion W ,
there is strong existence and pathwise uniqueness for (1.1) on (�, (Ft )t≥0,P,W)

for almost all deterministic initial condition ξ = x ∈ R
d .

The proofs of the previous results are organized as follows. We start in Section 3
with some simple technical proofs, including those of Theorems 2.2, 2.6 and 2.10,
Section 4 is then devoted to the proof of Theorem 2.13, Section 5 to the proof of
Theorem 2.15, Section 6 to the proof of Proposition 2.19, and Section 7 to the
proof of Proposition 2.24. The proof of Theorem 1.1 is given in the Appendix.

3. Useful technical results. The results and proofs presented in this section
are mostly easy extensions of well-known techniques, which we need in the fol-
lowing sections, and hence include here for the sake of completeness.

3.1. Pointwise difference estimates. We often need to estimate the difference
of the coefficients σ and F at two different points x and y during the proofs. We
collect here all the results which allow us to do so and that we later use. In all those
estimates, time is only a parameter and we accordingly omit the time variable in
most formulas.

We start by recalling the classical inequality (it is, for instance, a direct conse-
quence of [30], Theorem VII.1, and of basic properties of the Poisson Kernel).

LEMMA 3.1. Fix t ≥ 0 and assume that σ(t, ·) ∈ BV (Rd). Then for any
x, y ∈ R

d

(3.1)
∣∣σ(t, x) − σ(t, y)

∣∣ ≤ Cd

(
M|∇xσ |(t, x) + M|∇xσ |(t, y)

)|x − y|.

This next lemma provides an extension of (3.1) with the operator ML used in
the definition (2.13).

LEMMA 3.2. Fix t ≥ 0 and assume that F(t, ·) ∈ BV (Rd). For any x ∈ R
d ,

if h(t, x) < ∞ with h(t, x) = |F(t, x)| + ML∇F(t, x), then x is a Lebesgue point
of F . Then for any x, y ∈R

d

(3.2)
∣∣F(t, x) − F(t, y)

∣∣ ≤ Cd

(
h(t, x) + h(t, y)

)(|x − y| + 1

L

)
,

for some constant Cd that depends only on d .

REMARK 3.3. Note that inequalities (3.1) and (3.2) hold true for all x and y

and not only for almost every x and y. This is true if one chooses a natural repre-
sentative for the almost everywhere defined σ and F . This is done classically as
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follows: recall that a simple definition of a Lebesgue point is that, for any convolu-
tion kernel, Kε �F(x) has a unique limit as ε → 0. F is not continuous at x in that
case in general, only approximately continuous in the above sense. Note that this
definition is independent of the chosen representative for F . Classically, one then
chooses as the right representative of the almost everywhere defined function F at
x, the limit of Kε �F(x) as ε → 0. This only changes F on a negligible set since if
F ∈ BV then every point x is a Lebesgue point except on the jump set of F , which
is at most of dimension d − 1 (it is σ -finite for the Hausdorff measure Hd−1, see
[3]). As will appear in the proof, this representative satisfies (3.2) for all Lebesgue
points x, y. Since the inequality is obvious when h(t, x) = ∞ or h(t, y) = ∞, it is
also true when x or y is not a Lebesgue point of F .

In the sequel, we shall always assume that the functions F and σ are equal to
their natural representative as defined above.

We start with the proof of Lemma 3.2.

PROOF OF LEMMA 3.2. First, observe that by the definition of h, the result is
obvious if |x − y| ≥ 1. Assume now that |x − y| ≤ 1. We recall the lemma from
[16].

LEMMA 3.4. Assume F ∈ C1(Rd). There exists a constant C depending only
on d s.t. for any x, y ∈ R

d ,

(3.3)
∣∣F(x) − F(y)

∣∣ ≤ C

∫
B(x,y)

(
1

|x − z|d−1 + 1

|y − z|d−1

)
|∇F |(dz),

where B(x, y) denotes the ball of center (x + y)/2 and diameter |x − y|.

The first point is to extend inequality (3.3) to any F ∈ BVloc. Consider a se-
quence of smooth approximations Kε � F with Kε ≥ 0 a classical convolution
kernel with K(−x) = K(x) and support in B(0,1). At every Lebesgue point x of
F , one has that Kε �F → F and, therefore, if x and y are distinct Lebesgue points
apply inequality (3.3) to Kε � F and take the limit ε → 0 to find∣∣F(x) − F(y)

∣∣ = lim
ε→0

∣∣Kε � F(x) − Kε � F(y)
∣∣

≤ C lim sup
ε→0

∫
B(x,y)

(
1

|x − z|d−1 + 1

|y − z|d−1

)
|∇Kε � F |(dz).

We hence have to dominate the right-hand side. First, notice that since Kε ≥ 0,

|∇Kε � F |(z) =
∣∣∣∣∫ Kε(z − w)∇F(dw)

∣∣∣∣ ≤
∫

Kε(z − w)
∣∣∇F(dw)

∣∣
≤ Kε � |∇F |(z).
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Therefore, provided ε is small with respect to |x − y|, which we may always as-
sume as we are considering ε → 0, and since Kε has support in the ball of radius ε,
we have that ∫

B(x,y)

(
1

|x − z|d−1 + 1

|y − z|d−1

)
|∇Kε � F |(dz)

≤
∫
B̃(x,y)

Kε � φx,y(z)|∇F |(dz),

where B̃(x, y) denotes the ball of center (x + y)/2 and diameter 2|x − y| and with
φx,y(z) = 1

|x−z|d−1 + 1
|y−z|d−1 . Now observe that, since w−d+1 is integrable, one

has for all z ∈ R
d∫

Kε(z − w)w−d+1 dw ≤ C

(|z| + ε)d−1 ≤ C

|z|d−1 .

Therefore,

Kε � φx,y(z) ≤ Cφx,y(z).

On the other hand, since |∇F | is a positive measure, we have that∫
B̃(x,y)

Kε � φx,y(z)|∇F |(dz) ≤ C

∫
B̃(x,y)

φx,y(z)|∇F |(dz).

Hence we have proved that for any x, y that are Lebesgue points of F ,

(3.4)
∣∣F(x) − F(y)

∣∣ ≤ C

∫
B̃(x,y)

(
1

|x − z|d−1 + 1

|y − z|d−1

)
|∇F |(dz).

On the other hand, for F ∈ BVloc the set of non-Lebesgue points can be defined
(see [2] and the references therein) as the set of x s.t.:

lim inf r−d+1
∫
B(x,r)

∣∣∇F(dz)
∣∣ > 0.

At such a point x, one has∫
B(x,r)

|∇F |(dz)

|x − z|d−1 ≥ ∑
n≥| log2 r|

2n(−d+1)
∫

2−n−1≤|x−z|<2−n
|∇F |(dz) = +∞,

and inequality (3.4) is trivial. As h(t, x) = +∞, if∫
B(x,r)

|∇F |(dz)

|x − z|d−1 = +∞,

for some r > 0 then this also implies that x is necessarily a Lebesgue point of F

if h(t, x) < ∞. Now |∇F | ≤ |∇F |s + √
logLλ + |∇F |a1|∇F |a≥√

logL where λ is
Lebesgue’s measure on R

d , where |∇F |a and |∇F |s are the absolutely continuous
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and singular parts of the measure |∇F |, and where we identified |∇F |a with its
density w.r.t. λ in the indicator function. Thus, if 1/L ≤ |x − y| ≤ 1,

1

|x − y|
∫
B̃(x,y)

|∇F |(dz)

|x − z|d−1

≤ C

(√
logL +

∫
B(x,2)

|∇F |a(z)1|∇F |≥√
logL dz + |∇F |s(dz)

(1/L + |x − z|)|x − z|d−1

)
,

where B(x,2) is the ball of radius 2 centered at x and where we used that if z ∈
B̃(x, y) then |x − z| + 1/L ≤ 3|x − y|. Similarly, if |x − y| ≤ 1/L,∫

B̃(x,y)

|∇F |(dz)

|x − z|d−1 dz

≤ C

L

(√
logL +

∫
B(x,2)

|∇F |a(z)1|∇F |≥√
logL dz + |∇F |s(dz)

(1/L + |x − z|)|x − z|d−1

)
,

where we used that if z ∈ B(x, y), then |x − z| + 1/L ≤ 2/L. By the definition of
ML, this concludes the proof. �

PROOF OF LEMMA 3.1. This is a classical result for which we can give an
easy proof by applying the preliminary work that we have just done. In particular,
we recall that we have proved that estimate (3.4) holds for any F ∈ BV at any
points x and y. Applying this inequality to σ , we obtain that for any x, y,∣∣σ(x) − σ(y)

∣∣ ≤ C

∫
B̃(x,y)

(
1

|x − z|d−1 + 1

|y − z|d−1

)
|∇σ |(dz).

Now for a given x decompose∫
B̃(x,y)

|∇σ |(dz)

|x − z|d−1 =
∞∑

k=0

∫
2−k≤ |x−z|

|x−y|≤2−k+1

1

|x − z|d−1 |∇σ |(dz)

≤
∞∑

k=0

2k(d−1)|x − y|1−d
∫

|x−z|
|x−y|≤2−k+1

|∇σ |(dz)

≤
∞∑

k=0

2−k+d |x − y|M|∇σ |(x) ≤ 2d+1|x − y|M|∇σ |(x),

by the definition of the maximal function. This concludes the proof. �

Let us turn now to our last bound which uses ∂
1/2
x σ .

LEMMA 3.5. Fix t ≥ 0 and assume that σ(t, ·) ∈ L1
loc and ∂

1/2
x σ (t, ·) is a

locally finite Radon measure. Then for any x, y ∈ R
d ,∣∣σ(t, x) − σ(t, y)

∣∣ ≤ (
M

∣∣∂1/2
x σ

∣∣(t, x) + M
∣∣∂1/2

x σ
∣∣(t, y)

)|x − y|1/2.
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PROOF. By the definition of ∂
1/2
x σ ,

σ(x) = K � ∂1/2
x σ,

for the convolution kernel K with FK = |ξ |−1/2, which implies that

(3.5)
∣∣K(x)

∣∣ ≤ C|x|d−1/2,
∣∣∇K(x)

∣∣ ≤ C|x|d+1/2.

Now simply compute∣∣σ(x) − σ(y)
∣∣ ≤

∫
|z−x|≥2|x−y|

∣∣K(x − z) − K(y − z)
∣∣∣∣∂1/2

x σ
∣∣(dz)

+
∫
|z−x|≤2|x−y|

(∣∣K(x − z)
∣∣ + ∣∣K(y − z)

∣∣)∣∣∂1/2
x σ

∣∣(dz).

Denote |x − y| = r . One has by (3.5)∫
|z−x|≤2r

∣∣K(x − z)
∣∣∣∣∂1/2

x σ
∣∣(dz) ≤ C

∑
n≥−1

∫
|z−x|≤2−nr

2n(d−1/2)

rd−1/2

∣∣∂1/2
x σ

∣∣(dz)

≤ C
∑

n≥−1

2−n/2r1/2M
∣∣∂1/2

x σ
∣∣(x)

= Cr1/2M
∣∣∂1/2

x σ
∣∣(x).

Since |z − x| ≤ 2r implies that |z − y| ≤ 3r , one has the same inequality:∫
|z−x|≤2r

∣∣K(y − z)
∣∣∣∣∂1/2

x σ
∣∣(dz) ≤ Cr1/2M

∣∣∂1/2
x σ

∣∣(y).

As for the last term, first note that if |x − z| ≥ 2|x − y| then |y − z| ≥ |x − z|/2.
Hence by (3.5) if |x − z| ≥ 2|x − y|∣∣K(x − z) − K(y − z)

∣∣ ≤ C
|x − y|

|x − z|d+1/2 .

Therefore, ∫
|z−x|≥2|x−y|

∣∣K(x − z) − K(y − z)
∣∣∣∣∂1/2

x σ
∣∣(dz)

≤ ∑
n≥1

∫
|z−x|≥2nr

C
r

(2nr)d+1/2

∣∣∂1/2
x σ

∣∣(dz)

≤ Cr1/2
∑
n≥1

2−n/2M
∣∣∂1/2

x σ
∣∣(x)

≤ Cr1/2M
∣∣∂1/2

x σ
∣∣(x).

Summing up the three estimates concludes the proof. �
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3.2. Proof of Theorems 2.2, 2.6 and 2.10.

PROOF OF THEOREM 2.2. First of all, ‖ · ‖H 1(v) is indeed a norm on H 1(v).
By definition, it is nonnegative and finite on H 1(v). Next, if λ > 0 then M(|λf |) =
λM|f |, and thus ‖λf ‖H 1(v) = |λ|‖f ‖H 1(v). The triangle inequality is also trivially
satisfied as M(f + g) ≤ Mf + Mg.

Finally, if ‖f ‖H 1(v) = 0 then M|f | = 0 on the support of v which contains (at
least) one point x0 since v is a probability measure. But now M|f |(x0) = 0 implies
that f = 0 by the definition of the maximal function.

We now prove (2.2). Consider a sequence fn in H 1(v) s.t. fn converges to some
f in the sense of distributions and assume (possibly restricting to a subsequence)

sup
n

‖fn‖H 1(v) < ∞.

(Otherwise, there is nothing to prove.)
We notice that fn is hence uniformly bounded in BVloc. Indeed for any R > 0,

and any x ∈ B(0,R)

|∇fn|(B(0,R)
) ≤ (2R)dM|∇fn|(x),

so that by Cauchy–Schwarz,

(3.6) |∇fn|(B(0,R)
) ≤ 2dRd

(
∫
B(0,R) v(dx))1/2 ‖fn‖H 1(v).

As fn → f in D′ then f belongs to BVloc as well. Therefore, M|∇f | is well
defined.

On the other hand, ∇fn converges to ∇f in D′. Note that, for all ϕ ∈ C∞
c (Rd)

with ϕ ≥ 0, the map μ �→ ∫
ϕ|μ| is convex and continuous on the set of locally

finite Radon measures on R
d for the strong topology of total variation. Hence it is

lower semicontinuous for the weak-* topology, and so∫
ϕ|∇f |(dx) ≤ lim inf

∫
ϕ|∇fn|(dx).

Now fix any c > 1 and any r > 0 and note that the previous inequality implies that

1

|B(0, r)|
∫
B(0,r)

|∇f |(x + dz) ≤ 1

|B(0, r)| lim inf
∫
B(0,cr)

|∇fn|(x + dz)

≤ cd lim infM|∇fn|(x).

Taking now the supremum in r , we deduce that for any c > 1

M|∇f |(x) ≤ cd lim infM|∇fn|(x).

Apply now Fatou’s lemma and let c go to 1 to deduce∫ (
M|∇f |(x)

)2
u(dx) ≤ lim inf

∫ (
M|∇fn|(x)

)2
u(dx).
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The same steps can be performed with M|fn| and M|f | thus proving that f ∈
H 1(v) and that (2.2) holds.

Let us now prove that H 1(v) is complete which concludes the proof that H 1(v)

is a Banach space. Accordingly, consider any Cauchy sequence fn in H 1(v).
The sequence fn is then also Cauchy in BVloc. Indeed using (3.6) for fn − fm,

we obtain that for any R > 0

∣∣∇(fn − fm)
∣∣(B(0,R)

) ≤ 2dRd

(
∫
B(0,R) v(dx))1/2 ‖fn − fm‖H 1(v).

Therefore, there exists f ∈ BVloc s.t. fn converges toward f in BVloc. In particular,
fn converges to f in D′ and we may use (2.2) a first time to deduce that f ∈ H 1(v).

It remains to show that ‖fn − f ‖H 1(v) → 0. For that, fix n and consider the
sequence fn − fm in m. This sequence converges in the sense of distribution to
fn − f . We conclude using again (2.2) that

‖fn − f ‖H 1(v) ≤ lim inf
m→∞ ‖fn − fm‖H 1(v).

Let us now turn to the last part of Theorem 2.2. We first recall that if μ is a finite,
nonnegative Radon measure, then Mμ is lower semicontinuous. This follows from
similar arguments to the ones above: Consider any xn → x, then for c > 1

1

|B(0, r)|
∫
B(0,r)

μ(x + dz) ≤ 1

|B(0, r)| lim inf
∫
B(0,cr)

μ(xn + dz)

≤ cd lim infMμ(xn).

The lower semicontinuity of Mμ then follows taking the supremum in r and then
the infimum in c.

Denote now g = (M|∇f |)2 + (M|f |)2, g is a nonnegative, Borel function with
values in R+ ∪ {+∞}. By the previous remark, it is also lower semicontinuous.
Note that for any positive measure μ∫

g dμ =
∫ ∞

0

∫
1g(x)>ξμ(dx)dξ.

Now assume vn → v in the tight topology of P 1. Note that for any open set O∫
O

dv ≤ lim inf
∫
O

dvn.

Take O = {g(x) > ξ} which is open by the lower semicontinuity of g. Therefore,
Fatou’s lemma entails ∫

g dv ≤ lim inf
∫

g dvn,

which completes the proof of Theorem 2.2. �
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PROOF OF THEOREM 2.6. The proof is nearly identical to that of Theo-
rem 2.2, and for this reason, we omit it here. The only difference is that the space
BV is replaced by the space of L1

loc functions f s.t. ∂
1/2
x f is a locally finite mea-

sure. �

PROOF OF THEOREM 2.10. The first part of the proof concerning the lower
semicontinuity follows exactly the same steps as the proof of Theorem 2.2. One
uses the same intermediate control through the BV norm as, for all R,L ≥ 1,

ML|∇f |(x0)

≥
√

logL

+ 1

Rd−1(R + L−1)

∫
B(0,R)

(|∇af |(z)1|∇af |(z)≥√
logL dz + |∇sf |(dz)

)
≥ 1

C
√

L(1 + Rd)

∫
B(0,R)

|∇f |(dz).

One also has the same type of lower semicontinuity properties as for instance if
fn → f in the sense of distribution for fn a sequence uniformly bounded in BVloc
then for any L′ < L

ML′∇f (x) ≤ lim inf
n

ML∇fn(x).

Taking the supremum over L leads to (2.12) as φ is continuous.
We skip the rest of the details for this first part and instead focus on the connec-

tion with W 1,1 which is the main novel feature of Wφ,weak.
By contradiction, assume that f ∈ Wφ,weak(v) and v ≥ 1/C over � but that

f /∈ W 1,1(B(x0, r)) for some ball s.t. B(x0,2r) ⊂ �. Since f ∈ BVloc, it implies
that the singular part |∇sf | does not vanish on B(x0, r). On the other hand,∫

Rd
ML∇f v(dx) ≥ 1

C

∫∫
B(x0,2r)2

|∇sf |(dz)

(L−1 + |z − x|)|z − x|d−1 dx.

Define the kernel

KL = CL

1|x|≤2r

(L−1 + |x|)|x|d−1 ,

with CL s.t. ‖KL‖L1 = 1. Observe that KL is a standard approximation of the
identity by convolution so in particular

lim inf
L→∞

∫
B(x0,2r)

KL �
(|∇sf |)dx ≥

∫
B(x0,r)

|∇sf |(B(x0, r)
)
> 0.

As CL ∼ logL, this has for consequence that there exists C > 0 s.t. for L large
enough ∫

B(x0,2r)2

|∇sf |(dz)

(L−1 + |z − x|)|z − x|d−1 dx ≥ logL

C
.
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Therefore,

‖f ‖Wφ,weak(v) ≥ 1

C
sup
L

φ(L)

L
= +∞,

giving the desired contradiction.
Reciprocally, assume that v ≤ C on � and that f ∈ W 1,1(K) compactly sup-

ported in K ⊂ �. First, by Sobolev embedding, f and hence Mf belong to Lp for
some p > 1 and Mf ∈ L∞(�c). Therefore,∫

M|f |(x)v(dx) < ∞.

Then for x /∈ �

ML∇f (x) ≤
√

logL + 1

d(x,K)d

∫
K

∣∣∇f (z)
∣∣dz.

As a consequence for any φ satisfying (2.11), there exists some finite constant Cφ

s.t.

‖f ‖Wφ,weak ≤ Cφ + C sup
L

φ(L)

L logL

∫
�

ML∇f (x) dx.

Now decompose ∇f in level sets by defining for all n ∈ Z

ωn = {
z ∈ K,2n ≤ ∣∣∇f (z)

∣∣ < 2n+1}
.

Then∫
�

ML∇f (x) dx ≤ |�|
√

logL + ∑
n≥log2 L−1

∫∫
�×K

2n+11z∈ωn dz dx

(L−1 + |z − x|)|z − x|d−1

≤ |�|
√

logL + ∑
n≥log2 L−1

2n+1|ωn| logL.

Since ∇f ∈ L1, one has
∑

2n|ωn| < ∞, and thus

sN = ∑
n≥N

2n|ωn| → 0 as N → ∞.

We can now define an appropriate φ: Choose any smooth function s.t. φ(x)/x is
nondecreasing and

φ
(
2N+1) = 2N+1 min

(
N1/4, s−1

N

)
.

Then φ satisfies (2.11) while

sup
L

φ(L)

L logL

∫
�

ML∇f (x) dx ≤ 2 sup
N

φ(2N+1)

2N
sN ≤ 4,

therefore concluding that f ∈ Wφ,weak(v). �
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4. Proof of Theorem 2.13. We use two types of estimates; one is based on an
explicit quantitative estimate which generalizes the one in [5] for ordinary differen-
tial equations and one which generalizes the local time which is used in dimension
1 in the classical approach [8–10, 26, 34, 35]. We use the first quantitative estimate
to prove existence and the second one to prove uniqueness (though with suitable
modifications any one could be used for both existence and uniqueness).

The first method is more precise but more complicated than the second, which
makes use of a similar argument as in [28, 39].

4.1. Existence. We consider the sequence of solutions to the regularized prob-
lem (1.3), and assume it satisfies the assumptions of Theorem 2.13. The proof is
based on estimates on the expectation of the family of quantities

(4.1) Q(ε)
nm(t) = log

(
1 + |Xn

t − Xm
t |2

ε2

)
, ε ∈ (0,1], n,m ≥ 1,

given in the next lemma.

LEMMA 4.1. There exists a constant C such that, for all 0 < ε ≤ 1 and
n,m ≥ 1,

(4.2) sup
t∈[0,T ]

E
(
Q(ε)

nm(t)
) ≤ C

(
1 + | log ε|η̃(ε)

) + C
η(n,m)

ε2 ,

where η(n,m) → 0 when n,m → +∞ and η̃(ε) := (εφ(ε−1))−1 → 0
when ε → 0.

PROOF. Note that∣∣∇(
log

(
1 + |x|2/ε))∣∣ =

∣∣∣∣ 2x

ε2 + |x|2
∣∣∣∣ ≤ C

ε + |x|
and ∣∣∇2(

log
(
1 + |x|2/ε))∣∣ =

∣∣∣∣∇(
2x

ε2 + |x|2
)∣∣∣∣ ≤ C

ε2 + |x|2 .

By Itô’s formula, for any C2
b function f ,

E
(
f

(
Xn

t − Xm
t

)) =f (0) + 1

2

∫ t

0
E

[∇2f
(
Xn

s − Xm
s

)(
σnσ

∗
n

(
Xn

s

)
+ σmσ ∗

m

(
Xm

s

) − σn

(
Xn

s

)
σ ∗

m

(
Xm

s

) − σm

(
Xm

s

)
σ ∗

n

(
Xn

s

))]
ds

+
∫ t

0
E

(∇f
(
Xn

s − Xm
s

) · (
Fn

(
s,Xn

s

) − Fm

(
s,Xm

s

)))
ds.
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Since supn(‖σn‖∞ + ‖Fn‖∞) < +∞, we deduce

E
(
f

(
Xn

t − Xm
t

))
≤ f (0) + 1

2

∫ t

0
E

[∣∣∇2f
(
Xn

s − Xm
s

)∣∣(∣∣σ (
Xn

s

) − σ
(
Xm

s

)∣∣2
+ sup

k

‖σk‖L∞
(∣∣σn

(
Xn

s

) − σ
(
Xn

s

)∣∣ + ∣∣σm

(
Xm

s

) − σ
(
Xm

s

)∣∣))]
ds

+
∫ t

0
E

(∣∣∇f
(
Xn

s − Xm
s

)∣∣∣∣Fn

(
s,Xn

s

) − Fm

(
s,Xm

s

)∣∣)ds.

(4.3)

Hence

E
(
Q(ε)

nm(t)
) ≤ C

∫ t

0
E

( |σ(s,Xn
s ) − σ(s,Xm

s )|2
ε2 + |Xn

s − Xm
s |2

)
ds + C

η(n,m)

ε2

+ C

∫ t

0
E

( |F(s,Xn
s ) − F(s,Xm

s )|
ε + |Xn

t − Xm
t |

)
ds,

(4.4)

with C a constant independent of n and ε and η(n,m) → 0 as n,m → ∞ by
Assumption (2.17).

Since ‖σ‖H 1
T (un) + ‖σ‖H 1

T (um) < ∞, denoting h = M|∇σ |,∫ T

0

∫
h2(t, x)

(
un(t, dx) + um(t, dx)

)
dt ≤ ‖σ‖H 1

T (un) + ‖σ‖H 1
T (um) ≤ C,

with C independent of n, m and ε. Now it follows from (3.1) that∫ t

0
E

( |σ(s,Xn
s ) − σ(s,Xm

s )|2
ε2 + |Xn

s − Xm
s |2

)
ds ≤ C

∫ t

0
E

(
h2(

s,Xn
s

) + h2(
s,Xm

s

))
ds,

and so ∫ t

0
E

( |σ(s,Xn
s ) − σ(s,Xm

s )|2
ε2 + |Xn

s − Xm
s |2

)
ds ≤ C.

We now turn to the term involving F and introduce the corresponding h = |F | +
M1/ε∇F .

By Lemma 3.2,∫ t

0
E

( |F(s,Xs
n) − F(s,Xs

m)|
ε + |Xs

n − Xs
m|

)
ds ≤ C

∫ t

0

∫
h(s, x)

(
un(s, x) + um(s, x)

)
dx ds,

and by (2.13),∫ t

0

∫
h(s, x)

(
un(s, x) + um(s, x)

)
dx ds

≤ 1/ε log(1/ε)

φ(1/ε)

(‖F‖
W

φ,weak
T (un)

+ ‖F‖
W

φ,weak
T (um)

) ≤ C
| log ε|

εφ(ε−1)
.
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Note that we used the inequality |F | ≤ M|F | a.e., which follows from Lebesgue’s
points theorem since BVloc(R

d) ⊂ L1
loc(R

d). The function η̃(ε) = (εφ(ε−1))−1 →
0 as ε → 0 since φ is superlinear.

Combining the previous inequalities, we obtain (4.2). �

Fix p > 1. The next step consists in deducing from Lemma 4.1 that (Xn
t −ξ) is a

Cauchy sequence in Lp(�,L∞([0, T ])). Since Fn and σn are uniformly bounded,
it is standard to deduce from the Burkholder–Davis–Gundy inequality that Xn

t − ξ

are uniformly bounded in Lp(�,L∞([0, T ])) for all p > 1, so we only need to
prove the next lemma.

LEMMA 4.2. For all p > 1,

(4.5) E

(
sup

t∈[0,T ]
∣∣Xn

t − Xm
t

∣∣p)
→ 0 as n,m → +∞.

PROOF. For fixed t , for any ε and L s.t. 0 < ε < L,

E
(∣∣Xn

t − Xm
t

∣∣p) ≤ E
(∣∣Xn

t − Xm
t

∣∣p; ∣∣Xn
t − Xm

t

∣∣ ≥ L
) + εp/2

+ Lp
P

(∣∣Xn
t − Xm

t

∣∣ ≥ √
ε
)
.

Note that

(4.6) E
(∣∣Xn

t −Xm
t

∣∣p; ∣∣Xn
t −Xm

t

∣∣ ≥ L
) ≤ 1

L

(
E

(∣∣Xn
t − ξ

∣∣p+1)+E
(∣∣Xm

t − ξ
∣∣p+1))

.

Now the inequalities

sup
n≥1,t∈[0,T ]

E
(∣∣Xn

t − ξ
∣∣p+1)

< +∞

and

P
(∣∣Xn

t − Xm
t

∣∣ ≥ √
ε
) ≤ EQ

(ε)
nm(t)

| log ε| ,

imply that

E
(∣∣Xn

t − Xm
t

∣∣p) ≤ C

[
1

L
+ εp/2 + Lp

| log ε|
(

1 + | log ε|η̃(ε) + η(n,m)

ε2

)]
.

Taking, for example, ε2 = η(n,m) and L = ( 1
| log ε| + η̃(ε))−1/2p , one concludes

that

sup
t∈[0,T ]

E
(∣∣Xn

t − Xm
t

∣∣p) → 0 as n,m → +∞.

In order to pass the supremum inside the expectation, it suffices to observe
that the computation of (4.3–4.4) in the proof of Lemma 4.1 can be applied to
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|An
t∧τ − Am

t∧τ |2 ∨ |Mn
t∧τ − Mm

t∧τ |2, where τ is any stopping time and Xn
t =

ξ + An
t + Mn

t is Doob’s decomposition of the semimartingale Xn
t , that is,

An
t =

∫ t

0
F

(
s,Xn

s

)
ds and Mn

t =
∫ t

0
σ

(
s,Xn

s

)
dWs.

Note that to be fully rigorous, one first needs to regularize the supremum ∨.
Instead of (4.4), we obtain

E log
(

1 + |An
t∧τ − Am

t∧τ |2 ∨ |Mn
t∧τ − Mm

t∧τ |2
ε2

)

≤ C

∫ t

0
E

( |σ(s,Xn
s ) − σ(s,Xm

s )|2
ε2 + |An

t − Am
t |2 ∨ |Mn

t − Mm
t |2

)
ds + C

η(n,m)

ε2

+ C

∫ t

0
E

( |F(s,Xn
s ) − F(s,Xm

s )|
ε + |An

t − Am
t | ∨ |Mn

t − Mm
t |

)
ds,

or

E log
(

1 + |An
t∧τ − Am

t∧τ |2 ∨ |Mn
t∧τ − Mm

t∧τ |2
ε2

)

≤ C

∫ t

0
E

( |σ(s,Xn
s ) − σ(s,Xm

s )|2
ε2 + 1

4 |Xn
s − Xm

s |2
)

ds + C
η(n,m)

ε2

+ C

∫ t

0
E

( |F(s,Xn
s ) − F(s,Xm

s )|
ε + 1

2 |Xn
t − Xm

t |
)

ds.

Therefore, the same computation as in Lemma 4.1 gives

sup
t∈[0,T ],

τ stopping time

E
(∣∣An

t∧τ − Am
t∧τ

∣∣p ∨ ∣∣Mn
t∧τ − Mm

t∧τ

∣∣p) → 0 as n,m → +∞.

Since p > 1, Doob’s inequality entails

E

(
sup

t∈[0,T ]
∣∣Mn

t − Mm
t

∣∣p)
→ 0 as n,m → +∞.

Fix η > 0, and fix n0 such that

sup
t∈[0,T ],

τ stopping time

E
(∣∣An

t∧τ − Am
t∧τ

∣∣p) ≤ η

for all n,m ≥ n0. For all M > 0, let τ = inf{t ≥ 0 : |An
t − Am

t | ≥ M}. Then

P

(
sup

t∈[0,T ]
∣∣An

t − Am
t

∣∣ ≥ M
)

= P(τ ≤ T ) ≤ η

Mp
.
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Now, for all 1 < q < p,

E

(
sup

t∈[0,T ]
∣∣An

t − Am
t

∣∣q)
= q

∫ +∞
0

xq−1
P

(
sup

t∈[0,T ]
∣∣An

t − Am
t

∣∣ ≥ x
)
dx

≤ q

∫ +∞
0

xq−1
(

η

xp
∧ 1

)
dx = pηq/p

p − q
.

Therefore,

E

(
sup

t∈[0,T ]
∣∣An

t − Am
t

∣∣q)
→ 0 as n,m → +∞,

which concludes the proof of (4.5). �

From the fact that (Xn − ξ) is a Cauchy sequence in Lp(�,L∞([0, T ])), it is
standard to deduce the almost sure convergence for the L∞ norm of a subsequence
of (Xn

t , t ∈ [0, T ])n to a process (Xt , t ∈ [0, T ]) such that (Xt − ξ, t ∈ [0, T ]) ∈
Lp(�,L∞([0, T ])) for all p > 1. Since the convergence holds for the L∞ norm,
the process X is a.s. continuous and adapted to the filtration (Ft )t≥0.

Since un converges to u in the weak topology of M1, we have for all bounded
continuous function f on [0, T ] ×R

d

E

∫ T

0
f (t,Xt) dt =

∫
Rd

∫ T

0
f (t, x)u(dt, dx),

so u(t, dx) is the law of Xt for almost all t .
Defining for all t ∈ [0, T ],

Yt :=
∫ t

0
F(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs,

it only remains to check that Yt = Xt − ξ for all t ∈ [0, T ] a.s. As

Xn
t − ξ =

∫ t

0
Fn

(
s,Xn

s

)
ds +

∫ t

0
σn

(
s,Xn

s

)
dWs,

one has Yt = Xt provided that∫ t

0
E

(∣∣Fn

(
s,Xn

s

) − F(s,Xs)
∣∣ + ∣∣σn

(
s,Xn

s

) − σ(x,Xs)
∣∣2)

ds → 0.

From assumption (2.17) and the L∞ bounds on F , σ and σn, this is implied by:
For any fixed ε > 0,∫ T

0

[
P

(∣∣F (
s,Xn

s

) − F(s,Xs)
∣∣ > ε

) + P
(∣∣σ (

s,Xn
s

) − σ(x,Xs)
∣∣ > ε

)]
ds → 0.

We prove it for σ , the argument for F being fully similar.
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By Corollary 2.4,∫ T

0

∫
Rd

(
M

∣∣∇σ(t, x)
∣∣)2(

u(t, dx) + un(t, dx)
)
dt

≤ ‖σ‖H 1
T (un) + lim inf‖σ‖H 1

T (un) ≤ C.

(4.7)

Now by (3.1),

P
(∣∣σ (

s,Xn
s

) − σ(s,Xs)
∣∣ > ε

)
≤ P

((
M|∇σ |(s,Xn

s

) + M|∇σ |(s,Xs)
)
> ε/

∣∣Xn
s − Xs

∣∣)
≤ P

(∣∣Xn
s − Xs

∣∣ > ε2) + P

(
M|∇σ |(s,Xn

s

) ≥ 1

2ε

)
+ P

(
M|∇σ |(s,Xs) ≥ 1

2ε

)
,

and one easily concludes from (4.7) and the fact that |Xn
s −Xs | → 0 almost surely.

4.2. Uniqueness. Consider two solutions X and Y satisfying the assumptions
of point (ii) in Theorem 2.13. Define a family of functions (Lε)ε in C∞(Rd) sat-
isfying

Lε(x) = 1 if |x| ≥ ε, Lε(x) = 0 if |x| ≤ ε/2,

ε‖∇Lε‖L∞ + ε2∥∥∇2Lε

∥∥
L∞ ≤ C,

with C independent of ε, and Lε(x) ≥ Lε′(x) for all ε ≤ ε′ and x ∈ R
d . Use Itô’s

formula,

E
(
Lε(Xt − Yt )

) = L(0) +
∫ t

0
E

(∇Lε(Xs − Ys) · (
F(s,Xs) − F(s,Ys)

))
ds

+
∫ t

0
E

(∇2Lε(Xs − Ys)(Xs)

: (
σσ ∗ + σσ ∗(Ys) − σ(Xs)σ

∗(Ys) − σ(Ys)σ
∗(Xs)

))
ds.

Hence

E
(
Lε(Xt − Yt )

) ≤ C

∫ t

0
E

(
1ε/2≤|Xs−Ys |≤ε

( |σ(s,Xs) − σ(s, Ys)|2
ε2

+ |F(s,Xs) − F(s,Ys)|
ε

))
ds.

Now denote h = M|∇σ | so that∫ T

0

∫ ∣∣h(t, x)
∣∣2(

uX(t, dx) + uY (t, dx)
)
dt ≤ C < ∞.
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Define as well h̃ε = |F | + M1/ε∇F s.t.∫ T

0

∫
h̃ε(uX + uY )dx ds ≤ C| log ε|

εφ(ε−1)
.

The corresponding computation involving h̃ε is now tricky, precisely because of
the dependence on ε in h̃ε . To simplify it, we will use a slightly different definition.

First, note that, as observed in Section 2.1.3, one can always assume that φ

satisfies (2.11), and so φ(ξ)/ξ is a nondecreasing function which grows note faster
than log ξ . In particular, there exists a constant C > 0 s.t.

1

C
εφ

(
ε−1) ≤ φ(ξ)

ξ
≤ Cεφ

(
ε−1) ∀ξ ∈ [

ε−1/2, ε−1]
.

Consider the partition of (0,1) = ⋃
i Ii where the Ii = [ai, bi) are disjoint with

bi = √
ai (except for I0 := [1/2,1)). In particular, |Ii | := bi − ai satisfies

|Ii | ∼ √
ai when i → +∞.

Now for any ε ∈ Ii , choose h̄ε = h̃ai
. One has∫ T

0

∫
h̄ε(t, x)

(
uX(t, x) + uY (t, x)

)
dx dt ≤ C

| log ε|
εφ(ε)

≤ C′ | logbi |
biφ(b−1

i )
.

Now by (3.1) and Lemma 3.2,

E
(
Lε(Xt − Yt )

) ≤ C

∫ t

0
E

[(
h2(s,Xs) + h2(s, Ys)

)
1ε/2≤|Xt−Yt |≤ε

]
ds

+ C

∫ t

0
E

[(
h̄ε(s,Xs) + h̄ε(s, Ys)

)
1ε/2≤|Xt−Yt |≤ε

]
ds.

Denote

αk =
∫ t

0
E

[(
h2(s,Xs) + h2(s, Ys)

)
12−k−1≤|Xt−Yt |≤2−k

]
ds.

Note that ∑
k

αk ≤
∫ t

0
E(

(
h2(s,Xs) + h2(s, Ys)

)
ds

=
∫ t

0

∫
h2(s, x)

(
uX(dx, s) + uY (dx, s)

)
ds ≤ C.

Therefore, αk → 0 as k → +∞.
Denote similarly

βk =
∫ t

0
E

((
h̄2−k (s,Xs) + h̄2−k (s, Ys)

)
12−k−1≤|Xt−Yt |≤2−k

)
ds.
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Denote Ji = {k, [2−k−1,2−k) ⊂ Ii}. Note that |Ji | ≥ 1
C

| logbi | (in fact, |Ji | =
| logbi |
2 log 2 ), and since h̄ε is fixed on ε ∈ Ii ,

1

|Ji |
∑
k∈Ji

βk ≤ 1

|Ji |
∫ t

0

∫
h̄bi

(s, x)
(
uX(dx, s) + uY (dx, s)

)
ds

≤ C

biφ(b−1
i )

→ 0 as i → ∞.

Therefore, βnk
→ 0 as k → +∞ for some subsequence nk → +∞. Consequently,

since the sequence of functions Lε is nonincreasing,

sup
t∈[0,T ]

E
(
Lε(Xt − Yt )

) → 0 as ε → 0.

On the other hand,

E
(
Lε(Xt − Yt )

) ≥ P
(|Xt − Yt | > ε

)
,

and by taking the limit ε → 0, we deduce that for any t ∈ [0, T ]
P

(|Xt − Yt | > 0
) = 0.

Since Xt and Yt have a.s. continuous paths, we finally deduce that

P

(
sup

t∈[0,T ]
|Xt − Yt | = 0

)
= 1.

5. Proof of Theorem 2.15. This proof follows exactly the same steps as the
general multidimensional case given in Section 4. The only differences are the
functionals used and accordingly we skip the other parts of the proof which are
identical.

Technically, the reason why the one-dimensional case is so special is that |x| is
linear except at x = 0 (see Section 5.2).

5.1. Existence. For d = 1, we replace the functional Q
(ε)
nm by

Q̃(ε)
nm(t) = e−U

n,m
t

∣∣Xn
t − Xm

t

∣∣ log
(

1 + |Xn
t − Xm

t |2
ε2

)
,

for U
n,m
t a nonnegative stochastic process with bounded variation satisfying

dU
n,m
t = λ

n,m
t dt with λ

n,m
t an adapted process (measurable function of a con-

tinuous, adapted process) to be chosen later.
Note that f (x) = |x| log(1 + |x|2/ε2) satisfies

∣∣f ′(x)
∣∣ ≤ 4 log

(
1 + |x|2

ε2

)
and

∣∣f ′′(x)
∣∣ ≤ C

ε + |x| .
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Therefore, by Itô’s formula,

E
(
Q̃(ε)

nm(t)
) ≤ C + C

∫ t

0
E

( |σ(Xn
s ) − σ(Xm

s )|2
ε + |Xn

s − Xm
s |

)
ds + η(n,m)

ε

+
∫ t

0
E

(∣∣Xn
s − Xm

s

∣∣ log
(
1 + ∣∣Xn

s − Xm
s

∣∣2/ε2)
×

(
4
|F(s,Xn

s ) − F(s,Xm
s )|

|Xn
s − Xm

s | − λ
n,m
t

))
ds.

The first term is treated identically as for the multidimensional case. The only
difference here is that the careful choice of Q̃

(ε)
nm improved the exponent of

|Xn
s − Xm

s | to 1 instead of 2 in the denominator. Therefore, this term can be

controlled with the H
1/2
T (un,m) norm of σ by using Lemma 3.5 instead of esti-

mate (3.1).
The drawback is that the term with F must be dealt with differently. We intro-

duce h̃ = M|∇F | s.t.∫ T

0

∫
Rd

h̃(t, x)
(
um(t, dx) + un(t, dx)

)
dt ≤ C.

We then choose

λ
n,m
t = 4

(
h̃
(
t,Xm

s

) + h̃
(
t,Xm

t

))
.

Therefore, we deduce that

sup
t≤T

E
(
Q̃(ε)

nm(t)
) ≤ C + η(n,m)

ε
.

Using a similar method as in Theorem 2.13, we write for constants L and K to be
chosen later

E
(∣∣Xn

t − Xm
t

∣∣p) ≤ E
(∣∣Xn

t − Xm
t

∣∣p; ∣∣Xn
t − Xm

t

∣∣ ≥ L
) + 1

| log ε|p/2

+ P
(
U

n,m
t ≥ logK

)
+ Lp

P

(∣∣Xn
t − Xm

t

∣∣ ≥ 1√| log ε| ;U
n,m
t ≤ logK

)
.

Note that

E
(
U

n,m
t

) = E

(∫ t

0
λn,m

s ds

)
≤ 4

∫ t

0
h̃(s, x)

(
un(s, dx) + um(s, dx)

)
ds ≤ C.

Consequently

P
(
U

n,m
t ≥ log(K)

) ≤ C

logK
.
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In addition, for ε small enough,

P

(∣∣Xn
t − Xm

t

∣∣ ≥ 1√| log ε| ;U
n,m
t ≤ logK

)
≤ KEQ̃

(ε)
nm(t)

2
√| log ε| .

Therefore, using (4.6) as in the proof of Lemma 4.2,

E
(∣∣Xn

t − Xm
t

∣∣p) ≤ C

(
1

L
+ 1

| log ε|p/2 + 1

logK
+ LpK(1 + η(n,m)

ε
)√| log ε|
)
.

Taking, for example, ε = η(n,m), K = | log ε|1/8 and L = | log ε|1/8p , we deduce
that

sup
t∈[0,T ]

E
(∣∣Xn

t − Xm
t

∣∣p) → 0 as n,m → +∞.

The rest of the proof is similar.

5.2. Uniqueness. For simplicity, we assume here that F = 0. Otherwise it is
necessary to introduce Ut as in the previous subsection but it is handled in exactly
the same way.

We similarly change the definition of Lε in

L̃ε(x) = |x| if |x| ≥ ε, L̃ε(x) = 0 if |x| ≤ ε/2,

‖∇L̃ε‖L∞ + ε
∥∥∇2L̃ε

∥∥ ≤ C,

with C independent of ε.
Applying Itô’s formula,

E
(
L̃ε(Xt − Yt )

) ≤ C

∫ t

0
E

(
1ε/2≤|Xt−Yt |≤ε

|σ(Xs) − σ(Ys)|2
ε

)
ds.

By using as before the assumptions, Lemma 3.5 and the corresponding definition
of H

1/2
T (uX) and H

1/2
T (uY ), one deduces that

E
(
L̃ε(Xt − Yt )

) → 0 as ε → 0.

This is slightly less strong than before [Lε(ε) � L̃ε(ε) when ε → 0] but still
enough. In particular, one has if α ≥ ε

P
(|Xt − Yt | ≥ α

) ≤ 1

α
E

(
L̃ε(Xt − Yt )

)
.

Therefore, by taking ε → 0, one still obtains that for any t ∈ [0, T ],
P

(|Xt − Yt | > 0
) = 0,

which allows us to conclude as before.
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6. Proof of Proposition 2.19. We simply use the energy estimates. The com-
putations below are formal but could easily be made rigorous by taking a regular-
ization of σ,F , and hence a and then pass to the limit

d

dt

∫
uα(t, x) dx = −α(α − 1)

∫
uα−1(t, x)∇u(t, x) · F(t, x) dx

− α(α − 1)

∫
uα−2(t, x)∇u(t, x)T a(t, x)∇u(t, x) dx

− α(α − 1)

∫
uα−1(t, x)

∑
1≤i,j≤d

∂u(t, x)

∂xi

∂aij (t, x)

∂xj

dx.

Note that by (2.21)∫
uα−2(t, x)∇u(t, x)T a(t, x)∇u(t, x) dx ≥ C

∥∥∇uα/2∥∥2
L2 .

On the other hand,∫
uα−1(t, x)∇u(t, x) · F(t, x) dx ≤ ∥∥∇uα/2∥∥

L2

∥∥uα/2∥∥
L2‖F‖L∞

≤ C

4

∥∥∇uα/2∥∥2
L2 + C′

∫
uα(t, x) dx.

And∫
uα−1(t, x)

∑
1≤i,j≤d

∂u(t, x)

∂xi

∂aij (t, x)

∂xj

dx ≤ ∥∥∇uα/2∥∥
L2

∥∥uα/2∇a
∥∥
L2

≤ ∥∥∇uα/2∥∥
L2‖∇a‖Lp

∥∥uα/2∥∥
Lr ,

with 1/2 = 1/p + 1/r , which can be done since p > d ≥ 2. Now by Sobolev
embedding

∥∥uα/2∥∥
Lr ≤

(∫
uα dx

)θ/2∥∥∇uα/2∥∥1−θ

L2 ,

for some θ ∈ (0,1], precisely 1/r = 1/2− (1−θ)/d or (1−θ)/d = 1/p, provided
that p > d . In that case, we immediately deduce that

d

dt

∫
uα(t, x) dx + C

2

∫ ∣∣∇uα/2∣∣2 dx ≤ C′′(1 + ‖∇a‖2/θ
Lp

) ∫
uα dx.

This concludes the bound provided that∫ T

0
‖∇a‖2/θ

Lp < ∞,

which means that ∇a ∈ L
q
t,loc(L

p
x ) with 1/q = θ/2 = 1/2 − d/2p. This exactly

corresponds to the condition 2/q + d/p = 1 with p > d .
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Note that p = d is critical here in the sense that the result could still hold in that
case provided that the norm of ∇a is small enough with respect to the constant of
ellipticity.

Finally, we hence deduce that for any t and any α < ∞∥∥u(t, ·)∥∥Lα ≤ ∥∥u(t = 0, ·)∥∥Lα ≤ C,

with C independent of α since u0 ∈ L1 ∩ L∞. This implies that ‖u(t, ·)‖L∞ ≤ C

and completes the proof.

7. Proof of Proposition 2.24. We are going to prove this result under the
assumptions of Corollary 2.21. The other cases are similar.

Fix a complete filtered probability space (�, (Ft )t≥0,P) equipped with a
r-dimensional standard Brownian motion W . Fix also u0 > 0 in L1 ∩ L∞
such that

∫
Rd u0(x) dx = 1. Then, by Corollary 2.21, on the probability space

(Rd × �, (B(Rd) ⊗Ft )t≥0, u0(x) dx ×P(dω)), there is strong existence of a pro-
cess (Xt(x,ω), t ≥ 0) solution of (1.1) with ξ(x,ω) = x and pathwise uniqueness
holds. We deduce that strong existence for almost every deterministic initial con-
dition x holds for (1.1) on (�, (Ft )t≥0, (Wt)t≥0,P). In addition, the family of laws
Px of the process ω �→ X(x,ω) for x ∈ R

d forms a regular conditional probability
of the law of X given ξ .

For uniqueness, the two key points are:

• first, that we are always in cases where uniqueness in law is known for all initial
conditions in (1.1), and in particular for all deterministic initial conditions;

• second, that u ∈ L∞ by Corollary 2.20 (or is bounded by an explicit function in
the case of Corollaries 2.16 and 2.22), σ ∈ H 1(u) and F ∈ W

φ,weak
T (u) (this is

implied by Corollaries 2.4 and 2.12).

For all x such that strong existence holds for (1.1) with ξ = x, let Xx
t and X̂x

t be
two strong solutions of (1.1) such that Xx

0 = X̂x
0 = x a.s. Repeating the proof of

Lemma 4.1, we have

E log
(

1 + |Xx
t − X̂x

t |2
ε2

)
≤ C

∫ t

0
E

[
M|∇σ |(s,Xx

s

)2 + M|∇σ |(s, X̂x
s

)2]
ds

+ C

∫ t

0
E

[(|F | + M1/ε∇F
)(

s,Xx
s

) + (|F | + M1/ε∇F
)(

s, X̂x
s

)]
ds.

By uniqueness in law, the two processes Xx and X̂x have the same distribution Px ,
and so

E log
(

1 + |Xx
t − X̂x

t |2
ε2

)
≤ C

∫ t

0
Ex

[((
M|∇σ |)2 + |F | + M1/ε∇F

)
(s,Xs)

]
ds.
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Let us denote by Mε
t (x) the integral in the right-hand side. Note that the left-hand

side may not be a measurable function of x, but Mε
t (x) is, because (Px)x∈Rd is a

regular conditional probability of the law of X given ξ . Choosing φ as in the proof
of Theorem 1.1 (see the Appendix),∫

Rd
Mε

t (x)u0(x) ds =
∫ t

0

∫
Rd

((
M|∇σ |)2 + |F | + M1/ε∇F

)
(s, x)u(s, dx) ds

≤ C

(
1 + | log ε|

εφ(ε−1)

)
.

Now, copying the proof of Lemma 4.2,

E
(∣∣Xx

t − X̂x
t

∣∣) ≤ C

[√
ε + 1

L
+ LMε

t (x)

| log ε|
]
.

Let us denote by Nε
t (x) the r.h.s. Choosing L = ( 1

| log ε| + η̃(ε))−1 with η(ε) =
(εφ(ε−1))−1, we obtain

∫
Rd

Nε
t (x)u0(x) ds ≤ C

(√
ε +

√
1

| log ε| + η̃(ε)

)
.

Since the right-hand side converges to 0 when ε → 0, there exists a sequence
εk → 0 such that N

εk
t (x) → 0 for almost all x. The diagonal procedure then shows

the existence of a subsequence ε′
k → 0 such that N

ε′
k

t (x) → 0 for almost all x and
for all t in a dense countable subset of [0, T ]. Since the paths of Xx and X̂x are
continuous, we deduce that pathwise uniqueness holds for almost all x ∈ R

d .

APPENDIX: SKETCH OF THE PROOF OF THEOREM 1.1

The only thing left to prove after Theorem 2.13 is: Assume u ∈ L
q ′
t,loc(L

p′
x (Rd))

then show that, for some superlinear φ,

‖σ‖H 1
T (u) ≤ C‖σ‖

L
2q
t ([0,T ],W 1,2p

x )
, ‖F‖

W
φ,weak
T (u)

≤ C‖F‖
L

q
t ([0,T ],W 1,p

x )
.

From the fact that the maximal operator M is bounded on Lp , p > 1, this is
straightforward for σ (as 2p ≥ 2 > 1).

Therefore, the key point is how to prove that for F when p ≥ 1. We give the
proof for p = 1, the case p > 1 can be treated following the same lines.

Now fix L ≥ 1 and denote

h(t, x) = ML∇F =
√

logL +
∫
Rd

|∇F(t, z)|1|∇F |≥√
logL dz

(L−1 + |x − z|)|x − z|d−1 .
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As p′ = ∞, for almost any fixed t , u(t, ·) ∈ Lq ′ ∩ L∞, and hence∫
h(t, x)u(t, x) dx

≤
√

logL

+ max
(
1,

∥∥u(t, ·)∥∥L∞
) ∫∫

min
(
1, u(t, x)

) |∇F(t, z)|1|∇F |≥√
logL dz

(L−1 + |x − z|)|x − z|d−1 dx

≤
√

logL + C logL
(∥∥u(t, ·)∥∥L∞ + ∥∥u(t, ·)∥∥L1

)∥∥∇F(t, ·)1|∇F |≥√
logL

∥∥
L1,

by Fubini’s theorem. Note that the term min(1, u(t, x)) was kept in the integral
because the function x �→ (L−1 + |x − z|)−1|x − z|−(d−1) is not integrable on
{|x| > 1}.

Therefore, integrating now in time, by Hölder’s estimates∫ T

0

∫
h(t, x)u(t, x) dx dt ≤

√
logLT + C logL‖∇F1|∇F |≥√

logL‖L
q
t (L1

x).

Now, if ∇F ∈ L
q
t ([0, T ],L1

x), then de la Vallée Poussin classical integrability re-
sult means that there exists a superlinear ψ s.t.∥∥ψ(∇F)

∥∥
L

q
t ([0,T ],L1

x) < ∞.

Consequently,∫ T

0

∫
h(t, x)u(t, x) dx dt ≤ T

√
logL + C

(logL)3/2

ψ(
√

logL)
.

We conclude that ‖∇F‖
W

φ,weak
T (u)

is bounded for φ defined by

L

φ(L)
= C

√
logL

logL
+ C

√
logL

ψ(
√

logL)
,

which is hence also superlinear.
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